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Abstract
Robotics researchers have been focusing on developing autonomous and human-like intelligent robots that are able to plan,
navigate, manipulate objects, and interact with humans in both static and dynamic environments. These capabilities, however,
are usually developed for direct interactions with people in controlled environments, and evaluated primarily in terms of
human safety. Consequently, human-robot interaction (HRI) in scenarios with no intervention of technical personnel is
under-explored. However, in the future, robots will be deployed in unstructured and unsupervised environments where they
will be expected to work unsupervised on tasks which require direct interaction with humans and may not necessarily be
collaborative. Developing such robots requires comparing the effectiveness and efficiency of similar design approaches and
techniques. Yet, issues regarding the reproducibility of results, comparing different approaches between research groups, and
creating challenging milestones to measure performance and development over time make this difficult. Here we discuss the
international robotics competition called RoboCup as a benchmark for the progress and open challenges in AI and robotics
development. The long term goal of RoboCup is developing a robot soccer team that can win against the world’s best
human soccer team by 2050. We selected RoboCup because it requires robots to be able to play with and against humans
in unstructured environments, such as uneven fields and natural lighting conditions, and it challenges the known accepted
dynamics in HRI. Considering the current state of robotics technology, RoboCup’s goal opens up several open research
questions to be addressed by roboticists. In this paper, we (a) summarise the current challenges in robotics by using RoboCup
development as an evaluation metric, (b) discuss the state-of-the-art approaches to these challenges and how they currently
apply to RoboCup, and (c) present a path for future development in the given areas to meet RoboCup’s goal of having robots
play soccer against and with humans by 2050.
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1 Introduction

Robots are complex systems that require hardware and soft-
ware components working together, supporting and at times
compensating for each other.1 From a scientific perspective,
these requirements make reviewing progress in robotics dif-
ficult: How does a robot that folds clothes compare to one
that finds human victims in a disaster scenario? How can we
measure a fleet of robots organizing a warehouse against a
single robot watering a plant? One could measure the stabil-
ity of the shell material, the accuracy of the computer vision
components, or the precision of the actuators. This, however,
only provides us with a partial picture of the robots’ perfor-
mance. What is missing is the evaluation of the system as a
whole, and how the components work together in solving a
specific task.

RoboCup (RC), one of the largest annual robotics com-
petitions, is aimed at providing a benchmark for such
evaluations: Robots from all over the world compete in sev-
eral leagues offeringunique challengeswithwell-defined sets
of rules. The major leagues range from the @Home league,
inwhich robots are taskedwith household chores and interact
with humans in social environments, to the Rescue league,
in which robots need to find victims in realistic disaster sce-
narios, to the@Work and Logistics leagues, in which robots
assemble objects or optimize a production chain. The Soccer
leagues are the most well-known, as it is their goal to beat
the best human soccer team by 2050. In the soccer leagues,
teams of robots of different sizes and hardware configura-
tions play soccer against each other. While these leagues
address different scientific aspects, they are united in their
aim to foster scientific development, by presenting increas-
ing yearly challenges and favoring scientific collaborations
between the different leagues.

Given the goal of creating robots that can beat humans
at soccer, one might reasonably ask, “how will we know if
they can?” On the surface, this seems like an easy question
to answer – organise a soccer game: robots against the cur-
rent FIFA World Cup Champion and if the robots win the
RoboCup challenge has been met. However, it may not be
quite so simple. Even if the World Cup Champions were to
agree to play such a match, what would the rules be? If we
built a “robot” the size and shape of a goal and place it in the
goal (an invincible goalie), or if we built a robot that could
place the ball in a cannon, and then shoot it towards the cor-
ner of the goal at high speed (an invincible attacker), nobody
would be particularly impressed.

While the current FIFA rules do not place any restrictions
on the size, shape, or “actuators” of the players, these are
examples of issues that would need to be considered prior to
assessing whether robots are better than people at soccer. A

1 Writing led by Peter Stone and Maike Paetzel-Prüsmann.

few similar issues arose in prior contests of humans versus
machines, such asDeepBlue vs. GaryKasparov at Chess, and
AlphaGo vs. Lee Sedol at Go. The rules of these purely cog-
nitive challenges, however, were relatively straightforward to
define – the computers could use any means to decide what
next move to make, and if they won, they were better than
their opponent at the game in question. Soccer, instead, has
cognitive and physical challenges. It is much less straightfor-
ward to define rules such that if the robotswere towin, people
would generally agree that robots are better than people at
“soccer.” Thus, this question gets at a somewhat philosophi-
cal issue: what is the essence of soccer? Is it still soccer if one
player can run twice as fast as all the other players, or if they
can score without passing, or if the players are all controlled
by a single program? These questions need to be answered so
that we can ensure that the robots are really playing soccer.

Stone, Quinlan and Hester considered this question more
than a decade ago in the Chapter “Can Robots Play Soccer?”
from a popular philosophy book called “Soccer and Philos-
ophy: Beautiful Thoughts on the Beautiful Game” Stone et
al. (2010). They laid out a set of restrictions on the form
and capabilities of individual robots to ensure that they will
not be too fast, too strong, or too precise to be consid-
ered “human-like”. They also considered restrictions on team
composition and communication, such as ensuring that the
teammates have at least somewhat differing capabilities from
one another, and that they can only communicate via human-
perceptible sounds. And finally, they considered restrictions
on coaching to place the robot coach on a similar footing as
human coaches.

When looking at the abilities of the robots competing
in the RC soccer leagues today, these considerations seem
rather futuristic, given that the bipedal human-sized robots
are so unstable and fragile that they need a human robot-
handler walking behind them to catch them when they fall.
In a recent survey (Paetzel-Prüsmann et al. 2023) which we
distributed to students, researchers, and professors engaged
in RC activities, locomotion was identified both as the most
important and the most difficult research area when prepar-
ing to play against humans in 2050. Other areas that were
considered of great importance and difficulty were aware-
ness of the environment, robustness, and decision-making.
While scientific progress in these areas can be seen as a pre-
requisite to the more future-looking considerations made by
Stone et al. (2010), these responses also indicate that many
researchers are currently overlooking the importance of the
human in the loop as they are designing robots that can play
against humans. Safety ranked fifth in perceived importance
and difficulty to achieve, while HRI was considered quite
challenging (ranked 6/12), but less important (ranked 9/12),
and natural-language understanding, a key aspect in creating
fair communication, was ranked last in importance.
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This article can be seen as a natural revision and extension
of the work by Stone et al. (2010), fleshing out the desiderata
they laid out in more detail. We aim to give an overview of
the state-of-the-art in robot hardware, cognition, behavior,
and human-robot relational dynamics, as well as point out
current challenges that robotics researchers are facing. The
article however goes beyond these contemporary issues by
identifying future challenges for the goal of 2050, and aims
to prepare the research needed to create the robots that will
eventually play with and against humans.

The remainder of this article is structured to provide
state-of-art and current open challenges in the following
areas: Sect. 2 discusses hardware and motion design; Sect. 3
presents cognitive capabilities and robot behaviors, includ-
ing perception; Sect. 4 deliberates the complex dynamics in
humans-robots soccer games; and Sect. 5 summarises the
identified future research directions in unstructured HRI.

2 Hardware requirements

Robots that play soccer come in very different shapes and
sizes. In theMiddleSize League (MSL), robots use wheels to
get around the field and Lidars to create a three-dimensional
map of the environment. In the Humanoid League (HL),
robots are constrained to human-like locomotion and sensing.
Scaling the robots to human size (which is likely necessary
to match the running and kicking speed of humans) comes
with unique challenges in the robots’ hardware design and
motion control, many of which are unsolved to date. In this
section, we give an overview of the current state of the art in
hardware design and motion control for human-like soccer
robots, and discuss a road to a more stable and safe robot
design in the future.

