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Abstract

Spin qubits in silicon-based quantum devices are a candidate quantum computing

architecture because of their high fidelities, long coherence times and pathway to

scalability. However, their potential for scaling is tainted by device variability. Each

device must be tuned to operation conditions. Automated artificial intelligence-based

tuning methods are necessary as individual devices scale and the dimensions of the

tuning parameter space increase. This thesis presents algorithms for the automatic

tuning of silicon-based quantum device architectures. I demonstrate a machine learning-

based algorithm that is capable of tuning a 4-gate Si FinFET, a 5-gate GeSi nanowire

and a 7-gate Ge/SiGe heterostructure double quantum dot device without human

intervention. I achieve double quantum dot tuning times of 30, 10, and 92 minutes,

respectively. I construct a new classifier of quantum transport features using machine

learning and obtain novel insights into the double quantum dot parameter space across

the different device architectures. I demonstrate the first algorithm for the automatic

tuning of an ion-implanted donor in silicon device up to the point of readout calibration

within 10 minutes. Modules relying on computer vision perform signal processing of

quantum transport measurements synonymous with donor spin in silicon devices and

enable tuning and characterisation faster than human experts. Finally, using machine

learning I infer true qubit states from imperfect measurements and cross-examine

our method on simulated data. I estimate initialisation fidelities of 99.34% for a

Si-MOS qubit at 1 kelvin, further validating silicon-based architectures as a platform

for quantum computing. These results show that AI-enabled automation is integral to

the wave which carries silicon-based quantum devices towards the shores of universal

fault-tolerant quantum computation.
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Pla, Anasua Chatterjee, Aurélien Trichet, Rafael Eggli, Steve (Xi) Yu, yFe, Corey

v



vi

Ostrove, Elena Vicario Santos, Han, Giulia Borini, Marthe Naudts, Ben Young, Sanmi

Adekanye, Simon Sampson, Andreas Nickl, Philippa Moss, Wee Han Lim, Nicholas

Sim, Paul Steinacker, Lucas Schorling, Vitalik Buterin, Andrew Kirima, Benjamin

Wilhelm, Courtney, Adrian Taylor, Konrad Kopp, Sebastian Orbell, Anders Kringhøj,

Ian Hammond, Femi Nylander, Sam Sutherland, Rupert Stonehill, Ferhat, Norbert

Gottenberg (r.i.p.), Nard Dumoulin Stuyck, Matt Mai, Deems, Wyatt Vine, Will

Minashi, Encode Club, Ian Sutton, The Rank Foundation, Robin Blume-Kohout,

Valentina Gualtieri, Amanda Seedouse, James Little, Alona Shevchenko, Benjamin

Barclay, Sammi Bammi, Kabir Gandhi, Josh King, Laura Dunn, Sharmaine, Miguel

Carballido, Mark van Blankenstein, Giulia Galatolo, Shobhan Dhir, David Worlidge,

Andrew Worrall, Dan Steward, Edward Laird, Ian Berkman, John the Porter, Zander,

Larry, Md. Mamunur Rahman, Danilo, Andy Harsant, Tobias, Torbjørn Rasmussen,

Steve Yanni, Max Fosh, Joseph Hickie, G. Isella, Jonas Schuff, Demis Hassabis, Layi

Wang, Pippa Harsant, Martin Nurizzo, Paul Warren, Hyungil Moon, Joost van der

Heijden, Naomi Mowat-Amie, Rocky Su, Alessandro Lodi, Farri Gaba, The Worshipful

Company of Armourers and Brasiers, Arkady Fedorov, Jonathan Huang, The Ferreras-

Willets, Michael Glossop, Andreas Kuhlmann, Lewis Williams (r.i.p.), James Lane,
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Chapter 1

Introduction

I think there is a world market for

about five computers.

Thomas J. Watson

In 1492 there were no horses in America. An animal now synonymous with

American culture, politics, growth and identity only reappeared on the continent after

the arrival of Christopher Columbus in 1493 [1]. 400 years later, American cowboys

and cowgirls could not imagine life without a horse. Similarly, today we struggle

to make it through an hour without checking on our tailored stream of information

delivered by a mobile pocket computer. A pocket computer built on the horseback of

the silicon transistor. A billion silicon transistors, all working harmoniously, carrying

gigabytes of information. Globally, there are over a billion computers each with over

a billion transistors, an unimaginable outcome for Thomas J. Watson of IBM who

thought that the market for computers was limited to single digits.

We squeal; plucked from the ice-cold Steel-Age baby’s bath water, only to find

comfort, tightly wrapped and bundled in densely woven blankets of software running

on silicon. We are now in the Silicon Age. Although it is a material of a grey

metallic lustre in colour, its prominence continues to be reflected. The late Gordon

Earle Moore observed in 1965 that the number of transistors on a microchip doubled

1
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every two years. Computational power has continually increased; the modern-day

smartphone can perform arithmetic faster than the supercomputers which landed

man on the moon in 1969. Half of the world’s top ten most valuable companies are

either expert manufacturers of silicon transistors or exceptionally adept at developing

software to perform calculations upon them. The proliferation and access to raw

computing power throughout the new millennium have enabled our ability to process

and harness the exponentially increasing amount of data created. Evident milestones

of our capabilities are not limited to but include Deep Blue, AlphaZero, AlphaFold,

Dall-E, and chatGPT. A short list of computers and artificial intelligences (AIs) that

dethrone Chess grandmasters, conquer Go world champions, predict the structures of

the molecular building blocks of life, generate realistic images from text and converse in

a human-like manner based on context and prior conversation. However, in light of all

of these achievements and our historical growth of computational prowess, computers

are bound by their physical nature in the class of problems that they can solve.

My computer is limited. My current classical computer is limited. Despite all the

computational power in the world were I to use all of it, there would still be problems

I would be unable to solve in my lifetime and many generations yet to come. Some

of these limitations have their advantages. Secure communication over the internet

relies on the infinitesimally small statistical probability of a bad actor being able to

solve hard problems [2]. In many cases, the only approach is to make a series of

guesses at a solution and see if one of them is correct. There are however many

disadvantages to limitations in computational power. Many of these limitations lie

in solving problems which reside in the quantum realm of nature and could lead to

significant advancements in medicine and science [3]. To solve problems like these, a

sizable upgrade to current computers is needed. Increasing their memory will not help,

and including graphical processing units (GPUs) will not make a noticeable impact on

the time to reach a solution for multiple problems. But, we are possibly heading along

the right path, which is altering how the computer processes information.
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Each individual unit of information, a bit, can carry a single value in a classical

computer - either a one or a zero. In a quantum computer each bit, or qubit, can

carry more than a single classical bit of information. This is due to the quantum

mechanical phenomenon of superposition. N qubits can carry as much information

as 2N classical bits. How can we make such a powerful computer? One of the key

requirements is a two-level quantum system [4]. Many physical implementations have

come about from experimentalists recognising the work they were carrying out in the

lab could be used as a basis for quantum computing. These include trapped ions,

superconducting resonant circuits, nitrogen vacancy (NV) centres in diamond, and

semiconductor spin qubits. Deciding between these options can be done using a range

of criteria, for example: relative advancement, ease of manufacture, or compatibility

with current technology. But there are other important questions to answer such as

how many qubits do we need for our quantum computer to solve problems accurately?

The exponential nature of the information-carrying capacity of qubits may lead

one to believe that no more than a couple hundred qubits are required for quantum

computation. A quick back-of-the-envelope calculation shows that 256 qubits could

carry as much classical-bit information as there are atoms in the universe. However,

qubits are not perfect and are prone to errors due to decoherence. There are additional

errors from faulty gates, measurement or, quasiparticle poisoning for example [5],

therefore additional qubits are needed to correct for these errors [6]. At least a

million qubits will be required [6–8] for a universal fault-tolerant computer. A scalable

architecture is key to achieving this.

Trapped ions [9] have shown high gate fidelities [10, 11] and long coherence times

[11, 12]. Having a high gate fidelity is essential for reducing computational errors.

The longer the coherence time, the more time is available for gate operations before

the qubit decoheres (due to sources of electric or magnetic noise). In this context, the

speed of gate operations is also important. IBM has created the concept of quantum

volume to consider all these measures of qubit performance [13]. NV centres [14,
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15] have the advantage of relying on photonics and therefore can play a role in both

quantum computation and communication with the ability to also operate at room

temperature. Other photonic-based qubits include those being developed in silicon

devices [16, 17] however, these have relatively lower fidelities compared to alternative

qubit implementations [18, 19]. Superconducting qubits [20, 21] are currently some

of the highest-held platforms due to achievements of performing calculations using 53

superconducting qubits [22]. Arute et al. [22] claims that superconducting quantum

processors will follow a quantum version of Moore’s law, doubling their computational

power every few years, without tackling the issue of scalability. Scalability is an

unfortunate pinch point of superconducting qubits, with each qubit taking up to

approximately 0.1 mm2 in area [23]. This makes it easy to address individual qubits

with microwave lines. Problems occur when solving well-known quantum algorithms

[24, 25], millions of qubits are required to accommodate for error correction and one

has to cool down a 1 m2 chip to 20 mK temperatures. To traverse this challenge,

superconducting qubit manufacturers are already building three-dimensional integrated

systems, placing microwave wiring on a separate layer to the qubits [26].

Spin qubits in semiconductor devices are however a scalable architecture for quan-

tum computing. Each qubit has a small footprint of approximately 100 x 100 nm2

and all can be electrically addressed. By using silicon there is an opportunity to take

advantage of the existing trillion-dollar semiconductor industry and its lithography fab-

rication expertise. These devices generally require sub 100 mK operating temperatures

but due to their small size, their cryogenic scaling footprint is orders of magnitude

less than that of superconducting qubits. Semiconductor devices can operate at even

hotter temperatures such as above 1 kelvin [27], as I will introduce later. Fidelities

[28] and coherence times [29] are more than promising for an implementation which

is compatible with current complementary metal-oxide-semiconductor (CMOS) fab-

rication technology. Unfortunately, scalability is tainted by device variability, with

each quantum device requiring the tuning of parameters to configure it to operating
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conditions. Research labs currently work with devices that house on the order of two

qubits, and rely on tuning their devices by hand. In some cases, the manual tune-up

time can take days, if not weeks and in the worst cases months to realise a qubit.

This approach is simply not scalable given the need for hundreds of millions of qubits

to build a universal fault-tolerant quantum computer.

This thesis aims to supplicate the notion that before we can use a quantum

computer we first need to be able to turn it on. Given the arduous nature of this

task when carried out manually by experimentalists working with semiconductor-

based qubits in the lab, we must create automated methods to turn on a quantum

computer as we scale the number of qubits. I stress that research institutions and

quantum hardware companies will be hard-pressed to find one billion PhD students to

tune their billion qubit quantum computers manually. Instead, we can leverage our

classical computational capabilities to conquer and reign control over the quantum

realm. We can utilise AI and software to automatically navigate the high dimensional

complex parameter space and turn on silicon-based quantum devices. So far, I

have provided context to the landscape of computer innovation and the desire for

quantum computation. Additionally, I have delved into why a spin in silicon-based

architecture is suitable for a quantum computer. Next, I will cover the theory behind

qubits, semiconductor quantum dots, qubit readout methods and machine learning

tools relevant to the rest of the thesis. Following, I will review the literature on

semiconductor-based qubits and current state-of-the-art machine learning methods for

tuning semiconductor quantum devices. Before delving into the results of this thesis I

will cover the methodology used to obtain the data included in the following chapters.

In Chapter 5 I will demonstrate the first algorithm capable of tuning three different

semiconductor device architectures and providing novel insight into the parameter

space of the quantum devices. In Chapter 6 I will present the first algorithm to tune

an ion-implanted donor spin in silicon device up to the point of readout calibration

from scratch using machine learning. In Chapter 7, we will use machine learning
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techniques to infer true qubit states in the presence of erroneous measurements of a

silicon spin qubit device operating at 1 kelvin. Finally, I will provide a summary of

what has been demonstrated in this thesis and my views on future work in the field of

artificial intelligence for quantum computing in silicon.



Chapter 2

Theory

Straight to the good stuff (said while

rubbing hands together).

Andre Saraiva

Qubits. What are they and why do we care? How do we make qubits and what

are the requirements on their characteristics so that we can do something useful with

them? I will delve into these questions within this chapter discussing spin qubits,

quantum dots, and qubit readout methods.

2.1 Qubits

The qubit is the information-carrying unit of a quantum computer, analogous to a bit

in a classical computer. The state of a qubit is represented as a linear combination of

two orthogonal vectors, ( 1
0 ) and ( 0

1 ), |0⟩ and |1⟩ in Dirac notation respectively, which

are the qubit’s computational basis states. Mathematically we can write the state of

the qubit |ψ⟩ as,

|ψ⟩ = α |0⟩+ β |1⟩ (2.1)

7
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Figure 2.1: The Bloch sphere. The Bloch sphere is a unit sphere where the computa-
tional basis states of the qubit |0⟩ and |1⟩ reside at opposite poles of the z-axis. A
general qubit state lies on the surface of the sphere and is defined by the angles ϕ
and θ.

for any complex α and β, and under the normalisation condition that

|α|2 + |β|2 = 1 (2.2)

where α and β are the probability amplitudes of the basis states. Their moduli squared,

|α|2 and |β|2, represent the probabilities of finding the qubit in one of the two basis

states |0⟩ and |1⟩ respectively after measuring the qubit.

We can take advantage of the normalisation condition for α and β and visualise

all the possible states of the qubit as points on the surface of a unitary sphere, known

as a Bloch sphere (Fig. 2.1). Using polar coordinates, a general qubit state on the

Bloch sphere can be defined as

|ψ⟩ = cos (θ/2) |0⟩+ eiϕ sin (θ/2) |1⟩ (2.3)

where a general qubit state can be defined by two angles θ ∈ [0, π] and ϕ ∈ [0, 2π].

What good is encoding information if you can’t do anything with it? A classical

computer relies on logic operations on bits to perform computation, quantum computers
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possess a similar quality - qubit logic gates. A single qubit operation, or gate, moves a

qubit from one position on the Bloch sphere to another. A suite of single-qubit gates,

defined by the Pauli matrices,

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 , (2.4)

correspond to a rotation of π radians about the respective axis x, y, z of the Bloch

sphere (Fig. 2.1). Similarly gates can operate on multiple qubits at the same time, for

example a two-qubit gate such as the controlled-phase (CZ) gate which adds a phase

to one of the qubits, the target qubit, conditional on the state of the other qubit, the

control qubit.

To characterise qubits many metrics are utilised, here I will list the core ones used

and mentioned within this thesis. The first is the (spin) relaxation time, known as T1.

This refers to the time in which a qubit, remains in the excited state, |1⟩, before it

relaxes to the ground state |0⟩. The second metric is the coherence time, T2. The

coherence time is the length of time the qubit remains in a state of superposition, a

state that is a linear combination of |0⟩ and |1⟩, before it decoheres and collapses into

a single classical state. Gate fidelity is a measure of how often the desired outcome

is achieved when an operation (or gate) is performed on a qubit and is quoted as

a percentage. Similarly, readout fidelity is a measure of how accurately one can

measure the qubit state. Fidelities must be greater than 99 % to achieve a universal

fault-tolerant quantum computer otherwise, the accumulation of errors will overwhelm

any meaningful result from a quantum algorithm, even if using state-of-the-art error

correction techniques [30].



2.2. DIVINCENZO’S CRITERIA 10

2.2 DiVincenzo’s Criteria

To build a quantum computer, there are five key criteria that qubits and gates will

need to meet, as laid out by DiVincenzo in 2000 [4],

1. A scalable physical system with well-characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as

|000...⟩

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

The criteria exemplify a form of a quantum computing paradox; we need to create

qubits that are decoupled from their environment while we maintain excellent control

over their behaviour. Moreover, as stated in item 1, the physical system in which

the qubits are realised must be scalable and thoroughly understood. Architectural

implementations that satisfy the remaining four items are hard to achieve, and very

few have the current capability of satisfying all five.

DiVincenzo goes on to state that, "the embodiment of a qubit is simply a quantum

two-level system" [4]. Therefore, a qubit can be encoded in for example the polarisation

of a photon (horizontal or vertical), the energy states of an atom (ground or excited),

or the spin of an electron (spin-up or spin-down) known as spin qubits. Here, we focus

on spin qubits realised in semiconductor quantum dots.

2.3 Quantum dots

Through material manipulation and/or electrostatic potentials humans possess the

ability to define quantum dots within semiconductor crystals. Quantum dots are
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Figure 2.2: Schematic of the Constant Interaction model for a quantum dot. a)
Schematic of a quantum dot device. A quantum dot (QD) can be defined by a
material or electrostatic confinement potential. The quantum dot is connected to a
(reservoir) source of charge carriers, and manipulating the voltage applied to a gate
electrode VG enables control of the energy of the quantum dot. Application of a bias
voltage, VSD creates the opportunity for charge carriers to flow from the source to
the drain and a current to be measured. b) Constant Interaction model schematic.
Capacitances, CS, CG, and CD represent the coupling of the Coulomb interactions of
the charge carriers within the QD to the source, gate and drain respectively.

artificial nanoscale electronic structures which can be filled with charge carriers

(electrons or holes) [31], and posses a 0-dimensional density of states. The size of a

quantum dot is comparable to the Fermi wavelength of the charge carrier, typically

on the order of 100 nm. The number of charge carriers added or removed to the

quantum dot, down to the single electron (or hole) regime, can be controlled through

fine control of the confinement potential. The energy states of the charge carriers

within the dot are quantised, and charge carriers obey the rules of atomic physics

when filling these states [31]. Measurements of charge flowing through the quantum

dot can be modelled by the Constant Interaction model.

2.3.1 Constant Interaction model

The Constant Interaction model (Fig. 2.2) is based on two main assumptions. 1) A

single constant capacitance, C, represents the Coulomb interactions between electrons

(or holes) within the dot and their interactions with the environment. C is the total of

the capacitances connecting to the dot in the network including from the source, gate

and drain of the device, CS, CG, and CD respectively. 2) The Coulomb interaction is
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independent of the number of electrons, N on the quantum dot. From Hanson et al.

[31], the total energy, U(N), of a single dot connected to source and drain reservoirs

is,

U(N) =
[−|e|(N −N0) + CSVS + CDVD + CGVG]

2

2C
+

N∑
n=1

En(B) (2.5)

where −|e| is the electron charge, N0 is the number of background charges and VS, VD

and VG are the corresponding voltages applied to the source, drain and gate. En(B)

is the single-particle energy level which depends on confinement potential and the

applied magnetic field, B. The electrochemical potential, µ(N) of the dot is:

µ(N) ≡ U(N)− U(N − 1) = (N−N0−
1

2
)EC−

EC
|e|

(CSVS+CDVD+CGVG)+EN

(2.6)

where EC = e2/C is the charging energy, with C = CS+CG+CD. The electrochemical

potential contains an electrostatic part (first two terms) and a chemical part (last term).

The electrochemical potential depends linearly on the gate voltage, the energy has a

quadratic dependence. This dependence is the same for all N and the whole ’ladder’

of electrochemical potentials can be moved up or down while the distance between

levels remains constant. This makes the electrochemical potentials a convenient

quantity for describing electron tunnelling. Applying a voltage bias between the source

and the drain contacts, VSD = VS − VD, creates a potential difference for charge

carriers to flow. Moreover, it opens up a bias window for electrons to tunnel from

the source reservoir to the dot, and then the drain. The bias window has an energy,

µS − µD = −|e|VSD. If an energy level of the dot sits within the bias window then

electron transport is allowed. The electrochemical potentials of the successive dot

energy levels are spaced by the addition energy, Eadd(N),
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Figure 2.3: Quantum dot in the low bias regime. Application of bias voltage VSD opens
a window between the source and the drain electrochemical potentials, µS and µD,
for charge carriers to flow. The window is small enough that a single electrochemical
potential level of the dot, µN , can reside within the window when VG is altered. When
a dot level resides within the bias window as VG is swept, current can flow and a
peak in current (IDOT) known as a Coulomb peak occurs. When a dot level exits the
bias window, the current is halted and the dot is in a state called Coulomb blockade.
Adapted from Ref. [31].

Eadd(N) = µ(N + 1)− µ(N) = EC +∆E (2.7)

The addition energy is made up of an electrostatic component of the charging energy,

and the energy spacing between two discrete quantum energy levels, ∆E. ∆E can be

zero in the event that two consecutive electrons are added to the same spin-degenerate

level. We assume that the temperature is negligible compared to ∆E, corresponding

to a temperature of approximately 1 K. The ladder of electrochemical potentials within

the dot can be plunged or raised into and out of the bias window by control of VG.

There are two extremes in which the dot can operate, in the low bias regime where

only a single dot level is within the bias window, and the high bias regime where

multiple dot levels fall within the bias window.
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Figure 2.4: Schematic of the Constant Interaction model of a double quantum dot.
Two quantum dots (QD1 and QD2) are capacitively coupled together by Cm. The
respective gate electrodes (VG,1 and VG,2) for each dot (QD1 and QD2) are capacitively
coupled (C12 and C21) to the adjacent dot as well as their target dots (C11 and C22).

In the low bias regime, if a dot level does not fall within the bias window, no current

can flow through the dot, and the dot is in a state called Coulomb blockade (Fig.

2.3). Coulomb blockade can be lifted by altering VG, such that µS ≥ µ(N) ≥ µD

is satisfied enabling current to flow. An electron can tunnel onto the dot from the

reservoir, and then tunnel off the dot into the drain. Once the dot is unoccupied,

another electron can tunnel onto the dot from the source and so on. This behaviour

is called single-electron tunnelling.

If we monitor the current flowing through the dot, IDOT while sweeping the voltage

VG, we can observe characteristic peaks in current known as Coulomb peaks. These

occur when a dot level falls within the bias window. The distance between successive

Coulomb peaks corresponds to Eadd, at which point the dot is in Coulomb blockade.

The width of the Coulomb peaks is correlated to VSD and can be increased to the

point where Coulomb peaks merge, as VSD becomes comparable to Eadd.

2.3.2 Double quantum dots

The Constant Interaction model can be extended from a single dot to, two dots that

are in series and capacitively coupled (Fig. 2.4). The electrochemical potential of dot
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Figure 2.5: Charge stability diagrams, for the uncoupled (a) and coupled double
quantum dots (b). The electron (or hole) number, (N1, N2) in each respective dot
(QD1, QD2) changes at specific gate voltages denoted by the black lines. Cross
capacitance between gate electrodes and adjacent dots is factored in (b) hence the
diagonal characteristic to the black lines. Reproduced from Ref. [31].

1 is [31],

µ1(N1, N2) ≡ U(N1, N2)− U(N1 − 1, N2)

= (N1 −
1

2
)EC1 +N2ECm −

EC1

|e|
(CSVS + C11VG,1 + C12VG,2)

+
ECm
|e|

(CDVD + C22VG,2 + C21VG,1) (2.8)

where Cij is the capacitance between gate j and dot i, CS(CD) is the capacitance

from dot 1 (2) to the source (drain), ECi is the electrostatic coupling energy. The

coupling energy ECm is the change in the energy of one dot when an electron is added

to the other dot. µ2(N1, N2) can be obtained by interchanging 1 and 2, as well as

CDVD and CSVS in Eq. 2.8.

We can define a map, known as a charge stability diagram, which denotes at which

voltages electrons get added (removed) to (from) each dot as we sweep VG,1 and

VG,2. If there is no cross-capacitive coupling between gates and dots, C12 = C21 = 0,

and the electrostatic coupling is zero, ECi = 0 then as we sweep VG,1 and VG,2 the
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transitions between the number of electrons changing in each dot is defined by a

series of horizontal and vertical lines as a function of VG,1 and VG,2. If the dots are

capacitively coupled to each other and there is cross-capacitive coupling between

gates and dots (cross-talk), the charge stability diagram appears as a hexagonal or

"honeycomb" pattern. Each previous crossing point is split into two triple points at

which three different charge states are energetically degenerate. The spacing between

the triple points is defined by the interdot capacitance, Cm. In the low bias regime,

quantum transport is only possible at the triple points.

Gate electrode voltages can be linearly combined to effectively remove the cross-

talk between adjacent gate electrodes and quantum dots. The combination of gate

electrode voltages in this manner is known as a virtual gate and results in orthogonal

transition lines in the charge stability diagram within the virtual gate voltage space.

Virtual gate construction effectively relies on calculating the gradient of the transition

lines within a charge stability diagram. Methods to construct virtual gates include

fitting measurements to the Constant Interaction model [32], the linear fit of transition

lines [33], computer vision and machine learning, especially as the number of gate

electrodes and device dimensionality increases [34].

2.4 Loss-DiVincenzo qubit

One of the simplest two-level quantum system and therefore qubit is the spin of an

electron (spin-up or spin-down). Pioneered by Loss and DiVincenzo in 1998 [36],

the computational basis states are |↑⟩ and |↓⟩, parallel or anti-parallel to an external

magnetic field B0 (Fig. 2.6). In the presence of an external magnetic field the energy

levels of the spin states split, known as the Zeeman effect. The energy splitting,

EZ = 2gµBB0S with the electron g-factor, g ≈ 2, in silicon, the Bohr magneton

µB ≈ 9.274× 10−24 JT−1, and spin quantum number, S = 1/2. Manipulation of the

qubit’s state can be realised by electron spin resonance (ESR) or electric dipole spin
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Figure 2.6: Loss-DiVincenzo qubit and Elzerman readout. An external magnetic field,
B0, Zeeman splits the dot electron spin-up, µ↑, and spin-down, µ↓, electrochemical
potentials encoding a qubit into the spin of an electron. Electrons can be loaded onto
the dot from a nearby reservoir with a Fermi energy EF and thermal broadening of
states kBT at temperature T . A spin-up or spin-down electron is loaded onto the dot
by plunging its electrochemical potential below the chemical potential of the reservoir
and then manipulated by an externally oscillating magnetic field resonant with Zeeman
splitting energy. The qubit state on the dot is read by raising the electrochemical
potential of the dot such that a spin-up electron can tunnel off the dot, resulting in a
current that can be measured or capacitively detected, and a spin-down electron can’t
tunnel. The dot is then emptied by raising the electrochemical potential of the dot
level above the reservoir. The sequence of load, read, and empty occurs on the order
of milliseconds. Adapted from Ref. [35].

resonance (EDSR). Via ESR the qubit is subjugated to an oscillating magnetic field

with frequency, fAC , resonant to EZ which can be on the order of tens of gigahertz,

where µB ≈ 14.00 GHzT−1 and B0 = 2 T. Electric dipole spin resonance relies on

an oscillating electric field and a mechanism to couple the oscillating electric field to

the electrons spin degree of freedom, such as spin-orbit or hyperfine interaction or an

on-chip micromagnet.
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Figure 2.7: Singlet-triplet qubit. a) The Bloch sphere of the singlet-triplet, (S-T0)
qubit. The computational basis states are separated by the exchange energy splitting,
J; a magnetic field gradient, ∆B||, between two quantum dots provides the second
rotation axis. b) The charge stability diagram where the singlet-triplet qubit is realised.
The arrow, ϵ, denotes the level of detuning between the two dot energy levels. The
degree of exchange splitting can be controlled by pulsing along the detuning axis
in gate voltage space. c) An energy level schematic of the various spin states as a
function of detuning. A finite magnetic field leads to Zeeman splitting of the triplet
states. The colour scheme represents where the system spin states are dominated by
the exchange energy J or ∆B||. Reproduced from Ref. [37].

