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UAV-Enabled Integrated Sensing, Computing and
Communication for Internet of Things: Joint
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Abstract—As an aerial service platform for Internet of Things
(IoT), unmanned aerial vehicle (UAV) can provide integrated
sensing, computing and communication (ISCAC) services for
the IoT nodes. In this paper, a UAV-enabled ISCAC system is
proposed for IoT to meet the evolving requirements of emerging
services in 6G networks. This system has three functions: sensing
user equipments (UEs) for acquiring radar sensing information,
executing computing tasks, and offloading incomplete tasks to
the access point (AP) for further processing. Through jointly
optimizing UAV CPU frequency, UAV radar sensing power,
transmit power of UEs, and UAV trajectory, the weighted
total energy consumption of both the UAV and the UEs can
be minimized. We present a three-layer iterative optimization
algorithm to tackle the original non-convex optimization problem.
Finally, the effectiveness of the algorithm and its superiority in
energy consumption compared to other benchmark schemes are
verified through simulation results.

Index Terms—UAV, IoT, resource allocation, trajectory opti-
mization.

I. INTRODUCTION

Internet of Things (IoT) aims to connect Internet with
various objects, forming a complete network system. And the
IoT finds extensive applications across diverse sectors, such as
healthcare, transportation, agriculture, etc [1] [2]. However, in
some special scenarios, such as remote areas where the terrain
is not suitable for deploying communication infrastructure, the
IoT user equipments (UEs) cannot send their sensing data to
the data center, and the data center is also unable to obtain
the status of the UEs. Recently, the utilization of unmanned
aerial vehicles (UAVs) to aid ground communications has
seen extensive adoption, primarily owing to their affordability,
adaptable mobility, rapid deployment capabilities, and the
availability of line-of-sight (LoS) connections [3] [4] [5]. The
use of UAVs as relays to enhance ground IoT communications
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effectively solves the above problems. The UAV-enabled inte-
grated sensing and communications (ISAC) system can sense
and communicate with the IoT UEs as well as forward the
sensing data and communication information to the data center.
However, the UAV may achieve a large amount of intricate
data that cannot be processed effectively. The UAV-enabled
mobile edge computing (MEC) system deploys a powerful
MEC server on the UAV to provide computing services for
both radar sensing data and communication data uploaded
by the IoT UEs, greatly reducing energy consumption and
transmit delay. Therefore, the integration of sensing, comput-
ing, and communication (ISCAC) is regarded as a promising
technology for enhancing the performance of UAVs in serving
IoT [6].

The use of UAVs to enable ISAC has attracted substantial
interest from both the academic and industrial sectors [7] [8]
[9]. In [10], Jiang et al. proposed a UAV swarm network
that leverages extended kalman filter algorithm to enhance
target sensing accuracy. Additionally, the UAV communication
delay was reduced by proposing identification friend or foe
method. In [11], Zhang et al. designed a UAV-aided ISAC
network, whose peak Age of Information (AoI) was mini-
mized through optimizing UAV trajectory, scheduling order,
and power/time allocation for sensing and communication
tasks. Wan et al. developed a joint channel estimation and
radar sensing algorithm for the UAV-ISAC networks with
millimeter-wave (mmWave) massive multiple-input multiple-
output (mMIMO) [12]. And compressed sensing technology
was used to achieve the integration of channel estimation and
radar sensing with low pilot overhead. In [13], Zhao et al.
proposed a UAV communication model with jitter effect. By
utilizing an ISAC based channel estimation method, the UAV
sensing, data transmission and UAV control are integrated to
improve the system performance. In [14], Zhong et al. placed
a uniform linear array (ULA) vertically on the UAV, and the
UAV performs ISAC tasks, communicates with multiple users,
and simultaneously senses ground targets. Considering both
stationary and mobile scenarios, the UAV’s throughput was
maximized by jointly designing maneuver and beamforming,
while ensuring radar sensing requirements. In [15], Salem
et al. considered security issues for a reconfigurable intel-
ligent surface (RIS) enabled UAV-ISAC system when being
eavesdropped by a malicious UAV. By jointly designing radar
receiving beamformer, active RIS reflection coefficient matrix
and transmitting beamformer, the achievable system secrecy
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rate was maximized. In [16], Liu et al. introduced radar mutual
information (MI) to measure radar detection performance of
UAV-ISAC system. By jointly optimizing task scheduling,
transmit power, and UAV trajectory, the energy efficiency
(EE) of the system was maximized while guaranteeing sensing
fairness. In [17], Ning et al. presented a multi-UAV trajectory
optimization algorithm to execute flying actions distributively
based on partial information. To the best of our knowledge,
this is the first work to realize distributed multi-UAV trajectory
control in multi-SP scenarios with probabilistic time-varying
service preferences. In [18], Qin et al. proposed a multi-
UAV enable mobile ISAC platforms for both sensing and
communication with target users. To maximize the minimum
spectral efficiency among the UAVs, deep reinforcement learn-
ing (DRL) was adopted to optimize user association, UAV
trajectory and transmit power.
The UAV-enabled MEC has also attracted great interests