2.1 Human-sized robot design

In order to meet the RC challenge and more generally unlock
the potential of humanoid robots,2 numerous research groups
have been working on the hardware required for locomotion.
For example, Honda Corporation developed the humanoid
robot ASIMO (Sakagami et al. 2002), which has 34 DoF,
is 120cm tall, weighs 43kg, and can kick a ball and shoot
a goal. Boston Dynamics developed Atlas, a 150cm tall
research platform designed to push the limits of whole-body
mobility. It has 20 DoF and weighs 80kg. Atlas’ advanced
control system and state-of-the-art hardware give the robot
the power and balance to demonstrate human-level agility.3

Georgia Institute of Technology developed humanoid robot
DURUS which is 180cm tall and weighs 79.5kg, and which

2 Yun Liu; HL Team ZJLabers, Zhejiang Lab, China.
3 ATLAS. The world’s most dynamic humanoid robot https://www.
bostondynamics.com/atlas

is one of the most efficient robots when it comes to energy
consumption for walking (Reher et al. 2016). Finally, the
Technical University of Munich developed the humanoid
robot LOLA with 25 DoF, which is 180cm tall and weighs
60kg (Buschmann et al. 2012).

2.1.1 Open challenges

Although a range of different humanoid robots have been
developed, the design of amore powerful robot body remains
a prerequisite for the RC 2050 goal. Robot configuration has
always been one of the biggest challenges in robot design,
with the main decisions revolving around the selection of
DoF and the arrangement of the drive mechanism. Robot
soccer requires a very flexible robot body that has the ability
to walk, run, throw the ball, stand up, as well as a variety
of other humanoid movements. First, this requires the robot
to have sufficient DoF. For the humanoid robots currently
participating in RC, there is a minimum of 6 DoF per leg,
3 per arm, and 2 in the neck joint, amounting to at least 20
DoF for a full robot. However, 20 is far from sufficient for
more complex movements, which will be needed for compe-
tition with humans. Unfortunately, increasing the DoF leads
to a dramatic increase in robot design complexity, control
difficulty, and cost.

In terms of drive mechanism arrangement, the robot leg
mechanisms of LOLA, ASIMO, and DURUS are designed
in a very inspiring way. For example, the motor position of
the knee and ankle joint of LOLA are improved by adding
tandem and parallel drive mechanisms (see Fig. 1). In this
way, the inertia of the robot’s legs is significantly reduced, it
is more humanoid, and easier to control.

Finally considering motor power, existing motors are still
far from being comparable to human muscles in terms of
energy, efficiency, and torque output density. Among the
existing motor-driven robots, the fastest humanoid robot
known to be able to run is ASIMO, which can reach a
maximum speed of 9 km/h (Sakagami et al. 2002). The
fastest known human running speed lies almost 5 times
higher at 44.72km/h, which was achieved by Usain Bolt.
At the same time, the power density of the ASIMO motor
solution cannot support the completion of some highly explo-
sive movements, such as parkour and backflips shown by
ATLAS2.4 As a result, a number of research institutions are
now turning their attention to hydraulic solutions, such as
IHMC, which is developing the full-size humanoid robot
Nadia.5 The difficulty with hydraulic drive solutions, how-
ever, is the lack ofmarketable integrated hydraulic drive units

4 https://www.youtube.com/watch?v=tF4DML7FIWk
5 IHMC Developing New Gymnast-Inspired Humanoid Robot https://
spectrum.ieee.org/ihmc-developing-new-gymnastinspired-humanoid-
robot
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Fig. 1 Structural of robot LOLA’s leg [10]

and the R&D costs which may be prohibitive for general
research institutes and universities. Therefore, most research
institutions and universities are still considering the use of
electricmotors to design relatively lightweight bipedal robots
through weight reduction and non-full-size arrangements.
Currently, many bipedal research institutions are studying
Electro-active Polymer artificial muscles (Kim and Kim
2023) in the hope of obtaining drive units that are compa-
rable to human muscle capabilities. This research direction
could prove to be very interesting.

With the development of new drive units, such as carbon
nanotube yarns, robot joints can now produce up to 85 times
more force than human muscle (Lima et al. 2012). Further-
more, the capacitive dependence of artificial muscle drive
performance has been solved which helps designing high-
performance drivers with non-toxic, low drive voltages (Chu
et al. 2021). The physical performance of future robots is
thus expected to break through rapidly, and more and more
robust robots will emerge to achieve the goals of RC 2050.

2.2 Motion engine

The HL and Standard Platform6 League (SPL)7 both require
humanoids that use bipedal locomotion to compete in the

6 Daniel Barry andMarcus Scheunemann; HL Team Bold Hearts, Uni-
versity of Hertfordshire, UK; HL Team Bold Hearts, University of
Hertfordshire, UK.
7 The SPL differs from HL because all teams are required to use Alde-
baran NAO robots, which do not meet the HL’s restrictive rules with
regard to the use of sensors and body proportions.

RC competition. In both leagues, there have been successful
approaches to enable robust and dynamic walking on mostly
flat artificial grass. Herein, we consider bipedal locomotion
to be a subset of all robot motion, including actions such as
standing-up or kicking. RC has proved as a useful test bed
for the current applied state of robot motion in a challeng-
ing environment, where humanoid robots have been able to
successfully walk on artificial grass with little or no falling.
Most approaches within the HL and SPL utilize zeromoment
point (ZMP) based step planning or computing walk trajec-
tory. Although robust, the humanoids are yet unable to run,
jump, stand-up or operate on non-flat terrain using ZMP-
basedmotion and it does not appear to be a suitable candidate
for a generalised motion engine (Vukobratovic and Borovac
2004).

Realizing a dynamic bipedal walk for robots is very dif-
ficult, and this is why most approaches have “typically been
achieved by considering all aspects of the problem, oftenwith
explicit consideration of the interplay between modeling and
feedback control” (Reher and Ames 2020). This is also true
for RC where prominent candidates explicitly compute the
center of mass using the ZMP (Czarnetzki et al. 2009), or
use a central-pattern generator (Behnke 2006) to compute
a suitable walking trajectory for the robot. Teams then use
the robot’s sensory input to satisfy the computed trajectory.
These methods need extensive parameter tweaking and rely
on a growing number of assumptions about the environment.
A popular assumption to render the methods computable is
an approach that assumes a mostly flat and even terrain. The
environment complexity will further increase the parameter
space with moving towards a real-world soccer pitch, and
with humans entering the competition as players.

2.2.1 Open challenges

When considering open challenges, we first propose agent
self-modelling, where agents should be able to model their
own non-linear control with meaningful abstraction from the
environment. We expect this process to somewhat resem-
ble a baby learning to walk, a process that is often linked
to curiosity and intrinsic motivation (Scheunemann et al.
2022). This would include complex control variables, such
as actuator behaviour under load, temperature, voltage and
wear for example, where the behaviour is expected to change
over time. We propose the challenge for agent local-world
modelling, where the agent builds a model of the local
environment abstracted from its self-model, to allow future
planning of movements. This would include other robots and
humans in the near vicinity, nearby terrain the robot is likely
to interact with, and other useful observations.

Using mechanisms that allow robots to self-model their
environment and adapt to unknown situations opens new
issues. Teams in RC typically use algorithms that are compu-
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tationally inexpensive due to the full autonomy constraints,
whilst research labs want to use motion generations with a
high level of control. There is evidence that an agent’s abil-
ity to create intelligent behaviours depends on the sensory
motor loop, where an agent tends to benefit from embodi-
ment due to environment complexity (Kubisch et al. 2011).
Intrinsic motivation (IM) has been used to feed reinforce-
ment learning for motion acquisition in simulation (Peng et
al. 2018), but it also shows the learning of motion skills on
real robots (Schillaci et al. 2016). IM has been shown to pro-
duce perceivably social motion behaviours, suggesting that
it is suitable for complex human-robot interactions, such as
a soccer game (Scheunemann et al. 2019).