2.5 Singlet-triplet qubit

The singlet-triplet qubit (Fig. 2.7) encodes a qubit in the spin states of two electrons

within a double quantum dot. The computational basis states (Fig. 2.7a) are

the (ground) singlet state, |S⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩), and the triplet state, |T0⟩ =

1√
2
(|↑↓⟩+ |↓↑⟩). The total possible states of the two-spin system is four, one singlet

and three triplet states corresponding to,

|S⟩ = |↑↓⟩ − |↓↑⟩√
2

(2.9)

|T+⟩ = |↑↑⟩ (2.10)

|T0⟩ =
|↑↓⟩+ |↓↑⟩√

2
(2.11)

|T−⟩ = |↓↓⟩ (2.12)
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The double quantum dot is operated in the single electron regime, often at the

(0,2) - (1,1) charge state transition where (n, m) denotes the number of electrons on

the left and the right quantum dot respectively (Fig. 2.7b). At zero magnetic field,

the three triplet states are degenerate. The T0 (0,2) state is split from the singlet

(0,2) ground state by EST , which is dominated by the exchange interaction due to the

high wave-function overlap of electrons on the same dot. The |S⟩ and |T0⟩ states are

split by J the exchange energy. J is electrically tuneable and depends on the detuning,

ϵ between the two dots. ϵ measures the relative energy level difference between the

two charge states (1,1) and (0,2), while the average energy level between the two

dots stays the same. Without interdot coupling and/or deep into the (1,1) charge

state the exchange interaction vanishes and the singlet (1,1) and triplet (1,1) states

are degenerate. The two electron spin states correspond to |↓↑⟩ and |↑↓⟩ and the

degeneracy between these two spin states can be lifted by the Zeeman interaction (Fig.

2.7c). This is achieved by applying a magnetic field gradient across the quantum dots,

∆B||, creating the second axis of rotation around the Bloch sphere. The magnetic

field gradient can be created by on chip micromagnet in the vicinity of the quantum

dots. The degeneracy of the triplet states can also be lifted by the Zeeman interaction

in the presence of a finite external magnetic field and therefore confine the relevant

state space to S and T0. Singlet-triplet qubits have the benefit that the magnetic

fields required to lift the degeneracy between the triplet states are on the order of a

few hundred mT [38].

2.6 Readout methods

Qubit readout relies on converting the spin state of the electron (or hole) to something

that we can easily measure in an electronic device which is charge. This process is called

spin-to-charge conversion [31]. A charge sensor is commonly placed near the quantum

dot spin qubits and used to perform spin-to-charge conversion. Broadly, the flow of
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current through the charge sensor depends on the electrostatic environment and thus

the quantum device’s charge state. The charge sensor provides a near non-intrusive

method of probing quantum devices and achieving spin-to-charge conversion.

Charge sensors may take the form of quantum point contacts (QPC) which

are constrictions on the order of an electron’s wavelength in a two-dimensional

electron/hole gas. Changes in the QPC current is used as a way to monitor spin

readout. Alternatively, one may use a single electron transistor (SET) as a charge

sensor instead of a QPC. The SET is a nonlinear nanoelectronic device which behaves

similarly to a quantum dot. One can detect changes in current flow through the SET

by leveraging Coulomb (un)blockade as a method of spin-to-charge conversion.

One method of spin-to-charge conversion is energy selective readout also known

as Elzerman readout [35]. Elzerman readout relies on energy-selective tunnelling of

a spin-up or spin-down electron from the quantum dot to a nearby reservoir (Fig.

2.6). It is achieved by tuning the electrochemical potential of the Zeeman split energy

levels such that the spin-up level is above the electrochemical potential level of the

reservoir, and the spin-down level is below the reservoir level. This means that only

a spin-up electron can tunnel off the dot whereas, a spin-down electron will not be

able to tunnel. This measurement requires the tunnelling rate of the spin-up electron

off the dot to be much greater than 1/T1. Such tunnelling events are detected using

a nearby charge sensor that is electrostatically coupled to the quantum dot, as the

current signal is typically too small to detect a single electron in transport. Elzerman

readout later evolved to Morello readout [39, 40] where the electron spin qubit is both

electrostatically coupled and tunnel coupled to the charge sensor. The charge sensor

in Morello readout is an SET.

For Elzerman readout to be effective, high external magnetic fields (> 1 T) and

low (electron) temperatures must be employed (∼ 100 mK). This is to ensure that the

EZ > kBT and that EZ is greater than the thermal and electromagnetic broadening

of the electron states on the SET [40] or reservoir.
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An alternative method of spin-to-charge conversion is Pauli spin blockade [41]

which relies on the Pauli exclusion principle and the conservation of an electron’s spin

during tunnelling. The state of the qubit is read out by pulsing from the (1,1) charge

state to the (0,2) charge state region of a double quantum dot. If the electrons are in

a spin singlet state, tunnelling is allowed. However, if the electrons are in a spin triplet

state, the device will be in a state of blockade because the Pauli exclusion principle

prohibits the electron from making the transition from the triplet (1,1) state to the

singlet (0,2) state and the triplet (0,2) state is too high in energy to be accessed. The

change in the double quantum dot charge state is commonly measured using a nearby

charge sensor.

2.7 Machine learning

Machine learning (ML) is a branch of artificial intelligence (AI) that empowers com-

puters, through the use of algorithms and statistical models, to learn approximations

of functions by inference rather than explicit programming. It is a core technology in

various practical applications, including natural language processing, computer vision,

recommendation systems, and autonomous vehicles. ML encompasses different types

of learning, including supervised and unsupervised methods, and while it offers powerful

capabilities, it also poses challenges related to data, biases, and model interpretability.

Originating from the mid-twentieth century, ML techniques have gained prominence in

the past decade due to the availability of large datasets (greater than 100,000 units)

and computational power greater than 1 TFLOPS (1 trillion floating-point operations

per second). Here, I present an overview of some of the machine learning techniques

relevant to this thesis.
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2.7.1 Supervised learning

Supervised machine learning models are used to predict an outcome or perform a

specific task on unseen data based on past experience. Such tasks could be in the

form of classification, for example, does this image contain a cat or a dog, or does

this charge stability diagram show signatures of a single quantum dot or not. Other

tasks could be that of regression, for example, predicting the price of a house based

on its features such as the number of windows, bathrooms, bedrooms, and location.

Supervised machine learning models are referred to as supervised because they are

trained on labelled (training) data. It is in this process of training where a machine

learning model builds or learns an approximation to an unknown function by minimising

the error between the model’s prediction and the true labelled data. By training a

model and then testing its capabilities on unseen labelled data we can characterise its

performance. For classification problems, the metrics used are accuracy and confusion

matrices. The accuracy, A, of the model is defined as the total number of correct

predictions, divided by the total number of samples,

A =
TP + TN
P +N

(2.13)

where and TP (TN) is the sum of the of true positive (negative) outcomes, and P

(N) is the sum of the positive (negative) samples. The confusion matrix, MC is a 2 x

2 array whose elements summarise the prediction results of a classification problem.

Despite being called a matrix, it is not used as an operator, it is merely used to give

insight into the types of errors that the classifier is making. It is made up of the

number of false positives, FP , false negatives, FN , true positives, and true negatives,

MC =

TN FP

FN TP

 (2.14)

To obtain a more reasonable view of a model’s accuracy when dealing with
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unbalanced datasets, where there are many more examples of one class than others,

we can use a metric known as balanced accuracy, Abal. The balanced accuracy in a

binary classification problem is defined as the arithmetic mean of the true positive

rate, sensitivity, and true negative rate, specificity, of each class.

Abal =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
(2.15)

The accuracy of ML models can be improved and computational costs of training

can be reduced by engineering the features of the raw training data, known as feature

engineering. For example, using our house example, not providing the number of

windows during training, or converting the location to coordinates rather than the

street address.

2.7.2 Receiver operating characteristic

The accuracy of a binary classifier is influenced by the threshold chosen for classification.

For example, should we use classification outputs greater than 0.5 or 0.8 as a positive

label? As we decrease the threshold, more items will be classified as positive. The

chosen threshold influences the false positive and true positive rates, where the false

positive rate is equal to 1 - specificity. We can plot the true positive rate (y-axis)

against the false positive rate (x-axis) at different classifier thresholds, known as a

receiver operating characteristic (ROC) curve.

The area under the ROC curve (AUC), is an aggregated measure of the classifier’s

performance across different classification thresholds. A classifier with an AUC of 1,

performs predictions which are correct 100% of the time, whereas a classifier with an

AUC of 0, is wrong 100% of the time. Using the ROC and AUC can provide a richer

framework than confusion matrices when assessing machine learning classification

models.
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2.7.3 Type I and type II errors

Erroneous predictions from a classifier have their respective trade-offs depending on

the problem at hand. For example, a spin qubit formation tuning algorithm that relies

on a classifier for the presence of coupled double quantum dots in a charge stability

diagram (Fig. 2.5) before it proceeds to tune gate voltages to optimise transport

features at the triple points. A type I error (false positive), will lead the algorithm

to waste time optimising gate voltages in a region of parameter space that will not

lead to a qubit. Conversely, a type II error (false negative), will lead the algorithm

to miss out on a potential qubit. In both cases, there is a mis-classification but the

user of the model may care more about speed, rather than forming each possible

qubit. For example, if there are many alternative voltages in which one can form a

double quantum dot, then it is not worth spending experimental time in parts of the

parameter space which will not lead to qubits. But, if the parameter space is sparse

for potential double quantum dot formation, then the user may be willing to tolerate

type I errors.

Decision Trees and Random Forests

A Decision Tree is a supervised machine learning technique that can be used for

classification or regression. It relies on recursively splitting the training data into

subsets based on the most significant features to make its predictions. Referred to as

a tree, each node of the tree, starting at a single root node, represents a decision to be

made on a feature and the branches of the node are the respective outcomes of that

decision. The leaf nodes of the tree are the final class labels or values in classification

or regression respectively. The selection of features to make decisions on at individual

nodes can be done by numerous methods with a common one being the Gini impurity

[42]. The Gini impurity (or Gini index) is a measure of the probability that a randomly

chosen sample will be incorrectly classified by a specific node. Therefore, the lower

the Gini impurity the better, as there is a lower likelihood of misclassification. The
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Figure 2.8: Random Forest. A Random Forest is a machine learning algorithm that
is made up of an ensemble of Decision Trees each trained on a random subset of
the training data. Outcomes from the decision trees are aggregated and averaged to
produce the final prediction of the the machine learning model.

feature (and its relevant threshold) with the lowest Gini impurity is chosen as the root

node of the tree. From the resulting decision outcome at that node, two child nodes

are created from the root node. The lowest Gini impurity process is repeated to build

a subtree from each child node, and so on. . . The entire Decision Tree is built up

recursively until a stopping criteria is met such as the maximum tree depth being

reached.

Decision Trees are a popular method because they can be visualised, and users

can understand the decision pathways of the resultant model. However, Decision

Trees tend to overfit, meaning that the trained model cannot generalise well to unseen

data which effectively defeats the point of machine learning. A way of combating the

overfitting problem is to group many different Decision Trees into an ensemble and

form a forest.

Random Forests [43] are a type of supervised machine learning model which relies

on the aggregation of predictions from many Decision Trees (Fig. 2.8). Each tree

is trained on a randomly chosen subset of the training dataset, for the model’s final

prediction. Denoted as an ensemble approach, the risk of overfitting is reduced by
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averaging predictions from multiple trees. Although they are less interpretable than a

single Decision Tree, Random Forests carry out feature selection implicitly, reducing

the need for manual feature engineering before training the model. Implicit feature

selection occurs in that, features that lead to a greater reduction in Gini impurity at

each node of the decision trees that make up the forest compared to other features

are considered more important. Feature importance can be measured by calculating

the mean decrease in Gini impurity for a feature used for splitting a node into child

nodes across each tree of the random forest, and can be extracted after training.

2.7.4 Unsupervised learning

Unsupervised learning, as opposed to supervised learning, uses algorithms to learn

patterns in an unlabelled training dataset without human intervention. A clustering

algorithm will, in the ideal case, partition data into separate clusters based on their

similarity. One of the most popular unsupervised ML methods is K-means clustering.

The number of clusters (K) is determined, typically using domain knowledge, in

advance. The algorithm randomly initialises the centroids of the respective clusters in

feature space. For each data point in the dataset, the Euclidean distance between

the data point and each cluster centroid is calculated. The datapoint is assigned

the cluster whose centroid it is closest to. The mean position of the data points in

their respective clusters is calculated and the result is used as the new centroid of the

cluster. The process of calculating the distance to the centroid and calculating the

mean position is repeated until the position of the centroids stops changing. To reduce

erroneous results the K-means clustering algorithm is run repeatedly with different

random centroid initialisation starting points, and the final centroids with the mean

lowest Euclidean distance to their respective data points are picked from the repeated

runs. K-means clustering relies on significant assumptions about the underlying data,

which are the clusters are normally distributed with a spherical covariance matrix that

is the same for all clusters [44]. If these assumptions are not satisfied, K-means is
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likely to fail and is not suitable for the application.

2.7.5 Multi-armed bandits

The multi-armed bandit problem appears in machine learning as it exemplifies the

exploration-exploitation tradeoff dilemma. The term originates from the idea of a

gambler, at a series of slot machines (known as single-armed bandits), who has

to decide which machines to play, how many times to play each machine, in what

order and whether to continue playing an individual machine (exploit) or try other

machines (explore). The gambler’s aim of course is to maximise their winnings, and in

effect minimise their losses, considering fixed resources (money). Similarly, a machine

learning agent or algorithm would aim to maximise reward, considering a fixed number

of trials. As with the gambler, each action the agent takes is associated with a given

reward, but that reward is a random variable. The agent has the difficulty of trialling

different actions while also selecting the actions that maximise the reward over the

number of trials available.

The agent has a few options in how to solve this problem of exploration vs.

exploitation. At one end of the spectrum, the agent may continually explore, equivalent

to trialling each slot machine repeatedly for the entire number of iterations. Conversely,

the agent may take an exploit-only strategy, trialling each slot machine once, then only

playing the one which initially gave the highest reward for the rest of their financial

time in the casino. There are more intelligent solutions available such as epsilon-greedy,

upper confidence bound (UCB) and Thompson sampling. The epsilon-greedy method

consists of the agent taking the most rewarding action by default, but there is some

probability (epsilon) that in a given iteration the agent will choose to explore, and thus

selecting a different action at random. When following the upper confidence bound

method the agent selects actions based on their perceived reward and a measure of

the uncertainty of the reward. Following on, Thompson sampling, based on Bayesian

statistics, relies on the construction of a statistical model of the rewards but an action
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is selected based on a randomly drawn belief. The advantage of Bayesian methods

lies in the seamless automation of exploration-exploitation tradeoff with no additional

machinery.

Gaussian process

Gaussian processes are a non-parametric supervised learning technique that can be

used for either regression or classification. Non-parametric means that the number

of parameters of the model (and hence expressivity) grows with data. They are

computationally manageable as one only requires two parameters to define a Gaussian

curve, its mean and variance, however as we will discuss later, their computational

requirements explode as the number of dimensions and data points increase. Moreover,

they are leveraged within the realm of Bayesian statistics in the form of Gaussian

process Bayesian optimisation. The ability of a Gaussian Process model to quantify its

uncertainty in specific parts of the domain is useful for optimisers to decide which point

in the domain to evaluate next to find a solution to the problem at hand efficiently.

Additionally, the information of uncertainty can be leveraged by solutions for the

exploration-exploitation trade-off as we have discussed previously. In this thesis I

use Gaussian processes in Chapters 5 and 6. Here I will give a brief introduction to

Gaussian processes.

A Gaussian process is a collection of random variables, separated in either the

domain of time or space, any finite number of which have a joint Gaussian distribution

[45]. The Gaussian Process, GP, consists of a mean function, µ(x) and a kernel

(also known as a covariance function), k(x, x′) which defines the correlations between

different variables, giving the Gaussian process function, f(x), as,

f(x) ∼ GP(µ(x), k(x, x′)) (2.16)

The mean function µ(x) represents the expected value of the GP at any given

input point x, and greatly influences the extrapolation of the predicted functions, i.e.
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predictions far away from training data. The choice of a prior mean function µ0(x),

depends on the problem at hand, typically mean functions are set to a constant if

one is only interested in interpolation. However, if extrapolation is required one may

construct a specific mean function based on domain knowledge.

The kernel allows us to incorporate structure and correlation into our models and

typically a kernel expresses that covariance decreases with increasing distance between

variables. The choice of a prior kernel k0(x) also depends on the problem at hand and

the goals of the user, as the kernel encodes our assumptions about the function we

wish to learn. For example, does one expect the function we are trying to model to be

rapidly varying and periodic, or relatively smooth.

Given observed data points x1, ..., xn and their respective function evaluations

f(x1), ..., f(xn), we can predict the function value at a new input x by calculating the

conditional distribution of f(x) given the data observed so far f(x1:n) using Bayes’

rule [45],

f(x)|f(x1:n) ∼ N (µn(x), σ
2
n(x)) (2.17)

µn(x) = k(x, x1:n)k(x1:n, x1:n)
−1(f(x1:n)− µ0(x1:n)) + µ0(x) (2.18)

σ2
n(x) = k(x, x)− k(x, x1:n)k(x1:n, x1:n)

−1k(x1:n, x). (2.19)

f(x)|f(x1:n) is called the posterior probability distribution. µn(x) and σ2
n(x) are

the posterior mean and posterior variance. The computational complexity of the

Gaussian process scales with O(n3). This is because to calculate the posterior mean

and variance of the Gaussian process to predict a new value, one must perform the

inverse of the kernel matrix. Computation of the matrix inverse scales with O(n3), is

numerically unstable and susceptible to condition errors. To reduce the computational
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costs of the matrix inversion and improve stability, Cholesky decomposition is used

which still scales on the order of O(1/3n3).

Kernels

There are a few commonly chosen kernels, one of which is the radial basis function

(RBF), also known as the squared exponential [45],

kSE(r) = exp(− r2

2ℓ2
) (2.20)

where r = |x− x′|, the distance between inputs x and x′, hence the term radial in

the name. ℓ determines the characteristic length scale which is roughly the distance

in input space one must move before the function value changes significantly. ℓ

also gives an impression of how far you can extrapolate beyond your data. We can

multiple k by a positive constant σ2
f , which behaves as a scale factor to get any desired

process variance. The squared exponential function is popular because there are only

two hyperparameters to optimise, σ2
f and ℓ. It is a universal kernel, meaning that

under some conditions it is capable of learning any continuous function given enough

data [46, 47]. Moreover, the squared exponential function is infinitely differentiable

and therefore the resultant GP is very smooth but, perhaps too smooth to reflect

real physical data. Another downfall is that the characteristic length scale is likely

determined by the smallest distance over which the function changes drastically, which

means that extrapolation of smooth regions in the data may be difficult if there is a

non-smooth region within the data.

Another group of kernel functions is the Matérn class of kernel functions [45],

kMatern(r) =
21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Kν

(√
2νr

ℓ

)
, (2.21)

With positive parameters ν and ℓ, and where Γ is the gamma function, and Kv is

a modified Bessel function [48]. The Matén kernel functions are simplified when ν is
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set to a half-integer, ν = p + 1/2, where p is a non-negative integer. The general

expression can be derived from [48], giving [45],

kν=p+1/2(r) = exp

(
−
√
2νr

ℓ

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

ℓ

)p−i

. (2.22)

Throughout this thesis, the Matérn 5/2 kernel is used, where ν = 5/2 [45],

kν=5/2(r) =

(
1 +

√
5r

ℓ
+

5r2

3ℓ2

)
exp

(
−
√
5r

ℓ

)
(2.23)

ν allows us to control the differentiability and therefore tune the smoothness of

the process. As ν → ∞ the Matérn kernel converges to the squared exponential

function. Setting ν = 1/2 results in a very rough process, and sets the assumption

that the function is not differentiable. Setting ν = 5/2, results in a twice differentiable

smooth process similar to that of the squared exponential function, but unlike the

squared exponential function, the process can be smooth without being limited by the

characteristic length scale being too small. This feature has made the Matérn 5/2

kernel commonly used within the machine learning community and is why it is used

throughout this thesis. Conversely, periodic or linear kernels are not used because we

do not expect the locations of features which we search for when tuning a quantum

device (e.g. Coulomb peaks or two-level fluctuations) to vary periodically or linearly

within the voltage space.

The hyperparameters of the Gaussian process, such as σ2
f and ℓ can be inferred

from data by finding the maximum a posteriori estimate (MAP) using a nonlinear

optimizer and a prior over hyperparameter values. Alternatively one may find the

maximum likelihood estimate (MLE), where given observations f(x1: n) we calculate

the likelihood of these observations under the prior P (f(x1:n|η)), where η represents

the hyperparameters of the process e.g. σ2
f and ℓ. Then we can calculate η that

maximises the likelihood. Choosing one over the other depends on the situation, a
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rule of thumb is to use to MLE when one has informative data, and MAP when one

has informative data and/or priors.

2.7.6 Bayesian optimisation

Bayesian optimisation is a technique in machine learning used to efficiently find the

global maximum (or minimum) of an unknown and expensive-to-evaluate objective

function whose outputs can be noisy. Bayesian optimisation uses a probabilistic

surrogate model, typically a Gaussian process, to approximate the objective function.

Gaussian processes are chosen due to their ability to capture prediction uncertainty in

their probabilistic estimate of the objective function.

Another function, the acquisition function, is used to determine where to sample

the objective function next. The choice of acquisition function and its parameters

balances exploration and exploitation based on the surrogate model’s predictions

and uncertainties. A commonly used acquisition function, relies on the expected

improvement which is defined as [49],

EIn(x) : = En
[
[f(x)− f ∗

n]
+] , (2.24)

where f ∗
n is the largest observed value among the n times we have evaluated f so

far. The improvement in the value of the best observed point after a new observation

f(x) is f(x) − f ∗
n, if positive, and zero otherwise which we write as [f(x)− f ∗

n]
+.

En[·] = En[·|x1:n, y1:n] is the expectation taken under the posterior distribution given

function evaluations f(x1, ..., xn). The posterior distribution is given by our Gaussian

process surrogate model (Equation 2.17). The expected improvement can be evaluated

as described by [50] resulting in [49],

EIn(x) = [∆n(x)]
+ + σn(x)φ

(
∆n(x)

σn(x)

)
− |∆n(x)|Φ

(
∆n(x)

σn(x)

)
, (2.25)
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where ∆n(x) : = µn(x)− f ∗
n is the expected difference between the proposed point x

and the previous best, Φ is the cumulative distribution function of the standard normal

distribution, φ is the probability density function of the standard normal distribution.

Therefore, the Expected Improvement acquisition function [50] then evaluates f at

the point with the largest expected improvement,

xn+1 = argmaxEIn(x). (2.26)

Expected improvement is based on the assumption that we are only willing to

return a previously evaluated point as our final solution, and the primary benefit

of sampling occurs through an improvement at the point sampled [49]. Expected

Improvement is commonly chosen as an acquisition function because it is simple to

implement, inexpensive to evaluate and naturally balances exploration and exploitation

evaluating points of high expected quality (large ∆n(x)) versus high uncertainty (large

σn(x)).

In summary, the typical Bayesian optimisation workflow consists of initially evalu-

ating the objective function at a series of random points. Then using the evaluated

points, fit a Gaussian process (the surrogate model) to the objective function. Use

an acquisition function for example, Expected Improvement, to determine where to

evaluate the objective function next, and use the result to update the surrogate model.

Repeat the steps of deciding where to evaluate, getting the result and updating the

surrogate model until a stopping criterion is met.



Chapter 3

Literature Review

What is the story you want to tell?

Andrew Briggs

The story I want to tell begins with the desire for quantum computers (Chapter 1).

A decision is then made to base the architectural building block of a quantum computer

on semiconductor quantum devices in the argument of scalability. The experience the

semiconductor industry has in the routine manufacture of semiconductor chips housing

billions of transistors, allows us to envisage a world where we can scale from two

qubit devices to hundreds of millions of qubits using similar manufacturing techniques

and with a minimal footprint. Moreover, leveraging classical telecommunications

techniques such as multiplexing, will enable us to address our 100 million qubit chip

despite the limitations of the number of electrical lines that may fit within a dilution

refrigerator. This story follows the scientific advances which support the reasoning

behind this decision and lay a foundation for quantum computation. Automatic tuning

procedures opens the door to tuning up quantum dots simultaneously rather than

using manual sequential tuning procedures, a must-have as quantum devices grow and

outpace human and manual capabilities. Unfortunately, device variability limits the

ability for physics informed models to be applied with simple conditional logic as a

general tuning procedure across different quantum devices, as such, we look to more

34
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unsupervised methods. This is where machine learning (ML) is placed as a cornerstone.

This will be the main focus of my literature review.

3.1 Semiconductor Spin Qubits

Initially, qubit development in semiconductors was performed in GaAs devices due to

their low disorder and relaxed confinement requirements. In general, electron spin

qubits in silicon are more challenging to realise due to the larger electron effective

mass, thus smaller wavefunction. This results in more stringent lithographic fabrication

requirements when compared to GaAs spin qubits. The characteristic size of a quantum

dot in silicon is formed over areas of the order 10-20 nm [51]. Secondly, difficulties

continue to arise due to the Si lattice symmetry and resulting conduction band valley

degeneracy, leakage states may be thermally populated. Moreover, the valley splitting

is affected by unavoidable fabrication defects, whether it be inhomogeneities at the

oxide interfaces or even step edges in Si-nanowires or Si/SiGe heterostructures [51, 52].

Whereas GaAs quantum dots are typically formed over 100-300 nm sized areas [31, 41,

51], reducing fabrication precision requirements. Due to their large size, fabrication of

GaAs quantum dots within university clean rooms is relatively easy which led to their

early demonstration as qubits [41]. The GaAs devices are based on a heterostructure

of GaAs and AlGaAs doped with Si to introduce free electrons. By stacking the GaAs

and AlGaAs layers, free electrons accumulate at the AlGaAs/GaAs interface forming

a two-dimensional electron gas. By tuning the voltages applied to gate electrodes

patterned on the sample quantum dots can be formed and single electrons can be

isolated. Many silicon devices such as metal-oxide-semiconductor (MOS) devices

and heterostructures use gates in the same manner to define quantum dots. The

parasitic nuclear spin bath within GaAs devices and the potential large-scale industrial

fabrication of silicon devices have led to GaAs being left behind in favour of silicon.

Here, I will briefly discuss reasons for moving to silicon devices and the types of silicon
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Figure 3.1: Schematic of silicon devices used for quantum dots. First column is a
schematic of the materials. Second column: Confinement potentials experienced by
electrons within the material. Occupied electron states are indicated by dashed blue
lines and occupied electron states are denoted by solid lines up to the Fermi energy
EF . Third column: schematic of the device with gates and source and drain contacts.
Fourth column: schematic of device band structure. Gate electrodes can raise/lower
the electron energy occupation levels within the potential well relative to the source
(µs)/drain (µd) to control the tunnelling of electrons/holes from the source to drain
reservoirs. Reproduced from [52].

devices which are the main candidates for quantum computing.

3.1.1 Silicon devices

There are three main reasons for using silicon as the material of choice for semiconductor

qubits. Firstly, it is the basis of the microelectronics industry. An industry which has

led to the best silicon fabrication processes in the world only needs to devote a small

fraction of its capabilities to accelerate quantum computer development. Secondly, it

is possible to obtain a near-perfect clean magnetic environment. The lack of hyperfine

interactions in purified 28Si, the most common isotope, promise long spin coherence

times [29, 53–56]. Finally, it is one of the most scalable architectures. This point

is partly linked to the first where the manufacturing technology present lays a path
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for quantum computer-on-a-chip-like architecture. Proposals of architectures which

house millions of qubits [57, 58] have already been made along with error correcting

codes [59, 60]. There are also three main device types, Figure 3.1, based on silicon:

donors (e.g. 31P dopants) in silicon, gate-defined dots in metal-oxide-semiconductors

(MOS), and SiGe heterostructures. There are other implementations such as (near)

one-dimensional structures including Si-FinFETs and Si nanowires. All types rely on

electron (or hole) spins for qubits except donors in silicon which often rely on nuclear

spins [29, 61] as well. Electron spin qubits are typically realised in Si/SiGe and Si-MOS

devices. Holes spin qubits can be realised in Si-MOS as well as Si FinFET devices.

Hole spin qubits are also realised in Ge/SiGe heterostructures and Ge/Si core/shell

nanowires.