among researchers [19] [20], which can provide computing
assistance to ground users in scenarios where there is no
MEC server available on the ground. In [21], Wang et al.
proposed a UAV-enabled MEC network to provide computing
services for randomly distributed mobile devices, and the
UAV energy consumption was significantly reduced by region
partitioning and UAV trajectory optimization. In [22], Li et
al. focused on maximizing the UAV EE by jointly optimizing
UAV trajectory, user transmit power, and computation load
allocation. In [23], Zhang et al. proposed a UAV-enabled
MEC system based on NOMA, and minimized the energy
consumption of multiple UAVs and terrestrial users. In [24],
Asim et al. designed a multi-IRS and multi-UAV assisted
MEC system, and the overall system cost including energy
consumption, completion time, and maintenance cost of UAVs
was minimized by proposing a four-stage algorithm to jointly
optimize UAVs trajectories and IRSs phase shifts. In [25], Lu
et al. tried to maximize the security calculating efficiency of
a UAV-aided MEC network by employing DRL to optimize
the offloading decisions and resource allocations. In addition,
the UAV could also serve as a relay to help users effectively
transfer their computing tasks to remote MEC servers [26]
[27]. Many works have focused on differentiated services
of service providers, but are not suitable for UAV networks
due to their unique service providers. As far as we know,
[28] is the first work to investigate differentiated services for
the UAV network with distinct service providers. In [26],
Zhang et al. presented a joint optimization algotihm of bit
allocation, time slot scheduling, transmit power and UAV
trajectory to minimize energy consumption of communication,
computation, and UAV flight. In [27], Liu et al. proposed a
three-stage iterative optimization algorithm to minimize the
total energy consumption of UAV-assisted MEC network by
optimizing parameters of UAVs and UEs.
At present, there is relatively less literature for UAV enabled

ISCAC. In [29], Huang et al. proposed a UAV-ISAC aided
MEC system, however, ignoring the task computing ability of
the UAV itself, the UAV has to offload the radar sensing data to
the edge-server of the base station (BS) for further processing.
In [30], Xu et al. proposed a UAV-enabled ISCAC framework,
and achieved a balance between computing capacity and

sensing beampattern gain by optimizing beamforming vector
and UAV trajectory. However, the UAV energy consumption
was not explicitly addressed. In this paper, we propose a UAV-
enabled ISCAC model for ground IoT, and seek to minimize
the weighted total energy consumption of both UAV and UEs.
The contributions of this paper are summarized as follows.

• A UAV-enabled ISCAC model is established, where the
UAV performs three essential functions: sensing UEs for
acquiring radar detection information, executing comput-
ing tasks, and offloading incomplete tasks to the access
point (AP) for further processing. We formulate a joint
optimization problem of UAV CPU frequency, UAV radar
sensing power, UEs transmit power, and UAV trajectory
to minimize the overall energy consumption of both the
UAV and the UEs.

• The original optimization problem is non-convex in na-
ture. To solve this problem, it is divided into two sub-
optimization problems, resource allocation optimization
and UAV trajectory optimization, each of which can be
solved by proposing an iterative optimization algorithm
based on successive convex approximation (SCA).

The remainder of this paper is structured as follows. In
Section II, the system model is proposed, where the com-
munication model, sensing model and computing model are
described, respectively. In Section III, we formulate a joint
resource allocation and UAV trajectory optimization problem,
and propose iterative optimization algorithms to solve the
problem. Some numerical simulation results are presented and
analyzed in Section IV. In Section V, we finally conclude the
paper.
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Fig. 1. System model.

II. SYSTEM MODEL

In Fig. 1, we consider a UAV-enabled ISCAC system con-
sisting of a single UAV, a ground AP, and K UEs. The UAV is
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equipped with an ISAC device and a MEC server to simultane-
ously perform radar sensing, communication and computing.
Specifically, the UAV ISAC device first emits radar sensing
signals to obtain the sensing data of the UEs; considering the
limited computing power of the UEs, they need to offload the
task data that cannot be processed to the UAV; then, the UAV
MEC server can simultaneously process radar sensing data and
UEs computing tasks. In addition, considering the carrying
capacity of the UAV and the performance requirements of the
system, an AP with MEC server is established on the ground
to assist the UAV computing. The UAV functions as a relay
to offload unfinished computing tasks to the AP for further
computations.
Define K = {1, 2, ...,K} as set of UEs. To facilitate the

analysis, we uniformly divide the task completion time T
into S time slots, and define S = {1, 2, ..., S} as the set
of time slots. The time slot interval is δt = T/S, which is
selected to be small enough to guarantee that the UAV location
is considered fixed within each time slot. Accordingly, in a
three-dimensional Cartesian coordinate system, the coordinate
of UAV in sth time slot is represented as (q[s],H), where
q[s] = (x[s], y[s]) and H denote the horizontal location and
flight altitude of the UAV, respectively. The locations of the
kth UE and AP are fixed and denoted as uk = (xk, yk) and
ua = (xa, ya), respectively. The UAV flies from its initial
position qI to its final position qF within a mission cycle T .