2.3 Discussion and conclusion

Designing robots that are comparable to humans in their
speed of locomotion, stability and robustness remains a
major open challenge. Whilst the current approaches to
motion in humanoid robotics have proven to be successful in
more controlled scenarios, it remains to be seen how these
solutions will scale to more complex real-world environ-
ments, where there is a larger number of unknown complex
variables. These problems are not unique to humanoid soc-
cer players. There is a considerable effort to get robots
into dynamic environments, where most successful imple-
mentations have reduced motor capabilities, such as smart
vacuums or toys. One reason we may see a reduced DoF for
commonly deployed platforms is due to the cost and per-
formance of actuators. We suggest that even with low-cost,
high-performance actuators, robots are more generally still
missing the motion framework for the required control in
dynamic environments.

Another challenge to the design of robots that goes beyond
the application of robot soccer is the development of bodies
that are robust enough to survive and recover from a fall with
minimal damage to the hardware system. Especially in social
environments, human-like bodies are both desirable from an
interaction point of viewas froma locomotion perspective (as
human environments are often designed to suit their bodily
abilities well). However, even robots smaller than human size
still risk permanent damage when falling down. Moreover,
the potential threats to a robot’s bodily integrity don’t stop at
the damage from a fall: They can also break small parts like a
finger when getting tangled into another robot, human, or an
obstacle in the environment. Apart from the motors and the
outer shell of the robot, its inner parts can face failures like
short circuits and cable breaks. While shielding these parts
from extraneous interference can help to prevent some of the
failures, it also makes it difficult to repair them on the spot.

One potential solution inmaking robotsmore robust could
be cover materials that are harder to physically break. Espe-
cially when combining these with powerful motion engines,

however, serious safety concerns arise for human players.
One potential solution to this problem is the implementation
of advanced safety procedures in the motion control loop,
as is already standard in industrial robots. These robots rec-
ognize and stop a collision between their hardware and an
obstacle within milliseconds, which minimizes their physi-
cal impact on a potential human getting in their way. While
this works well for robots that interact with humans within
a constrained space, robots that could potentially fall onto a
human or find themselves in an otherwise unstable position
need to find different strategies tominimize damage. Another
potential solution to ensure human safety independent of the
current physical state of the robot could be the application
of materials and joints currently researched in the area of
soft robotics. These materials require further advancement
for being robust enough to work in an environment with as
much physical contact as in robot soccer. As was pointed out
by many researchers participating in our survey, hardware
and motion control is still one of the main factors that needs
to advance in order to play with or against human soccer
players. However, as we will see in the next section, there
are still many open research questions that can be tackled
independently of the improvements in the robots’ hardware.

3 Cognitive capabilities & robot behavior

During a soccer game, robots need to proactively plan,
manage and execute their playing goals – both collabora-
tive/cooperative and for personal gain – while modeling their
surroundings including human players. Therefore, robots
need to be able to formulate purposeful conscious obser-
vations, build their knowledge of the context and the agents
(human or machine) in the environment, and both plan and
act accordingly (Rossi et al. 2020a). Humans are able to
naturally communicate among each other using verbal and
non-verbal signals. However, robots’ ability to generate ver-
bal and non-verbal expressive behaviors (such as natural
spoken language, gestures, affective responses) does still
not match their capability of understanding the situational
context. This is particularly relevant if we want to simulate
cognitive capabilities based on human-like senses, as is the
case in the HL. This section presents an overview of existing
techniques based on basic human-like abilities such as vision
and audio sensors to build a robot’s awareness, and subse-
quently provides future scientific challenges to be addressed.

3.1 Audio in human-multi-robot systems

There is a growing interest in the use of auditory percep-
tion in robotic systems (Rascon and Meza 2017) which has
been shown to be an important part of the interaction scene
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between a robot and a human (Meza et al. 2016).8 In fact, it
has been a part of other service robotics competitions (such as
RC@Home) for several years (RoboCup@Home Technical
Committe 2024). In terms of a human-robot soccer match,
there is an important amount of relevant information that can
be extracted from the auditory scene, such as the location and
intentions of the human adversaries, as well as the robot’s
teammates; even the audience noise during the match can be
integrated in the robots’ decision making process (Antonioni
et al. 2021). Since audio can be perceived in an omnidirec-
tional way, it is well suited to complement information that
is extracted by other means (e.g., vision) which can benefit
strategy planning and safety.

Pragmatically, auditory perception in robots (or robot
audition) entails three main tasks: (1) localizing the sound
sources in the environment given a frame of reference (usu-
ally, with the robot at its origin), (2) separating the audio
data of each sound source from others such that each sound
source has its own audio channel, and (3) classifying the
sound source from each sound source channel. These three
tasks are typically carried out in a serial manner, since the
location of a sound source can be used to separate it from
the captured audio mixture into its own channel. Once sepa-
rated, amono-source classifier can be used, instead of relying
on far more complex techniques that carry out multi-source
classification.

In terms of localization, the ODAS library (Grondin &
Michaud, 2019) provides good localization performance,
while requiring a relatively small software footprint. A deep-
learning approach (Nakadai et al., 2020) outperforms it, but
requires more computational power. It is also worthmention-
ing a few-microphone approach that can outperform them
in certain scenarios (Gato, 2020). A beamforming-based
approach (Grondin et al., 2020) requires knowing the loca-
tion of the sound sources but can run in relatively light
hardware. A deep-learning approach (Liu et al., 2020a) pro-
vides an important jump in separation performance in real
environments, although it requires an important amount of
computational resources. A hybrid approach (Maldonado et
al., 2020) provides a middle-ground between the accept-
able performance and low computational requirements. In
terms of classification, and particularly speaker identifica-
tion, a deep-learning-based approach (Xie et al., 2019) can
carry out this task “out in the wild”, but requires more com-
putational power. A “lighter” approach (Vélez et al., 2020)
provides lower-but-still-acceptable performance. It is also
worth mentioning the HARK library (Nakadai et al., 2010),
since it has been a tried-and-true auditionworkhorse formore

8 Caleb Rascon; RC@Home Technical Committee 2012–2017, Exec-
utive Committee 2017–2019, Universidad Nacional Autonoma de
Mexico, Mexico.

than a decade, and carries out all three auditory tasks in con-
junction.

3.1.1 Open challenges

The challenges proposed here will go through several itera-
tions,with rising difficulty as time goes on. The initial version
is to estimate and track the relative direction of human adver-
saries in the near vicinity of the robot. Recordings of human
adversaries can be used, or actual human volunteers, vocaliz-
ing specific utterances that can be expected to be heard during
a soccer match, such as “I’m open”, “pass me the ball”, etc.
The difficulty can be later increased by: a) using shorter utter-
ances, such as “hey”, or non-linguistic vocalizations (grunts
or mono-vowel yelling); and b) activating multiple human
sound sources at the same time. The location of each human
sound source can be used to quantify the precision of the
robot’s localization performance.

In a subsequent version, the location information of the
human sound source is to be integrated with the audio esti-
mations of other robots, as well as their available visual
data, to provide a shared robust localization of the human
adversaries. This is proposed to eliminate the need for exter-
nal sensing, which is typically used in indoor robot-robot
matches, but is impractical to use in an outside environment.
A robot will not be able to sense (either acoustically or visu-
ally) a human adversary on the other side of the field, but a
nearby robot teammate should be able to. Thus, the robots
themselves should aim to create an ad-hoc network through
acoustic means to share the information perceived from their
immediate surroundings to the rest of the robots. The acoustic
parameters of the robot vocalization should be in the human-
hearing range, so that it falls within the restrictions set by
Stone et al. (2010). To evaluate the efforts of creating an
ad-hoc acoustic network, a version of the challenge can be
carried out using mobile human sound sources which will no
doubt introduce localization errors in the estimation carried
out by one robot. Thus, redundancy between the estimations
of several robots should surmount these issues, and will be
evaluated as such. To transition between using a common
wireless network (e.g. WiFi or Bluetooth) and the acoustic
network proposed here, a version of the test can simulate
a situation where the wireless network “fails” by manually
disabling one or more of the wireless sensors/antennae that
the robots use to communicate with each other, and forcing
them to use audio as a backup to continue such communi-
cation while a time-out is called. It is important to mention
that such type of communication should not be required to
be speech, and should be accepted in any form as long as
the robots are able to communicate the relevant information
to each other acoustically, without requiring wireless sen-
sors, and without causing hearing discomfort to the human
adversaries. However, it is also important to consider that not
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using speech will make the robots’ behaviours and intentions
entirely non-transparent and impossible to infer for humans.
As a consequence, human players will be less inclined to
accept and trust to play with robots Nesset et al. (2021), and
their interactionwill be negatively affected and induce people
to toss robots away de Graaf et al. (2017).