The difference between electrons and holes stretches beyond their charge; they are

different in their spin(-orbit) properties. Due to the p-type Bloch wave function of

valence band holes in Si and Ge, holes have a corresponding orbital angular moment

quantum number l = 1. The implications of this are fairly large. The wavefunctions of

holes have reduced overlap with nuclear sites in the host lattice resulting in a reduced

contact hyperfine interaction and with it, reduced dephasing. Secondly, this results in

the need to consider the total angular momentum operator J = L+S, where L is the

orbital momentum operator and S is the spin operator. This leads to the formation of

heavy holes and light holes [52], the system of which is described by the Luttinger-Kohn

Hamiltonian [62]. Moreover, the presence of strain and confinement (including applied

electric fields), such as in a quantum dot in Si or Ge, can give rise to Rashba spin-orbit

interaction [63]. The spin-orbit interaction is the coupling of the orbital and spin

degree of freedom of a particle. The spin-orbit interaction facilitates a coupling of

oscillating electric fields to the spin of the hole qubit enabling fast electrical control of

a hole spin qubit using electric dipole spin resonance (EDSR). This, however, opens

up the qubit to be sensitive to electrical noise. The electric tunability of the spin-orbit

interaction is accentuated when confinement is limited down to one dimension, such
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as in a nanowire, which is called direct-Rashba spin-orbit interaction [64, 65]. The

direct-Rashba spin-orbit interaction offers non-monotonic electric tunability enabling

one to turn on and off spin-orbit interaction for certain device geometries at finite

electric fields. Therefore, this allows us to turn off the coupling between the qubit and

the environment, and find sweet spots [66] for fast driving and low noise. Moreover,

the effective mass of holes is less than that of electrons meaning that lithographic

fabrication requirements are less stringent compared to electron spin quantum device

counterparts. Despite these differences in terms of angular momentum, in the presence

of strain and strong confinement such as in a quantum dot, we can typically describe

hole spin states in the same manner as electrons [67].

Device types will be discussed in turn and their characteristics analysed as the

building block of a quantum computer. However, before delving into different devices

a brief background on electron transport in devices will be given.

Electron (or hole) transport in quantum dot devices occurs under a bias from

source to drain. The current flow is controlled by a series of gate voltages. Gates

which alter the electrochemical potential of the quantum dots are known as plunger

gates. This is because they can ‘plunge’ (i.e. raise and lower) the electron (or hole)

energy occupation levels within the potential well of the quantum dot relative to that

of the source and drain. Tunnel barrier gates control the size of the potential barriers

between quantum dots or a quantum dot and the source/drain. Therefore if the

barrier potential is ‘wide’, tunnelling is forbidden. By sweeping the tunnel barrier gate

voltages and measuring the current flowing through the device, the device parameter

space can be split into two regions. There is a region of high current and a region

of low/near-zero current. In the low/near-zero current region, the current flow is

described as ‘pinched-off’.
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Figure 3.2: Diagram showing different types of electron spin relaxation and flip-flop
mechanisms for donors in silicon. a) and b) correspond to (T1) spin relaxations
whether of a single electron donor spin or that induced by nearby electron donor spins
relaxing respectively. c) Indirect flip-flop, decoherence of a central spin due to spin
flip-flops in neighbouring donor pairs can also occur. Fluctuating fields are produced
by neighbouring spin (blue) flips and result in dephasing of the central spin (pink). d)
Direct flip-flop, the central spin is decohered by being involved directly in a flip-flop
event with a neighbouring spin. T1 relaxation process dominates donor electron
decoherence at temperatures above 8 K (a). Below 4 K T2 times are dominated by
indirect flip-flop processes (c). At transition temperatures from 4-8 K induced spin
flips from neighbours dominate (b). Reproduced from [54].

Donors in silicon

Donors in silicon [68] hold some of the longest coherence times, 0.5s and 35.6s

demonstrated on electron spins and 31P nuclear spins respectively, in silicon or that

of any physical implementation [29]. This is often argued to be due to the excellent

potential confinement of the electron in the bulk material resultant from the sym-

metrical field created by the 31P impurity. Whereas non-uniform interfaces found in

MOS and heterostructures can create random fluctuations in confinement potentials;

Muhonen et al. [29] thoroughly demonstrates that Si/SiO2 interfaces are not the

main source of decoherence for electron spin qubits in donors in silicon devices. A

reasonable assumption is made that paramagnetic spin noise is negligible due to the

low temperature of 100 mK and the high 1.5 T applied field greatly reduces any

paramagnetic spin fluctuations. All possible different sources of noise were considered

and it was verified successfully that the main noise source was external to the sample

across two different devices [29]. This is a solvable engineering challenge to increase

electron spin coherence times but the quantitative effect on coherence times if solved

is not discussed by Muhonen et al. [29]. Despite demonstrations of high fidelities

[61], in some cases exceeding 99.99% [29] there is still the challenge of manufactura-
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bility of devices which is not addressed by Muhonen et al. [29]. Even with precise

placement of 31P donors in silicon, there will be interactions between electron spins

and neighbouring donor electron spins leading to decoherence of the electron spin.

There are proposals for how these interactions can be disregarded. Tyryshkin et al.

[54] does well to explain the different types of interactions between donor electron

spins at different temperatures in silicon, Figure 3.2. Furthermore, it is recognised

that, at transition temperatures between spin interaction regimes, there is a third spin

interaction in effect which is not a linear combination of the interactions occurring

at the temperature extremes [54]. Reducing donor spin interactions by applying a

magnetic field gradient (10 µT mm−1) to increase the resonance offset between nearby

spin donor pairs is briefly discussed [54]. Recently, the manufacture of donor spin

qubits has included implanting donor spins as molecules such as PF2, due to the

finer control over the implantation depth with a heavier molecule [69]. Once the PF2

molecule is ion-implanted into the silicon lattice, the sample is annealed, after which

the 31P nucleus remains in place and the fluorine diffuses away to the surface. Holmes

et al. [69] correctly show that no fluorine molecules are present and coupled to the 31P

donor spin nucleus through ESR spectra alongside nuclear magnetic resonant pulses

(NMR) pulses resonant with the fluorine nucleus. Holmes et al. [69] unfortunately

observe a 29Si impurity coupling to the implanted 31P despite isotopic purification of

the silicon lattice. This emphasises that even with precise placement of ion-implanted

donor ions, including via molecules, nano-apertures and ion-detection [70], they must

reside in a magnetically clean environment with very few impurities, such as 29Si atoms

that will lead to qubit decoherence. Donor in silicon devices continue to demonstrate

their exquisite capabilities from the single-shot readout of an electron spin in 2010

[40] to the demonstration of achieving error correction threshold fidelities in 2022 [71].

Replacing the 31P nucleus with a 123Sb ion opens the door to realising qudits, qubits

with a state space with dimensions greater than 2, from the 7/2 123Sb nucleus spin

[72, 73].
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Quantum dots in MOS

The main argument for quantum dots in metal-oxide-semiconductor (MOS) devices is

that of scalability in manufacturing. They are the most similar implementation to that

of current MOS technology. They do not require atomic precision placement of atoms

but, do require reproducible feature size and quality. Those features include gate

electrodes which form quantum dots via applying a voltage to these gates, inducing

an electric field in the silicon. Multiple gate electrodes per quantum dot provide

the additional benefit of being able to tune different quantum dot devices to similar

operation regimes despite discrepancies in manufacturing quality control which there

will be at this early stage of development. Maurand et al. [74] demonstrates the

ability that MOS devices have in creating spin qubits and displaying spin effects such

as Pauli spin blockade. However, the coherence times are disappointingly short at

245 ns via Hahn echo with very little explanation of why this is the case. Proposed

reasons point to impurities in the material playing the role as a reminder of how

important quality control of the fabrication process will be in these devices. Veldhorst

et al. [75] removes any doubts in MOS devices with coherence times of 28 ms using

a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, a pulse sequence capable of

reducing the effects of spin dephasing. This is accordingly compared to 200 µs

CPMG coherence times achieved in GaAs [76]. Reasonable proposals such as low

frequency noise from the superconducting magnet, are put forward for the sources of

decoherence but it is acknowledged that further experiments are necessary to confirm

this. Once again the argument of scalability of MOS devices is presented by but more

importantly is the demonstration of a two qubit logic gate by Veldhorst et al. [28] two

years later. This delivers on the requirement set out by DiVincenzo [4] for quantum

computation and later thought-out in spin qubits by Loss and DiVincenzo [36]. A

serious consideration of architecture for scaling silicon MOS spin qubits is presented

by Veldhorst et al. [57]. One of the key acknowledgements by the author, despite

their inherent biases, is that there is not a clear-cut path to the scaling of silicon MOS
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qubits despite what many may claim in the literature. This is particularly down to

the minimum feature size, the separation between gates, set at ∼ 7 nm [57]. This

would lead to an area of ∼ 63 x 63 nm2 per qubit [57], and if we take a module to

carry 480 qubits, as per the architecture laid out by Veldhorst et al. [57], for a one

million qubit computer it can get quite large fairly quickly. In addition to this there

would need to be appropriate space to house classical computer transistors to aid with

the controlling of the gate voltages and readout of the qubits. Housing this circuitry

will most likely require further advancements in current manufacturing technology to

minimise thermal and volumetric impact on the qubit module. If we consider heat

dissipation from the control electronics catering to each module it will be difficult

to maintain a consistent temperature of 20 mK. This issue is roughly addressed by

Veldhorst et al. [57] and estimates that the module could operate at 100 mK in a

typical dilution fridge. But it is acknowledged that this could be a possible bottleneck

for scalability and may rely on silicon spin qubits to perform at higher temperatures as

previously demonstrated [77] to provide scalability. Yang et al. [78] goes on to operate

two qubits at 1.5 K in a silicon complementary metal–oxide–semiconductor (CMOS)

device with coherence times of 2 ms and fidelities of 98.6%. It is appropriately shown

how these qubits would fit into the architecture envisaged by Veldhorst et al. [57] but

still operate at temperatures that could be provided by a pumped 4He system. This

greatly reduces the costs and engineering difficulties from thermal management in the

scaling of MOS-based qubits.

Quantum dots in heterostructures

One of the attractions to SiGe heterostructures is the lack of the amorphous Si/SiO2 in-

terface which causes charge defects in MOS devices. Devices based on heterostructures

enable highly tunable quantum dots with electrons (or holes) confined in the vertical

direction by band engineering and confinement in the horizontal direction defined by

gate electrodes. At the same time SiGe devices still meet the mark of high fidelities
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and coherence times [79]. The high tunability of the SiGe dots is demonstrated by

Lawrie et al. [80] tuning a linear array of five quantum dots. Lawrie et al. compares

the manufacturing differences between Si MOS, Si/SiGe and Ge/SiGe heterostructures

making the case for all three as compatible with industrial fabrication techniques.

Lawrie et al. also compares the dot cross capacitances between the different devices.

Although the devices are different in terms of layout they have much lower cross

capacitances than that seen in GaAs devices and the Si-MOS device shows the lowest,

facilitating their operation. Lawrie et al. are fair in their discussion, presenting the

challenges which face heterostructures for scaling devices such as automated tuning

and wiring logistics for each gate with supporting work that looks to help solve these

problems [81, 82]. Xu et al. [83] explains that having each gate connected to a digital-

to-analogue converter (DAC) is, "a bottleneck for scaling the number of qubits. By

comparison, today’s classical processor chips have only about 2000 contact pins, while

billions of transistors can be integrated and operated on a single chip". Inspiration is

taken from current dynamic random-access memory (DRAM) chips and charge-locking

is incorporated into SiGe devices. Charge-locking electrically detaches a line from a

gate but through the use of a switching capacitor circuit and thus the gate of the

quantum dot is floating for a period of time. When combined with demultiplexing,

the number of lines to the chip can be significantly reduced. This enables one gate to

float while another gate is pulsed, keeping the number of lines to the chip minimal

[83]. Xu et al. [83] verifies that the capacitor storing the dot gate potential doesn’t

affect the gate pulses. This is shown by performing electronic circuit simulations

which allow for pulses up to 20 GHz frequencies. Alternative gate geometries can be

considered instead. Borsoi et al. [84] demonstrates a 16 (4 x 4) quantum dot array

in a Ge/SiGe heterostructure, with a single gate electrode addressing more than one

quantum dot at a time. Heterostructure devices have firmly planted their foot down

as a contending architecture with not only the demonstration of qubit arrays [85] but

also the achievement of error-correcting threshold fidelities [86, 87] alongside their
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Figure 3.3: a) Nanowire device cross section and connected reflectometry setup for
readout. The electrons or holes are localised at the top corners of the device. b)
Overhead digram of nanowire device, the Si3N4 (hatched green) spaces apart the two
top gates GDC and GRF . Reproduced from [91].

ion-implanted donor in silicon counterparts [71].

Others: nanowires & FinFETs

Nanowires can be composed of multiple materials such as a 10 nm diameter germanium

core and a 2.5 nm silicon shell [88]. A hole gas is formed within the Ge core and

can be depleted through the application of positive voltages to the gate electrodes,

above which the nanowire is suspended. Froning et al. [88] successfully demonstrates

the ability to form single, double and triple quantum dots within a 5-gate Ge/Si

Core/Shell nanowire opening the door to spin qubit experiments. Leveraging the

electrically tunable g-factor of holes in germanium, Froning et al. [90] later successfully

demonstrates complete electrical control of hole spin qubits in Ge/Si core/shell

nanowires. Froning et al. [90] also shows the ability to tune the hole qubit Rabi

frequency, the spin rotation rate, by an order of magnitude with only a change of

millivolts in gate electrode voltages.

1D structures such as silicon nanowires offer a compact way of achieving gate-

defined quantum dots while still being compatible with large-scale manufacture. Similar

to MOS devices in their fabrication the gates reside above the nanowire (Fig. 3.3)

but are split at the top so a pair of gates resides along the length of the nanowire.

Betz et al. [91] explains that the quantum dots reside in the top corners of the
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Figure 3.4: Schematic of FinFET gate structure. The gates wrap around three sides
of the ‘fin’ which consists of a silicon channel. The wrap around gate results in a more
intense electric field than in a planar MOS device enabling high control of current flow
at shorter channel lengths allowing faster switching speeds.

nanowire as that is where the electric field from the gates is the strongest. Betz et al.

goes on to demonstrate Pauli spin blockade, placing the device on the ladder as a

contender for semiconductor qubits. Betz et al. is able to demonstrate this using

radio-frequency (RF) reflectometry measurements [92]. This future proofs the device,

as RF measurements allow for scalable readout via multiplexing techniques. Multiple

quantum dots along the length of the silicon channel were seen recently in work by

Ansaloni et al. [93]. Measuring each individual quantum dot in current transport with

a local charge sensor is cumbersome, and source to drain currents only flow in very

small regions of the parameter space.

Si FinFETs [94] appear as siblings to nanowires as their geometry is very similar,

Figure 3.4. The main difference is that the top gates in a FinFET wrap around

the silicon channel, the ‘fin’. FinFETs are one of the largest breakthroughs in the

semiconducting industry since the invention of the metal-oxide-semiconductor field-

effect transistor (MOSFET) in the 1960s. The wrap-around gate results in a more

intense electric field than in a planar MOS device enabling high control of current flow

at shorter channel lengths allowing faster switching speeds. The intense electric field

from the wrap-around gates is taken advantage of, defining a quantum dot with a

single gate. Kuhlmann et al. [95] intelligently demonstrates both electron and hole

quantum dots in the same FinFET transistor. The argument for an ambipolar device
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is flexibility in circuitry with the ability to benchmark the performance of holes against

electron quantum dots. Work by Kuhlmann et al. supports earlier claims of tunability

and control of quantum dots in FinFETs [96] in a compact package. FinFET’s place

as a qubit contender is solidified by Camenzind et al. [38] demonstrating hole spin

qubits in a FinFET at 4 kelvin. Camenzind et al. [38] understandably compares hole

spin qubits to their hot electron counterparts in other device architectures [78, 97],

and claims superiority on the basis of Rabi quality factor, a measure of the spin

oscillation rate multiplied by the decay time of the spin oscillations. Delivering on the

promise of scalability we are starting to see linear qubit arrays realised in FinFETs

produced by advanced semiconductor manufacturing techniques [98]. Recent work on

the manufacture of FinFETs shows that there is still, "plenty of room at the bottom"

[99]. These industry-standard devices can be made even smaller (single atom thick)

[100] ingraining them in the field as contenders for semiconductor qubits.

3.1.2 Readout

Briefly, qubit readout techniques namely, transport measurements and RF reflectometry

will be discussed.

The qubit state is read out by spin-to-charge conversion [31]. One could measure

the current flowing through the device to detect this, but the current would be so small

that one has to measure a series of electrons over time (multiple-shot). For a functional

quantum computer, reading out the state of qubits will need to be single-shot, accurate

and fast [4]. For the sake of scalability, the physical readout implementation must also

be compact. RF reflectometry [92] possess all of these key traits. It is compact as one

can use the same gates which are used to tune quantum dots to measure them [91,

101] thus no extra gates are needed. Its speed is demonstrated by Botzem et al. [101]

who uses RF reflectometry to tune quantum dots in GaAs and benchmarks it against

typical current transport measurements performing orders of magnitude faster. The

low integration times necessary for RF reflectometry enables single-shot readout [102].
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3.1.3 Discussion

There is a large range of silicon devices and many of which are suitable for scalable

quantum computing. Gate-defined quantum dot devices are attractive for numerous

reasons but particularly their compatibility with industry standard manufacturing

techniques and flexible tuning of quantum dots. Despite fabrication excellencies, there

will always be defects which will alter the specific voltages required to define a dot

from one device to the next. Automation will be required to tune quantum dots such

that one can finally turn on a quantum computer with a million qubits.

3.2 Tuning Quantum Devices

Automated tuning of quantum dot devices is at a stage of very early development.

There are few groups who publish work on it, and those that do, offer patch solutions.

A complete algorithm which can take you from a ‘fresh’ device to an array of prepared

qubits is currently unavailable. However, light is beginning to shine through the small

pile of existing automation algorithms, inspiring those in the field to combine together

what is left in the shadows and build greater self-operating tools.

There are multiple algorithms [81, 103, 104] which do take us from a ‘fresh’

device to coarsely defined double quantum dots which is one of the initial automation

challenges of the field and possibly one of the most helpful in the lab. These algorithms

not only save experimentalists time but are necessary steps towards the scaling of

semiconductor qubits and ‘turning on’ a quantum computer. Standard distributed

control approaches have not been used for tuning because there are no forward

dynamics models available for tuning quantum devices. However, we are starting to

find ways to bridge the gap between reality and models of quantum devices using

machine learning [105]. In the following sections, I will introduce a range of tuning

algorithms, some follow a series of simple conditional steps, and others involve machine

learning in their workflow.
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Figure 3.5: A current map generated by sweeping the adjacent tunnel barrier gate
voltages L and D1 while measuring the current Iarray flowing from the source to the
drain of a linear quantum dot array device. The black dashed line identifies the border
between regions of high current and low current. The purple dot marks a promising
location to look for single dot features such as Coulomb peaks. These two steps
become key components in later auto-tuning quantum dot algorithms. Reproduced
from [81].

3.2.1 Tuning without machine learning

When creating an automation algorithm one can take many pathways in designing its

workflow. The first and most common choice is a human-like approach [81, 104], in

other words copy the human workflow and put it into code that communicates with

the required instruments. An initial approach Baart et al. [81] involved no machine

learning and relied heavily on previous knowledge of the device to coarsely tune two

quantum dots from a linear four dot array. By measuring current traces the pinch-off

for each gate is found. Then single dots are tuned by using plunger gates whilst

relying on previous knowledge of appropriate voltages for this device. Baart et al.’s

[81] algorithm is not general because it relies on familiarity of the device at hand but,

it is foundational work. Baart et al. [81] have successfully identified key components

for future tuning algorithms which are, locating pinch-off, searching for Coulomb peaks



3.2. TUNING QUANTUM DEVICES 49

and mapping out the surface that separates regions of high current from low current,

Figure 3.5. Volk et al. [106] presents a "N+1" method of tuning a linear array of

eight qubits. Similar to Baart et al. each dot is tuned sequentially with a charge sensor

whilst noting the cross capacitances between all of the gates. The cross capacitances

are then used to generate ‘virtual gates’ which give the ability to group gates such

that we can change the charge state of each quantum dot independently without

affecting neighbouring quantum dots. This is repeated for each dot. The algorithm in

[106] lends itself well however to one type of device, that is linear arrays. As seen in

Section 3.1.1, devices may take a range of shapes and layouts and it will be important

to have a general algorithm that can be applied to all of them. The reasoning behind

this narrative is that a quantum computer based on spins in semiconductors may be

composed of different devices architectures serving different purposes for example, one

device type for the processor and another for memory.

3.2.2 Tuning with machine learning

Machine learning can be used to play the role of the human by verifying the steps

taken by the algorithm such as work by Darulová et al. [104]. For example, a Random

Forest classifier is used to determine whether pinch-off occurs for individual gates,

rather than a human looking at each current trace for each gate. If a single gate

does not demonstrate pinch-off then the device is considered untunable and useless.

Arguably the classifier is generalised by choosing only particular features from fitting

measured current traces, such as pinch-off voltage and the change in voltage at

pinch-off, rather than the whole trace as a feature set. This means one can take

traces with different current values and still use the classifier without encountering

feature dimension problems. After all the gates have been characterised, the device is

then tuned by first sweeping the gates one by one, the central-barrier, inner-barriers,

outer-barriers and plungers in that order. 1D-current traces are taken along the way to

determine if there are single electron transport features. When discovered a 2D current
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Figure 3.6: Sampling phase of double dot tuning algorithm. Schematic current maps
of the device, pink signifies regions of high current, blue signifies regions of relatively
low current. Gate voltage space is limited to two dimensions for illustration. Red
‘x’s are points in the voltage space on the hypersurface which have been sampled,
v(u). a) The green line signifies the model hypersurface, with uncertainties from
the Gaussian process model (grey), which separates the region of high/non-zero
current from low/near-zero current. Simulated particles undergoing Brownian motion
(black) are used to sample the hypersurface randomly. b) The colour gradient of
the line signifies the probability of finding Coulomb peaks at the model hypersurface.
Reproduced and edited from [103].

map is taken as a function of the plunger gate voltages. The output current map is

classified by a multi-layered perceptron neural network for the existence of good/bad

double dot features. This is very efficient in time because it minimises the number

of 2D-current maps taken by the algorithm. Unfortunately, the time taken to tune a

double dot successfully is not clearly stated in the article. The algorithm is restricted

despite claims of generality because it relies on knowledge of the gate architecture for

both characterisation and tuning stages. Therefore, for this algorithm to be used on

other devices the tuning procedure would have to be modified and most likely rely on

a typical human workflow for guidance. In addition, the field is moving away from the

traditional gate architectures seen in older GaAs devices and more towards foundry

fabricated silicon devices [93] to favour manufacturability. Respectfully, Darulová et al.

[104] tried multiple machine learning techniques for both characterising gates and

classifying double dot features and used those which produced the best results.
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A second approach is to use available mathematical and A.I. tools, Moon et al.

[103] to become faster than humans in the hope of finding possible shortcuts to

obtaining an end result. By removing the typical human workflow one can create a

more general algorithm which can be applied to a range of devices as it does not rely

on human habits and knowledge from previous attempts at tuning similar devices.

When tuning quantum dots by relying on transport features there are particular gate

voltage values which split the device parameter into two regions, relatively high current

flowing and relatively low current flowing (pinched-off). These voltage values define a

hypersurface in an N -dimensional space where N is the number of gates that control

the flow of current through the device, typically N is the the range of 3 to 7 for

double quantum dot devices. This hypersurface is usually located by performing 1D

current traces with each gate until pinch-off is reached [81, 104]. However, one can

speed up the process by randomly sampling points in voltage space and measuring

the current [103] in that direction from an arbitrarily assigned origin. After multiple

points (at least 30) on the hypersurface have been located then using a Gaussian

process model, a prediction of the hypersurface can be built, Figure 3.6. As previously

identified [81], points in voltage space on this hypersurface and near to it in the

pinch-off region often display single dot features identifiable as Coulomb peaks in a

1D current trace. If Coulomb peaks are present then a low resolution 2D-current map

is taken using the plunger gates of the device, and this map is scored against the

expected ‘honeycomb lattice’ characteristic of a double dot regime. If the score is

above a predetermined threshold then this regime of voltages is believed to contain a

double dot regime and a high resolution scan is taken by the algorithm for viewing in

post by a human. This process of sampling the hypersurface and investigating the

regions around it is repeated. In each iteration, the information from the investigation

stage (are Coulomb peaks present?) is fed back into the Gaussian process model of

the hypersurface. This results in a better prediction of the hypersurface and the best

location to sample the hypersurface next based on the probability of finding Coulomb
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peaks (see Chapter 2.7.6 for Bayesian optimisation). To reduce tuning times the

number of 2D-current maps are minimised by relying on targeted sampling of the

hypersurface and accurate classification of Coulomb Peaks in 1D traces. However, the

accuracy of the Coulomb peak identification method used is not clear [103]. This may

not be as easy as identifying pinch-off [104] gate voltages for different devices. Thus,

this could be a point of clarification and an improvement to generalise an algorithm

which is already one of the most general as it requires no knowledge of device gate

architecture for the hypersurface sampling stage [103]. Moreover, the computational

complexity of training Gaussian process models and data sparsity [107] are issues in

scaling Gaussian processes to higher dimensions [108, 109], therefore techniques such

as dimensionality reduction [110, 111] may be required as devices increase in size and

N grows. The algorithm only requires knowledge of the plunger gate identities to

produce 2D charge stability diagrams (current maps) in the investigation stage. The

performance of the algorithm is demonstrated by tuning two double dot GaAs devices.

A point set registration analysis which maps different hypersurfaces to each other, is

performed on the effect of thermally cycling two different devices. Each device had 8

gate electrodes but on one of the devices leakage currents were associated with a gate.

This gate was set at 0V and excluded from the tuning algorithm. This further proves

generalisation as the algorithm appears to be able to tune devices regardless of the

number of gates or whether all gates are functioning unlike other contemporaries which

would classify such a device as untunable [104]. Using the algorithm these double

dots can be tuned in 70 minutes, arguably faster than humans, when bench marked

against tuning times of human experts (3 hours) and even more so a pure random

search algorithm (680 hours) [103]. This algorithm [103] was demonstrated in a GaAs

device where electrons were charge carriers. In Chapter 5 I demonstrate an algorithm

that tunes double quantum dots in three different architectures where holes are charge

carriers. Moreover, the algorithm successfully tunes the devices regardless if their

mode of operation is depletion or accumulation of charges, by changing the starting
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point of the algorithm in the gate voltage space bounds and searching for pinch-off

rather than turn on. In the same way that there are different manual approaches

to tuning a device for example searching for turn-on instead of pinch-off, automatic

tuning approaches can be built to cater to different device types by searching for

different features or being adaptable in their search given some prior knowledge such

as mode of operation or voltage bounds.

Quantum device fine tuning

Once quantum dots have been roughly tuned to form a double quantum dot, these

dots must be finely tuned. This has the aim of optimising a set of charge transitions

for qubit operation. Van Esbroeck et al. [112] has produced some of the earliest work

in the field of automated fine tuning relying on a variational auto encoder to optimise

tunnel rates and inter-dot coupling in GaAs. This is done by optimising the shape

of bias triangles, transport features corresponding to double dot regimes, Figure 3.7.

The algorithm requires no knowledge of the device architecture but it has only been

demonstrated tuning three pre-selected gates out of the eight gates. Although the

coupling of the additional gates to the bias triangles is described as ‘weak’ it would

have been ideal to see how the algorithm would have performed with more gates under

its control.

Suppose my double quantum dots have been finely tuned, yet I am in an unknown

charge state and I would like to acquire a particular one. A charge state signifies

the number of electrons present in each quantum dot. This pre-qubit tuning is

necessary for qubit operations. An algorithm presented by Durrer et al. [113] relies

on convolutional neural networks to recognise in a series of low resolution 2D current

maps when the zero charge state is reached and where the charge transition lines

are crossed. Despite the neural nets being trained on 105 (after data augmentation)

labelled current maps to identify (0,0) charge states and charge transition lines, the

algorithm is successful in locating the desired charge state 57% of the time. One could
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Figure 3.7: Quantum device fine tuning. a) SEM image of device gate architecture. b)
Current map showing double dot features, inset: the before and after of the algorithm
fine tuning a bias triangle. c) Workflow diagram of algorithm. Reproduced from [112].

argue that this is due to poor signal to noise ratio in the experiment. If this is the

case, the neural nets will have to be trained and tested on higher resolution current

maps to find the appropriate charge state. The time to take higher resolution current

maps will drastically increase the time to locate a given charge state. Unfortunately

the time taken by the algorithm to find a desired charge state is not clear, and it is not

bench-marked against other approaches. These approaches could include locating the

(0,0) charge state by taking a series of 1D current traces and identify when Coulomb

peaks are no longer observed. This would certainly be faster and simpler than neural

net image recognition techniques and may lead to the same if not greater accuracy.