A. Communication Model

The reference [31] indicates that for a service area with
a side length of 40m and a UAV flight altitude of 20m, the
likelihood of achieving a LoS condition is close to 1. Hence,
the channels between the UAV and the UEs as well as the AP
are predominantly characterized by LoS links. Specifically, the
channel power gains of the communication links between the
UAV and the kth UE as well as the AP at the sth time slot
are

hk[s] =
GtGcλ

2

(4π)
2
d2k[s]

=
βcom

d2k[s]
, ∀s (1)

ha[s] =
GtGcλ

2

(4π)
2
d2a[s]

=
βcom

d2a[s]
, ∀s (2)

where Gt and Gc denote the antenna gains of the UAV
transmitter and communication receiver, respectively; dk[s]
and da[s] denote the distance from the UAV to the kth
UE and the distance from the UAV to the AP, respectively;
λ = c/fc indicates the signal wavelength, where c and
fc denote the speed of light and signal carrier frequency,
respectively; βcom = GtGcλ

2

(4π)2
.

B. Sensing Model

Based on the scattering transmission characteristics of radar
detection signal [32], [33], the channel power gain of the radar
detection link between the UAV and the kth UE at the sth time
slot is

hk,rad[s] =
GtGrλ

2σ

(4π)
3
d4k[s]

=
βrad

d4k[s]
, ∀s (3)

where Gr denotes the antenna gain of UAV radar receiver,
σ denotes radar cross-section (RCS) of target, and βrad =
GtGrλ

2σ
(4π)3

.

C. Computing Model
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Fig. 2. Time slot division.

To avoid interference, the ground UEs use TDMA to access
the UAV. Note that the delay and energy consumption for
sending computing results back from the UAV to UEs, as well
as from the AP to the UAV, can be omitted by considering
that the size of results is significantly smaller than that of the
offloaded data.

As illustrated in Fig. 2, each time slot is further divided into
three sub-time slots. The first sub-time slot θ0[s] is dedicated
to the UAV sensing the UEs, the second sub-time slot θ1[s]
involves the UEs offloading all their tasks to the UAV, and the
third sub-time slot θ2[s] is allocated for the UAV to offload a
portion of the tasks to the AP. Obviously, the length of sub-
time slots satisfies

θ0[s] + θ1[s] + θ2[s] = 1 (4)

1) UAV’s Sensing Data Acquisition: We utilize radar esti-
mation rate to measure the radar detection performance. The
radar estimation rate of the UAV sensing the kth UE at the
sth time slot is

Rk,rad[s] = Blog2

(
1 +

pk,d[s]hk,rad[s]

σ2
u

)
, ∀k, s (5)

where pk,d[s] denotes the sensing power of the UAV to the
kth UE, σ2

u denotes the noise power, and B denotes the
communication bandwidth.

The sub-time slot for sensing is further divided into K equal
time intervals for UEs, ensuring that each UE is sensed in the
different time intervals. Therefore, the number of sensing bits
and the corresponding UAV energy consumption for the kth
UE in the sth time slot are

lk,rad[s] = θ0[s]
δt
K

Rk,rad[s] (6)

Ek,rad[s] = pk,d[s]θ0[s]
δt
K

(7)

2) UEs’ Computation Offloading: The offloading rate of
the kth UE at the sth time slot is expressed as

Rk,off [s] = Blog2

(
1 +

pk[s]hk[s]

σ2
u

)
, ∀k, s (8)

where pk[s] denotes the transmit power of the kth UE. The
sub-time slot for computation offloading is further divided into
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K equal time intervals, allocated to the K UEs for offloading.
Therefore, the number of offloading bits and the corresponding
energy consumption for the kth UE are

lk,off [s] = θ1[s]
δt
K

Rk,off [s] (9)

Ek,off [s] = pk[s]θ1[s]
δt
K

(10)

Once all the UEs have finished computation offloading
in each time slot, the UAV will continue to perform the
computing tasks. The number of computation bits computed
by the UAV for the kth UE in the sth time slot can be given
as

lk,u[s] =
fk,u[s]

Ck
θ2[s]δt, ∀k, s (11)

where fk,u[s] denotes the UAV CPU frequency allocated to
the kth UE. Therefore, the energy consumption for UAV
computing in each time slot is

Ek,u[s] = ku(fk,u[s])
3
θ2[s]δt, ∀k, s (12)

where ku denotes the effective capacitance coefficient of
the UAV processors, which is a constant determined by the
hardware specifications of the UAV.
3) UAV’s Computation Offloading: To maintain higher ser-

vice quality for the UEs, the UAV can transfer some complex
computational tasks to the AP for processing. To ensure that
all the unprocessed task data is successfully offloaded to the
AP, the transmit power of the UAV needs to satisfy

pa[s] ≥
σ2
a

ha[s]

2

K∑
k=1

(lk,rad[s]+lk,off [s]−lk,u[s])

Bθ2[s]δt − 1

 , ∀s

(13)
Therefore, the UAV energy consumption for offloading tasks

to the AP is
Ea[s] = pa[s]θ2[s]δt, ∀s (14)