Other types of audio-based human-robot interactions
can also be evaluated, such as making the robot verbally
announce to the human referee if a human adversary made
an illegal move (such as a foul or violating the offside rule).

In the final version of this challenge, the robot assesses the
humans’ intentions and strategies via the analysis of the par-
alinguistic characteristics of the vocal utterances emitted to
each other during the match, such as prosody, pitch, volume,
and intonation, as well as the sound of stepping patterns. Pro-
fessional players are well aware that yelling out a phrase such
as “pass the ball” announces to their adversaries their intent.
However, human adversaries may not be aware that they emit
some vocalizations in critical moments even when not meant
to be (a deep breath before a sprint, a small sigh when a
play didn’t go as planned, a slight wail when they are free to
receive the ball, etc.), which can be used to the robotic team’s
advantage. This can also be used for the human team’s safety.
For example, if a humanwould yelp right before crashing into
the ground or another agent, or if they would scream when
they are hurt. In addition, other auditory cues can be used
that are not specific to speech, specifically that of the sound
of human feet running or walking in the grass. Recordings
of human volunteers during human-human matches can be
used to evaluate the robot’s ability to recognize such activi-
ties, and communicate them to the rest of the team to be used
for strategy planning and safety precautions.

The final outcome of a robot team that is able to solve all
the proposed challenges is the localization and intention esti-
mation of each human adversary through auditory perception
without the use of external sensing.

3.2 Robot vision

Computer vision techniques have been used inmany domains
such asmedical imageprocessing (Ronneberger et al. 2015),9

autonomous driving (Janai et al. 2020), and robotics (Jamzad
et al. 2001) for several years. Computer vision enables
autonomous robots to visually perceive their environment
and offers a challenging testing ground for applied computer
vision in complex and dynamic real world scenarios.

Currently computer vision used in humanoid robotics (and
especially in the RC context) is transitioning from hand-
crafted model-based algorithms (Fiedler et al. 2019) to more
robust and powerful data-driven ones (Vahl et al. 2021). The

9 Florian Vahl and Jan Gutsche; HL Team Hamburg Bit-Bots, Univer-
sity of Hamburg, Germany.

model-based approaches include conventional methods like
the usage of color lookup tables or color clustering for sim-
ple segmentation tasks (Freitag et al. 2016), Hough lines
for line fitting (Szeliski 2010), or filtering in the frequency
domain to generate regions of interest for later classification.
Currently available data-based approaches include simple
CNN classifiers which classify candidates generated by a
model-based approach. More complex data-based methods
include the YOLO architecture (Redmon et al. 2016) which
directly detects objects in an image, or architectures like Seg-
Net (Badrinarayanan et al. 2017) or UNet (Ronneberger et al.
2015)which generate pixel precise segmentationmaps.Data-
driven approaches such as convolutional neural networks
(CNNs) are very powerful in terms of accuracy, robustness to
noisy data, and the overall generalization. But they are com-
putationally expensive and hard to modify or debug after the
training. The data-driven approaches need large amounts of
training data. This is an issue for many domains, but in the
RC domain large quantities of annotated data for supervised
learning are available as part of open data projects (Bestmann
et al. 2022). While very powerful data-driven approaches
exist, real-time constraints are still a limiting factor on
embedded platforms like the autonomous robots used in the
RC domain. Due to this limitation only subscale versions of
models like YOLO and nearly no Region based Convolu-
tional Neural Networks (RCNNs) (Girshick 2015) or Vision
Transformers (Liu et al. 2021) are used. While being also
computationally expensive, frameworks like OpenPose (Cao
et al. 2019) enable 2D and 3D human pose estimation which
is a growing field of interest in the humanoid RC domain.

3.2.1 Open challenges

One major challenge of the computer vision system is to per-
ceive the state of the whole environment in a short amount of
time. This requires the fast and reliable detection of various
small objects in a large image space. For humanoid robots
in the soccer context, this means that the comparably small
soccer ball is one of the most important items that must be
localized from a maximum distance of over 100ms. On the
other hand, a wide field of view is required to minimize
the head movement needed for the observation of multiple
targets. Head movements take time and limit the ability of
tracking (e.g. the position of the opponents) which is a safety
concern when playing against humans.

Adaptive resolution, which is dynamically changing the
resolution of parts of images, could result in an efficient way
of handling very high resolution images (Mnih et al. 2014).
Various fast region of interest proposal methods or attention-
based mechanisms could be used for such a task and need to
be evaluated in the RC context.

As discussed before, there is a large amount of environ-
ment information that is critical for both strategy building
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and humans’ safety, and which can be transferred with and
gathered from audio-based data. However, it is unreliable
for long range communication, since the energy of acoustic
signals drops faster compared to vision-based signals. Thus,
gestures are essential for intuitive non-verbal long range com-
munication and are therefore used by humans in everyday
situations as well as in many different sports. As the soc-
cer field size in the RC competition grows and the wireless
communication gets more restricted, it is a feasible way of
communicating with other players, referees or the trainer.
Understanding gestures of the opposing team brings also
tactical advantages. A more general version of the gesture
recognition is the pose estimation. The robot’s behavior could
use the pose of opponent’s legs and torso to outplay them or
more importantly avoid injuries among the opponents when
playing in proximity to them. There are state-of-the-art pose
estimation frameworks, but further research regarding the
integration into a dynamic gameplay and the reliability and
safety impact of such approaches should be done. A classi-
fication of facial features expressing emotions, exhaustion,
or the intentions of an opponent could also be used by the
robot’s behavior when playing against humans. There are
approaches, such as FER (Goodfellow et al., 2013), which
could be adapted to this specific domain.

We expect that the robotic soccer games will be played
more dynamically in the future. Such a play style includes
faster movements, higher passes and less predictable sur-
roundings. This implies that visual processing needs to be
faster while remaining reliable. Currently, most of the RC
robots do not feature any depth sensing, because LIDAR sen-
sors are not allowed in theHL as there is no equivalent human
sense (HL Laws of the Game 2019/2020). Instead, object’s
relative positions are estimated based on the assumption that
it is located on the same ground plane that the robot is stand-
ing on. This approachwill no longer workwhen objects (e.g.,
the soccer ball) leave the ground. We therefore assume that a
combination of both stereoscopic imaging for accurate short
distance depth estimation and a quasi-monocular method for
long range measurements as well as featureless regions is
needed (Smolyanskiy et al., 2018). This is based on the fact
that the distance between the cameras is small and the angular
differences get too small for far away objects.

On theway out of the laboratory and onto the field, we also
encounter environmental effects such as natural light, which
can drastically change in brightness, cast shadows, or glare
the robot’s vision system. Other effects include disturbances
due to rain, snow or dirt both in the air and on the ground.
As long as these disturbances are included in the datasets,
data-driven approaches appear to be robust against them to a
certain degree. See figure 2 for an example.

Fig. 2 Learning based approach [full-size YOLOv4 (Bochkovskiy et
al., 2020)] in natural light conditions. Source (Bestmann et al., 2022)

3.3 Discussion and conclusion

The cognitive capabilities implemented in the state-of-art
robots allow them to elaborate static and dynamic scenar-
ios that do not take into account people’s fast and complex
reactions. Perceiving as much information as possible about
the state of the other players is crucial to avoid injuries and
damage.