If one chose to remain on the neural net route then, more targeted sampling of the
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voltage space [114] could be employed. This would reduce the number of 2D current

maps required and provide the time for higher resolution current maps to be acquired,

increasing the signal to noise ratio and the accuracy of the neural network. However,

Durrer et al. [113] has been able to overcome a challenge that Kalantre et al. [82]

deemed difficult. That is, locating desired charge states using neural networks and

Durrer et al.’s method simply relies on the calibration step of finding the (0,0) charge

state [113]. Kalantre et al. [82] was one of the earliest to apply machine learning to

identify double quantum dots and single quantum dots albeit using a convolutional

neural network trained on simulated data based on the Thomas-Fermi model. They

proved this method was successful with tests on real data from a silicon nanowire

with over 90% accuracy. Furthermore, Kalantre et al. goes on to outline a method

of auto-tuning a quantum dot device using neural networks which is similar to the

approach taken by Durrer et al. [113].

The majority of these automated tuning algorithms have been tested in well-

established GaAs devices. There is space therefore to develop and demonstrate

automated quantum dot tuning algorithms for a range of silicon devices. The broad

range of silicon devices and the less established device fabrication techniques place

a high bar for the successful demonstration of a general tuning algorithm in these

devices.

3.3 Conclusion

In conclusion, the literature supports the use of silicon over other materials such as

GaAs due to the possibility of leveraging industry fabrication expertise and a low

nuclear spin environment due to isotropic purification resulting in reduced dephasing.

The ability to leverage industry fabrication expertise is most applicable to Si-MOS

devices rather than heterostructures such as Ge/SiGe or Si/SiGe. The scalable and

reliable manufacture of silicon-based devices is caught on the stringent lithographic
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fabrication requirements for electron spin qubit devices. However, these requirements

are relaxed if hole spin qubits are used in place of electrons and if the host material is

Germanium due to the relative effective masses of charge carriers. Automatic tuning

algorithms and reliable and reproducible quantum dot fabrication will need to meet

each other in the middle of the scaling journey of spin qubit quantum architectures.

All devices will require automated tuning of gate voltages to reliably form arrays of

quantum dots and to achieve optimal qubit control. However, the burden on the

automatic tuning algorithm is reduced for well fabricated and reliable quantum dots,

in which case, a capacitance model may be suitable for guiding automated tune-up. A

range of algorithms involving machine learning have been developed but do not provide

a complete tuning solution, let alone demonstrate fully automated tuning in a range

of silicon devices. Moreover, few algorithms in existent are arguably capable of tuning

extended quantum dot arrays in their current form without significant modification.

This is especially true, as readout methods of larger quantum arrays are beginning to

come to fruition as device size grows. For prototype devices such as double quantum

dots, the literature shows that algorithms which use machine learning may be the

most successful in tuning them. In this thesis, I explore the automatic tune-up of

prototype devices using more unsupervised methods which involve machine learning.



Chapter 4

Methodology

People pay their mortgages and feed

their children by doing this stuff.

Andrea Morello

The experiments which led to the results presented in this thesis were carried

out across a range of laboratories. Algorithms were run remotely in the Zumbül

Group, University of Basel and Katsaros Group, IST Austria during the COVID-19

pandemic to acquire the results shown in Chapter 5. The Algorithms used in Chapters

6 and 7 were developed at both the University of Oxford and the University of New

South Wales (UNSW). The experiments in Chapters 6 and 7 were completed in the

Fundamental Quantum Technologies (FQT) laboratory of Prof. Andrea Morello and

the Diraq laboratory at the ARC Centre of Excellence for Quantum Computation and

Communication Technology in UNSW, Sydney, Australia. Here I discuss the methods

commonly used across the laboratories I worked with/in to carry out experiments to

acquire the data presented within this thesis. This will include a discussion on sample

preparation, control electronics, software interfaces, algorithmic control and building

software.
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Cold Finger

Mixing Chamber 
Plate

Figure 4.1: Sample preparation. a) A semiconductor chip sample viewed from an
optical microscope. Wire bonds (aluminium wires), create an electrical contact between
the sample’s gate-electrodes, source and drain contacts to the bonding pads of the
printed circuit board (PCB). b) The PCB (pictured) behaves as an electrical interface
between the semiconductor chip and the electrical lines used to send signals to control
the sample. c) A cylindrical sample enclosure pictured from the top where electrical
lines enter the enclosure to reach the sample via nano-D and SMP connectors. d) An
open dilution refrigerator where the shields and outer vacuum can have been removed.
Locations where the sample can be bolted for quantum transport experiments are
labelled. The cylindrical sample enclosure (c) is bolted to the Cold Finger which can
reach a base temperature of 20 mK. Alternative sample enclosures can be bolted to
the Mixing Chamber Plate and can reach a temperature of 20 mK.

4.1 Sample preparation

The semiconductor chip sample (Fig. 4.1a) is mounted onto a printed circuit board

(PCB), also known as a ‘sample board’ using PMMA as an adhesive. The PCB is the

interface between the signals sent from the external control electronics and the sample

(Fig. 4.1b). The gate-electrodes of the sample are connected to the control electronics

via wire bonds which provide an electrical connection between the gate-electrodes and

the relevant bond pads on the PCB. There are different types of bond pads on the

PCB, those that are for DC signals, and those that correspond to signals that can be

either AC or DC from the respective control electronic. Bond pad features are taken

into consideration when planning the orientation of the sample on the PCB and the

respective wire bonds between gate electrodes and PCB bond pads.

As discussed in Chapter 2 it is important that electron temperature and therefore
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the device temperature is less than the charging energy of the quantum dot. To achieve

this and therefore the millikelvin temperatures required, the sample is placed within a

dilution refrigerator. This is done by placing the PCB, holding the mounted sample,

within a sample enclosure (Fig. 4.1c) which is then firmly bolted to the coldest stage

of the dilution refrigerator, the Cold Finger (Fig. 4.1d). The Cold Finger typically has

a base temperature of 20 mK. Samples can also be bolted to the Mixing Chamber

Plate which has a temperature of 20 mK when the fridge is at base temperature. The

sample enclosure must have excellent thermal contact with the dilution refrigerator to

maximise thermalisation. The shape and mounting process of the sample enclosure

depends on the style of the dilution refrigerator. For example, within my lab at

the University of Oxford, we used Oxford Instruments dilution refrigerators which

are compatible with a cylindrical sample enclosure called a Puck. Whereas in the

Fundamental Quantum Technologies lab in Sydney, I used cuboidal sample enclosures

which were compatible with their Blue Fors branded dilution refrigerators. Control

electronics are then connected to the sample enclosure during the loading process into

the dilution refrigerator which, in turn, connects to the PCB and then finally to the

device.

4.2 Classical electronics

The brands of breakout boxes, voltage sources and DACs can vary greatly between

laboratories and individual experimental setups. Particular groups will have preferred

features, such as affordability, ease of use, or brand familiarity and loyalty. In some

cases, laboratories will build their equipment, for example, the homemade breakout

boxes used by the FQT lab. Despite subtle differences, the equipment serves the

same purpose and I will briefly outline the core features using the QTRay Racks

manufactured by TU Delft as an example which are common across laboratories in

which work for my thesis was carried out. Moreover, the layout of the instrument
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Figure 4.2: Classical electronics. A QTRay Rack houses the breakout box, the digital-
to-analogue (DAC) DC voltage sources, voltage dividers, ground pins and current
amplifiers for quantum transport measurements. Communication with the DAC occurs
via a fibre optic cable.

enables easy explanation and walkthrough of breakout electronics, voltage sources,

voltage dividers and current amplifiers in a single rack.

The DC lines connected to the sample, run from the Cold Finger, up the stages of

the fridge, and exit at the top of the dilution refrigerator at room temperature where

they are connected to a breakout box via a Fischer Cable (Fig. 4.2). The AC lines

follow a similar path from the sample and are connected to the breakout box via an

SMA cable, and then an AC source such as a Keysight M3302A arbitrary waveform

generator (AWG) or a Quantum Machines OPX. From the breakout box, each DC

line/channel is connected to a DAC DC voltage source via a Bayonet Neill–Concelman

(BNC) connector. Individual DC lines can be grounded or floated using a switch on

the breakout box. The DACs have a voltage range of 4V and are operated in bipolar

mode, resulting in maximum and minimum voltages of 2 V and -2 V respectively.

The VIb module (Fig. 4.2) is a combined V-source, I-measure and IsoOut, hence the

letters “V” and “I” in the name. It provides a source voltage, current measurement

with a noise floor down to 5 fA/sqrtHz( at 1G V/A) and an isolation amplifier (used to
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provide electrical isolation and electrical safety of the output signals), in one module.

The S2f module (Fig. 4.2) is a summing module (hence the letter “S” in the name)

and serves as a patch area for DAC voltage sources. The DAC S2f DC voltage source

module has a voltage resolution is 60 µV due to the 16-bit resolution of the DAC. The

inclusion of voltage dividers is common to achieve higher voltage resolutions and can

be custom made or purchased. Serial commands and the status of the DAC are sent

between the DAC and the PC via a fibre optic to USB connection. The source-drain

bias is set by the VIb module which has a built-in voltage divider. When performing

quantum transport measurements the current is measured using the ammeter in the

VIb module which is then amplified by 1 GV/A. The amplification value is factored

out at the software level after data acquisition. The measured current is acquired and

sent to a digitiser connected to a PC. The drain is connected to the ground on the

S2f module.

4.3 Instrument control

Various software packages were used to programmatically control the classical elec-

tronics (Fig. 4.3), as implementations are built customarily between laboratories, but

all used in this work were written in the Python programming language. In Chapter 5,

Pygor developed by Dominic T. Lennon [115] was used across the University of Basel

and IST Austria. In Chapter 6, SilQ developed by Serwan Asaad and Mark Johnson

[116] was used in the FQT lab for data acquisition and instrument control specifically

for ion-implanted donor in silicon devices. Our collaborators in Chapter 7 used custom

Qua scripts in Python for data acquisition and control of their AC voltage source.

The purpose of all of these various packages is to act as a human-understandable

wrapper around the lower-level instrument drivers. Therefore, rather than running hard-

to-read scripts of regular measurement sequences which are instrument-dependent,

users can run commands such as get_current() or set_val() to measure the
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Figure 4.3: Software and hardware stack. The software is written in the Python
programming language. Each laboratory possesses its own Driver Wrapper around
the lower level instrument drivers for easy instrument control and data acquisition
(DAQ). The application interface enables the tuning algorithm to be hardware agnostic
and portable. The Jupyter Notebook provides data visualisation capabilities and an
interactive console for the control of the hardware stack using the Driver Wrapper of
choice.
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current flowing through the device or set a specific voltage to a specific gate electrode,

while the underlying necessary instrument drivers are correctly chosen via a configuration

file.

Pygor was originally designed to perform as a two-computer, server-client architec-

ture. This enabled the tuning algorithm logic and heavy computation to run on a more

powerful PC (the client), and then send commands via the internet to a less powerful

laboratory PC which would control the instruments and acquire data (the server).

The acquired data would then be sent back to the client’s PC, and the sequence

would be repeated. However, I realised that the computational power required for

the algorithm developed in Chapter 5 could be satisfied by a standard laboratory PC,

but portions of the algorithm which relied on multiprocessing needed to be run on a

Unix-like computer operating system. Therefore, I ran the client and server on the

same PC in the laboratory, but if the operating system of the laboratory PC was

Windows-based, I ran the client on the Windows Linux Subsystem giving me access to

a Unix-based operating system on the same PC. This greatly reduced the installation

time of Pygor when setting up experiments remotely as we removed the need to

specify open ports across university department networks and lift certain firewalls

which could put the university network at risk. Moreover, the entire experiment could

be accessed by authorised remote desktop to a single PC within the host institution’s

laboratory, which favoured data sharing security controls and promoted ease of use.

In between the driver wrapper and the tuning algorithm software sits an application

interface. The interface serves a crucial role in the software stack, allowing the tuning

algorithms developed to be agnostic towards hardware and instrument control software

across laboratory setups. By defining an interface and data types, tuning algorithms

can be easily ported between laboratories, with minimal coding required other than

constructing an application interface. The interface is made up of commands such

as, set DAC voltages, read the current state of the DAC and acquire a current

measurement.
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The tuning algorithms developed in this body of work do not require any form of

human interaction; they control the experiment autonomously. They have procedural

characteristics and are iterative, repeatedly progressing through a sequence of steps.

An overview of a tuning algorithm workflow is, acquire a measurement, signal process

the data acquired, make a decision on the next measurement to take and repeat. Each

portion of the workflow routinely relies on machine learning for example, a Random

Forest classifier at the signal processing stage and Gaussian Process Bayesian optimisa-

tion to decide what measurement to take next. Each portion of the tuning algorithm

is halted when a maximum number of iterations is reached or a stopping criterion is

met. Development of the relevant stopping criteria relies on our understanding as

experimentalists as what we’d expect and desire the respective signals to look like at

different stages of the tuning process.

Humans interact with the entire software stack via a Jupyter Notebook on a PC

where they can use their instrument driver wrapper of choice and tuning algorithm

to control their instrument electronics. Jupyter Notebooks, behave as an interactive

python console and possess the ability to display graphical images inline enabling

experimentalists to acquire measurements such as charge stability diagrams and display

them in real time. This can be helpful for manual tuning for the experimentalist as

well as observing the online performance of a tuning algorithm at its various stages.

4.4 Software development

Being a thesis which consists of algorithms for automated quantum device control, I

will briefly give an overview of the software architectural styles I obeyed and software

development practises I attempted to follow.

The architecture of the software developed followed a ‘wide instead of deep’

[117] approach with each portion and task of the overall programme separated into

various modules consisting of distinct components (Fig. 4.4). For example, the
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Figure 4.4: Codebase file tree. An excerpt of the codebase file tree of one of the
algorithms developed in this thesis. The codebase consists of a total of 16 directories
and 46 files and is organised as a Python Package. The interfaces directory contains
application interfaces for the tuning algorithm to run on different laboratory setups
and serves as an example for future interface development.

different modules were made up of acquisition routines, models, helper functions,

signal processing, interfaces and pipelines. Throughout my research, I moved away

from object-oriented programming and towards a procedural programming paradigm

with the inclusion of functional paradigm elements. This shift led to codebases (e.g.

donorsearch in Chapter 6) that allowed for fast iterative development, modularity,

and composability, as each routine or procedure was made up of smaller procedures

which could be swapped in or out at will. Moreover, the testing of each component,

unit testing, was easier to perform because the risk of not including global state

changes was reduced, such as in an object-oriented approach (e.g. CATSAI in Chapter

5).

How the software is developed can greatly influence the software’s quality, read-

ability, portability, scalability and adaptability should changes be required during later

stages of development. The practices I followed to maximise these qualities are as

follows:

• Long Stretches of Focused Time: Developing software requires long

stretches of uninterrupted time (at least 3 hours). Remove distractions and

meetings to allow for focused time. A software developer needs to keep as
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much of the program in their near-term memory as possible. This holistic

understanding of the codebase takes at least 30 minutes to build in each coding

session and is easily destroyed by distractions.

• Development Environment: Employ a lightweight development environment

that supports autocompletion and type hints, such as Visual Studio Code (VS

Code) or Vim with the relevant plugins.

• Package and Environment Management: Set up a virtual environment

using conda to manage project dependencies and ensure reproducibility. Back

up the virtual environment to .yaml file to allow portability across different PCs

and operating systems.

• Version Control: Employ Git for code versioning, enabling the ease of tracking

and managing the integration of features into the codebase.

• Feature Development Management: Utilise platforms like GitHub’s Issues

and Projects to track features and tasks. Take advantage of Kanban boards to

manage tasks and prioritise different features. Re-evaluate the development of

features weekly.

• Codebase Structure: From the inception of the project, organise the software

as a Python package. This approach enhances portability and minimises potential

installation and testing complications in the future.

• Testing: Rigorously test the software as it is being developed via a Python

package style installation, utilising tools like pytest, coverage, and actual

in-the-field testing to ensure reliability and functionality. Getting early and

frequent feedback from in-the-field testing and users will keep development

goals on track to achieve a good working product.

• Code Formatting: Employ a code formatter (e.g. black) to maintain a

uniform code layout and improve code readability.
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• Type Hints: Add type hints to every function or callable to enhance code

clarity and facilitate error detection. Rely on tools such as Pylance or MyPy for

static analysis and type checking. This greatly reduces type errors occurring in

production.

• Documentation: Accompany each function/callable with docstrings unless

their inclusion is deemed unnecessary. Utilise third-party tools to streamline this

process, ensuring that the code evolves alongside its documentation without

additional manual effort.

• Mainline Development: An individual should focus on developing one feature

at a time, assigning each feature to its dedicated Git branch. Merge these

branches with the main branch upon completion. The life cycle of a feature

before it is merged should be as short as possible, no more than a few days.

This practice, even when working alone, enables efficient code management and

facilitates the isolation of potential issues without affecting the entire codebase.



Chapter 5

Cross Architecture Tuning in

Silicon using ML

The implications go far beyond my

beloved chessboard... Not only do

these self-taught expert machines

perform incredibly well, but we can

actually learn from the new

knowledge they produce.

Gary Kasparov

The work in this chapter is from the published paper by Severin et al. [118] which

was completed with collaborators from the University of Basel and IST Austria.

In the late 20th century Humanity entered a new period: The Silicon Age. Coming

out of the tail-end cusp of the industrial revolution, silicon alongside the ability to wield

element-14 with its neighbours into miniature switches gave birth to much of the world

we interact with today. As we continue to wade through this period and look forward

to future computational architectures, it is hard to ignore silicon’s opportunity for

scalable qubit realisations. To reliably leverage the scalability characteristic of silicon

one must possess a series of algorithms, or better, a single algorithm, to tune across

68



5.1. INTRODUCTION 69

different architectures of gate-defined double quantum dots in silicon and SiGe-based

foundry fabrication-ready devices, preparing the road to millions of qubits on a chip.

The motivation of this chapter is to demonstrate a general algorithm that can

coarsely tune double quantum dots in a range of device architectures that, for example,

may have very different cross talk, voltage ranges, noise characteristics and material

systems, with minimal modifications.

In this chapter, I demonstrate that it is possible to automate the tuning of a 4-gate

Si FinFET, a 5-gate GeSi nanowire and a 7-gate Ge/SiGe heterostructure double

quantum dot device from scratch with the same algorithm. I achieve tuning times

of 30, 10, and 92 minutes, respectively. The algorithm also provides insight into the

parameter space landscape for each of these devices, allowing for the characterisation

of the regions where double quantum dot regimes are found. These results show

that overarching solutions for the tuning of quantum devices are enabled by machine

learning.

5.1 Introduction

Before we can use a quantum computer, we first need to be able to turn it on

[118]. There are many stages to this initial step, particularly for quantum computing

architectures based on semiconductors. Silicon and SiGe devices can encode promising

spin qubits [36], demonstrating excellent fidelities, long coherence times and a pathway

to scalability [57, 67, 119–122]. Many of these key characteristics revolve around the

material itself providing the opportunity to be purified to a near-perfect magnetically

clean environment resulting in very weak to no hyperfine interactions. As the material

of choice of the microelectronics industry, gate-defined quantum dots in silicon and

SiGe have great potential for the fabrication of circuits consisting of a large number

of qubits, an essential requirement to achieving a universal fault-tolerant quantum

computer [6, 8].
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Multiple gate electrodes provide the ability to tune differing devices into similar

operating regimes. These gate voltages define a large parameter space to be explored.

Each device architecture and material realisation defines a specific parameter space.

The time-consuming challenge of tuning semiconductor devices becomes intractable as

we combine different device architectures in the realisation of complex quantum circuits

with millions of components. The development of machine learning algorithms for

quantum device tuning [32, 81, 82, 101, 103, 104, 106, 113, 123–126] is exceptionally

challenging when looking for such overarching solutions, successful on very different

types of devices which may need to cater to specific purposes.

Here I demonstrate that it is possible to tune quantum dots in three different

device architectures and material systems completely automatically. This machine

learning-based algorithm, which I call ‘Cross-Architecture Tuning Solution using AI’

(CATSAI), requires only the following hyperparameters to be set once, for each type

of device, in a configuration file: source-drain bias, safety voltage bounds, resolution

and size of acquisition current maps and traces, the offset current noise floor, and

Coulomb peak segmentation threshold (see Appendix A). The origin and gate voltage

sweep directions can be arbitrarily selected for devices operating with accumulation

or depletion mode gate electrodes, and either holes or electrons as majority charge

carriers. An advanced signal processing classification method handles charge switches

and other noise patterns.

I demonstrate the CATSAI algorithm for a Si accumulation-mode ambipolar FinFET

[38, 95, 127], a depletion-mode Ge/Si core/shell nanowire [88–90] and a laterally-

defined device in a Ge/SiGe heterostructure [80, 128–130], operating with holes

as charge carriers. I show that CATSAI outperforms random search and human

experts on all devices. The machine learning-based approach also reveals the size

and characteristics of the double quantum dot regime within the multidimensional

parameter space defined by each gate voltage architecture. The learnings from the

automatic tuning of double quantum dot devices will help us understand how machine
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Figure 5.1: Device schematics. Si FinFET (a), GeSi nanowire (b) and Ge/SiGe
heterostructure (c) device architectures and their corresponding current pinch-off
hypersurfaces for hole transport calculated using a Gaussian process model for one of
the tuning algorithm runs (d, e, f). Three gates are plotted for illustrative purposes
with the remaining gates on each device set to a constant value. The bias was
kept constant throughout the experiment. CATSAI was given control over the gate
electrodes V1 - V4, V1 - V5, and V1 - V7 on the FinFET, nanowire and heterostructure,
respectively.

learning and other automated tunining methods may be used for tuning up larger

devices in the future.

5.2 Methods

5.2.1 The devices

Double quantum dots are defined by applying DC voltages to the gate electrodes

V1−V4 for the FinFET, V1−V5 for the nanowire, V1−V7 for the heterostructure (Fig.

5.1). For the FinFET, the lead gate electrodes V1 and V4, open and close the quasi 1D

silicon channel to charge carriers by controlling the size of the tunnel barrier between
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the quantum dots and the source and drain. The left and right plunger gate electrodes

V2 and V3, control the occupation of the left and right quantum dot respectively.

A current is driven through the FinFET by applying a bias voltage Vbias of 7.6 mV

(+ 3.8 mV at the source, - 3.8 mV at the drain) to NiSi contacts [95]. The gate

voltages of the FinFET are operated such that the charge carriers are holes confined

by accumulation. For the nanowire, gates V2 and V4 act as left and right plunger

gates for the quantum dots formed within the 1D channel with the remaining gates

mainly controlling the tunnel barriers. Hole quantum dots are formed in depletion

mode. Vbias was set to 4 mV. For the Ge/SiGe heterostructure, V5 and V3 operate

as the left and right plunger gate electrodes respectively, with the remaining gate

electrodes utilised as barrier gates. The white arrow denotes the flow of current. Vbias

was set to 0.5 mV and the charge carriers are holes confined in depletion mode. The

values of Vbias are set to be above typical charging energies for single quantum dots in

each device. The choice of Vbias can be left to an optimiser. For the heterostructure,

experiments were performed at 300 mK, for the nanowire at 1.5 K and for the FinFET

at 800 mK.

Voltages applied to the gate electrodes of the devices can cause the current

flow to pinch-off, transitioning from a relatively high current to a near-zero value.

These voltages where pinch-off occurs define a hypersurface within the entire voltage

space for each device. CATSAI has no knowledge of the device architecture and

generates a model of the hypersurface after a given number of iterations. The

resulting hypersurface for different devices is shown in Fig. 5.1d–f. Three gates are

plotted for ease of visualisation and the remaining gates are kept constant at their

average value at pinch-off across the hypersurface (see Appendix A). The hypersurfaces

corresponding to different devices present different curvatures, leading to different

tuning landscapes. The FinFET hypersurface (Fig. 5.1d) is near symmetrical in the

plunger gates plane, V2 − V3. This is expected as these gate electrodes are nominally

identical. Although V1 is wider than the plunger gates, its effect is not stronger.
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The curvature of the nanowire’s hypersurface is similar in the planes V1(V5) − V3,

since these planes are defined by the outer-middle barrier gates (Fig. 5.1e). The

heterostructure’s hypersurface has almost planar dependence on gate voltages V2,4,6

(Fig. 5.1f). The hypersurface’s curvature in the V2 – V4 plane is evidently similar to

that in the V6 – V4 plane, in agreement with the gate architecture. This hypersuface

is qualitatively different to that reported for a relatively similar gate architecture

patterned on a different heterostructure (AlGaAs/GaAs) [103]. The more pronounced

curvature of the hypersurfaces corresponding to the FinFET and the nanowire are

expected given the larger gate couplings that are typically observed in FinFET and

nanowire devices. Hypersurface characterisation could be used to inform device design

and quantify device variability. Despite the stark differences in gate voltage landscapes,

which evidence the difficulties of cross-architecture tuning, CATSAI is able to tune

across all three device architectures.

5.2.2 The CATSAI algorithm

CATSAI is designed to coarsely tune double quantum dot devices using transport

measurements. As quantum devices evolve, and for example double quantum dot

tuning is carried out in the presence of/with a charge sensor and in larger dot arrays,

parts of CATSAI may need to be adapted and forged with other algorithms [131] to

cater to alternative tuning and measurement techniques (Chapter 8). This would

include providing automatic gate compensation across wide voltage ranges during the

tuning process with a charge sensor [131]. The purpose of CATSAI is to tune double

quantum dot devices.

CATSAI’s workflow consists of three stages, the initialisation stage, the sampling

stage and the investigation stage (Fig. 5.2). In the initialisation stage Vbias is fixed,

and the current range, i.e. the maximum and minimum current flowing through the

device, is determined by measuring the current both with all the gate electrodes set to

0 V and to their maximum permissible magnitude. To avoid damage to the device the
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Figure 5.2: Outline of CATSAI’s workflow. The initialisation stage consists of setting
Vbias then measuring the maximum and minimum (offset) current flowing through
the device. The sampling stage detects pinch-off locations in gate voltage space.
The algorithm selects a unit vector in gate voltage space u based on the model it
generates of the hypersurface and of the probability of finding Coulomb peaks in a
given location in gate voltage space. In the investigation stage the algorithm uses the
plunger gates to sequentially acquire current traces and maps which are sent to the
relevant classifiers. The Coulomb peak detector is a random forest classifier which
determines whether Coulomb peaks are present (positive) or not (negative) within a
current trace. In each iteration, the algorithm outputs a high-resolution current map
if the double dot check score function is passed. After the investigation stage, the
algorithm returns to the sampling stage.

algorithm is given voltage bounds in which it can operate each gate electrode. The

bounds are measured manually in advance of running the algorithm.

Sampling stage

After the initialisation stage, the algorithm turns to the sampling stage. The algorithm

selects a unit vector u in the gate voltage space of the device based on a Gaussian

process model of the hypersurface as shown in Fig. 5.1d–f, and a weighting from the

probability of finding Coulomb peaks at a given location in voltage space P̃peak(v).
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This vector v consists of all the gate voltages considered for tuning. The algorithm then

sweeps the gate voltages along that direction until pinch-off occurs. The algorithm

identifies the onset of pinch-off as a current drop below a certain threshold (0.5%

of the measured current range). The N -dimensional hypersurface is delimited by

the pinch-off voltages of the N gate electrodes for each device. The algorithm’s

performance is highly sensitive to the pinch-off threshold. If incorrectly specified the

found hypersurface will not lead to desired quantum transport features, for example

evidenced by an inability for the gate voltages to pinch-off the current flow. The

measured current range of semiconductor quantum devices is typically on the order of

nanoamps, with the minimum (offset) current on the order of a picoamp. Therefore,

a suitable threshold value can be deduced as a fraction of the measured current range,

which I chose as 0.5%, to target the transition in voltage space between the device

conducting and being completely pinched-off.