4) Flying Model: Assuming that the UAV flies at a uniform
speed in a straight line within a single time slot, the UAV flight
speed is

v[s] =
q[s+ 1]− q[s]

δt
, ∀s (15)

According to [34], the UAV propulsion power at the sth time
slot is determined by

P (∥v[s]∥) = P0

(
1 + 3∥v[s]∥2

U2
tip

)
+ 1

2d0ρ0sA∥v[s]∥
3

+PH

(√
1 + ∥v[s]∥4

4v4
0

− ∥v[s]∥2

2v2
0

) 1
2

(16)

where P0 and PH denote the blade profile power and induced
power in hovering status, respectively; Utip represents rotor
tip velocity; v0 represents the average blade induced velocity
during hover; d0, ρ0, s0 and A denote fuselage drag ratio, air
resistance, rotor stability and rotor disc area, respectively. The
UAV’s flight energy consumption in each time slot is

Ef [s] = P (∥v[s]∥)δt (17)

Therefore, the total UAV energy consumption for sensing,
computing, offloading, and flight is

Euav[s] =
K∑

k=1

(Ek,rad[s] + Ek,u[s]) + Ea[s] + Ef [s] (18)

Furthermore, the total energy consumption of all the UEs is

Euser[s] =
K∑

k=1

Ek,off [s] (19)

III. RESOURCE ALLOCATION AND UAV TRAJECTORY
DESIGN

A. Problem Formulation

We seek to minimize the weighted total energy consumption
of all the UEs and the UAV in each time slot. Since the energy
consumption of the UEs is often smaller than that of the UAV,
we use a weight factor to balance the energy consumption of
the UAV and UEs. The optimization problem is given by

min
L[s],q[s]

Euser[s] + ηEuav[s] (20a)

s.t. lk,u[s] ≤ lk,rad[s] + lk,off [s], ∀k, s (20b)
0 ≤ pk[s] ≤ pl,max, ∀k, s (20c)
0 ≤ fk,u[s], ∀k, s (20d)
K∑

k=1

fk,u[s] ≤ fu,max, ∀s (20e)

0 ≤ pk,d[s] ≤ pd,max, ∀k, s (20f)

0 ≤ σ2
a

ha[s]

2

K∑
k=1

(lk,rad[s]+lk,off [s]−lk,u[s])

Bθ2[s]δt − 1


≤ pu,max, ∀s

(20g)
∥q[s]− q[s− 1]∥ ≤ vmaxδt, ∀s (20h)
q[0] = qI , q[S + 1] = qF (20i)
∥q[s]− qF ∥ ≤ (S − s+ 1)vmaxδt, ∀s (20j)

where L[s] = {fk,u[s], pk,d[s], pk[s]} and θ[s] =
{θ0[s], θ1[s], θ2[s]} denote the resource allocation and time
slot scheduling, respectively; η denotes the weight factor. (20b)
ensures that the the number of computing bits performed by
the UAV does not exceed the sum of UAV sensing bits and
UE offloading bits. (20c) denotes the upper limit imposed on
the transmit power of the UEs in adherence to the power
constraint. (20d)-(20g) are the relevant parameter constraints
for the UAV operation. Specifically, (20d) and (20e) delineate
the upper limits of the achieved UAV CPU frequency; (20f)
represents the maximum sensing power devoted to radar
sensing tasks by the UAV; (20g) ensures that the UAV can
offload the incomplete tasks to the AP. (20h) represents the
maximum flight speed constraint of the UAV. (20i) denotes
the constraint of starting and ending points of the UAV flight.
(20j) ensures that the UAV can reach the ending point at the
(S + 1)th time slot.

Due to the non-convexity of the objective function and
the constraints (20b), (20g), directly solving the optimization

UAV-enabled integrated sensing, computing, and communication for Internet of Things: joint resource allocation and trajectory design



5

problem becomes challenging. Consequently, we divide the
original optimization problem into two subproblems, resource
allocation optimization and UAV trajectory optimization, each
of which can be solved by the SCA.

B. Resource Allocation Optimization

Assuming that the UAV trajectory is fixed, the resource
allocation optimization subproblem is given by

min
L[s]

Euser[s] + ηEuav[s] (21a)

s.t. (20b)− (20g) (21b)

To solve this subproblem, we propose a three-layer iterative
optimization algorithm to jointly optimize the UAV CPU
frequency, UAV radar sensing power, and UEs transmit power.
1) UAV CPU Frequency Optimization: Firstly, the opti-

mization problem concerning the UAV CPU frequency fk,u[s]
under the condition of fixed UAV sensing power pk,d[s] and
UEs transmit power pk[s] can be given by

min
fk,u[s]

γ0(L[s],q[s]) (22a)

s.t. (20b), (20d), (20e), (20g) (22b)

The specific expression for optimization objective γ0 is pro-
vided in (22) and can be found at the bottom of the next page.
And this is a convex optimization problem that can be directly
solved by the CVX.
2) UAV Rader Sensing Power Optimization: With the fixed

UEs transmit power pk[s] and UAV CPU frequency fk,u[s],
the allocation problem of UAV sensing power pk,d[s] can be
given by

min
pk,d[s]