Multiple senses, such as hearing and vision perception,
could be fused to improve robots’ perception and decision
making process of the environmental context.

While the field of computer vision made large steps in
the past years,there are still open challenges. For example,
robotswill need to be able to adapt to natural conditions of the
weather and illuminations as well as expand the amount of
observed information to include detailed information regard-
ing enemy poses which are crucial for a dynamic and safe
behavior. Learning based approaches are promising for these
purposes, as they perform well in many domains and are dis-
tantly related to the way humans solve these challenges.

Moreover, in a such dynamic and near vicinity context, we
can expect bidirectional communications. We want to opti-
mize the ability of robots to communicate with each other, as
well as their ability to infer the humans’ intentions, through
sounds, natural languages and non-verbal modes. However,
it is important that robots still perform transparent motions
and behaviors that can be clearly recognized by the humans
(Holthaus & Wachsmuth, 2021).

4 Human-robot relational dynamics

While anyone who watched the most recent RCmatches will
agree that playing against human teams is still a far way off,
this is the eventual goal. Playing against and with humans
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opens up newchallenges and dilemmas related to theHRI, for
which no simple solution may exist. For example, a delicate
balance will need to be struck between ensuring the robots
are safe for humans to play with (and are perceived to be
so by the human players so that they will actually agree to
play) on the one hand, while on the other hand ensuring that
the robots have enough opportunity to win so that they will
give the human team a run for their money. The following
section aims to highlight some of the most pressing issues
and illustrate how they create a paradox that may prove to be
unsolvable.

4.1 Playing against humans

Every year after RC’s MSL final,10 the fresh world cham-
pion demonstrates its soccer skills against a team of human
players. This annual match is an exposure of the world-
wide state-of-the-art in human versus robot soccer playing
(Soetens et al., 2015). The first goal against the human team
was scored in 2014 and multiple goals have followed since.
The human team, consisting of RC Trustees, continues its
winning streak ever since. In RC, the MSL is well suited to
the ‘robot versus human’ soccer play due to both its focus on
robot teamwork, and its accessibility for humans by using the
standard size FIFA ball and by its playing field dimensions.

The regular matches during the tournament are however
without direct human interaction. The human referee team
interfaces with the robots through a league-specific Refbox
application (Dias et al., 2020) on a computer that is connected
with both teams.

4.1.1 Open challenges

Various challenges have been identified towards a more
sophisticated human interaction in the league. As a first step,
robots have to be safe, not harming humans or themselves.
As a second step, anticipating human behavior and, thirdly,
cooperation canbe aimed for. These three stepswill be treated
in the remainder of this section.

a) SafetyThefirst challenge in amore sophisticated human
interaction in the MSL is the safety of the human players.
Ensuring human safety can be achieved both by considering
the robot’s design and by considering its behavior. Currently,
the robots in the MSLmust not exceed the regulatory dimen-
sions of 50×50×80 cm andweigh nomore than 40 kg (MSL
Technical Committee (2020)). The robots can achieve speeds
of up to 4 m/s without controlling the ball (Soetens et al.,
2015). Even though collisions are to be avoided at any given
moment, a collision with a human with the aforementioned

10 Wouter Kuijpers, Ainse Kokkelmans and René van de Molengraft;
MSL Team Tech United, Eindhoven University of Technology, Nether-
lands.

weight and speed should not result in an injury. In a collision
of 0.01 s, the kinetic energy of the robot, 160 kg.m.s−1,
would result in an interaction force of 16 kN .

The weight of the robot is mostly constituted by the
weight of the electronic solenoid used to shoot the ball (4.5
kg (Meessen et al., 2010)), the frame of the robot and the
motors used. Reducing weight is one of the possible solu-
tions to improve the safety of human players. Within the
league, however, most robots weigh close to the maximum.
With the state-of-the-art in sensors, actuators and materials,
it is difficult to have competitive robot specifications (e.g.,
driving speed, kicker force) with reduced weight. Adding
soft material on the outside of the robot, i.e. a bumper,
and thus extending the duration of the collision, will result
in smaller interaction forces and will enable safe feedback
control actions. A robot should detect a collision via its com-
pliant skin and react accordingly. Passive compliance should
prevent initial damage, while further damage should be mit-
igated through active compliance. Even though the rulebook
states a bumper has to be included in the design of the robot
(MSL Technical Committee, (2020)), the specifications are
based on robot-robot collisions, which will result in too high
interaction forces for humans.

Another approach to increasing the safety of human play-
ers is behavioral; i.e. to prevent high-speed collisions. For
this to work, the robot has to detect the human. The current
obstacle detection of most MSL teams uses a combination of
a camera and a parabolic mirror, often referred to as Omni-
vision. This catadioptric vision system enables a 360◦ view
with a range of up to 11 metres (Dias et al., 2020), see
Fig. 3. The camera is pointing upwards and looking into a
downwards-mounted parabolic mirror, hence it is impossi-
ble to detect objects above the height of the robot (80 cm).
This not only hampers the detection of the ball once it is air-
borne and above the height of the robot, but also the detection
of humans. Thanks to the increase in available computing
power, many teams equip robotic players or goalkeepers
with forward-facing cameras such as Kinect cameras (Dias
et al., 2020) and use those as either main camera systems
(Schreuder et al., 2019) or complementary systems.

b) Anticipation The second challenge is to play against
human players and to be able to anticipate their actions. The
latter will require the detection and tracking of the human’s
position on the soccer field. To detect opponent robots, most
teams use the aforementioned color segmentation and vision
system. For tracking, most teams filter the detections from
the catadioptric vision system using extended Kalman filters
or particle filters to be able to handle false positive detections,
occlusions and to estimate the velocity of the opponent robots
(Dias et al., 2017). These filters typically employ constant
velocity models for the opponent robots.

The view from a catadioptric vision system will not be
optimal, if sufficient at all, to provide accurate detections of
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Fig. 3 Image captured from the catadioptric vision system. A human
is observed in the top left corner of the image and a MSL robot in the
top right corner

a humanand estimate its velocity.However, once a qualitative
detection has been established for humans, for example using
forward-facing cameras, similar filters can be employed
to track opponent players and estimate their velocity. The
possibilities for qualitative detections of humans have con-
siderably changed over the last few years due to the use of
the Kinect camera, state-of-the-art image-based human pose
detection software (Cao et al., 2021), and other classifiers.
These detections could be enhanced by using human motion
patterns or gait patterns to provide better detections and/or
estimate their velocity (Cao et al., 2021). In Dolatabadi et
al. (2020), for example, the output of OpenPose is combined
with a model for the position and velocity of the hip, knee,
and ankle in typical human motion patterns, resulting in bet-
ter tracking of humans.

Aside from technical questions, this also raises the ques-
tion of to what extent collision should be anticipated in a
human versus robot match. In human soccer, collisions fre-
quently occur when opponents try to gain control over the
ball. An open question thus remains, to what extent should a
robot prevent collisions while maintaining a strong compet-
itive intercept action?

c) Cooperation The third challenge is to eventually
cooperate with human players. The teams of robots cur-
rently communicate information, such as detections, planned
actions, and strategies, over a WiFi connection. A team of
humans communicates by means of speech, gestures (Lim
et al., 2017) and other subtle non-verbal cues. Even though
communication through gestures was introduced in the MSL
as a means to coach the robots in-between plays, this has
yet to be attempted in dynamic play. Coaching, allowed by

the rules, up to now included the use of QR codes shown by
humans, voice coaching, and gesture coaching.

With the high-paced developments in theMSL, the league
is likely to prepare itself for the first competitive or collabo-
rative matches with humans. The increasing attractiveness of
the league combined with this grand challenge steers devel-
opments into this direction.