The model of the hypersurfaces p̃(r|u), (Fig. 5.1d-f) predicts how far in gate

voltage space from the origin r, is the hypersurface for a given u. The probability of

finding a Coulomb peak P̃peak(v) at a given point in voltage space v can be modelled

by breaking it down into two components P̃peak(v) = P̃valid(v)P̃peak|valid(v). The

probability of finding pinch-off P̃valid(v) and if Coulomb peaks will be found there

P̃peak|valid(v), are modelled using a Gaussian process classifier.

In the sampling stage, I used a numerical Markov Chain Monte Carlo approach

from Ref. [132] to sample from the predicted hypersurface, due to challenges of

uniformly sampling arbitrarily shaped hypersurfaces [103]. The approach simulates

the Brownian motion of particles initialised at the origin within the volume in voltage

space defined by the hypersurface, and each collision location of a particle with the

hypersurface provides a candidate sample point. It uses p̃(r|u) to approximate the

location of the hypersurface during sampling. Np particles are initialised at the origin,

where Np = 200, and each particle may take steps in voltage space sampled from

a normal distribution with mean of 0 and variance of 25 mV. If the particle exits
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the volume defined by the predicted hypersurface after a given step, the particle’s

last location within the volume is stored as a candidate point. If the particle leaves

the voltage safety bounds, the particle is re-initialized at the origin. This process is

repeated until all Np particles have collided with the hypersurface.

Each candidate point is assigned a weight proportional to the corresponding

value of P̃peak(v). The algorithm uses Thompson sampling [133] to select candidate

points such that a point lies on the hypersurface and leads to the detection of a

Coulomb peak. I used Thompson sampling, and gave uniform priors to P̃valid(v) and

P̃peak|valid(v) which construct P̃peak(v), such that the algorithm will initially sample

the hypersurface uniformly. As observations are made, the algorithm will exclude

regions of the hypersurface where pinch-off was not detected or Coulomb peaks were

not detected.

There is no prior knowledge other than the gate voltage bounds for the initial model

of p̃(r|u) The range of r spans from 0 to rbound, where rbound =
√
(∆V1

2+. . . ,∆VN
2)

where ∆Vi is the difference between the maximum and minimum gate voltage bounds

on gate electrode Vi. The prior distribution is set as, µr(u) = rbound/2, kr(u,u =

(rbound)
2/4, such that rbound and the origin will be two standard deviations away from

mr(u)

All Gaussian process models used the Matérn 5/2 kernel for the prior covariance

with characteristic length scales of ℓq where q = 1, . . . , N . I used the Matérn 5/2

kernel because I did not expect the the hypersurface or the location of quantum

features to vary linearly or periodically with gate voltage space but, I did expect the

hypersurface to be reasonably smooth (Chap. 2.7.5). The length scales are periodically

optimised to the Maximum a posterior estimate based on a prior gamma distribution

and acquired data. For p̃(r|u), the gamma distribution is set to have a mean of 0.4

and variance of 0.12, for P̃valid(v) the mean is set to 500 and variance of 1002, for

P̃peak|valid(v) the mean is 50 and 202 for the variance.
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Investigation stage

At the start of the investigation stage, once pinch-off is found in a given gate voltage

direction, a high-resolution current trace is performed. This current trace, which starts

at the pinch-off location and runs diagonal within the plane defined by the plunger

gates, was set to have a fixed length of 128 pixels and resolution 1.56 mV/pixel

for the nanowire and 0.78 mV/pixel for the FinFET and the heterostructure. Given

the expected charging energies (Chap. 2) of the devices and relative impact a gate

voltage has on the electrochemical potential of a quantum dot (gate lever arm), I

chose the length of the current trace such that the resolutions were adequate to

capture multiple quantum transport features such as Coulomb peaks within a single

trace. The algorithm’s sensitivity to this choice is relatively low. The plunger gates,

selected before running the algorithm, are those expected to predominantly shift the

electrochemical potential in left and right dots. Using a random forest classifier [43,

134], the algorithm determines whether Coulomb peaks are present in the current trace.

Due to prior training, this approach is robust against noise and switches unlike simple

peak-finding packages which are much more likely to be tricked that a trace of noise

corresponds to hole/electron transport as they typically rely on the sole identification

of local maxima. I chose a random forest classifier due to its simplicity and speed to

train, resistance to overfitting and limited readily accessible current trace data from a

range of different device types. Scarcity of suitable data makes it inappropriate to use

more computational intensive approaches, such as deep learning, without significant

data augmentation or a reliable simulator capable of representing Coulomb peaks and

various noise characteristics. This random forest classifier is key to the success of

CATSAI across device types with different noise characteristics (see Appendix A).

If Coulomb peaks are found by the classifier then a low-resolution current map

(16 × 16 pixels, 5 mV/pixel for the nanowire and 9 mV/pixel for the FinFET and

the heterostructure) is taken by sweeping the plunger gates. The current map is

believed to contain double quantum dot features if it scores above a threshold, which
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is fixed and can be optimised. I use the same score function as in Ref. [103]. If

double quantum dot features are believed to be present, a high-resolution current

map (48× 48 pixels, 4.2 mV/pixel for the nanowire and 2.5 mV/pixel for the FinFET

and the heterostructure) is taken. At the end of the iteration, CATSAI returns to

the start of the sampling stage. CATSAI proceeds to update the hypersurface model

and P̃peak(v) with the knowledge garnered of pinch-off and Coulomb peak locations

respectively. CATSAI runs for a certain number of iterations. A posteriori, to gauge

the algorithm’s performance, humans can verify if the double quantum dot features

were successfully identified by the algorithm.

CATSAI is benchmarked against a version of this algorithm which does not use a

weighted hypersurface model to influence the sampling of the hypersurface. It instead

samples a point in the voltage parameter space of the device at random and carries

out the investigation stage for each iteration. I call this version of CATSAI ‘Random

Search’, although it is important to highlight that it still relies on peak detection. In

this manner one may gain insight into the online performance of the Coulomb peak

detector. Moreover, it enables cross-validation of CATSAI’s sampling method. This

would not be possible if CATSAI were benchmarked against alternative published

tuning procedures which would also require significant alteration to perform on both

one-dimensional and planar devices. Moreover, previously published algorithms lack

the signal processing and classification routines required for the silicon and SiGe-based

devices investigated in this work.

5.2.3 Tuning across architectures and material systems

To make the algorithm general across different charge carriers and modes in which

gate electrodes are designed to act (depletion or accumulation), the origin, bound,

and direction of the gate-voltage space exploration used in the sampling stage are

set in a configuration file (Fig. 5.3). The algorithm starts in the gate voltage

configuration which delivers the highest current and sweeps gate voltages in the
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Figure 5.3: Gate-voltage space exploration. Different charge carriers (gate operation
modes) are represented in different columns (rows). Each panel illustrates the initial
placement of the origin (white circle), search boundary (red cross), and search direction
(black arrow). The gate voltage space is divided into regions of near-zero (blue) and
non-zero (pink) current. Regions of voltage space which cannot be explored due to
the gate voltage bounds set to avoid device damage are greyed out.

direction of decreasing current with the aim of locating the boundary between the two

regions. This flexibility in the search of gate voltage space, combined with a noise-

tolerant classification of Coulomb peaks in the investigation stage, makes CATSAI

robust across device architectures and material systems. The Coulomb peak detector

is trained on current traces acquired in different Si FinFET and GeSi nanowire devices

(see Appendix A). This random forest classifier can successfully handle both noise and

charge switches, resulting in a robust Coulomb peak detection. The number of false

positives in the classification that are accepted for the next step of the investigation

stage is thus reduced, significantly shortening device tuning times.
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Figure 5.4: Device tuning. Examples of current map outputs on the different devices
in which CATSAI was run. High resolution maps are generated during the investigation
stage by sweeping the plunger gates of each device Vp1,p2; for the FinFET V3,2 (a,b,c),
the nanowire V4,2 (d,e,f) and the heterostructure V3,5 (g,h,i). These current maps
are labelled a posteriori by humans to verify whether they correspond to the double
quantum dot regime. C indicates the number of humans out of four who labelled the
current map as corresponding to a double quantum dot regime. Red (blue) indicates
regions of high (low) current in each map.

5.3 Results

The algorithm was run for 250 iterations for all experiments performed. The number

of iterations that the algorithm runs without a hypersurface model, i, which can be

separately optimised, was fixed to twelve in this case. A few examples of output

current maps produced by CATSAI for the different devices considered are displayed

in Fig. 5.4. The double quantum dot regimes pictured in Fig. 5.4 show that the

Algorithm is capable of identifying double dot regimes despite device characteristics

that might be far from ideal.
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Figure 5.5: Benchmarking the Algorithm’s performance. The cumulative sum of the
average number of double quantum dot regimes verified by humans C̄ (first and
second columns) and probability of finding Coulomb peaks P(peaks) (third and fourth
columns), as a function of laboratory time for each run of CATSAI and Random Search
algorithms. Rows correspond to the different devices. Only the first 4 hours of each
tuning run are shown for ease of visualisation. CATSAI outperforms Random Search
in the number of double quantum dot regimes located for all devices. The value of
C̄ remains at 0 in many of the Random Search runs, and thus are not visible in the
plots of C̄ as a function of time. The increase in P(peaks) as a function of laboratory
time observed for the CATSAI runs after the first 12 iterations can be explained by
the algorithm ‘learning’ a better model of the hypersurface as the Gaussian process
regression acquires more observations.

To benchmark the performance of the algorithm, the output current maps were

labelled by human experts at the end of the tuning experiment to verify whether

they corresponded to the double quantum dot regime (see Appendix A). The human

experts were unaware whether the current maps to be labelled were the output of

CATSAI or Random Search. I define C as the number of humans who labelled a

current map as containing double quantum dot features. In each iteration of the
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Tuning Times (minutes)
Device CATSAI Random Search

GeSi Nanowire 9.5 (6.7, 12) 17 (9.9, 26)
Si FinFET 30 (26, 37) -

Ge/SiGe Het. 92 (71, 120) 360 (190, 830)

Table 5.1: Median device tuning times with 80% credibility intervals (equal tailed)
corresponding to CATSAI and Random Search algorithm runs for all devices considered.
The Random Search tuning time for the FinFET is unknown as no double quantum
dot regimes were located.

algorithm, I cumulatively sum the value of C normalised by the total number of human

labellers (four). The resulting quantity, C̄, provides a measure of the number of double

dot regimes found by the tuning algorithm while considering disagreements between

human labellers.

Figure 5.5a–j shows C̄ as a function of laboratory time for 12 runs of CATSAI and

Random Search for each of the devices considered. CATSAI outperforms Random

Search in the total number of double quantum dot regimes located in all cases. The

Random Search algorithm did relatively well in locating double quantum dot regimes

in the nanowire but did not locate any double quantum dot regime in the FinFET

(Fig. 5.5b) and struggled to locate more than one double quantum dot regime in the

Ge/SiGe heterostructure device (Fig. 5.5j).

The probability of Coulomb peaks estimated for a given number of iterations,

P(peaks), is plotted as a function of laboratory time for each algorithm run and each

device in Fig. 5.5c–l. The trend of P(peaks) as a function of laboratory time observed

in most CATSAI runs is similar for the FinFET, nanowire and the heterostructure

devices. P(peaks) has a gradual upward trend in many of the experimental runs after

the first 30 minutes to an hour and then saturates over laboratory time at different

values between the devices. For the FinFET device and the heterostructure, the values

of P(peaks) are on average larger for Random Search than for CATSAI runs. However,

the number of double dots found by Random Search is still less than CATSAI in both

devices.
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CATSAI tuned all devices faster than Random Search. The median tuning times

are 10 minutes for the nanowire, 30 minutes for the FinFET, and 90 minutes for the

heterostructure (Table 5.1). The Random Search algorithm was surprisingly quick at

tuning the nanowire, while unable to tune the FinFET successfully within 12 runs of

the algorithm, which totals a laboratory time of 19 hours. The difference between the

upper and lower credibility interval of the tuning times achieved in the heterostructure

device is an order of magnitude smaller than that achieved by Random Search. I

estimate tuning times and their respective 80% credibility intervals as described in

Ref. [103]: To infer the expected tuning times µt and probabilities P(peaks) and

P(success|peaks), where success corresponds to double quantum dot features found,

I used Bayesian inference with a Jeffreys prior. To infer the probabilities, let p denote

the probability of either P(peaks) and P(success|peaks). The Jeffreys prior for a

binomial distribution is p ∼ Beta(0.5, 0.5). If I observe k successful events over n

trials, then the posterior distribution of p is p|k, n ∼ Beta(0.5 + k, 0.5 + n− k).

To infer µt, I assume that the rate of success over time follows a Poisson distribution

k ∼ Poisson(λttot) where ttot is the total time for an algorithm run, and λ is the rate

parameter. The expected time between two consecutive successes (i.e. an acquired

charge stability diagram displays double quantum dot features) is µt = 1/λ. The

Jeffreys prior for a Poisson distribution is λ ∼ Gamma(0.5, 0) therefore, the posterior

is λ|k, ttot ∼ Gamma(0.5 + k, ttot). Therefore µt|k, ttot ∼ Inv-Gamma(0.5 + k, ttot).

Finally, multiple labellers are used to infer µt, P(peaks) and P(success|peaks).

Labellers are given data D = {Ci}i=1,...,n where Ci is a high resolution charge stability

diagram produced by the algorithm at the final step of the investigate stage. If no

high-resolution scan was acquired for iteration i then Ci is an empty array. D requires

the labelling function ψj : ψj(Ci) = 0 if there are no double quantum dot transport

features, or 1 otherwise. The set of all labellers is Ψ = {ψj}j=1,...,4. Labellers may not

agree, and therefore I need to marginalise this effect. Let θ denote a parameter to be

inferred µt, P(peaks) or P(success|peaks), then p(θ|D, ψ) = p(D|θ, ψ)p(θ)/p(D). ψ
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only affects the likelihood; to minimise the effect of ψ the posterior can be marginalised

over ψ and approximated by samples of ψ [103],

p(θ|D) = Eψ [p(θ|D, ψ)] ≈
1

|Ψ|
∑
ψ∈Ψ

p(θ|D, ψ), (5.1)

where the number of labellers is |Ψ|. The cummulative distribution function of

θ|D is [103],

P (θ < z|D) ≈ 1

|Ψ|
∑
ψ∈Ψ

P (θ < z|D, ψ). (5.2)

The parameter space in which double quantum dots were found, by labeller majority

vote, across all experimental runs varies greatly between devices (Fig. 5.6). In the

3D-parameter space shown in Fig. 5.6 the double quantum dot regime volumes are

1.21 V3, 17.7 V3, 0.215 V3 for the FinFET, nanowire and heterostructure respectively.

The FinFET (Fig. 5.6a) displays an almost planar voltage space across V3, V1 and

V4 which encapsulates the double quantum dots found. The nanowire (Fig. 5.6b)

displays a much larger region in voltage space where double quantum dots were found

across V1, V3 and V5. In the parameter space pictured, there are areas of the double

quantum dot regime volume which are more dense with double quantum dots than

others. At the upper bounds of V3 and V5, double dots are present but sparse in

the parameter space. The heterostructure displays the smallest volume across the

parameter space of V2, V4 and V6 and the double quantum dots are distributed more

sparsely within the volume when compared to the two other devices.

Beyond the 3D volumes displayed in Fig. 5.6, the Algorithm explores the full

dimensionality of the available parameter space (4, 5, and 7 dimensional for the

FinFET, nanowire and heterostructure, respectively), allowing us to gain new insights

into the variability of operating regimes. The double quantum dot regime convex hull

volumes, defined by the shape of the smallest convex set which encapsulates all double

quantum dots found in the entire parameter space, are 16.6 × 10−2 V4, 23.8 V5,
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Figure 5.6: Double quantum dot regime volumes. Regions of voltage space (grey)
encapsulate and define a volume where double quantum dots were found (black points)
across all experimental runs of both random search and CATSAI in the FinFET (a),
nanowire (b), and heterostructure (c). Three barrier gates are plotted for illustrative
purposes, except for the FinFET (a) where the two lead gates and a plunger gate are
plotted.

26.3× 10−4 V7 for the FinFET, nanowire and heterostructure, respectively. I name

this metric, the Double Dot Voltage Space Volume (DDV). This metric is concerned

with all N -dimensions of the gate voltage space of each device, as opposed to the

double dot regime volume discussed earlier, which refers to the three dimensional

plots in Fig. 5.6. Naturally, the convex hull volume calculation is sensitive to outliers

as it encapsulates all double quantum dots found and confirmed by human labels.

However, I use the convex hull because it offers a simple estimate of the upper bound

on the size of the voltage space in which one may find quantum double dot features.

Techniques such as alpha-shapes [135], could be employed to provide a more nuanced

representation of the shape and structure of the DDV.

5.4 Discussion

Although accurate most of the time, the score function that the algorithm uses to

detect double quantum dot regimes can sometimes be tricked by charge switches, as

observed in Fig. 5.4i. The ideal double dot regimes found by the algorithm are tuned

to a point where a specialised fine tuning algorithm such as that developed by van

Esbroeck, N. M. et al. [112] would be suitable to follow on and optimise transport
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features. However, this is out of the scope of this work, as here I focus on the coarse

tuning of different device architectures.

For the Random Search and the first i iterations of CATSAI, the algorithm chooses

pinch-off locations randomly, and thus P(peaks) does not show a definite trend (Fig.

5.5). For the subsequent iterations, I expect CATSAI to learn which are the promising

locations in gate voltage space, and P(peaks) should thus increase as a function

of time. Empirically, I observe a non-monotone increase, which is expected as the

algorithm does not have a formal monotone guarantee. The saturation after 1–2 hours

is expected given that transport features can only be found in a limited portion of

the gate voltage space. The value of P(peaks) from the Random Search runs in the

FinFET device and the heterostructure is inflated due to false positive classifications

by the Coulomb peak detector, confirmed by human labels of all the current traces

(see Appendix A). Random search performs differently across devices because it does

not sample the hypersurface, nor the voltage space intelligently. Random search

merely samples the voltage space at random and proceeds with the investigation stage.

Therefore, the performance of random search is related to the probability of finding

and correctly classifying single and double quantum dot features, the latter is linked

to the DDV scaled by the search parameter space, which varies drastically between

devices.

The difference between median tuning times (Table 5.1) for different devices begs

the question whether the dimensionality of the gate voltage space is the key factor

affecting tuning times or if there is a more subtle characteristic at play. The faster

median tuning times were achieved in those devices for which the gate voltage space

has fewer dimensions, i.e. the FinFET and the nanowire. Although the nanowire does

have greater gate electrode dimensionality than the FinFET, faster tuning times are

still observed for the nanowire. There would seem to be more double quantum dot

regimes in the nanowire gate voltage space than there are in that of the FinFET.

This hypothesis is reinforced by the lack of double quantum dot regimes found in
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the FinFET by Random Search and it is in agreement with the experience of human

experts when tuning these devices.

A reason for the lack of double quantum dot regimes found by Random Search in

the FinFET is the sharp pinch-off that occurs as a function of the lead gate electrodes.

The probability of finding lead gate voltages that enable current flow and plunger gate

voltages that lead to double quantum dot regimes is inherently low. As mentioned

previously, faster tuning times for FinFETs would thus be expected for CATSAI and

Random Search if the lead gate voltages, V1 and V4, are fixed.

For FinFET in the 3D-parameter space shown in Fig. 5.6, V1 and V4 display their

symmetrical weighting by forming the base of the plane which is almost square, and

centred at similar points in voltage space with an approximate area of 2 V x 2 V.

This supports the thesis that tuning times could be reduced by grouping the lead

gate electrode voltages. In the nanowire, relatively high number of double dots across

a wide parameter space provides evidence as to why the nanowire has the shortest

tuning time and confirms that it has the most double dot regimes. The combination

of the two factors of: small double quantum dot regime volume and sparse double dot

distribution, supports why the tuning times were the longest for heterostructure in

addition to its higher gate electrode dimensionality.

Access to DDVs allows us to understand the sensitivity of the quantum dots’

confinement potential to each gate voltage value, and to examine the role of each

gate electrode as plunger, barrier gates, etc. To put the DDVs into perspective, they

can be scaled by the size of the parameter space of each device defined by the gate

voltage bounds. The DDVs of the FinFET, nanowire and heterostructure occupy

0.174%, 5.95%, and 0.00206% of the device parameter spaces (95.1 V4, 400 V5, and

128 V7) respectively. Comparisons between these values must take into consideration

the effect of gate voltages on the confinement potential for each device architecture,

the presence of disorder, strain, and material characteristics. Still, this percentage

gives us an insight into the ease of tuning each device architecture. The Algorithm’s
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Device FinFET Nanowire Heterostructure
Material Si Ge/Si Ge/SiGe

Charge carriers Holes Holes Holes
Operation mode Accumulation Depletion Depletion
Gates controlled 4/4 5/5 7/7

Search space 95.1 V4 400 V5 128 V7

1D-trace (mV/pixel) 0.78 1.56 0.78
Low-res 2D-map (mV/pixel) 9 5 9
High-res 2D-map (mV/pixel) 2.5 4.2 2.5

CATSAI times (mins) 30 (26, 37) 9.5 (6.7, 12) 92 (71, 120)
Random times (mins) N/A 17 (9.9, 26) 360 (190, 830)

DDV 16.6× 10−2 V4 23.8 V5 26.3× 10−4 V7

DDV/Search space (%) 0.174 5.95 0.00206

Table 5.2: CATSAI data summary table. The table includes the resolution of the
traces and 2D maps taken in the investigation stage. The median devices tuning times
from Table 5.1 are also included. For a breakdown of individual gate voltage limits for
each gate electrode, the reader is referred to Appendix A.

proficiency in effectively exploring diverse DDVs across various device architectures

showcases its versatility and robust capabilities. The DDV metric can be used to

explore differing quantum device architectures and materials, and thus has a wide

range of applicability.

5.5 Conclusion

I demonstrated fully automated tuning of gate defined double quantum dots across

devices differing in material compositions and gate architectures (Table 5.2) with

minimal modifications to the algorithm between devices. The algorithm also has

provided insight into the parameter space of the quantum devices in the form of

different shaped hypersurfaces that define pinch-off and different size double dot

voltage space volumes.

I achieved fast tuning times in a Si FinFET, a GeSi nanowire and a Ge/SiGe

heterostructure device, three different types of devices with very different characteristics.

The tuning times reported are as low as 30, 10 and 92 minutes respectively. The

capability to tune these devices from scratch completely automatically, prepares the
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pathway laid out for the scaling of semiconductor qubits that lend themselves to

industrial scale manufacture.

An analysis of the hypersurfaces corresponding to different device types and material

systems could minimise variability and boost device performance by an informed device

design. The size of the gate voltage space is also an important consideration in this

context. While the FinFET and the nanowire gate-voltage spaces at mV resolution

have approximately 1014 and 1017 pixels respectively, the median tuning times are only

different by a factor of 3, and surprisingly the median tuning time is shorter for the

nanowire device.

The heterostructure, with a gate voltage space at mV resolution of 1023 pixels,

shows a median tuning time only 3 times longer than the nanowire. This would

suggest that other factors, such as the design of the gate architecture and the disorder

potential, might have a very significant role in how quickly a device can be tuned.

Faster tuning times could be achieved by using device information, for example by

grouping gate electrodes with similar functions. While the size of the gate voltage

space is determined both by device properties and fabrication methods, the volume of

the hypersurface and the volume of gate voltage space in which transport features

are found could be useful to quantify device variability and to characterise and design

different device architectures. This includes calculating how the hypersurface of a

particular architecture is different between devices or thermal cycles via point set

registration as well as Coulomb peak occurrence and Coulomb peak sensitivity within

parts of the voltage space [115]. Additionally, my introduction of the new metric,

Double Dot Voltage Space Volume (DDV), opens the door to understanding the

sensitivity of the quantum dots’ confinement potential to each gate voltage value, and

to examine the role of each gate electrode as plunger, barrier gates, etc. between

devices.

I expect the Algorithm to be successful in tuning geometries where gate electrode

cross-talk is more considerable. Moreover, the machine learning-based approach
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is geared towards navigating intricate parameter spaces rather than relying on a

procedural algorithm workflow.

Radio-frequency reflectometry measurements would also lead to faster tuning times

and the possibility of efficiently tuning large device arrays. This work evidences the

potential of machine learning-based algorithms to find overarching solutions for the

control of complex quantum dot systems.



Chapter 6

Donor Search

This is where the magic happens

Andrea Morello

The work contained in this chapter is based on a manuscript in preparation entitled,

"Automatic tuning of a donor in silicon quantum device using machine learning"

and was born out of a collaboration with Andrea Morello’s Fundamental Quantum

Technologies Laboratory in UNSW, Sydney, NSW, Australia.

Single shot readout [40], 30-second coherence times [29], and error correction

threshold fidelities [71] have been realised in ion-implanted donor spin qubits in silicon.

However, the realisation of a scalable ion-implanted donor spin qubit architecture is

dependent on the reliable tuning of such devices to operational conditions, a challenge

which has been previously untackled. I demonstrate the ability to locate and tune

charge transitions in an ion-implanted donor in silicon device up to the point of readout

calibration on the order of minutes automatically using machine learning. My algorithm

tunes gate voltages to achieve two-level fluctuations in the readout current trace.

Two-level fluctuations signify that the tunnel rate of an electron is slow enough to

be detected by the experiment’s readout bandwidth. Moreover, two-level fluctuations

mean that the tunnel rates are slow enough that we can successfully detect electron

spin readout and therefore form qubits (Chapter 2.4). The motivation for this chapter

91
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is to demonstrate an algorithm capable of automatically tuning an ion-implanted 31P

donor device from zero gate voltage such that the tunnel rates on and off the electron

site are near equal, and thus poised for spin-selective readout. My Algorithm enables

both automatic characterisation and tuning faster than human experts. These results

show once more, the capabilities of AI and computer vision tools for tuning quantum

devices.

6.1 Introduction

The promised quantum computing architecture treasures held within ion-implanted

donor spin qubits in silicon have led to their repeated pursuit and demonstration as

a contending scalable quantum computing architecture ever since their proposition

in 1998 [68]. Taking advantage of the core material of the electronics industry and

its ever-finessed fabrication methods, placing a 31P ion in originally natural silicon

[136] and later an isotopically enriched 28Si lattice, has been the source of single shot

readout [40], 30-second coherence times [29] and error correction threshold fidelities

[71]. However, the realisation of quantum computers built upon ion-implanted donors

in silicon is not only ‘dependent on future refinements of conventional silicon electronics’

[68], but also the development of the approaches required to tune such devices to

operational conditions automatically.

Universal fault-tolerant quantum computing requires more than 108 qubits [8]

depending on the quantum algorithm, error correcting code, and quantum volume

of the underlying architecture used. Therefore, an automated process for the turn-

on and control of the quantum architectural units is necessary. To achieve such

scale regardless of device variability, new signal processing routines and machine

learning-enabled tools are required for automatic methods to analyse, classify and

make intelligent decisions based on data acquired from quantum devices concurrently

during the tuning process [126]. The vast waters of automatic tuning of ion-implanted
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donors were once uncharted, until now.

Here I present, an algorithm called donorsearch that automatically tunes an

ion-implanted 31P donor device up to the point of electron spin readout calibration

from scratch. My Algorithm utilises techniques inspired by tuning algorithms for

gate-defined quantum dot devices [81, 101, 103, 104, 112, 118, 124, 137], while

leveraging novel computer vision and embedded unsupervised machine learning-enabled

methods to process and classify quantum transport signals synonymous with donor in

silicon devices.

I demonstrate donorsearch on a phosphorus ion-implanted donor in silicon device.

Unlike in gate-defined quantum dots, where gate electrodes are utilised to shape the

quantum transport landscape into desired features, tuning an ion-implanted donor

device is a true needle in a haystack problem. Voltages must be applied to gate

electrodes to probe the extensive parameter space in search of a single implanted 31P

donor ion and its electron. Then, the gate electrode voltages need to be finely tuned

such that the donor electron can tunnel off of the 31P ion and be read out accordingly.