γ0(L[s],q[s]) (23a)

s.t. (20b), (20f), (20g) (23b)

Given that both the objective function (23a) and the constraints
(20b), (20g) are all non-convex, it is evident that (23) is non-
convex. The SCA method can be adopted to solve the problem,
which allows us to transform the non-convex problem (23) into
a convex problem. For any local point prk,d[s], Rk,rad[s] can
be replaced by its first-order Taylor expansion as follows

Rs
k,rad[s] = Blog2

(
1 +

pr
k,d[s]hk,rad[s]

σ2
u

)
+

Bhk,rad[s]

ln 2(σ2
u+pr

k,d[s]hk,rad[s])

(
pk,d[s]− prk,d[s]

) (24)

Therefore, problem (23) can be rewritten as

min
pk,d[s]

γ1(L[s],q[s]) (25a)

s.t. Rs
k,rad[s] +

θ1[s]

θ0[s]
Rk,off [s] ≥

Kθ2[s]fk,u[s]

θ0[s]Ck
(25b)

0 ≤ pk,d[s] ≤ pd,max, ∀k, s (25c)
K∑

k=1

Rs
k,rad[s] +

θ1[s]
θ0[s]

K∑
k=1

Rk,off [s] ≤

KBθ2[s]
θ0[s]

log2

(
pu,max

ha[s]
σ2
a

+ 1
)
+ Kθ2[s]

θ0[s]

K∑
k=1

fk,u[s]
Ck

(25d)

where γ1 is provided in (26) and can be found at the bottom
of the next page. Certainly, (25) exhibits convexity and can be
directly solved using the CVX.

3) UEs Transmit Power Optimization: Given the UAV CPU
frequency fk,u[s] and the UAV sensing power pk,d[s], the
optimization problem of UEs transmit power pk[s] can be
given by

min
pk[s]

γ0(L[s],q[s]) (27a)

s.t. (20b), (20c), (20g) (27b)

Due to that the objective function (27a) and the constraints
(20b), (20g) are all non-convex, problem (27) is also non-
convex. Similarly, by the SCA method, we can convert (27)
into a convex problem. Specifically, for a given local point
prk[s], Rk,off [s] can be replaced by its first-order Taylor
expansion as

Rc
k,off [s] = Blog2

(
1 +

pr
k[s]hk[s]

σ2
u

)
+ Bhk[s]

ln 2(σ2
u+pr

k[s]hk[s])
(pk[s]− prk[s])

(28)

Therefore, problem (27) can be rewritten as

min
pk,d[s]

γ2(L[s],q[s]) (29a)

s.t. Rc
k,off [s] +

θ0[s]

θ1[s]
Rk,rad[s] ≥

Kθ2[s]fk,u[s]

θ1[s]Ck
(29b)

0 ≤ pk[s] ≤ pl,max, ∀k, s (29c)
K∑

k=1

Rc
k,off [s] +

θ0[s]
θ1[s]

K∑
k=1

Rk,rad[s] ≤

KBθ2[s]
θ1[s]

log2

(
pu,max

ha[s]
σ2
a

+ 1
)
+ Kθ2[s]

θ1[s]

K∑
k=1

fk,u[s]
Ck

(29d)

where γ2 is provided in (30) and can be found at the bottom
of the next page. Obviously, (29) is convex and can be directly
solved employing the CVX.

4) Three-Layer Iterative Optimization: Upon solving prob-
lems (22), (25), and (29), we derive the optimal solutions
of the UAV CPU frequency fk,u[s], the UAV sensing power
pk,d[s], and the UEs transmit power pk[s]. To attain the optimal
solution for (21), we put forward a three-layer iterative opti-
mization algorithm as shown in Algorithm 1, which performs
iterative optimization on fk,u[s], pk,d[s], and pk[s] until the
objective function value converges.

C. UAV Trajectory Optimization

Using the solutions acquired from the resource allocation
optimization subproblem as the initial values, the UAV trajec-
tory optimization subproblem is represented as

min
q[s]

γ3(L[s],q[s]) (31a)

s.t. (20b), (20g), (20h)− (20j) (31b)

where γ3 is provided in (32) and can be found at the bottom
of the next page. The optimization problem is non-convex
because of the non-convex objective function (31a) and the
non-convex constraints (20b), (20g).
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Algorithm 1 Three-layer iterative optimization
1: Initialize: the iteration index r=0, the UAV CPU fre-

quency fr
k,u[s], the UAV sensing power prk,d[s], the UEs

transmit power prk[s], and the tolerance error ε;
2: repeat
3: given prk,d[s] and prk[s], solve (22) to obtain fr+1

k,u [s];
4: given fr

k,u[s] and prk[s], solve (25) to obtain pr+1
k,d [s];

5: given fr
k,u[s] and prk,d[s], solve (29) to obtain pr+1

k [s];
6: r = r + 1;
7: until the target converges within the error of ε;
8: Output: the UAV CPU frequency fk,u[s], the UAV sens-

ing power pk,d[s], the UEs transmit power pk[s].