4.2 Value-Driven Players

When considering the scenario where a robot team takes on a
human team in a soccermatch,11 it is important to realize that
the rules of the soccer game itself comprise only a subset of
obligations that the robot has towards its human opponents.
When circumstances warrant, say when an injury or some
other incident not specifically covered by the rules occurs,
other duties are likely to be added to or even take priority
over the rules of the game. For instance, in case of an injury
to a human player, the robot may be required to stop play-
ing and prioritize providing whatever assistance it is capable
of. Given this, a number of research questions arise, such
as: 1) In which circumstances do the rules of the game no
longer apply and how might these be discerned by an AI
system? 2) What other obligations does a robot player have
towards its human opponents and, when they conflict, how
might the strongest obligation be determined? 3) How might
a robot system be designed to meet these obligations in such
circumstances? These and other such questions comprise an
ethical dimension of the game, and provide an opportunity
for research in this domain to contribute to the greater con-
cerns regarding the ethical behavior of artificially intelligent
agents operating autonomously in the world.

Although literature pertaining directly to the goal at hand
is scarce, there have been efforts in related areas such as the
ethics of sport (e.g., Boxill 2002) and machine and robot
ethics (e.g., Anderson and Anderson 2011).

4.2.1 Open challenges

Central to ethical behavior in every domain are ethically-
relevant features, duties to minimize or maximize these
features, and a set of principles that prescribe which duties
will prevail if they are in conflict. Ethically-relevant fea-
tures may have a positive value, like sportsmanship; or a
negative value, like harm. It is incumbent upon agents act-
ing in any domain to not only minimize ethically-relevant
features that have a negative value, but also to maximize
features with a positive value. These considerations com-
prise the agent’s duties in that domain. Duties are likely to

11 Michael Anderson and Susan Leigh Anderson; MachineEthics.com,
Dept. of Computer Science„ US; Dept. of Philosophy, University of
Connecticut, US.
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be context dependent. That is, which duties pertain will be
contingent upon the current circumstances and the actions
available to the agent within those circumstances. Further-
more, these circumstances will also determine which actions
satisfy and/or violate these duties, as well as by how much.
Thus, determining the correct action in any given set of
circumstances is dependent upon how strongly each action
satisfies and/or violates the applicable duties. This decision
may be straightforward, as in the case where only one avail-
able action satisfies any duty. However, it is more likely that
more than one action will satisfy and/or violate one or more
duties. In such cases, a means (or set of principles) must be
provided to choose between conflicting duties. Principles are
the crux of ethical decision making and, in general, can be
contentious. That said, even though many ethical dilemmas
may still be unresolved, it seems more likely that a consen-
sus may be reached in constrained domains as this one. In
particular, we might find agreement on how we would like
robots to behave towards us, the crux of the matter in this
domain. An example of the approach we are advocating can
be found in Anderson et al. (2019). Within the domain of
healthcare robots, ethically relevant features and corollary
duties are discovered though a dialoguewith ethicists regard-
ing straightforward cases of ethical dilemmas that such robots
are likely to encounter. From determining in these example
cases which actions are correct and why, machine learning is
used to abstract an overarching principle that balances duties
when they conflict. In a robot’s daily routine, sensors provide
raw data from which a representation of the current situation
may be abstracted. The robot can apply the learned principle
to this representation in order to determine which of its pos-
sible actions is most ethically correct in the current situation.
As any interaction a robot has with a human being will have
ethical ramifications, this principle is used to determine all
behavior of the robot (Berenz and Schaal 2018).

It is our hope that the investigation of such domain-specific
value-driven agents will help illuminate the path to a better
understanding of the ethical behavior of artificially intelligent
agents in general.

4.3 Trust

The HL aims to have robots with humanlike appearance,12

ability to sense, and functionality by 2050. This robotic
designmay have both positive and negative consequences for
the trust that people place in the robot. While social robots
are perceived more positively and have both higher quality
and more effective interactions with humans than non-social
robots (Holler and Levinson 2019), the same significant fac-

12 Alessandra Rossi; HL Executive Committee, University of Naples
“Federico II”, Italy.

tors that improve perceived human likeness can negatively
affect people’s acceptance of, and trust in, a robot.

Trust is considered to be a critical construct for estab-
lishing successful and lasting human-agent (i.e., human,
computer or robot) interaction (Ross 2008). In the psycholog-
ical literature (Szczesniak 2012), trust is a multidimensional
reality that includes cognitive, emotional and behavioral
components. It allows people to take decisions that will
impact their everyday lives based on rational judgements
(i.e., cognitive trust), affective interpersonal relationships
(i.e., emotional trust), and their own or others’ actions (i.e.,
behavioral trust). For example, people decide to take a leap
of trust while investing in a portfolio, buying a house, picking
out an outfit or holiday destination, sharing working respon-
sibilities with a team of other people, or passing a ball to
their teammates hoping they will catch it and not score in
their own goal.

Researchers in HRI (Rossi et al. 2017; Hancock et al.
2011; Cameron et al. 2015) highlighted several principles
and factors that affect someone’s (i.e., the trustor or trust-
ing) trust in a robot (the trustee or trusted). These factors
can be related to the person, such as demographics, person-
ality, prior experiences, self-confidence; to the robot, such as
the robot’s reliability, transparency; and to the context of the
interaction, e.g. communication modes and shared mental
models. We believe that there is a correspondence between
the multifaceted nature of human-human trust and the fac-
tors affecting people’s trust in robots. Firstly, cognitive trust
is based on the trustees reliability, dependability, and com-
petence (Szczesniak 2012). In the context of HRI, it is thus
built on and affected by a robot’s performances and faults.
People’s expectations of the capabilities of a robot depend on
its appearance (Bernotat et al. 2021), its characteristics (Han-
cock et al. 2011), and themagnitude and timing of the errors it
makes (Rossi et al. 2017). Secondly, emotional trust is based
on the interpersonal relationships built between trustor and
trustee (Szczesniak 2012). Similarly, human-robot trust is
stronger when people are more familiar with robots HT et
al. (2011), especially with their capabilities and limitations
(Rossi et al. 2019). Thirdly, behavioral trust is affected by
the trustee’s behavior and risk taking in untried and uncer-
tain situations (Szczesniak 2012). Trust also depends on the
trustor’s belief in the trustee’s positive attitude and credibility
towards the trustor and a common goal (Simpson 2007). An
example of how risk-taking behaviors affect the credibility of
an opponent can be found in the popular game of pokerwhere
it is important that players gain a good reputation (Billings
1995). Similarly, a robot that builds a good “reputation" is
trusted more by its human opponent in human-robot games
(Correia et al. 2016).
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4.3.1 Open challenges

Two interrelated challenges in the current state of the art
are the baseline level of trust that people may put in robots,
and how tomanage people’s expectations of a robot to ensure
those are realistic.Due to the particularly dynamic and unpre-
dictable actions that a robot can perform during a soccer
game, human supervised intervention (i.e., using the robot’s
safety button) will be impossible. Thus, notwithstanding the
state of development of the technological and cognitive abil-
ities of robots, the question remains whether people will
be willing to engage in a soccer match where there is no
option for human supervised intervention. Here, trust drives
individuals’ choice to rely on others (opponents and team-
mates) if they are in a vulnerable and uncertain situation.
This trust depends on others’ choices, including behaviours,
actions and motivations (Lee and See 2004). It is important
that those observed choices can be interpreted along real-
istic expectations. For example, encountering a robot that
looks very humanlike can lead people to believe that this
robot has the ability to sense and respond to their actions and
intentions. When these expectations are not met, people lose
trust in the robot (Rossi et al. 2020b). People lose trust when
the robot makes errors or has non-transparent behaviours
that are perceived as errors (Rossi et al. 2017). It is funda-
mental to understand how to balance robots’ appearances to
enhance people’s trust without setting too high expectations.
Robots with human-like appearances might be perceived
as more aggressive and less friendly than a machine-like
robot (Woods et al. 2006), which might lead to them being
perceived as a threat. While people’s physical safety is
well-investigated in the literature, particularly concerning
industrial settings, their perceived safety is still overlooked
(Akalin et al. 2021). People’s discomfort or stress during
their interactions with robots can be prevented by manipu-
lating the robot’s motions, social behaviors, or attitude (e.g.,
speech, gaze, posture) (Lasota et al. 2017). Perceived safety
is also enhanced by producing higher predictability with leg-
ible robot behaviors (Rossi et al. 2020a). Even assuming that
transparent behaviors can be implemented by improving a
robot’s modes of communications (verbal and non-verbal),
soccer players act instinctively and use implicit communica-
tion signals that are difficult to identify and reproduce with
robots.