To tackle this tenacious tuning task, donorsearch comprises three stages: coarse

tuning, a handshake and fine tuning. The signal processing methods and modular

architecture of donorsearch enables the Algorithm to be used as both a tuning and

a characterisation mechanism for ion-implanted donor in silicon devices.

donorsearch is the first algorithm that caters to the automatic tune-up of donor

in silicon devices and therefore devices with some of the longest coherence times in

the solid state. The presence and evolution of tuning algorithms are important for the

realisation of quantum computers built upon silicon-based nuclear spin architectures

in order to automatically tune, initialise and optimise donor spin qubits. This must

also occur alongside continual improvements in the fabrication of ion-implanted silicon

electronics [69, 138, 139].
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6.2 Methods

6.2.1 The device
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Figure 6.1: a) Ion-implanted donor in silicon device. Readout of the donor electron
site is carried out by the single electron transistor (SET) defined by the gate electrodes
VTG, VLB, VRB, and VPL. Vbias is applied at the source. The flow of current from
the source to the drain underneath VTG is shown by the arrow and measured at the
drain. Four gates, VDFL, VDFR, VDBL and VDBR, are used to alter the electrochemical
potential of the electron site. The approximate ion-implantation site window is denoted
by the dark grey square. The Algorithm was given control of various gate electrodes
during different stages of the tuning procedure. b) Algorithm overview. A charge
stability diagram is acquired by sweeping VPL and VDFL and measuring the current
flowing through the SET, ISET. The donorsearch algorithm locates charge transitions
(example encircled) within the charge stability diagram. donorsearch proceeds to
tune the gate electrode voltages at the charge transitions to the point of random
telegraph current signal observed on the SET. This corresponds to the electrochemical
potential of the electron site (µ↓) spin-down level becoming level with the SET’s
electrochemical potential (µSET), allowing for random loading and unloading of the
spin-down level of the electron site in the presence of a magnetic field B0, of 1.1 T.
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donorsearch was demonstrated on a 31P ion-implanted device in silicon which

incorporates a single electron transistor (SET) for readout (Fig 6.1a) [40]. The 31P

donor is implanted via a focused ion beam within the implantation window outlined in

Fig 6.1a. The electrochemical potential of the electron donated to the silicon lattice

by the 31P ion is controlled by the donor gate electrodes VDFL, VDFR, VDBL and VDBR.

The electrochemical potential of an electron site in the vicinity of the donor gates can

be plunged or raised by applying positive or negative voltages respectively to the donor

gates. The SET is defined by the gate electrodes VTG, VLB, VRB, and VPL. By setting

a bias voltage, Vbias, to the source contact and a positive voltage to VTG, VLB, VRB,

electrons are accumulated below VTG and a conductive channel is created, allowing

current to flow (ISET) from the source to drain contacts. The conductive channel

can be pinched off by the barrier gate electrodes VLB and VRB therefore creating the

SET which is tunnel-coupled to the source and drain. The electrochemical potential

of the SET can be raised or lowered by either the top (VTG) or plunger (VPL) gate

electrodes.

The Algorithm, similar to how a human would tune a device, acquires a charge

stability diagram of the donor electron site and the SET (Fig. 6.1b). Charge stability

diagrams are acquired by sweeping a donor gate electrode (VDFL) and the SET plunger

gate electrode (VPL) and measuring ISET. Peaks in current, Coulomb peaks, signify

voltages at which the electrochemical potential of the SET allows for electrons to tunnel

from the source to the drain. Troughs in current signify the states where the SET is in

Coulomb blockade. The relative capacitive coupling of VDFL and VPL to the SET can

be extracted from the gradient of the Coulomb peak slopes within the charge stability

diagram. Breaks in the Coulomb peaks signify a charge transfer event occurring at an

electron site, such as an electron un-loading (loading) off (onto) an implanted donor

(ion), i.e. charge transitions, detected by the SET. donorsearch identifies charge

transitions within the charge stability diagram and proceeds to alter the gate voltages

at the charge transition such that a random telegraph signal in ISET is detected. In
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the presence of a magnetic field (B0) the electron site energy levels are Zeeman split.

A random telegraph current signal corresponds to the electrochemical potential of the

spin-down level of the electron site (µ↓) being level with the electrochemical potential

of the SET (µSET) [39, 40]. Achieving µ↓ = µSET is the aim of the Algorithm, as it

results in a productive orientation in gate-voltage space to carry out the calibration of

readout levels and pulse sequences to confirm and observe spin selective readout. All

the experimental runs were carried out in a dilution refrigerator at a base temperature

of 20 mK and a B0 of 1.1 T.

6.2.2 The donorsearch algorithm

The donorsearch algorithm consists of three main stages: coarse tuning, the hand-

shake and fine tuning (Fig. 6.2). Each stage progressively fixates on a reduced number

of regions in voltage space that may realise a donor electron spin qubit. Before starting

donorsearch, Vbias is manually set to 1 mV and is fixed throughout the entire tuning

procedure. This value for Vbias was chosen due to prior experience from tuning other

devices of the same architecture. All gate electrodes are initialised to a value of 0 V.

The coarse tuning stage commences by sweeping all gate electrodes to their

maximum and minimum permissible bounds to acquire the current range of the device.

The current range acquisition is for characterisation purposes and is not used as

information for the algorithm. The SET is then checked for turn on in the following

manner; a current trace is acquired while simultaneously sweeping VTG, VLB and VRB

from 0 V to 2 V, their maximum permissible bound. All other gate electrodes are

kept at 0 V. donorsearch checks for a factor of 100 change in current and a range

greater than at least 1 nA in the output trace. If these conditions are not satisfied,

turn-on is not achieved; the user is notified and the Algorithm stops. If successful,

the approximate turn-on voltage is extracted by finding the voltage corresponding to

the current value 100 times greater than the minimum current (offset) value in the

output trace.
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Figure 6.2: Outline of donorsearch’s workflow. Vbias is fixed before commencing the
Algorithm. The coarse tuning stage consists of a procedural method to characterise,
check the functioning of and tune the SET as well as acquire a charge stability
diagram of the donor-SET gate voltage space. The handshake stage consists of signal
processing routines to locate charge transitions within the acquired donor-SET charge
stability diagram. Multiple current traces are acquired in the vicinity of the charge
transitions to build a noise classifier utilised in the fine tuning stage. In the fine tuning
stage, the Algorithm takes control of 7 out of the 8 gate electrodes and attempts to
tune each charge transition site to the point of observing random telegraph signal in
ISET.

The SET is tuned by acquiring pinch-off current traces for each of the barrier gates

and applying the respective pinch-off voltages to the barrier gates. VTG is kept at 2

V while pinch-off current traces are acquired by sequentially sweeping VLB and VRB

from their upper bound to their lower bound, and then returning to their upper bound

before sweeping the next gate electrode. The output current trace of each sweep is

first normalised, then smoothed with a Gaussian filter before applying a curve fit to

facilitate the extraction of the corresponding pinch-off voltages (see Appendix B), as
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carried out in other algorithms for tuning gate-defined quantum dots [101, 104]. If the

curve fitting procedure is unsuccessful, it is assumed by donorsearch that pinch-off

is unattainable, the user is notified and the Algorithm stops. The SET is therefore

tuned by applying the respective extracted pinch-off voltages to VLB and VRB and

keeping VTG at its maximum bound of 2 V.

The coarse tuning stage is completed with donorsearch acquiring a 400 mV ×

400 mV charge stability diagram of the donor electron site and SET (see Appendix

B) by sweeping VDFL and VPL. This is an exploitative approach as it relies on belief

and knowledge that typically one would find charge transitions in these devices in

this region of voltage space. A more explorative version of donorsearch could be

employed where the entire Algorithm workflow as described is unchanged, and it is

repeated at various initial voltages collectively applied to the donor gate electrodes.

The charge stability diagram of the donor-SET voltage space acquired in the coarse

tuning stage is passed to the charge transition locator module at the start of the

handshake stage. Through a series of image analysis and computer vision techniques,

the location of the charge transitions and the gradient of the Coulomb peaks in terms

of VPL/VDFL are extracted from the charge stability diagram. The location of each

transition is visited as a starting point to acquire ten 30 ms current traces in the

vicinity of each transition. This consists of recording ISET for 30 ms at a 500 kHz

sampling rate without altering the voltages applied to the gate electrodes at each

point sampled in voltage space. The current traces acquired are used to build the

noise classifier which is utilised in the fine tuning stage.

In the fine tuning stage, the Algorithm is given control of all the gate electrodes

except VTG which remains fixed at 2 V. Each charge transition identified during

the handshake stage is visited in the fine tuning stage. The Algorithm searches in

gate-voltage space within 5 mV of the transition on each gate electrode, acquiring 30

ms current traces at each point, with the aim of observing random telegraph signal

in ISET. To search the voltage space the Algorithm may use either Gaussian process
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Bayesian optimisation or random search, similar to the approach taken in Harmless

Bayesian Optimisation [140]. Both are used in this work with random search acting

as a benchmark, as random search is simple to implement, requires no heuristics,

and makes no assumptions about the underlying search space. Moreover, due to the

noisiness of evaluating current traces for random telegraph signal, random search

is less likely to miss out on promising locations of voltage space compared to more

directed search approaches. An acquired current trace is first passed to the noise

classifier, previously built in the handshake phase, to check whether the trace has

characteristics of a two-level signal. The two-level signal is then scored by dynamically

generating a current threshold and calculating how much time the signal spends above

the threshold, Ta, and below the threshold, Tb. The current threshold is generated by

applying a double Gaussian fit to the current trace and extracting the split between

the two Gaussians as the threshold (see Appendix B). The score is calculated as the

absolute difference between Ta and Tb, divided by the length of the current trace (30

ms). The Gaussian process Bayesian optimisation search method aims to locate the

coordinates in voltage space with the lowest score value, corresponding to a score of 0,

where Ta = Tb. The worst score is 1, meaning that the values within the current trace

reside entirely below (or above) the current threshold for the duration of the current

trace. A random telegraph signal is deemed to be located when the score is less than

0.1, at which point the Algorithm stops the search and fine tunes the next charge

transition site. A score of 0.1 means that Ta and Tb differ by no more than 10% of

the total current trace duration, corresponding to a difference of 3 ms. Current traces

classified as noise (and not a two-level signal) by the noise classifier are given the

worst score value of 1. The Algorithm samples up to 50 points in voltage space at

each charge transition site before attempting to fine tune the next transition.

The Gaussian process kernel was Matérn 5/2, and the characteristic length scales

ℓq, where q = 1, . . . , N where N = 7 corresponding to the 7 gates controlled by the

algorithm, and σf the covariance amplitude, are optimised using maximum likelihood
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estimation. I used the Matérn 5/2 because I expected the features (two-level current

trace score) to vary with gate voltage in a smooth manner, not linearly or periodically

due to the presence of cross talk and charge traps. I chose negative Expected

Improvement as the desired acquisition function because the charge transition locator

reduces the search space for the fine tuning therefore, initially less explorative sampling

techniques are required such as the hypersurface sampling technique used in Chapter

5.

The charge transition coordinates that were successfully fine tuned to achieve

random telegraph signal are output by the algorithm. These can then be visited by

the user for spin-readout calibration. This would consist of performing a three-level

pulse to calibrate the read-level [40]. The three-level pulse involves a sequence of

three voltage pulses used to load and selectively read out electron spin qubits. The

determination of the voltage coordinate for the read pulse is done iteratively to achieve

spin-selective readout. The three-level pulse requires generating a virtual gate to

pulse along the direction of the Coulomb peak of the transition to compensate for the

cross-talk between donor (plunger) gate electrodes and the SET (electron site) [39].

The virtual gate is constructed by donorsearch automatically via the extraction of

the Coulomb peak gradient during the image analysis process in the handshake phase.

Further details of the modules of the handshake phase are discussed in the following

sections. This will include a discussion of K-means clustering aiding with the separation

of the feature space for the noise classifier. Following that, a double Gaussian fit is

used in the fine tuning stage to score two-level signals.

Charge transition locator

The novel charge transition locator module included in donorsearch extracts vital

information from the donor-SET charge stability diagram (Fig. 6.3). The input charge

stability diagram acquired in the coarse tuning stage is thresholded and binarised

using Otsu’s method [141]. High current regions of the charge stability diagram are
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Figure 6.3: Overview of the charge transition locator module. The charge transition
module is composed of multiple computer vision and image analysis techniques to
extract the location of the charge transitions within a charge stability diagram. a) The
charge stability diagram is first thresholded resulting in a binarised image, and lines
within the image are detected using the Hough transform. b) Artificial Coulomb peaks
are created by first Gaussian filtering the binarised image. Then, contours are located
and therefore the outlines (blue) of the effectively smoothed (artificial) Coulomb peaks.
c) The medial axis and the end-points (turquoise) of the artificial Coulomb peaks are
identified. d) The original input charge stability diagram is used as a mask to filter
out false Coulomb peak end-points at the edges of the image and false end-points
generated in the previous step (c). The module returns the locations of the charge
transitions in gate voltage space and the gradient of the Coulomb peaks, inferred to
be the average slope of the lines detected in the first step of the charge transition
locator module (a).

automatically separated from the background by exhaustively searching for a threshold

which minimises intra-class intensity variance; high current regions are assigned a pixel

value of 1, and low current regions a pixel value of 0. The lines in the resulting binary

image are extracted by applying the Hough transform [142, 143], and the average

gradient of the lines is inferred to be the Coulomb peak gradient (Fig. 6.3a, d). The

gradient value can then be used to construct a virtual gate for read-level calibration

via a three-level pulse sequence [39, 40].

To locate each charge transition site the charge stability diagram must first be
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denoised and cleaned to remove artefacts as a result of the acquisition process (Fig.

6.3b). A Gaussian filter is applied to the binary image to smoothen the edges of the

Coulomb peaks. Contours within the image and therefore the outline of the smoothed

Coulomb peaks are extracted by applying the Marching Squares algorithm, the two-

dimensional version of the Marching Cubes algorithm [144, 145]. The generated outline

of the smoothed Coulomb peaks is used as a shape boundary which is internally filled

to denoise the Coulomb peaks and create what I call artificial Coulomb peaks. The

denoising and artefact removal step is crucial to reduce the number of false positive

charge transition sites, such that the Algorithm does not waste time tuning false charge

transition sites. Noise and artefacts can appear to be charge transitions if relying on

fast rudimentary methods based on image gradient changes which are included in

the donorsearch package but not used in this work. Image gradient-change-based

methods may be effective for high-resolution stability diagrams without artefacts

and good signal-to-noise ratio, typically those performed via much slower DC-source

measurements.

The medial axis of each artificial Coulomb peak is calculated using the medial axis

transform [146] resulting in a skeletonised image (Fig. 6.3c). The end-points of the

medial axes, and therefore potential charge transition sites, are found by identifying

pixels in the skeletonised binary image where the sum of nearest neighbour pixel values

is equal to 1.

After further filtering of the end-points, the Algorithm returns the charge transition

locations and the average Coulomb peak slope is found in the input charge stability

diagram (Fig. 6.3d). The end-points are filtered as some may not correspond to

charge transitions, for example, edges of the image or residual noise around the edges

of the artificial Coulomb peaks may be interpreted as the end of a Coulomb peak. To

filter the end-points the binary image (Fig. 6.3a) is used as a mask. Each end-point

±∆ pixels along the average Coulomb peak slope must lie within the boundary of the

binary image and the binary values at those pixels must be opposite. Moreover, no
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end-point can be within r pixels of another. I set ∆ and r to 5 and 3 pixels respectively;

end-points which satisfy the conditions are believed to be charge transitions. This

harsh filtering approach results in some false negative charge transitions but that is

outweighed by the time saved in not fine tuning potential false positives. For tuning

donor in silicon devices, I prioritise tuning speed due to the well-defined and abundant

charge transitions in voltage space (Fig. 6.1). The fine tuning task is to tune the

tunnel rates at a given charge transition such that one can measure spin-readout

effectively. To realise a qubit, only a single charge transition with a measurable tunnel

rate is required therefore I am willing to trade type I errors (false positives) for type II

errors (false negatives) to maximise tuning speed.

Noise classifier

The current trace noise classifier was built using unsupervised embedded learning (Fig.

6.4). The classifier enables the Algorithm to separate current traces containing a

two-level signal, signifying tunnelling events detected by the SET, from current traces

which contain no tunnelling events, or noise. A 10-step random walk in gate-voltage

space is initiated at each identified charge transition site (see Appendix B). The

Algorithm controls all gates except VTG which remains fixed at 2 V during the random

walk. At each step, a 30 ms current trace is acquired. All the current traces acquired

are scaled by the minimum current measured during the set of random walks. Features

of each current trace, X1 and X2, are extracted before applying a K-means clustering

algorithm with a target of two clusters,

X1 =
m− n

i
(6.1)

X2 =
m

n
(6.2)

where m, n, and i are respectively the maximum, minimum and mean of the 50

µs moving average of the current trace. In the case where the tunnelling rate of
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Figure 6.4: K-means clusters map of current trace features, X1 and X2, for the
construction of the noise classifier. The K-means clustering algorithm targets two
clusters. The clusters do not satisfy K-means assumption of circular groupings (Chap.
2.7.4) but, their rough identification can be used to separate regions of the feature
space. Current traces containing mainly noise are clustered in the bottom left of the
map, identified by the cluster of black points. Current traces containing two-level
characteristics are identified by the pink coloured point cluster. There can be some
bleeding of types between the clusters (middle current trace cutout). The feature
values used as classification thresholds by the noise classifier in the fine tuning stage,
(X ′

1, X
′
2), are found by locating the first pink point along the X1 axis. Current traces

acquired after feature extraction which fall in the non-shaded region of the cluster
map are considered two-level signals and checked for random telegraph signal whereas
those which fall in the shaded region are considered as noise and not checked for
random telegraph signal by donorsearch.
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the electron is too slow to be detected within a 30 ms current trace or faster than

the acquisition bandwidth of 500kHz, the current trace appears as just noise leading

to a small difference between m and n resulting in near-zero values for X1 and X2

tending towards 1. As tunnelling events are detected, the difference between m and n

increases resulting in an increase in X2. X1 also increases, and it varies greatly with

the number of tunnelling events in a given trace due to the presence of the average

current in its denominator. I use the 50 µs moving average to reduce the short-term

jitter and improve the effective signal-to-noise ratio in ISET when calculating X1 and

X2. Current traces without two-level characteristics cluster in the bottom left of the

K-means map, identified by the black points as the first cluster, whereas those that

have two-level characteristics (pink points) form the second cluster which fans out

to the upper right quadrant of the map. The clusters do not satisfy the standard

K-means assumptions (Chap. 2.7.4), i.e. circular clusters, and are poorly identified.

Therefore, we use what is provided by K-means to separate the feature space into

different regions, that is one corresponding to two-level fluctuations and the other to

noise. To extract the features that separate the two clusters efficiently, the algorithm

scans along the X1 axis and takes the coordinates of the first pink cluster point found

(X ′
1, X

′
2) as the threshold features to be considered a two-level signal. The rejection

area, shaded in grey, although not defined by the true separation boundary between

the clusters, has the added benefit of reducing the number of false positive two-level

current traces as a result of the feature threshold extraction method.

During the search for random telegraph signal in the fine tuning stage, X1 and

X2 are first calculated and compared to X ′
1 and X ′

2 for each current trace acquired.

If both X1 and X2 are greater than X
′
1 and X

′
2 respectively, the current trace is

considered to contain two-level characteristics and is scored for random telegraph

signal, otherwise, the acquired current trace is considered as noise and rejected.

Alternative methods of classification were attempted such as comparing the quality

of single and double Gaussian fits, or setting a fixed current threshold in advance.
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These proved not to be robust enough, completely disregarding two-level signals where

the peak-to-peak values were relatively small or letting through too many false positive

two-level signals. The unsupervised embedded learning method used in this work

enables the Algorithm to ’learn’ characteristics of noise and two-level current traces

based on the device it is tuning. This method avoids the requirement of acquiring

large and diverse data sets alongside time-consuming human labels to pre-train a

classifier which is required for supervised methods [118].

6.3 Results
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Figure 6.5: Current traces acquired during the search for random telegraph signal.
Plotted are the first 2 ms of four current traces acquired at various iterations (It: 0, 4,
28, 32) during the search for random telegraph signal at a particular charge transition.
Each current trace is scored (Sc) during the tuning process. Current traces which
are classified as noise, iteration 0, receive a score of 1. Those that are classified as a
two-level signal are scored using a dynamic current threshold (dashed line). Random
telegraph signal is achieved once a score less than 0.1 is reached.

The Algorithm was run from an initial configuration of 0 V, for 28 times, using

both random search and Gaussian process Bayesian optimisation in the fine tuning
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stage for 14 repeats of each. Example current traces acquired during the fine tuning

stage of a particular charge transition are shown in Fig. 6.5. Current traces deemed

by donorsearch to contain random telegraph signal were labelled by two humans. I

use the human labels to gauge the Algorithm’s performance in tuning from nothing to

random telegraph signal, the precursor to read-level calibration.

The charge transition locator module (Fig. 6.3) detected 13 charge transitions on

average with a standard deviation of 2 charge transitions across all the 28 experimental

runs. It calculated the Coulomb peak gradient to be -0.525 VPL/VDFL on average

with a deviation of 0.045 VPL/VDFL across all experimental runs.

To gauge the performance of the noise classifier construction method (Fig. 6.4),

current traces collected to train the noise classifier from an experimental run of

donorsearch were labelled by two humans to check which current traces contained

two-level signals. A balanced accuracy score of 88% was achieved by the noise classifier

when using the unanimous vote of human labels as a positive classification of a current

trace containing a two-level signal. This corresponds to the point (0.03, 0.80) on the

ROC. A balanced accuracy of 86% was achieved when using the unanimous vote of

human labels as a positive classification of a current trace not containing a two-level

signal and being classified as noise. This corresponds to the point (0.28, 0.99) on the

ROC.

The dynamic threshold for scoring current traces is applied to traces which pass

the noise classifier (Fig. 6.5). The combination of the noise classifier and the dynamic

current threshold enables reliable scoring of the current traces during the search for

random telegraph signal in the fine tuning stage. Current traces which are noise

or contain relatively low peaks in current (∼ 100 pA) are classified as noise by the

classifier leading to a score of 1. The average current threshold applied was 73 pA with

a deviation of 9.5 pA, when analysing current traces across all experimental runs where

all human labellers have agreed that the trace contained random telegraph signal.

The following accuracy measures correspond to the point (1, 1) on the ROC as the
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Tuning Times (s)
Stage Gaussian Process Random Search
Coarse 318 (315, 323)

Handshake 117 (104, 145)
Fine 132 (108, 163) 228 (167, 329)

Table 6.1: Median device tuning times broken down by each stage of the algorithm
with 80% credible intervals (equal tailed). donorsearch fine tuning stage tuning
times are split based on search method used, Gaussian process Bayesian optimisation
or random search.

algorithm only returns the current traces which it predicts as a positive (i.e. containing

random telegraph signal) for human inspection and labelling. When comparing the

unanimous human labels to the current traces output by donorsearch deemed to

contain random telegraph signal, donorsearch has an accuracy score of 66%. If I

split the implementations of the fine tuning search methods, Gaussian process Bayesian

optimisation results in an accuracy of 77% and random search has an accuracy of 50%.

The overall accuracy increases to 82%, if I remove the unanimous vote requirement

of the human labels and rely on a single human label confirming the presence of

random telegraph signal. This accuracy increase is reflected in the different fine tuning

implementations with the accuracies for Gaussian process Bayesian optimisation and

random search being, 90% and 70%, respectively.

The human labels can be utilised to calculate the tuning times of fine tuning stage

of donorsearch (Tab. 6.1). The tuning times for the fine tuning stage are calculated

using the same Bayesian multilabeller-statistics used in Chapter 5. The times for the

coarse and handshake stages are grouped regardless of the fine tuning search method

chosen, because they follow the same procedure. The median tuning times for the

coarse and handshake stages are 318 and 117 seconds respectively. The majority of the

time spent in the coarse tuning stage is taken up by the initial checks and SET tuning

as the acquisition of the donor-SET charge stability diagram takes 25 seconds out

of the 318 seconds. The handshake stage is the fastest part of the tuning algorithm

taking a median time of 117 seconds. 0.61 seconds is spent executing the charge
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transition locator module, and the remaining time is for building the noise classifier.

The fine tuning stage is the second fastest part of the donorsearch algorithm when

using Gaussian process Bayesian optimisation to search for random telegraph signals

taking a median time of 132 seconds. The machine learning-based search method is

40% faster than random search when comparing median tuning times.

6.4 Discussion

The charge transition locator illustrated in Fig. 6.3 behaved reliably across tuning runs

for identifying charge transitions and extracting Coulomb peak gradients. Deviations

in the number of transitions found by the module between experimental runs were

mainly caused by the harsh filtering employed at the end of the module which was

necessary to reduce the number of false positive charge transitions. Despite the rough

long edges of the Coulomb peaks, the de-noising methods used in the charge transition

locator module were successful, as charge transitions are routinely found at the ends

of Coulomb peaks and not along their length.

The noise classifier has the benefit of being both accurate and built in situ with a

minimal number of training samples. Current traces misclassified as two-level signals

tended to have either relatively high noise levels or contain a periodic signal which

points towards an alternative source of noise in the experimental set-up. Given the

shape of the cluster of traces which contain only noise in the K-means cluster map

(black points Fig. 6.4), future versions of donorsearch could use the K-means cluster

map as a method of classifying the presence of two-level signals in a parameter space

and the relative tunability of devices. A region of parameter space may contain charge

transitions but, they may not be able to be tuned to a point where one can observe a

two-level signal in ISET. This can be because the tunneling rate of the electron at

the transition is faster than the sampling rate of the measurement of ISET. The lack

of two-level signals in ISET would be signified by the absence of the pink cluster in
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Fig. 6.4 and the relationship between X1 and X2 to be well approximated by a linear

fit. By leveraging the unsupervised learning characteristic of the noise classifier its

versatility can be utilised to create more explorative tuning algorithms.

In the identification of random telegraph signals, experimental runs using Gaussian

process Bayesian optimisation significantly outperform those relying on random search

in accuracy by at least 20% regardless of the human label voting metric chosen. The

poor performance in the random search runs points towards a failure from the noise

classifier. The noise classifier is natively trained each run on traces near, ± 2 mV,

to the charge transition. Whereas during the fine tuning stage, the bounds of the

search space are increased to ± 5 mV which will likely lead to current traces acquired

by donorsearch that trick the noise classifier due to its limited training set. This is

further reflected by 27% of random telegraph signals found by random search were

found at the point in voltage space on the first iteration of the fine tuning stage. This

point in voltage space corresponds to the original location of the charge transition in

gate-voltage-space returned by the charge transition locator module. Future tuning

procedures could rely on more data collected across a wider parameter space to build

the noise classifier while sacrificing tuning speed. Or a noise classifier pre-trained

via supervised learning could be utilised. One could incorporate alternative search

methods, such as greedy search where the algorithm moves in the direction of gate

voltage space where the score appears to be best. But, there is the risk of getting

stuck in local minima due to the complex nature of the parameter space.

A significant portion of the tuning procedure (52 %) is spent in the coarse tuning

stage preparing the SET (Table 6.1). Moreover, the coarse tuning time variation

across 14 runs is minimal with the 80% interval possessing a range of 8 seconds. The

speed of the SET tuning method is limited by the slow 2 V DC gate-voltage sweeps

and current measurements at a resolution of 1 pixel per 2 mV swept. Time is saved by

the fast 2D scan acquisition of donor-SET charge stability diagram (see Appendix B).

If the lever arms of VPL and VDFL were weaker than observed here one may need to
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increase the size of the charge stability diagram acquired to observe charge transitions.

This could be achieved with a large and slow DC gate-voltage scan or maintain speed

by acquiring multiple smaller fast 2D scans at different DC gate-voltage intervals. If

solely concerned with tuning speed and not device characterisation one could reduce

the resolution by a factor of 2 of the SET gate electrode voltage sweeps without

disturbing signal processing routines for detecting turn-on and pinch-off. To improve

efficiency further, one may employ alternative sweeps to detect turn-on and tune

to pinch-off. For example, defining a pinch-off current threshold target based on a

percentage of the current range of the device and utilising binary search on the voltages

applied to the SET gate electrodes to achieve pinch-off. However, it is useful to obtain

high-resolution current traces for SET characterisation purposes and potential charge

reset analysis by cryogenic illumination, where incident light is used to remove charge

traps affecting gate pinch-off and turn-on voltages [147].