According to [27], we first introduce the auxiliary variables
τ = {τ1[s], τ2[s]} that satisfy

τ1[s] ≥ ∥v[s]∥ (33a)

τ22 [s] ≥

√
1 +

∥v[s]∥4

4v40
− ∥v[s]∥2

2v20
(33b)

Based on these two conditions, we can obtain

τ22 [s] +
τ21 [s]

v20
≥ 1

τ22 [s]
(34)

As the left side of (34) is convex, we can replace it with
its first-order Taylor expansion for any given local point
{τ r1 [s], τ r2 [s]}. This approximation can be denoted as

ξr
1
[s] = (τ r2 [s])

2
+ 2τ r2 [s] (τ2[s]− τ r2 [s])

+
(τr

1 [s])
2

v2
0

+ 2
τr
1 [s]

v2
0

(τ1[s]− τ r1 [s])
(35)

Subsequently, we introduce the auxiliary variable β0[s] that

satisfies

2

K∑
k=1

(lk,rad[s]+lk,off [s]−lk,u[s])
Bθ2[s]δt ≤ β0[s] (36a)

1 ≤ β0[s] ≤ β0,max[s] (36b)

where β0,max[s] denotes the maximum value of β0[s], which
is given by

β0,max[s] =
ρmax

∥q[s]− ua∥2 +H2
+ 1 (37)

where ρmax =
pu,maxβcom

σ2
a

. Since (36a) is still non-convex,
we proceed by introducing auxiliary variables β1,k[s], k =
1, 2, ...,K and β2,k[s], k = 1, 2, ...,K that satisfy

log2

(
1 +

pk,d[s]hk,rad[s]

σ2
u

)
≤ β1,k[s] (38)

log2

(
1 +

pk[s]hk[s]

σ2
u

)
≤ β2,k[s] (39)

After further scaling, (36a) is represented as

K∑
k=1

(
θ0[s]

δt
KBβ1,k[s] + θ1[s]

δt
KBβ2,k[s]− fk,u[s]

Ck
θ2[s]δt

)
≤ Bθ2[s]δtlog2(β0[s])

(40)
By introducing the auxiliary variables β3,k[s], k = 1, 2, ...,K ,
which satisfy

β3,k[s] ≤ (∥q[s]− uk∥2 +H2)2, (41)

(38) can be represented as

ρk,d
β3,k[s]

≤ 2β1,k[s] − 1 (42)

We can replace the right sides of (41) and (42) with their first-
order Taylor expansions for any given local points qr[s] and

γ0 =

K∑
k=1

pk[s]θ1[s]
δt
K

+ η

 K∑
k=1

(
pk,d[s]θ0[s]

δt
K

+ ku(fk,u[s])
3θ2[s]δt

)
+

σ2
a

ha[s]

2

K∑
k=1

(lk,rad[s]+lk,off [s]−lk,u[s])
Bθ2[s]δt − 1

 θ2[s]δt

 (22)

γ1 =

K∑
k=1

pk[s]θ1[s]
δt
K

+η

 K∑
k=1

(
pk,d[s]θ0[s]

δt
K

+ ku(fk,u[s])
3θ2[s]δt

)
+

σ2
a

ha[s]

2

K∑
k=1

(
θ0[s]

δt
K

Rs
k,rad[s]+lk,off [s]−lk,u[s]

)
Bθ2[s]δt − 1

 θ2[s]δt


(26)

γ2 =

K∑
k=1

pk[s]θ1[s]
δt
K

+η

 K∑
k=1

(
pk,d[s]θ0[s]

δt
K

+ ku(fk,u[s])
3θ2[s]δt

)
+

σ2
a

ha[s]

2

K∑
k=1

(
lk,rad[s]+θ1[s]

δt
K

Rc
k,off [s]−lk,u[s]

)
Bθ2[s]δt − 1

 θ2[s]δt


(30)

γ3 =
σ2
a

ha[s]

2

K∑
k=1

(
θ0[s]

δt
K

Blog2

(
1+

pk,d[s]hk,rad[s]

σ2
u

)
+θ1[s]

δt
K

Blog2

(
1+

pk[s]hk[s]

σ2
u

)
−

fk,u[s]

Ck
θ2[s]δt

)
Bθ2[s]δt − 1

 θ2[s]δt + P (∥v[s]∥)δt (32)
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βr
1,k[s], which are respectively denoted as

ξr2,k[s] =
(
∥qr[s]− uk∥2 +H2

)2

+4
(
∥qr[s]− uk∥2 +H2

)
(qr[s]− uk)

T
(q[s]− qr[s])

(43)
ξr3,k[s] = 2β

r
1,k[s] + 2β

r
1,k[s] ln 2

(
β1,k[s]− βr

1,k[s]
)

(44)

Similarly, by introducing the auxiliary variables β4,k[s], k =
1, 2, ...,K , which satisfy

β4,k[s]−H2 ≤ ∥q[s]− uk∥2 (45)

(39) can be represented as
ρk

β4,k[s]
≤ 2β2,k[s] − 1 (46)