4.4 Taking advantage of the robot

While it is important that human players feel safe enough
to engage in a game of soccer with a robotic team,13 per-
ceived safety and predictabilitymay have the unintended side

13 Merel Keijsers; HL Team Electric Sheep, John Cabot University,
Italy.

effect of humans trying to take advantage of the robot and the
restrictions on its behaviors. In non-soccer settings humans
have been observed abusing robots that were deployed in
public spaces, such as shopping malls, museums, and restau-
rants (Brscić et al. 2015), even when the robot is supposed
to assist the human (Mutlu and Forlizzi 2008) or when it
could result in dangerous situations for all parties involved,
including any bystanders (Liu et al. 2020b). In one way or
another, these behaviors concern humans taking advantage
of the robot – an entity that either by programming or sheer
lack of comprehension will not retaliate against exploitation
or misconduct. While unprovoked aggression purely for the
sake of damaging the robot seems unlikely during a soc-
cer match, it is easy to imagine humans searching for the
loopholes in the robot’s programming that can be used to
their advantage. For example, it would be naive to assume
that human players will not try to capitalize on a robot’s
built-in tendency to avoid conflict; this behavior has already
been observed in interactions between human drivers and
self-driving cars (Liu et al. 2020b). Human drivers become
more reckless around autonomous cars as they expect the
autonomous car to prioritize safety over traffic rules.

4.4.1 Open challenges

In previously described scenarios, moreover, opportunistic
behavior could emerge unintentionally. Social exchanges
require a constant interpretation of others’ behavior and
intentions in order to update evaluations of what the other
parties might do next. This interpretation is often done auto-
matically and without much thought, and is not only shaped
by societal rules and norms but also on experience related to
what others will (not) do or allow. For example, when two
opposing human players are running towards the ball, each
has to monitor on one hand their belief that the other player
will avoid a collision and on the other hand whether this
risk of colliding (and potential injury) is worth the potential
reward. If one party knows that the other will avoid colli-
sion at all costs (including tackles or other risky methods of
obtaining the ball), that gives them leverage. Thus, if robotic
players avoid any and all situations where a human could
get harmed, negotiations like these will be heavily skewed in
favor of the humans.

Value-Driven players discussed the ethical implications of
this conflict between “keeping human players safe” and “be
a successful soccer player”, and Trust approached it from
the perspective of human players’ perceived safety. How-
ever, the tension between these two values and how it is
resolved will have further implications still. On one hand,
robots need to place the bodily integrity of the human play-
ers above winning or no sensible human player would ever
agree to play a game of soccer against a robotic team. At the
same time, the robot players cannot afford to be too cautious
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as that would be a great disadvantage. A possible solution
could be to impose harsher punishments andmoremeticulous
monitoring of players’ behavior. However, this would prob-
ably only have limited effects: players could claim that their
tackle was unintentional (which may result in unjust sanc-
tions), and the potential advantages could be large enough
to entice players to try their luck anyway. Alternatively, one
could design a feedback loop within the robot decision mak-
ing process that balances the risk and severity of possible
negative consequences of any behavior against the odds and
positive outcomes of it. In a sense, humans do this continu-
ously (although our estimates may be biased by heuristics,
mood, attention span, energy levels, and so on) and scien-
tists “merely” need to find a way to formalize this constant
updating of a cost-vs-benefits model of behavior. This way
of decision making could introduce enough assertiveness in
the robot team that human players cannot take full advantage
of their programmed caution. Moreover, such a loop would
imply that the robotic team will adapt their behavior dur-
ing the match in order to counter their opponents’ playing
style. If this is rather aggressive, the costs of a defensive play
style would become higher, inducing robots to adopt a more
assertive playing style themselves too. This leaves the ques-
tion of how much harm inferred by a robot we are willing
to theoretically suffer. In autonomous vehicles, humans are
unforgiving of the slightest margin of error. We hold robots
to different ethical standards as other humans (Malle et al.
2015) and view reactive aggressive behavior as a lot more
maleficent and unacceptable when it comes from a robot than
when it comes from a human (Bartneck and Keijsers 2020).
However, wewill need to come to termswith a certain degree
of risk, if only to prevent humans causing far more risky sce-
narios while attempting to play the robot’s programming.

4.5 Mixed teams

In human-robot (HR) soccer teams,14 the goal is to perform
joint soccer tasks in order to achieve common shared objec-
tives, such as scoring in the opposite goal, defending the
own goal, and eventually winning a match or a tournament.
HR teams have been studied for several application domains,
including search and rescue (Nourbakhsh et al. 2005), and
surveillance (Srivastava et al. 2013). HRmixed soccer teams
(Argall et al. 2006) are very relevant examples of HR col-
laboration, as a soccer environment provides for interesting
and challenging features, such as real time perception and
action, dealing with naive users, competitive scenario (pos-
sibly twoHRmixed teams playing against each other), and an
attractive, engaging and easy to understand problem. Solu-
tions validated in HRmixed soccer teams can be transferred,

14 Luca Iocchi; Vice President of the RC Federation; Università di
Roma “La Sapienza”, Italy.

adapted and extended in many other industrial applications,
bringing several advantages and contributions to improve
human-robot collaboration in such domains. There are sev-
eral relevant properties of HR mixed teams. Firstly, the
presence of humans and robots in the same team implies
a high degree of heterogeneity. Indeed, the interaction mech-
anisms in HR settings are very different from those used in
robot-robot teams, since in many cases HR teams are forced
to use natural human-like communications. Moreover, if we
consider mixed HR teams with robots developed by differ-
ent researchers, a suitable common languagemust be defined
to account for the diversity of the agents in the team. A
major consequence of such heterogeneity is that most of the
elements that are relevant to define a joint behavior (such
as communication, players’ actions, intentions, etc.) cannot
be standardized and limited to a known predefined set of
elements. Moreover, each agent has specific skills and abil-
ities that should be exploited to optimize the overall team
performance. Although heterogeneous, team members can
interchange their roles among each other when this is bene-
ficial to increase the performance. Secondly, the team goals
are common and shared. Common goals refer to the notion
of having the same goals for all the agents in the team.When
a goal is achieved, all the team members will get the same
benefit from it. If the goal is not achieved, all the team mem-
bers will get the same disadvantage. Shared goals refer to
explicit knowledge: all the agents know about the common
goal, they know that all the agents know about the common
goal, etc. Notice that in some cases of human soccer, indi-
vidual goals are also present: e.g., a player wants to score to
gain some personal benefit not completely shared with the
team. We will not consider individual goals in this section.
We also assume that team members trust each other. In par-
ticular, any agent expects that all the other agents in the team
will act to achieve the common goal. Thirdly, when execut-
ing the task, the agents have to deal with limited resources
(such as time space, energy, etc.) not only among themselves,
but also with respect to the agents of the opponent team. We
cannot assume the presence of a central processing unit, so
strategic and tactical decisions must be distributively taken.
Finally, as humans and robots share the same physical space,
safety must be guaranteed with the maximum priority.

4.5.1 Open challenges

The properties described above make HR soccer teams very
challenging to design, develop and deploy. Several research
topics must be addressed, which are briefly summarized in
the following.

(a) Design of HR teams HR team design should mainly
focus on collaboration and interaction (Ma et al. 2017), possi-
bly exploiting existing models of human-human interaction
or defining new specific models. Dimensions for a taxon-
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omy of existing methods (e.g., Jiang and Arkin 2015) can be
helpful to identify specific design elements. Some general
architectures for HR teams have been proposed (e.g., Lallée
et al. 2010) to identify the main components needed for the
development of such systems. The current achievements are
still far from providing a concrete methodology or guidelines
to design effective HR teams.