The process of building the noise classifier is the dominant portion of the handshake

stage in terms of tuning time, taking a median time of 117 (104, 145) seconds with

80% credible intervals (equal-tailed). The range in build times depends on the number

of charge transitions located in the previous step of the handshake stage as each

transition will be visited and explored to build the noise classifier. The time spent in

the noise classifier build stage could be reduced by reducing the number of current

traces acquired in the vicinity of each transition. It is unlikely that a diverse enough

dataset would be acquired to build the noise classifier via K-means clusters (Fig. 6.4),

were the number of current traces acquired reduced from the 10 samples per transition

acquired by donorsearch by default. Nonetheless, my Algorithm is able to create a

classifier which has an in-the-field accuracy of 86% in under two minutes, and without

the inclusion of augmented or simulated data.

The Gaussian process Bayesian optimisation search routine outpaces random search

tuning speeds in the search for random telegraph signal by 40%. Similar behaviour

has been observed in machine learning-enabled search methods benchmarked against
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random search in the coarse tuning of gate-defined double dots in GaAs [103] and

silicon-based architectures (Chap. 5) [118]. Although the limits of the fine tuning

search space are tightly confined at a range of 10 mV at the located transition site on

each gate electrode, the high dimensionality of the search space (7 gate electrodes),

makes it difficult for random search to outperform a more intelligent search method.

Random search does still perform surprisingly well given the dimensions, size of the

search space and parameter space in which the desired random telegraph signal can be

found. The fastest random search tuning times venture into the range of that achieved

by Gaussian process Bayesian optimisation. These occurrences are unreliable given the

80% confidence interval of random search possessing a lower bound of 167 seconds

and a range of 162 seconds, three times that of the Gaussian process confidence

interval range. These results from my Algorithm show that machine learning-enabled

search methods result in both reliable and relatively fast tuning of quantum devices.

6.5 Conclusion

donorsearch is the first algorithm of its kind which can tune an ion-implanted donor

in silicon device up to the point of spin-readout calibration from scratch. I have

shown tuning times are on the order of 10 minutes putting donorsearch on par, if

not ahead of human experts tuning such devices to achieve two-level fluctuations in

current. Median fine tuning times are almost halved if Gaussian process Bayesian

optimisation is used in the fine tuning stage instead of random search. However,

random search performs arguably well especially when compared to random search

implementations of other algorithms (e.g. CATSAI in Chapter 5). I discussed that this

could be due to the charge transition locator tool and with it, the reduced search space

during tuning. The charge transition locator tool does not require any pre-training.

donorsearch incorporates both coarse and fine tuning stages into a single package.

The fine tuning stage is aided by an efficient and lightweight noise classifier which is
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built via unsupervised embedded learning enabling fast tuning times.

Further fine tuning elements may be automated such as readout calibration,

relaxation time measurements and electron spin resonance. This would require new and

potentially artificial intelligence-assisted signal processing methods to detect particular

quantum features such as ’spin-tail’ effects [40] as evidence for spin-dependent readout.

Moreover, an automated and intelligent method to benchmark and optimise properties

such as Rabi frequencies and readout contrasts may provide insight into the current

undecipherable incongruity of tuning these properties [148]. The previously unexplored

waters of automatic tuning in ion-implanted donors in silicon, soon to be densely

charted, will become archives of knowledge, opening doors to scalability, a wealth of

information and a deeper understanding of these devices.



Chapter 7

ML for SPAM Analysis

If variety is the spice of life, marriage

is the big can of leftover Spam.

Jonny Carson

The narrative of this thesis has been: 1. We need hundreds of millions of qubits to

build a fault-tolerant quantum computer. 2. Silicon-based architectures are suitable

because they can host many qubits per unit volume and the experience of a trillion-

dollar semiconductor industry can be leveraged for their manufacture. 3. We need to

use AI-enabled automation to get these qubits to operating conditions and control

them. Few in the semiconducting spin qubit community are willing to address the

elephant in the room, temperature. Yes, silicon-based architectures are more compact

than their superconducting counterparts, but there is still not enough cooling power

in current dilution refrigerators to cool a billion qubit silicon chip alongside control

electronics to 20 mK. Our heralded scalable architecture will need to operate at

(relatively) hotter temperatures of above 1 K. What does this mean for the control

and readout fidelity of our qubits? In this chapter, I tackle this issue head-on, born

out of a collaboration carried out between myself, a colleague of mine, Barnaby van

Straaten, and the Australian full-stack quantum computing company, Diraq. Diraq

were experimenting with qubits operating above 1 K temperatures, referred to as ‘hot

114
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qubits’. Their qubits showed remarkable tolerance to these temperatures, with single

and two-qubit gate fidelities above 99%. However, evaluating state preparation and

measurement fidelities was proving unreliable and inconsistent. The cause of these

issues was that some aspects of the measurement sequence caused a finite probability

of the spin state flipping. The motivation of this chapter and my contribution was to

estimate state preparation and measurement errors of their hot spin qubits given a

series of measurement traces. Additionally, provide a gauge of uncertainty of the state

preparation and measurement error parameters. This chapter is based on the results

from our collaboration which contributed to Ref. [27] and any use of the words "we"

or "our" in this chapter refers to the co-authors of Ref. [27].

7.1 Introduction

Qubits - little beastly creatures. It is as though solving one problem leads you to

the next, or perhaps that is simply the nature of research and innovation. Although

the argument is held that spin qubits in silicon are a scalable architecture due to our

capability to manufacture high qubit density at an industrial scale, it is forgotten that

control and fidelity remain a problem at high temperatures.

Temperature must especially be considered when one factors in the mass and

real estate of on-chip control electronics required to conduct a symphony of a billion

qubits. Unable to provide the cooling power to operate a quantum processing unit

(QPU) at millikelvin temperatures, so-called ‘hot qubits’ are obliged to operate at 1 K,

orders of magnitude hotter [78, 97, 119, 149, 150]. Where noise is increased at higher

temperatures, successful qubit operation has been demonstrated while suffering from

relatively poor state preparation and measurement (SPAM) and low gate fidelities [38,

78, 97, 149], compared to previous experiments showcasing spin qubits in silicon in

low noise millikelvin temperature environments. The ability to obtain a firm grasp of

SPAM errors and fidelities is vital to prove the feasibility of spin qubits at elevated
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temperatures.

Here I present a machine learning-based method, named error-causation, which

analyses SPAM errors for spin qubit parity readout [151]. This method, based on a

Hidden Markov model (HMM) [152], extracts the initialisation and readout fidelity of

qubits based on a series of repeated parity readout measurements. The model also

has the ability to calculate the probability of a spin flip occurring during a sequence of

measurements and infer the true underlying spin state of the system based on observed

data.

I demonstrate error-causation on simulated and experimental data from a

silicon-metal-oxide-semiconductor (Si-MOS) device, obtaining initialisation fidelities

up to 99.34± 0.27% at temperatures of 1 K [27]. I also investigate the prediction

errors of error-causation on simulated data and show that the uncertainties in

predicting initialisation, readout and spin-flip fidelities are dominated by variance in the

underlying data rather than the estimations performed by the HMM. The lightweight

nature of the error-causation package means that it can be adapted and run online

to provide real-time feedback for initialisation and reset of qubit states. This unleashes

the potential of fast active reset of multiple qubits in the presence of live SPAM error

analysis.

7.2 Methods

7.2.1 The device

Experimental data was obtained from two Loss-DiVincenzo qubits realised in a Si-MOS

gate-defined double quantum dot device (Fig. 7.1).The plunger gates, P1 and P2,

form the quantum dots beneath them. The J gate-electrode controls the coupling

between the quantum dots. An odd number of electrons were loaded into each

dot. The unpaired electrons on each dot are operated in the two-qubit basis of

|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩, with ↑ and ↓ signifying spin up and spin down of each electron
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Figure 7.1: Si-MOS Device architecture. a) An SEM image of a device similar to that
used in this work. Active gate electrodes and microwave antennae are highlighted
in colour. B0 and B1 with their corresponding arrows are the external DC and
the antenna-induced AC magnetic fields, respectively. The system operates at a
temperature of 1 K. b) A cross-sectional schematic of the device architecture (along
the dashed line in (a)) shows the material stack and the RF-SET sensor used to detect
the corresponding state of the double quantum dot defined by dots Q1 and Q2. c)
Charge stability diagram as a function of P1, P2 voltage detuning and the J gate
voltage VJ, showing the operation regime. The number of electrons in the left and
right dot are given by m and n respectively. The operation points for readout (M),
single-qubit (X, Z, I) and two-qubit controlled phase (CZ) operation are labelled as
star (⋆), triangle (▲) and square (■), respectively. The insets schematically show the
operations that are performed at each position. Reproduced from Ref. [27].

spin respectively. States where the spins of the electrons are parallel (|↓↓⟩ and |↑↑⟩),

are referred to as ‘even’. States where the spins of the electrons are antiparallel (|↓↑⟩

and |↑↓⟩), are referred to as ‘odd’.

The states were measured via parity readout, which is a method based on Pauli

spin blockade (PSB) [151]. A radio-frequency single-electron transistor (RF-SET)

operating at 210 MHz was used for readout of the spin states. The RF-SET behaves

as a charge sensor and is capacitively coupled to the adjacent quantum dots. Parity

readout, instead of singlet-triplet readout, is the dominant readout method of the
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quantum dots due to the large Zeeman energy difference between the two qubits

[151]. Even states correspond to a blockade, resulting in a relatively low signal on

the RF-SET, whereas odd states correspond to an unblockaded portion of the PSB

region and therefore a relatively higher signal on the RF-SET. By setting a threshold

for the RF-SET signal, even and odd states are classified and assigned binary values

of 0 and 1 respectively. The classification data is then analysed a posteriori by an

HMM, from the Python package hmmlearn [153], to extract the state preparation and

measurement errors.

7.2.2 Hidden Markov models

Hidden Markov models (HMMs) are a classic method used in machine learning

and statistics for modelling sequences such as speech [154] and proteins [155]. An

HMM defines a probability distribution over sequences of observations (or emissions)

m⃗ = {m0,m1,m2, ...,mN−1} by invoking another sequence of unobserved hidden

discrete states s⃗ = {s0, s1, s2, ..., sN−1}. These hidden states evolve according to a

Markov chain, defined by a transition matrix, A, such that Aij := P (sn+1 = i | sn = j).

The probability of an observation is conditioned on the hidden state according to

an emission matrix, θ, defined as θij := P (mn = i | sn = j). In my case the

emissions are discrete and binary and the emission model is a Bernoulli distribution.

Finally, the probability vector, π⃗, encodes the probability of starting in a hidden state

π⃗i = P (s0 = i) [156].

To learn the parameters of an HMM, there are three important algorithms:

1. The Baum-Welch algorithm [157], which given a set of observations, m⃗, performs

expectation maximisation to obtain the most likely set of HMM parameters

specified by (π⃗, A, θ).

2. The Forward-Backward algorithm, which computes the likelihood of a set of

observations, m⃗, given some HMM parameters, (π⃗, A, θ).
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3. The Viterbi algorithm [158], which given a set of observations, m⃗, and a set of

HMM parameters (π⃗, A, θ) it finds the most likely set of hidden states, s⃗.

7.2.3 The Categorical HMM

Fitting a model to the experimental data relies on defining a categorical HMM with two

hidden states and two observables, also known as emission states. It is a categorical

HMM because the observables are discrete and take on distinct values from a finite

set for example, [0, 1]. This is opposed to, for example, Gaussian HMMs, where

the observables are continuous and are assumed to be generated from a Gaussian

distribution. Here, we take one of the simplest and traditional approaches, a standard

expectation-maximisation-like HMM model. Future work could leverage advances

in inference such as MAP, or variational Bayes methods [159], especially as future

experimental work reveals more information about quantum device behaviour which

may serve as reasonable priors.

I utilise a categorical HMM where the hidden state space is the qubit eigenstates,

such that s⃗ consists of a sequence of the two hidden states |0⟩ and |1⟩, corresponding to

the even and odd configuration respectively. The observation space is the measurement

outcomes (after a threshold has been applied to the RF-SET data) such that m⃗

represents a sequence of even and odd state measurements, consisting of emission

states of 0 and 1 respectively. With this model defined, the Baum-Welch algorithm is

given the experimental observations and yields the best fitting initialisation probability

vector π⃗, transition matrix A, and emission matrix θ. These vectors and matrices

encode parameters of interest such that:

1. If Pinit, even denotes the initialisation fidelity into the even state, then π⃗ =

[Pinit, even, 1− Pinit, even]
T .

2. If the fidelities of reading out the even and odd states are Pread, even and Pread, odd,
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then the emission matrix is

θ =

 Pread, even 1− Pread, even

1− Pread, odd Pread, odd

 . (7.1)

3. If Peven→odd and Podd→even denote the probability of a measurement causing a

transition from the even to the odd state and vice versa, then the transition

matrix is

A =

1− Peven→odd Peven→odd

Podd→even 1− Podd→even

 . (7.2)

These vectors and matrices provide a method for disentangling the initialisation,

readout and state transition errors from one another. To quantify the uncertainty in

these parameters I used the Cramér-Rao bound [160], which states that if estϕ⃗(y⃗) is

an unbiased estimate of the parameters ϕ⃗ given the data y⃗, then

covϕ⃗
(
estϕ⃗(y⃗)

)
≥ I

(
ϕ⃗; y⃗
)−1

(7.3)

where I(ϕ⃗; y⃗)ij = −∂2 logL(ϕ⃗; y⃗)/∂ϕi∂ϕj is the Fisher information matrix. Therefore,

I can obtain lower bounds on each parameter’s uncertainty from the diagonal elements

of the inverse of the Fisher information matrix. This means that the uncertainty in

the estimate of a particular parameter is inversely related to how sharp the maximum

of the log-likelihood is. In my case, the parameters are ϕ⃗ = [Pinit, even, Pread, even,

Pread, odd, Peven→odd, Podd→even]
T and the data is the measurement observations, such

that y⃗ = m⃗. The Forward-Backward algorithm is used to compute the likelihood

L(ϕ⃗; m⃗), and the gradients are calculated numerically using finite differences.
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Figure 7.2: Schematic representing the measurement sequence and state reconstruction.
The initial state s0 (even or odd) is prepared via algorithmic initialisation and then
n PSB readouts are performed throughout which the state evolves to sn. State-
preparation-and-measurement (SPAM) error analysis is performed on the PSB readout
measurements m1...mn, using a Categorical Hidden Markov model enabling predictions
of initialisation, Pinit, readout, Pread, and state change (or spin-flip), Peven→odd and
Podd→even, fidelities. Using the model, the underlying state and corresponding PSB
measurement probability Pblockade, can be reconstructed. Reproduced from Ref. [27].

7.3 Results

Repeated parity readout was performed on the Si-MOS device at a temperature of

1 K and a B0 of 0.79 T for twenty iterations, n = 20. The Hidden Markov model

was used to reconstruct the states and perform state preparation and measurement

error analysis (Fig. 7.2). Using the algorithmic initialisation developed in Ref. [27] the

qubit was initialised into the even state (|↓↓⟩) or the odd state (|↑↓⟩), and 20 repeated

readout cycles were performed. Using the Hidden Markov model, I can infer the

state preparation, Pinit, and measurement, Pread, fidelities as well as reconstruct the

underlying qubit states based on the measurement outcomes m1...mn. Additionally, I

can infer the probability of respective state changes, Peven→odd and Podd→even. The

initialisation fidelities were inferred as 99.34± 0.27% and 94.67± 0.73%, for Pinit,even

and Pinit,odd respectively. The readout fidelities were inferred as 99.34 ± 0.08%

and 96.15 ± 0.44%, for Pread,even and Pread,odd respectively. The probability for a
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Figure 7.3: Experimental and simulated parity readout measurement outcomes and
predicted states. The first 200 out of 1000 repeats of a 20-measurement sequence
are shown. a) Real parity readout measurements from the Si-MOS device. b) HMM
Predictions of the true underlying hidden state. c) The difference between the measured
state and the predicted state. d) Simulated parity readout measurements generated
by the Hidden Markov model for even initialisation. e) The predicted true underlying
hidden states of the simulated data. f) The difference between the measured state
and the predicted state.

spin flip occurring, Peven→odd and Podd→even, were inferred to be 2.59± 0.13% and

1.97 ± 0.30% respectively. The probability of PSB occurring, Pblockade, based on

state reconstruction increases from 99.2% to 99.3% when n = 5 and the system is

initialised into the even state. Conversely, Pblockade decreases from 5.8% to 5.1% at

n = 12 when the system is initialised into the odd state.

To test and verify the performance of our HMM I generated simulated parity

readout measurement outcomes, with the aim of the simulated dataset possessing

similar qualitative characteristics to that of the real data from the Si-MOS device (Fig.
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Parameter
Pinit, even Peven→odd Podd→even Pread, even Pread, odd

Ground truth value 0.9900 0.0100 0.0200 0.9950 0.9900
Starting guess value 0.9000 0.1000 0.1000 0.9000 0.9000
Baum-Welch fitted value 0.9899 0.0097 0.0217 0.9949 0.9899
Uncertainty 0.0033 0.0008 0.0040 0.0006 0.0029

Table 7.1: A table containing the ground truth values of the HMM used to generate
the dataset of 1000 repeats of a 20-measurement sequence. The table includes the
starting guesses used when the Baum-Welch algorithm is used to fit to this dataset, the
values the Baum-Welch algorithm converged to and the corresponding uncertainties
as per the Cramér-Rao bound.

7.3). The simulated data was created using a Markov process with Pinit,even = 99.00%.

The spin-flip and readout probabilities were set to 1.00%, 2.00%, 99.50%, and

99.00%, for Peven→odd, Podd→even, Pread,even, and Pread,odd respectively.

The performance of the Baum-Welch algorithm of the HMM and the parameters

used to generate 1000 repeats of a sequence of 20 measurements, where each mea-

surement is the classified PSB parity readout value, are shown in Table 7.1. The

Baum-Welch algorithm requires prior guess values to the respective probabilities before

performing a fit, all of which were on the order of 10% away from the ground truth

values. The fitted values output by the Baum-Welch algorithm and their corresponding

Cramér-Rao bound uncertainties fall within reasonable bounds of the ground truth

probabilities with the largest uncertainty being ± 0.004 and corresponding fitted value

differing by 0.0017 to the ground truth of 0.0200. A reasonable uncertainty bound is

0.007 as this corresponds to the higher end of uncertainties seen during randomised

benchmarking and gate tomography [161] of qubit gates on this and other devices

under similar conditions [27, 78].

I checked the reliability of our measure of uncertainty by generating 1000 datasets of

1000 repeats of a 20-measurement sequence. I plotted histograms of the initialisation,

spin-flip and readout probabilities output by the Baum-Welch algorithm in Fig. 7.4.

The same ground truth values (Tab. 7.1) were used for each dataset and are shown

by the dashed vertical lines in Fig. 7.4. The horizontal error bars correspond to one
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Figure 7.4: Histograms of the values fitted by the Baum-Welch algorithm when
supplied 1000 randomly generated datasets, each consisting of 1000 repeats of a
20-measurement sequence. In addition, the ground truth value used to generate the
dataset and the expected uncertainty, as per the Cramér-Rao bound, are overlaid as
a vertical line and horizontal error bars, respectively. The distributions of Pinit, even,
Peven→odd & Podd→even and Pread,even & Pread, odd are shown in (a,b,c) respectively.

standard deviation computed by the Cramér-Rao bound.

I investigated the dependence of the Cramér-Rao uncertainty bounds on dataset

size (Fig. 7.5). I computed the log-likelihood of each state probability parameter

from increasing fractions of a simulated dataset consisting of 1000 repeats of a

20-measurement sequence. The most likely parameter values (corresponding to the

log-likelihood maxima) and their respective Cramér-Rao uncertainties were calculated

for each corresponding sub-sample of the dataset. The Cramér-Rao uncertainties

decrease with increasing dataset sizes across all SPAM parameters.

7.4 Discussion

The low uncertainty on the SPAM parameters on the simulated data, where the ground

truth is known (Fig. 7.3), strengthens the confidence in the SPAM parameter values

in the Si-MOS device (Fig. 7.2). The use of HMMs for SPAM error analysis relies on

the assumption that the qubit spin-flip behaviour is Markovian. This appears to be

true and a reasonable assumption to make up until the limitation of qubit T1 times

which becomes a factor when n > 20 (Fig. 7.3).
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Figure 7.5: (a-e) Slices through the log-likelihood landscape for the Hidden Markov
model detailed in Table 7.1 generating a dataset of increasing fractions of a dataset
of 1000 repeats of a 20-measurement sequence. From top to bottom, the curves
correspond to 10%, 20%, ..., 100%. The ground truth value used to generate the
dataset for each parameter slice is overlaid as a dashed line. For each dataset size, the
most likely parameter value and its corresponding uncertainty are plotted as a point
with error bars.

In both the simulated and real dataset SPAM analysis, I estimate high values of

uncertainty for Pinit (Fig. 7.2 & Tab. 7.1). This is because, relative to the other events

such as spin-flips or readout, initialisation only happens a limited number of times

(Fig. 7.2), i.e. the number repeats of measurement sequences is lower therefore fewer

statistics result in a relatively high uncertainty. Pread,even has the lowest uncertainty

out of all the parameters as there as so many readout examples to train on.

Approximately two-thirds of the SPAM parameters predicted for the simulated data

by the Baum-Welch algorithm fall within a single standard deviation of the ground

truth set by the Cramér-Rao bound (Fig. 7.4). This confirms that the Cramér-Rao

bound is a suitable measure of uncertainty and hints that the source of uncertainty is

not due to the Baum-Welch fitting process but to the underlying randomness of the

generated data.
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Additionally, the Cramér-Rao bound decreases with increasing dataset size (Fig. 7.5)

providing further support for its use as a suitable measure of uncertainty. Empirically,

for large datasets, a parameter’s uncertainty ϵ, scales with the dataset size, N , such

that ϵ ∝ 1/
√
N . Moreover, the decrease in uncertainty is reflected in the log-likelihood

maxima becoming more prominent with increasing dataset size. As demonstrated in

both the real and simulated datasets (Fig. 7.2 & Tab. 7.1), parameters for which

there are not abundant examples to train from, such as Pinit and Podd→even, have

relatively wider Cramér-Rao bounds than other parameters even with larger datasets

(Fig. 7.5).

7.5 Conclusion

I successfully demonstrated the use of a HMM to perform SPAM error analysis on

Pauli spin blockade measurements from a Si-MOS device at a temperature of 1 kelvin,

achieving initialisation and readout fidelities of 99.34± 0.27% and 99.34± 0.08%

respectively. I verified the use and performance of our HMM for SPAM error analysis

on simulated data and extracted the ground truth simulated states, while also achieving

SPAM probabilities and respective uncertainties that provide confidence in our method.

The lightweight nature of HMMs lends itself to being implemented on field-

programmable arrays, which will enable fast active reset of qubits at elevated temper-

atures based on online measurements and live signal processing. Such developments

are vital contributions to the growing drive towards rapid cryogenic stage on-chip

multiplexing, signal processing and control of quantum devices [162–168], an inevitable

evolution to achieve a universal fault-tolerant quantum computer based on spins in

semiconductors.



Chapter 8

Conclusion & Outlook

What did you discover?

Andrew Briggs

In 1492 there were no horses in America [1]. In 2019, there were no automatic

methods for the tuning of quantum dots in silicon across a range of architectures

[169]. The silicon spin qubit community was uncertain that automatic methods were

needed for both the scaling and efficient iterative development of their architecture.

Additionally, they did not have a solid grasp of how to build the required technology.

This body of work has cast rays of light into the unknown shadows of automation for

silicon-based spin qubit architectures. Here, I will lay out the nature and texture of

that light which now shines, and outline the ways in which we can continue to reveal

the shapes of scalability among the dimly lit shadows.

8.1 Conclusion

I started this thesis by building and demonstrating the first cross-architecture tuning

solution using artificial intelligence (CATSAI) for gate-defined double quantum dots in

silicon and germanium. By training CATSAI to recognise single quantum dot features

in a range of silicon devices using a Random Forest classifier, CATSAI tuned a silicon

127
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FinFET, a Ge/Si core/shell nanowire and a Ge/SiGe heterostructure from scratch to

double quantum dots within minutes. The efficient sampling of the parameter space

by CATSAI provided insight into the nature of the devices being tuned which has

never been seen before. This included the shapes of the surfaces within the parameter

space which divide regions of relatively high current from low current and the volumes

of the parameter space in which a double quantum dot can be formed.

Building on the knowledge gained from developing CATSAI, I created a more

exploitative algorithm, donorsearch, for the automatic tuning of an ion-implanted

donor spin qubit silicon device up to the point of spin-readout calibration within 10

minutes. By incorporating computer vision techniques I was able to automatically

identify charge transitions. By using embedded unsupervised learning and Gaussian

process Bayesian optimisation I automatically tuned the voltages applied to gate-

electrodes to obtain random telegraph signal in the current flowing through the

readout transistor - the precursor to calibrating spin readout. The signal processing

techniques developed for these devices allow for rapid device characterisation and

analysis. This is the first automatic tuning workflow for ion-implanted donor spin

devices and is the closest we have gotten to achieving a complete zero-to-qubit tuning

solution in silicon.

Finally, I demonstrated the use of machine learning to extract qubit state preparation

and measurement parameters for a two-qubit Si-MOS device operating at temperatures

above one kelvin. Using Hidden Markov Models, I extracted the true underlying qubit

state in the presence of faulty state preparation and readout on both simulated and real

data. This contributed to work which showcases silicon qubits operating at elevated

temperatures, providing further support for their use as a scalable quantum computing

architecture.

Looking forward, I see roads diverging in a yellow wood. I will now describe the

pathways I see laid before me.
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8.2 Machine learning for quantum dots

Machine learning can be used to achieve a complete end-to-end tuning algorithm.

End-to-end means that we can go from nothing to spin qubits completely automatically.

An operator would load their silicon device into a dilution fridge, hook up the tuning

software to their instruments via an interface and click run. At some point along the

direction of the arrow of time, qubits are found by the algorithm. There are multiple

ways in which I envision such an algorithm working. One could build a sequential

pipeline consisting of the algorithms developed in this work and others referenced. For

example, the coarse tuning of double quantum dots could be performed by CATSAI

(Chapter 5). Subsequently, a fine tuning algorithm such as that developed by Van

Esbroeck et al.[112] could be used to optimise electron transport features to form bias

triangles. Nguyen et al.’s algorithm [170] could be utilised for the efficient search of

the parameter space to locate the bias triangles. Finally, one could include a Pauli

spin blockade classifier to confirm the presence of qubit spin physics, such as the

one developed by Schuff et al. [171]. Alternatively, the fine tuning stage could be

performed by CATSAI, progressively moving its origin start point towards the region

of parameter space where double dots are found, reducing the size of the search space

while continually scoring and ranking double quantum dots found in the investigation

stage.

A simpler non-machine learning search method could be used during the coarse

tuning stage to tune to double quantum dots faster, similar to that carried out by

donorsearch and envisioned by D. T. Lennon [115]. By taking advantage of our

knowledge of gate-electrode purposes, i.e. plunger gates and tunnel barrier gates,

we can carry out procedural measurements such as finding pinch-off sequentially

on the relevant gates to coarsely tune a double quantum dot. I believe algorithms

of this nature are promising for device architectures with linear gate arrangements

such as FinFETs, nanowires and linear arrays. However, I am unsure that they will

generalise well to architectures where gate-electrodes have high degrees of cross-talk
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or are overlapping. Moreover, their procedural nature gives the impression of inherent

brittleness, unable to adapt for example, if a single gate electrode is broken.

8.2.1 Challenges

There are multiple steps to be traversed to build an end-to-end algorithm. An

accurate double quantum dot classifier is needed; this could then be incorporated

into a handshake stage to confirm that coarse tuning is finished and fine tuning may

commence. Such a simple feature classifier will be an interesting feat as we have

seen from Chapter 5 that not even human experts can agree on the presence of a

double quantum dot. For the fine tuning stage, algorithms that have previously been

demonstrated on a given materials system may find it difficult to perform as well in a

more noisy and charge-switchy environment, and may require retraining on additional

data.

At the confirmation of spin physics stage, we already have a classifier developed

by Schuff et al. [171] which confirms the presence of Pauli Spin Blockade in FinFETs.