We can replace the right sides of (45) and (46) with their first-
order Taylor expansions for any given local points qr[s] and
βr
2,k[s], which are respectively denoted as

ξr4,k[s] = ∥qr[s]− uk∥2 +2(qr[s]− uk)
T
(q[s]− qr[s]) (47)

ξr5,k[s] = 2β
r
2,k[s] + 2β

r
2,k[s] ln 2

(
β2,k[s]− βr

2,k[s]
)

(48)

Furthermore, (36b) is non-convex and can be expressed as

∥q[s]− ua∥2 +H2 ≤ ρmax

β0[s]− 1
(49)

We replace the right side of (49) with its first-order Taylor
expansion for any given local point βr

0 [s], which is denoted as

ξr
6
[s] =

ρmax

βr
0 [s]− 1

− ρmax

(βr
0 [s]− 1)

2 (β0[s]− βr
0 [s]) (50)

Therefore, the first term of the objective function γ3 is
represented as

g[s] = ρa[s]β0[s](∥q[s]− ua∥2 +H2)

−ρa[s](∥q[s]− ua∥2 +H2)
(51)

where ρa =
θ2[s]δtσ

2
a

βcom
. By introducing the slack variable β5[s]

that satisfies
∥q[s]− ua∥2 ≤ β5[s], (52)

The upper bound of (51) is represented as

g̃[s] = ρa[s]β0[s]β5[s]−ρa[s]β5[s]+ρa[s](β0[s]−1)H2 (53)

According to [35], for any given local point {βr
0 [s], β

r
5 [s]},

β0[s]β5[s] can be replaced by its first-order Taylor expansion,
which is denoted as

ξr7 [s] = βr
0 [s]β5[s] + β0[s]β

r
5 [s] +

κ
2 (β0[s]− βr

0 [s])
2

+κ
2 (β5[s]− βr

5 [s])
2

(54)
where κ is a small positive constant. Rk,rad[s] and Rk,off [s]
in constraint (20b) can be replaced by their first-order Taylor
expansions at a given local point qr[s] as follows

Rr
k,rad[s] = Blog2

(
1 +

βradpk,d[s]

σ2
u(∥qr [s]−uk∥2+H2)

2

)
− 2Bβradpk,d[s](∥q[s]−uk∥2−∥qr [s]−uk∥2)

ln 2
(
σ2
u(∥qr [s]−uk∥2+H2)

2
+βradpk,d[s]

)
(∥qr[s]−uk∥2+H2)

(55)

Rr
k,off [s] = Blog2

(
1 + βcompk[s]

σ2
u(∥qr[s]−uk∥2+H2)

)
− Bβcompk[s](∥q[s]−uk∥2−∥qr [s]−uk∥2)

ln 2(σ2
u(∥qr[s]−uk∥2+H2)+βcompk[s])(∥qr [s]−uk∥2+H2)

(56)
Therefore, the optimization problem (31) is redescribed as

min
q[s],τ,β

ρa[s]ξ
r
7 [s]− ρa[s]β5[s]

+ρa[s](β0[s]− 1)H2 + P1(v1[s])δt
(57a)

s.t.
β0[s] ≥ 1, β1,k[s] ≥ 0, β2,k[s] ≥ 0, β3,k[s] ≥ 0,
β4,k[s] ≥ 0, β5[s] ≥ 0, ∀k

(57b)

ξr
1
[s] ≥ 1

τ22 [s]
(57c)

β3,k[s] ≤ ξr2,k[s] (57d)
ρk,d

β3,k[s]
+ 1 ≤ ξr3,k[s] (57e)

β4,k[s]−H2 ≤ ξr4,k[s] (57f)
ρk

β4,k[s]
+ 1 ≤ ξr5,k[s] (57g)

∥q[s]− ua∥2 +H2 ≤ ξr6 [s] (57h)

θ0[s]
δt
KRr

k,rad[s] + θ1[s]
δt
KRr

k,off [s]

≥ fk,u[s]
Ck

θ2[s]δt
(57i)

(20h)− (20j), (33a), (40), (52) (57j)

where β = {β0[s], β1,k[s], β2,k[s], β3,k[s], β4,k[s], β5[s]} is the
set of auxiliary variables. Problem (57) is convex and can be
directly solved using the CVX.

The original optimization problem (20) can be solved
by through iteratively optimization the resource allocation
optimization subproblem and UAV trajectory optimization
subproblem. The joint iterative optimization is shown in Al-
gorithm 2.

Algorithm 2 Joint iterative optimization of resource allocation
and UAV trajectory
1: Initialize: the iteration index r=0, the resource allocation

Lr[s] = [f r
k,u[s], p

r
k,d[s], p

r
k[s]], the UAV trajectory qr[s],

and the tolerance error ε;
2: repeat
3: fixing qr[s], solve to get solution Lr+1[s] by Algorithm

1;
4: fixing Lr+1[s], solve (57) to get solution qr+1[s];
5: r = r + 1;
6: until the target converges within the error of ε;
7: Output: the resource allocation L[s] and the UAV trajec-

tory q[s].