(b) Cooperative perception HR teams need sophisticated
distributed perception abilities that allow all the team mem-
bers to have a clear understanding of the situation. Moreover,
simple assessment of the current situation is often insuf-
ficient, and predicting intentions of other agents in the
environment is necessary. Typical solutions rely on sensor
analysis and sensor fusion and are suitable in many practi-
cal applications, such as industrial environments (e.g., Bonci
et al. (2021)). Cooperative perception in HR soccer teams
is even more challenging, due to the possibly high speed of
operations and to the safety risks for humans involved in the
task.

(c) Knowledge alignment A main use of cooperative per-
ception is to align the knowledge states of all the agents in a
team, which is necessary for a fully comprehensive situation
assessment. For example, a complete shared understanding
of the soccer play state (position and dynamics of all the play-
ers and of the ball) can enable the teammembers to distribute
themselves in the field in a convenient formation. Designing
proper models that allow humans and robots to efficiently
share their knowledge (obviously individually represented in
a very different way) is one of the most challenging research
objectives in HR teams.

(d) Coordinated actionsHR soccer teams need to properly
coordinate their physical actions to affect the environment.
Although some basic actions (e.g., kicking the ball) are exe-
cuted by each single team member independently of the
others, joint actions (e.g., passing) are very relevant in this
domain. In addition to reactivity, which requires the team
members to directly perform actions based on sensor stimuli,
anticipating behaviors and pro-activity, based on prediction
of future states of the environment, are extremely important.
For example, predicting the intention of an opponent pro-
vides advantage in the choice and timingof executing suitable
actions. Balancing reactivity, pro-activity, and anticipating
behaviors in a heterogeneous HR team is a completely open
problem.

(e) Interactions Interactions in HR soccer teams must
be multi-modal (speech, non-verbal vocalizations, gestures,
body postures, etc.) as many different situations may occur
that make some modalities more appropriate than others.
These interactions are often used to provide or exchange
information, affecting the knowledge (or mental) state of the
agents. For example, gestures can be used to indicate where
or to whom to pass the ball. Developing effective interactions

in the soccer domain is thus another interesting research chal-
lenge.

(f) Decision making Distributed decision-making and
coordination are necessary abilities for soccer agents who
need to balance decisions considering both short- and long-
term goals. The soccer domain is inherently dynamic and
dynamic forms of distributed coordination (Dias et al. 2006)
are needed. The autonomy in decision-making by each team
member must be considered as a dynamic aspect (Dias et
al. 2008) in order to adapt to different situations that may
occur during a game. For example, an agent may have a bet-
ter view of the situation and can suggest another agent what
to do. Individual decision-making must take into account
teamwork elements, such as negotiation, commitment, and
anticipation. If an agreement is taken (e.g., a pass), the deci-
sions should be finalized to fulfil it.

(g) LearningandadaptationTeam learning and adaptation
is also of crucial importance for effective HR collaboration,
due to the presence of an opponent team for which a precise
model is not available beforehand and thus optimal behaviors
cannot be precisely planned before the game. Techniques like
Multi-Agent Reinforcement Learning (MARL) have been
successfully used in robot soccer teams. However, the appli-
cation to HR teams, i.e., the development of Human-Robot
Reinforcement Learning is a very interesting novel research
challenge for HR soccer.

(h) BenchmarkingBenchmarkingHR teams has been con-
sidered both in general cases (e.g., Groom and Nass (2007))
and for specific tasks (e.g., Xin and Sharlin (2007)). HR soc-
cer games can provide for a very interesting and challenging
benchmarking scenario for HR collaboration, due to the fea-
tures of the problems and the many open research areas that
have been illustrated in this section.

4.6 Discussion and conclusion

At the moment, RC features almost exclusively matches
between robotic teams. Since the long term goal is to
have matches against human teams, human-robot relational
dynamics will have to be considered at some point in the
near future. One step towards this direction has been taken
by MSL which introduced a rule for the 2022 competition.
This rule allows a human player to take the place of a robot
player.15

The MSL new rule highlights a few interesting dilemmas
with mixed teams, and there are connected principally to
the human players’ safety, game’s dynamics and communi-
cations, and liability of any possible injuries to the human
players.

15 MSL rule number 7 of the Competition Rule Section https://msl.RC.
org/wp-content/uploads/2022/01/Rulebook_MSL2022_v23.0.pdf
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This brings to the attention that there is most likely going
to be a considerable tensionbetween twoconflicting goals: on
one hand, the need for the robotic players to keep the humans
safe, and on the other the need for the robotic team to not
be (perceived as) pushovers. This is a complex dilemma to
solve, as it involves the robot’s ability to dynamically evaluate
many different and opposing goals (e.g., “pass the defend-
ers of the opposing team while they are trying to take the
ball from me” vs “avoid injuring the defenders of the oppos-
ing team”); the humans’ perception of the robot’s ability to
evaluate opposing goals and make the right (moral) call; and
finally ensuring that this trust of the human player in the
robot’s morality doesn’t result in the human taking advan-
tage of the robot (e.g., “the robots are programmed to avoid
harming me, so if I go for a tackle they’ll abandon the ball to
avoid the possibility of harming me”). This is a non-trivial
issue as it depends not only on the robot’s ability to juggle
a complex interplay of values, but also on the human’s per-
ception of the robot’s ability to do so, and on balancing out
those values in such a way that humans will still be willing
to play against the robotic team without taking advantage
of it. This may be a paradox that cannot be solely solved
through robot design, but will require humans as well to
adapt, e.g. through accepting a risk of being injured by a robot
player.

A second issue that most sections touched upon but may
not have discussed as in-depth as the trust dilemma, is the
relevance of communication (both verbal and non-verbal).
Successful communication of intentions and current states,
both between members of the same team and also (maybe
especially) between members of opposing teams, will be of
tremendous importance if we are to see human-robot soccer
matches in the future. Communication is key to all open ques-
tions discussed above. Without it, ethical behaviour cannot
be designed, nor can trust be gained or boundaries set, and
collaboration will be impossible.

Finally, a third issue resides in the identification of the
legal andmoral responsible actors in case of injuries to human
players or broken property of robotic players. Several RC
Leagues, such as the HL, have rules in place since a long
time to prevent the damage to robots or the game fields, and
the MSL stated in their new rule that the liability of injuries
to human players falls on the team of the human player. The
liability does not necessarily rely on one part, and the robot
may be partially or fully responsible for an incident (e.g.,
if it applies a more forceful contact game with the human
player). Legal responsibilities also do not only depend on
the RC Federation’s regulations, but it could vary accord-
ing to the country where the RC is played. For this reason,
it is important to firstly define a global legal regulation for
the whole RC, and then define a complaint mechanism with
respect to the regulations of the host countries of the compe-
tition.

5 Conclusions

RoboCup provides one of the best benchmarks for
autonomous robotics in unstructured environments due to
the multitude of its open challenges. For example, to effec-
tively play soccer, the robots need to perceive and interpret
data from the external environment, collecting information
about themselves, their teammates, and their opponents (e.g.,
position in the field); they need to be able to understand
and communicate using verbal and non-verbal cues, and
so on. However, not only do robots need to be designed
using appropriate materials, but roboticists need to model
their behaviors and mechanisms to allow human players to
trust that robots are able to play in a safe and secure way.
To explore such research directions, here, we contextualized
RoboCup within the state-of-art of in the fields of Robotics,
Engineering, Material Science, Ethics, and HRI, and pre-
sented the requirements that researchers in such areas need
to address and develop in order to bring solutions/systems
together in a safe, coherent and testable way for both human
and robot players.We invite and encourage researchers to use
the RC 2050 challenge to inspire, evaluate, and promote their
work, ideally in collaboration with one another throughout
the world.
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