It is yet to be demonstrated to be effective in other material systems. Additionally, it

may be easier to confirm the presence of a qubit via ESR or EDSR. Utilising ESR or

EDSR will require new signal processing and classification modules. Finally, there is

still work to be carried out for the automatic optimisation of qubits properties, setting

a whole new host of challenges.

Here, I am focusing on the tuning problem of a double quantum dot. We need

billions of quantum dots to build a quantum computer. Tuning and signal approaches

will have to adapt accordingly as silicon-based architectures scale and we observe

features in transport or reflectometry yet to be seen in the semiconductor spin qubit

community. Measuring quantum dots and qubits in transport becomes challenging as

the array of quantum dots scales. It is therefore likely that future quantum dot tuning

approaches will build upon foundations laid by van Straaten et al. [137] and Hickie

et al. [131], and take advantage of RF-reflectometry and frequency multiplexing for
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measurement, compensation and control.

To achieve what I have laid out, the community will require access to more data

from quantum devices. Ideally, this will be in the form of an open-access structured

database, that we see in other communities, for example, the Universal Protein

Knowledgebase [172] in the Life Sciences, with the inclusion of accurate metadata.

The open-access nature will enable the rapid development of machine learning models

and signal processing routines to accelerate the field. In regard to the hardware, the

move towards reliable (foundry) fabricated devices is crucial for the growth of the

field. Proof of concepts have been demonstrated and now is the time to truly leverage

our knowledge from the semiconducting industry. I can envision a near future where

silicon foundries sell qubit-ready chips due to their ability to rapidly iterate fabrication

and automatic tuning on an industrial scale.



Appendix A

CATSAI

A.1 Supplementary Methods

A.1.1 3D hypersurface plots

The 3D plot of the hypersurface for each device was generated by relying on the

same method that CATSAI uses to generate the hypersurface of each device as it

proceeds to coarsely tune it. The main difference being that no sampling is involved;

the surface is generated by a model that makes use of the pinch-off locations detected

during an algorithm run selected at random (CATSAI run 10). The model of the

hypersurface used was a Gaussian Process (Matérn52 Kernel). This model is then

used as an interpolation method to generate the 3D plots; regularly spaced points in

gate voltage space are considered and the model is used to determine whether these

points lie within the hypersurface. The gate electrodes not considered for the plots

are kept constant at their respective mean gate voltage values for which pinch-off was

observed during the experiment (Table A.3).

A.1.2 CATSAI’s workflow

For the first i (12) iterations of the sampling stage (Fig. A.1), the algorithm selects

a vector u at random in the gate voltage space of the device since the algortithm

132
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is unaware of the characteristics of the device. This vector consists of all the gate

voltages considered for tuning. The algorithm then sweeps the gate voltages along

that direction until pinch-off occurs.

After the ith iteration, a model of the hypersurface is built using a Gaussian process

and u is chosen by incorporating the knowledge gained during the peak detection

module in the investigation stage. The algorithm achieves this by generating a set of

candidate pinch-off locations on the hypersurface and using the probability of finding

Coulomb peaks in a given location of gate voltage space, P̃peaks, as a weighting for

the choice of u [103]. Using Thompson sampling [133], the algorithm then selects

one of the candidate pinch-off locations, defining a new u. In each of the following

iterations, the pinch-off locations and the information gathered by the peak detection

are used to update the hypersurface model and P̃peaks, respectively.

For the low resolution current map score function in the investigation stage, the

algorithm is given the noise floor and the current at which Coulomb peaks can be

segmented, a current value between the noise floor and the peak of the Coulomb

peaks, the segmentation threshold. For simplicity, measurements of the safe bounds,

noise floor and segmentation threshold are taken manually before running CATSAI;

these measurements can easily be automated.

A.1.3 Coulomb peak detector

Due to the different types of current noise observed for each of the devices considered,

a robust Coulomb peak detector was required. We thus developed a Random Forest

Coulomb peak detector.

A set of 128-pixel current traces was obtained running the tuning algorithm

developed by Moon et al. [103] on different devices to those for which CATSAI was

tested (Table A.1); two different 5-gate GeSi nanowires (400 mV-long current traces),

and a single 3-gate Si FinFET (200 mV-long current traces). We gathered 1095 current

traces from GeSi nanowire device 1, 1321 from GeSi nanowire device 2, and 4306 from
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Figure A.1: CATSAI’s workflow. For the first i iterations (left-hand branch of the
sampling stage), the algorithm selects u at random and travels along it until the
hypersurface is found. After the ith iteration (right-hand branch of the sampling stage),
the algorithm selects u based on the model it generates of the hypersurface and of
the probability of finding Coulomb peaks in a given location in gate voltage space,
P̃peaks. In the investigation stage, the algorithm sweeps the plunger gates to generate
current traces and low-resolution and high-resolution current maps if the conditions
are satisfied for each classifier. Figure adapted from [103].

the Si FinFET device 1. I labelled the 6722 current traces, from which there were

553 labelled as positive (current traces containing Coulomb peaks) and the remainder
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(6169 current traces) were labelled as negative. 553 negative examples were randomly

picked from the shuffled 6169 negative examples, to make up an even dataset of 1106

current traces. The breakdown of the data subsets include, for the positives: 115

traces from GeSi nanowire device 1, 100 from GeSi nanowire device 2 and 338 from

the Si FinFET device 1. For the negative subset: 83 from GeSi nanowire device 1, 113

from GeSi nanowire device 2, and 357 from the Si FinFET device 1. Randomly chosen

current traces from the even dataset of 1106 current traces were used to train and test

the Random Forest Coulomb peak detector; 70% of the traces chosen were used to

train the classifier, and 30% were used to test it. No characteristic feature engineering

or data pre-processing was done other than normalisation. The characteristic features

the Random Forest classifier was trained on were the normalised current values of

each trace at each pixel point, thus each sample had 128 characteristic features. The

classifier relies on the Scikit-learn’s ensemble RandomForestClassifier package [134].

An accuracy of 84% was achieved. The Random Forest classifier was then retested on

1562 current traces from a 5-gate Ge/SiGe heterostructure device 1 and an accuracy

of 92% was achieved (Table A.1, Test 2). This relatively high accuracy contrasts

the Coulomb peak detector used in Ref. [103], which achieved an accuracy of 20%

classifying the current traces obtained for the Ge/SiGe heterostructure device 1.

A.1.4 Coulomb peak detector: online performance

I labelled all the current traces after the CATSAI and Random Search experimental

runs were complete. My labels were compared against the labels predicted by the

Random Forest Coulomb peak detector used in the experiment (Table A.2). The

accuracy of the Coulomb peak detector is as follows, FinFET: 82.1%, 71.3%, nanowire:

86.0%, 82.3%, and heterostructure: 63.7%, 79.7% for all the Random Search and

Full Decision runs respectively.
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A.1.5 Algorithm configuration for the different type of de-

vices studied

Across all devices the initialisation of the algorithm is set to 12 iterations (the first

5% of the total number of iterations for each run). In this work we did not apply

any pruning rules [103]. When searching for the hypersurface, the algorithm looks for

current drops below 0.5% of the maximum current range. The parameters chosen to

run the algorithm can be separately optimised. The model of the hypersurface is built

via a Gaussian Process as in Ref. [103].

Other configuration parameters depend on the type of device to be explored (Table

A.4 & A.5). These parameters include: voltage bounds (origin and limit) set for each

gate electrode to prevent device damage, the value at which the bias voltage is fixed,

the noise and segmentation thresholds, and the size in gate voltage space of current

traces (diag_trace), as well as low and high resolution current maps (2d_lowres and

2d_highres, respectively).

During the investigation stage the current traces have a length of 128 pixels, the

low resolution current maps have a size of 16 × 16 pixels, and the high resolution

have a size of 48 × 48 pixels. The dimensions of the traces and the scans in voltage

space are device dependent (Table A.5).

The bias voltages were chosen to be slightly larger than typical charging energies

expected for single quantum dots in each device. The noise and segmentation thresholds

were chosen according to expected values; these can easily be replaced by a fixed

percentage of the maximum-minimum current range across devices. The size of current

traces and current maps in the investigation stage was larger for the GeSi nanowires,

since the gate lever arms in these devices is often smaller compared to the other

devices. These hyperparameters could also be optimised in future implementations.

All hyperparameters were tested in advance to ensure that transport features were

observable with the set configuration.
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A.1.6 Labelling procedure

The current maps that were classified by the Algorithm as corresponding to a double

dot regime were checked and labelled by human beings at the end of the experiment

to benchmark the Algorithm’s performance (Table A.6 & A.7). There is often

disagreement between humans about what current maps correspond to a double

quantum dot regime. The current maps for each type of device were thus labelled

by 4 different and independent human labellers. Three datasets were collected, one

for each device (nanowire, heterostructure and FinFET). For each device, the current

maps collected by Random Search and CATSAI were grouped together and shuffled

to avoid labellers’ confirmation bias. Median tuning times were calculated using a

Bayesian model based on the resultant labels as in Ref. [103].

A.2 Supplementary Tables

Table A.1: Devices used throughout this work. All devices used for training and
or testing are different to the devices used in the experiment. Devices used for the
experiment algorithm runs only are numbered as zero.

Device Train Test 1 Test 2 Algorithm run
GeSi Nanowire 0 - - - x
GeSi Nanowire 1 x x - -
GeSi Nanowire 2 x x - -

Si FinFET 0 - - - x
Si FinFET 1 x x - -

Ge/SiGe Heterostructure 0 - - - x
Ge/SiGe Heterostructure 1 - - x -
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Table A.2: Confusion matrices of the Coulomb peak detector for all of the experimental
runs comparing the true human labels against the predicted labels of the Random
Forest Coulomb Peak detector.

Si FinFET (CATSAI) Si FinFET (Random Search)
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 1862 211 True Neg. 2455 512
True Pos. 651 276 True Pos. 24 9

GeSi Nanowire (CATSAI) GeSi Nanowire (Random Search)
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 156 31 True Neg. 1114 277
True Pos. 501 2312 True Pos. 144 1465

Ge/SiGe Het. (CATSAI) Ge/SiGe Het. (Random Search)
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 1625 313 True Neg. 1878 1079
True Pos. 199 380 True Pos. 10 33

Table A.3: Bounds used for the 3D hypersurface plots.

Device V1 V2 V3 V4 V5 V6 V7
Si FinFET, origin (V) -6.5 -1.5 -1.5 -5.0 - - -
Si FinFET, limit (V) -2.5 0.0 0.0 -5.0 - - -

GeSi Nanowire, origin (V) 0.0 0.56 0.0 1.1 0.0 - -
GeSi Nanowire, limit (V) 4.0 0.56 2.5 1.1 4.0 - -

Ge/SiGe Heterostructure, origin (V) 0.48 0.0 0.74 0.0 0.79 0.0 0.41
Ge/SiGe Heterostructure, limit (V) 0.48 2.0 0.74 2.0 0.79 2.0 0.41

Table A.4: Gate voltage space explored by CATSAI and Random Search algorithms
for each of the devices considered.

Device V1 V2 V3 V4 V5 V6 V7
Si FinFET, origin (V) -6.5 -1.5 -1.5 -6.5 - - -
Si FinFET, limit (V) 0.0 0.0 0.0 0.0 - - -

GeSi Nanowire, origin (V) 0.0 0.0 0.0 0.0 0.0 - -
GeSi Nanowire, limit (V) 4.0 2.5 2.5 4.0 4.0 - -

Ge/SiGe Heterostructure, origin (V) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ge/SiGe Heterostructure, limit (V) 2.0 2.0 2.0 2.0 2.0 2.0 2.0
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Table A.5: Differences in the configuration of the algorithm for each of the devices
considered.

Device Vbias (mV) Noise Thd. (pA) Seg. Thd. (pA)
Si FinFET 7.6 2 20

GeSi Nanowire 4 2 1000
Ge/SiGe Heterostructure 0.5 10 30

Device diag_trace (mV) 2d_lowres (mV) 2d_highres (mV)
Si FinFET 100 80 × 80 120 × 120

GeSi Nanowire 200 150 × 150 200 × 200
Ge/SiGe Heterostructure 100 80 × 80 120 × 120
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Table A.6: Total number of current maps labelled as positive (i.e. corresponding
to the double quantum dot regime) found by each labeller (L1, L2, L3, L4) for each
device and for each run of CATSAI. Runs marked with a an asterisk were excluded
because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) L1 L2 L3 L4
Si FinFET, run 1 250 3.47 2 2 2 3
Si FinFET, run 2 250 4.17 12 12 10 10
Si FinFET, run 3 250 3.62 5 5 5 5
Si FinFET, run 4 250 4.15 9 6 6 7
Si FinFET, run 5 250 3.30 9 9 6 8
Si FinFET, run 6 250 3.90 9 9 7 9
Si FinFET, run 7 250 3.30 3 2 1 3
Si FinFET, run 8 250 3.86 13 13 7 13
Si FinFET, run 9 250 3.25 4 4 4 4
Si FinFET, run 10 250 3.81 10 11 8 11
Si FinFET, run 11 250 3.57 5 5 5 6
Si FinFET, run 12 250 3.83 13 13 13 13

GeSi Nanowire, run 1 250 8.42 45 58 74 48
GeSi Nanowire, run 2 250 8.26 46 61 80 54
GeSi Nanowire, run 3 250 8.57 38 60 77 49
GeSi Nanowire, run 4 250 9.18 40 64 79 46
GeSi Nanowire, run 5 250 8.21 38 52 73 47
GeSi Nanowire, run 6 250 8.90 38 64 78 54
GeSi Nanowire, run 7 250 8.12 39 46 70 46
GeSi Nanowire, run 8 250 8.68 46 59 79 48
GeSi Nanowire, run 9 250 9.05 50 67 84 48
GeSi Nanowire, run 10 250 9.31 51 64 78 52
GeSi Nanowire, run 11 250 9.38 50 64 82 54
GeSi Nanowire, run 12 250 9.02 43 63 78 55

Ge/SiGe Heterostructure, run 1 250 3.38 2 4 5 3
Ge/SiGe Heterostructure, run 2 250 2.50 2 3 2 2
Ge/SiGe Heterostructure, run 3 250 2.39 1 1 0 1
Ge/SiGe Heterostructure, run 4* 250 3.17 1 2 0 1
Ge/SiGe Heterostructure, run 5 250 3.04 3 2 2 1
Ge/SiGe Heterostructure, run 6 250 3.66 2 3 4 3
Ge/SiGe Heterostructure, run 7 250 3.19 1 1 1 2
Ge/SiGe Heterostructure, run 8 250 2.81 2 1 2 1
Ge/SiGe Heterostructure, run 9 250 3.19 1 1 1 1
Ge/SiGe Heterostructure, run 10 250 3.22 1 0 1 1
Ge/SiGe Heterostructure, run 11 250 2.91 3 4 1 2
Ge/SiGe Heterostructure, run 12 250 3.50 1 2 2 1
Ge/SiGe Heterostructure, run 13* 250 3.42 2 2 2 3
Ge/SiGe Heterostructure, run 14* 250 3.31 4 3 5 3
Ge/SiGe Heterostructure, run 15 250 2.99 3 4 4 4
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Table A.7: Total number of current maps labelled as positive (i.e. corresponding
to the double quantum dot regime) found by each labeller (L1, L2, L3, L4) for each
device and for each run of Random Search. Runs marked with a an asterisk were
excluded because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) L1 L2 L3 L4
Si FinFET, run 1 250 1.62 0 0 0 0
Si FinFET, run 2 250 1.68 0 0 0 0
Si FinFET, run 3 250 1.69 0 0 0 0
Si FinFET, run 4 250 1.58 0 0 0 0
Si FinFET, run 5 250 1.64 0 0 0 0
Si FinFET, run 6 250 1.62 0 0 0 0
Si FinFET, run 7 250 1.51 0 0 0 0
Si FinFET, run 8 250 1.45 0 0 0 0
Si FinFET, run 9 250 1.49 0 0 0 0
Si FinFET, run 10 250 1.52 0 0 0 0
Si FinFET, run 11 250 1.63 0 0 0 0
Si FinFET, run 12 250 1.56 0 0 0 0

GeSi Nanowire, run 1 250 4.40 11 18 23 15
GeSi Nanowire, run 2 250 4.06 5 13 20 10
GeSi Nanowire, run 3 250 4.44 9 17 28 11
GeSi Nanowire, run 4 250 3.82 3 12 21 8
GeSi Nanowire, run 5 250 4.66 12 20 30 14
GeSi Nanowire, run 6 250 4.58 10 22 32 17
GeSi Nanowire, run 7 250 4.17 11 11 22 13
GeSi Nanowire, run 8 250 3.92 7 14 21 10
GeSi Nanowire, run 9 250 4.53 14 23 30 17
GeSi Nanowire, run 10 250 4.37 12 19 23 16
GeSi Nanowire, run 11 250 4.59 11 20 30 14
GeSi Nanowire, run 12 250 4.21 19 23 28 18

Ge/SiGe Heterostructure, run 1 250 2.22 1 1 1 1
Ge/SiGe Heterostructure, run 2 250 1.83 0 0 0 0
Ge/SiGe Heterostructure, run 3 250 1.82 0 0 0 0
Ge/SiGe Heterostructure, run 4 250 1.85 0 0 0 0
Ge/SiGe Heterostructure, run 5 250 1.89 0 1 0 0
Ge/SiGe Heterostructure, run 6 250 1.82 0 0 0 0
Ge/SiGe Heterostructure, run 7 250 1.72 0 0 0 0
Ge/SiGe Heterostructure, run 8 250 1.68 0 0 0 0
Ge/SiGe Heterostructure, run 9 250 1.69 1 2 1 1
Ge/SiGe Heterostructure, run 10 250 1.81 0 0 0 0
Ge/SiGe Heterostructure, run 11 250 1.95 0 0 0 0
Ge/SiGe Heterostructure, run 12 250 1.52 1 1 1 1
Ge/SiGe Heterostructure, run 13* 250 1.64 0 0 1 0



Appendix B

donorsearch

B.1 Supplementary Methods

B.1.1 Experimental setup and control

The device consisted of a natural silicon wafer which was topped with a 900 nm

epitaxial layer of isotopically enriched 28Si. A two-step thermal-oxide, SiO2, separated

the 28Si enriched substrate and Al gate electrodes on the device’s top surface which

were patterned using electron beam lithography. The implantation of the 31P donor was

performed prior to gate-electrode patterning. Implantation was followed by annealing

the device at 1000◦C for five seconds. Although the device featured an on-chip

microwave antenna, it was not utilized in this work. The device was wire bonded to

a proprietary printed circuit board and was stored within a copper sample enclosure.

The sample enclosure was placed within a Halbach array of neodymium magnets [173]

which resulted in a magnetic field of approximately 1.1 T applied to the sample. The

sample enclosure was securely attached to the mixing chamber plate of a Bluefors

BF-LD400 dilution refrigerator, capable of reaching a base temperature of 20 mK.

A Stanford Research Systems SIM900 Mainframe containing SIM928 isolated

DC-voltage sources supplied voltages to the SET gate electrodes, VTG, VLB, and VRB

via proprietary factor 8 resistive voltage dividers and to the source, Vbias, via a factor

142
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1000 voltage divider.

The DC-voltages applied to the donor gates and plunger gate electrodes, VDBR,

VDBL, VDFR, VDFL and VPL, were controlled by National Instruments PXIe 4322 within

a PXIe-1088. Additionally VDFL and VPL were connected to a Keysight M3300A

arbitrary waveform generator which was used to provide dynamic voltage signals

enabling fast acquisition of donor-SET charge stability diagrams. The AC and DC

signals were combined using impedance-matched combiners with a voltage division

factor of 2.5 before being supplied to VDFL and VPL individually. DC-signals supplied

to VDBR, VDBL, VDFR, and VDFL were divided by a factor of 8.

The SET current was converted to a voltage using a FEMTO DLPCA-200 trans-

impedance amplifier with a gain of 107 V/A and 50-kHz bandwidth. The signal

was then passed through Stanford Research Systems SIM910 JFET preamplifier, the

gain was set to 1V/V as it acts as a ground connection breaker between the SET

and what followed the preamplifier. The preamplifier was followed by a Stanford

Research Systems SIM965 analogue 50kHz low-pass band filter and the converted

signal was digitised and recorded by the Keysight M3300A at a sampling rate of 500

kHz. donorsearch features an open and flexible interface back-end which interfaced

with SilQ [116] software for instrument control, which wraps around the QcoDeS [174]

acquisition framework and instrument drivers.

B.1.2 donorsearch’s workflow and parameters

During the coarse tuning stage, 0 V and 2 V were the corresponding lower and upper

bounds of VTG, VLB, and VRB. During the fine-tuning stage, each gate electrode had

a search range of 10 mV except VTG which was fixed at 2 V. The VTG, VLB, and VRB

gates were swept over a range of 2 V with a resolution of 1000 points during the SET

tuning process.

Pinch-off current traces are first passed through a Gaussian filter [175] (sigma =

0.1), normalised and then fit to
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f(x,A,B,C) = A(1 + tanh(Bx+ C)) (B.1)

Where A, B and C define the amplitude, slope and shift offset respectively [104].

The pinch-off current trace fit enables the calculation of the pinch-off voltage which we

define as the voltage at which the maximum of the second derivative of f(x,A,B,C)

occurs.

donorsearch has the option between random search or Gaussian process Bayesian

optimisation as search methods during the fine-tuning stage. Random search is

carried out by performing uniform random samples within the bounds of the gate

electrodes. The Gaussian process Bayesian optimiser [176] aims to minimise the

score, uses the Matérn 5/2 kernel (Chap. 2.7.5) and relies on negative expected

improvement (Chap. 2.7.6) as its acquisition function which it aims to minimise over

the posterior distribution. The optimiser acquires the first ten samples randomly before

approximating the voltage space with a Gaussian process.

During the fine-tuning stage, each two-level current trace acquired is scored for

random telegraph signal after passing through the noise classifier. The scoring method

relies on applying a double Gaussian fit to the current trace and extracting the split

between the two Gaussians as the current threshold. The software used to apply the

double Gaussian fit is the Quantum Technology Toolbox (QTT) developed by QuTech

[177] which relies on the Non-Linear Least Square Minimization and Curve-Fitting for

Python (LMFIT) package [178]. The separation, d, of the two Gaussians is defined as

[177],

d =
µ2 − µ1

(σ1 + σ2)
(B.2)

and the split, s, is

s = µ1 + dσ1 (B.3)
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where µ1/2 and σ1/2 are the mean and standard deviation of the respective Gaussians

and µ2 > µ1.

B.1.3 Noise classifier random walk parameters

The current traces for training the noise classifier are acquired within the vicinity of

each charge transition detected by the charge transition locator module. The algorithm

takes a 10-step random walk in gate-voltage space acquiring current traces at each

step. Each step in gate-voltage space is determined by what we call a Gaussian dice

roll. The change in voltage applied to each gate is sampled from a standard normal

distribution with a standard deviation corresponding to 0.5 mV. These samples are

added to the latest gate voltages with the result being the next point in gate-voltage

space to move to in the random walk.

B.1.4 Labelling procedure

To check the Algorithm’s performance in tuning to random telegraph signal, the

current traces claimed by the Algorithm to contain random telegraph signal were

labelled by two humans. Current traces from all the experimental runs were gathered

together and shuffled randomly, then labelled by each human separately. This was

done to reduce any bias towards the different branches of donorsearch’s fine tuning

stage (machine-learning enabled or random search) and peer bias from other human

labellers. Fine tuning times were calculated using Bayesian model of multi-labeller

statistics as in Ref. [103].

B.2 Supplementary Figures and Tables
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Figure B.1: Charge transition locator module performance. Bar charts of the number
of charge transitions and range of Coulomb peak gradients extracted by donorsearch
across all experimental runs.
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Figure B.2: Search for random telegraph signal success rate. Bar chart of at which
iteration did the respective search methods in the fine tuning stage, Gaussian process
Bayesian optimisation (GPBO) and random search, find random telegraph signal based
on unanimous human labels.
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Table B.1: Total number of current traces labelled as positive (i.e. containing
random telegraph signal) found by each labeller (Labeller 1 and 2) for all experimental
runs including Gaussian process Bayesian optimisation (GPBO) and random search
implementations for the fine tuning stage. The run marked with an asterix (*) was
used as a sample run to gauge the performance of the noise classifier.

Experiment Experiment Time (s) Labeller 1 Labeller 2
GPBO run 1 623.07 1 1
GPBO run 2 582.61 6 6
GPBO run 3* 619.69 4 4
GPBO run 4 415.53 5 5
GPBO run 5 490.22 6 5
GPBO run 6 371.92 5 3
GPBO run 7 443.48 4 3
GPBO run 8 556.69 3 3
GPBO run 9 417.17 4 3
GPBO run 10 474.93 4 3
GPBO run 11 502.52 1 1
GPBO run 12 376.04 6 6
GPBO run 13 547.13 3 3
GPBO run 14 432.62 4 2

Random Search run 1 497.57 3 1
Random Search run 2 496.32 1 1
Random Search run 3 399.42 1 1
Random Search run 4 370.24 2 2
Random Search run 5 421.48 2 2
Random Search run 6 304.15 3 2
Random Search run 7 360.96 3 2
Random Search run 8 422.88 2 1
Random Search run 9 506.86 3 1
Random Search run 10 349.36 4 3
Random Search run 11 583.70 1 0
Random Search run 12 422.78 2 2
Random Search run 13 483.90 1 1
Random Search run 14 430.16 3 3

Table B.2: Confusion matrices of the noise classifier tested from one of the experi-
mental runs when using unanimous human labels to gauge its performance as a noise
classifier and as a two-level signal classifier.

Noise Classifier Two-level Signal Classifier
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 39 15 True Neg. 111 4
True Pos. 1 105 True Pos. 9 36
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Table B.3: Confusion matrices of the current traces deemed by donorsearch to
contain random telegraph signal at the end of search for random telegraph signal
relying on Gaussian process Bayesian optimisation (GPBO) or random search and
overall experimental runs. Confusion matrices are shown in the unanimous form where
all human labellers agree on the presence of random telegraph signal and in the single
labeller form where a signal labeller confirmed the presence of random telegraph signal
in a given current trace.

GPBO - Unanimous GPBO - Single
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 0 14 True Neg. 0 6
True Pos. 0 48 True Pos. 0 56

Random Search - Unanimous Random Search - Single
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 0 22 True Neg. 0 13
True Pos. 0 22 True Pos. 0 31

Overall - Unanimous Overall - Single
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

True Neg. 0 36 True Neg. 0 19
True Pos. 0 70 True Pos. 0 87
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M. Möttönen, C. D. Nugroho, C. Yang, J. A. Van Donkelaar, A. D. Alves,

D. N. Jamieson, C. C. Escott, L. C. Hollenberg, R. G. Clark, and A. S. Dzurak.

Single-shot readout of an electron spin in silicon. Nature 2010 467:7316,

467(7316):687–691, 2010.

[41] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin,

C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of cou-

pled electron spins in semiconductor quantum dots. Science, 309(5744):2180–

2184, 2005.

[42] L. Jost. Entropy and diversity, 2006.

[43] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[44] H. H. Bock. Probabilistic models in cluster analysis. Computational Statistics

and Data Analysis, 23(1):5–28, 1996. Classification.

[45] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine

Learning. 2018.

[46] D. K. Duvenaud. Automatic model construction with gaussian processes. PhD

Thesis, University of Cambridge, June, 2014.

[47] C. A. Micchelli, Y. Xu, and H. Zhang. Universal kernels. Journal of Machine

Learning Research, 7, 2006.



BIBLIOGRAPHY 155

[48] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, number v. 55, no. 1972 in Applied

mathematics series. U.S. Government Printing Office, 1968.

[49] P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,

2018.

[50] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of

expensive black-box functions. Journal of Global Optimization, 13, 4, 1998.

[51] A. Chatterjee, P. Stevenson, S. D. Franceschi, A. Morello, N. P. de Leon, and

F. Kuemmeth. Semiconductor qubits in practice. Nature Reviews Physics, 3, 3,

2021.

[52] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. Hollenberg,

G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson. Silicon quantum

electronics. Reviews of Modern Physics, 85(3):961–1019, 2013.

[53] W. M. Witzel, M. S. Carroll, A. Morello,  L. Cywiński, and S. Das Sarma.
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E. P. A. M. Bakkers, F. A. Zwanenburg, D. Loss, D. M. Zumbühl, and F. R.
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