IV. NUMERICAL RESULTS

In this section, we engage in simulations to confirm the
validity of the system model and the efficiency of the optimiza-
tion approach. The specific parameter configurations for the
simulation experiments are presented in Table I. To illustrate

UAV-enabled integrated sensing, computing, and communication for Internet of Things: joint resource allocation and trajectory design
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TABLE I
SIMULATION PARAMET

Parameter Value
total bandwidth B = 1 MHz

maximum CPU frequency fu,max = 5 GHz
CPU cycles per bit Ck = 1000 cycles/bit

flight altitude H = 20 M
amount of UEs K = 6

maximum UE transmit power pl,max = 2 W
maximum UAV sensing power pd,max = 6 W
maximum UAV transmit power pu,max = 2 W

initial UAV location qI = (0,0) m
final UAV location pF = (40,40) m

maximum flight velocity vmax = 25 m/s
tip speed of rotor blade Utip = 120 m/s

mean rotor induced velocity v0 = 4.03
air density ρ0 =1.225 kg/m3

rotor disc area A = 0.503 m2

fuselage drag ratio d0 = 0.6
rotor solidity s0 = 0.05

task completion time T = 5 seconds
time slot number s = 10

weight η = 0.1

the superiorities of our proposed scheme, we have devised two
benchmark schemes for comparisons. The first scheme is only
relaying design: the UAV does not perform computations and
can only serve as a relay to offload all task data to the AP. The
second scheme is no AP design: the system does not have AP
assistance, and all computing tasks are executed by the UAV.
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Fig. 3. The weighted total energy consumption versus the flight period T
under different schemes.

Fig. 3 shows the weighted total energy consumption versus
the flight period T . We can see that the weighted total energy
consumption of all three schemes increases as T . For the only
relaying design, the UAV does not perform computing, and
it offloads all the computing tasks to the AP, thus consuming
a large amount of energy. For the no AP design, the UAV
also consumes much energy for computing. Therefore, the
proposed scheme outperforms the other schemes due to ISCAC
design as well as trajectory optimization.
Fig. 4 shows the initial trajectory and velocity of the UAV, as

well as the optimized trajectory and velocity of the UAV under

different distributions of UEs and AP. From the results of Fig.
4(a), 4(b) and 4(c), it can be seen that the distribution of UEs
affects the UAV trajectory. To reduce energy consumption, the
UAV is encouraged to fly close to the UEs. In addition, AP
coordinates also have a certain impact on the UAV trajectory.
Specifically, during the process of offloading to the AP, the
UAV adjusts its flight path to approach the AP more closely,
aiming to minimize energy consumption. From Fig. 4(d),
4(e) and 4(f), it can be seen that the UAV hovers or flies
at a extremely low speed at certain positions. This behavior
is attributed to the UAV attaining an advantageous service
position within the current time slot. By adopting such a flight
pattern, the UAV effectively reduces energy consumption.
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Fig. 5. Radar estimation information rate of each UE.

Fig. 5 illustrates the radar estimation information rate for
each UE with both the initial trajectory and the optimized
trajectory. It shows that the proposed optimization algorithm
is capable of achieving a higher radar estimation information
rate compared to the initial trajectory.
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Fig. 6. The weighted total energy consumption versus sum radar estimation
rate under different schemes.

Fig. 6 shows the weighted total energy consumption versus
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(f)

Fig. 4. (a) UAV trajectory with the UEs distribute on both sides of the initial UAV trajectory; (b) UAV trajectory with the UEs uniformly distribute on the
initial UAV trajectory; (c) UAV trajectory with the UEs distribute on one side of the initial UAV trajectory; (d) UAV velocity with the UEs distribute on both
sides of the initial UAV trajectory; (e) UAV velocity with the UEs uniformly distribute on the initial UAV trajectory; (f) UAV velocity with the UEs distribute
on one side of the initial UAV trajectory;

sum radar estimation rate under different schemes. It is seen
that the higher the sum radar estimation rate, the greater the
sensing energy consumption of the UAV. However, the pro-
posed scheme design requires the least energy consumption.
This is because in the no AP design, the energy consumption
computed by the UAV itself increases, while in the only
relaying design, the UAV energy consumption for offloading
tasks to the AP also increases.
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Fig. 7. The weighted total energy consumption versus the period T under
different time slot allocations.

Fig. 7 illustrates the weighted total energy consumption

under different time slot allocations. We can see that the total
energy consumption of each scheme increases as T , but the
energy consumption of the average time-slot allocation scheme
is the least.

V. CONCLUSIONS

In this paper, we propose a UAV-enabled ISCAC model for
IoT, where the UAV senses UEs to acquire radar detection
information, executes computing tasks, and offloads incom-
plete tasks to the AP for further processing. By performing
joint optimization of the UAV CPU frequency, UAV radar
sensing power, UEs transmit power and UAV trajectory, we
aim to minimize the overall energy consumption of both the
UAV and UEs. A joint iterative optimization algorithm of
resource allocation and UAV trajectory is proposed to obtain
the optimal solution for the original problem. The numerical
findings provide strong evidence for the effectiveness and
superiority of the proposed scheme when compared to the
other benchmark schemes.
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