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Abstract-This paper studies the single open-circuit failure (OCF) 

in dual three-phase permanent magnet synchronous motors (DT-

PMSM) in transport electrification where wide speed range and 

torque operation range (TOR) are required. A new control scheme 

is proposed to extend the TOR with minimum copper loss based on 

the well-established fault-tolerant control strategy minimum loss 

(ML) and maximum torque (MT). The ML strategy allows the 

demanded torque at the reference speed to be delivered with 

minimum copper loss. The MT strategy presents wider torque 

capability in post-fault operation without exceeding the current 

limit, whilst copper loss within the stator winding is not optimized. 

However, there is a gap in the permissible TOR of these two 

strategies. A simple switch of strategy, from ML to MT when the 

limit of ML’s TOR is reached, would result in excessive copper loss. 

The proposed full-torque-operation-range minimum loss (FTOR-

ML) in this paper is proposed to mitigate the excessive copper loss. 

The novel FTOR-ML for the DT-PMSM under OCF for different 

winding configurations, single (1N) and isolated neutral point (2N), 

combines the merit of ML and MT where the entire TOR of MT is 

achieved with minimum copper loss. The analytical solution of 

FTOR-ML is derived in this paper for both winding configurations. 

Experimental result demonstrates the combined merit and 

effectiveness of the proposed control scheme. 

Index – Fault-Tolerant Control, Dual Three-Phase Permanent 

Magnet Synchronous Motor (DT-PMSM), Open-Circuit Fault, 

Minimum Copper Loss 

 

I. INTRODUCTION 
Dual three-phase permanent magnet synchronous motor 

(DT-PMSM) has attracted increasing attention in the 

transportation industry for its high-power density and fault-

tolerant capability [1-4]. Fig. 1 outlines the electromagnetic 

configuration of a typical dual 3-phase PMSM where the second 

set of 3-phase winding “uvw” lags the first set “abc” by 30o.  

 
Fig. 1 Winding arrangement of DT- PMSM 

There are multiple types of faults that may occur during 

operation in an electrical machine, including short circuit and 

open circuit in phase, inverter, switch and interturn [5]. This 

paper focuses on the single open-circuit fault (OCF) where 

phase w is open circuit, i.e. iw = 0.  

In order to achieve smooth and ripple-free post-fault 

operation, the primary objective of fault-tolerant control (FTC) 

is to control the motor so that a stable rotating magnetomotive 

force is maintained. There are two well-established strategies in 

obtaining post-fault current reference. 

• Minimum loss (ML) [6-8]– The goal is to minimize the 

copper loss. This strategy usually results in phase 

currents of different rms value. 

• Maximum torque (MT) [9-12]– In this strategy, the 

phase currents are forced to have the same rms value, 

i.e. the same waveform with different phase angle, to 

fully utilise the current capability so that torque output 

can be maximised. There is an exception in the case of 

isolated neutral points, where not all healthy phases are 

utilised, which will be demonstrated in section III.  

Apart of these two strategies, state-of-the-art FTC for DT-

PMSM includes the use of a hybrid neutral point that exploits 

the field-weakening operation at high motor speed [13]. It 

combines the merits of different neutral point connection with 

connected neutral point (1N) and isolated neutral points (2N) 

that extends the torque and speed range. The stator winding with 

1N has higher torque range due to better current usage and 2N 

offers wider speed range due to more-efficient voltage usage. 

Hybrid MLMT control is proposed in [6, 14, 15] for 2N. Che, 

H.S. et al has applied emulation to find the optimum combination 

of the design variable K across all permissible K, which includes 

both strategies [6]. In [14], the authors have further unified the 

single 3-phase mode, that only utilises the healthy winding set 

for post-fault operation, together with ML and MT. Geng et al 

[15] proposed a FTC scheme, the natural full range minimum 

loss (FRML), where seamless transition from ML to MT can be 

achieved without the need of fault detection scheme, and hence 

a simpler overall control scheme for OCF. These three papers 

[6, 14, 15] all combine the merits of ML and MT allowing the 

motor to operate with minimum copper loss under single OCF, 

for permissible reference torque, while the current limit is not 

exceeded, but the 1N condition has not yet been investigated 

and discussed. To this end, a more recent paper, [16], has 

considered the case of 1N, which proposed a MT-based 

optimisation algorithm to achieve minimum torque ripple 

considering the non-sinusoidal back EMF. However, the 

optimized solution from [16] only addresses scenarios where 

currents in all phases are saturated, leaving significant room for 

optimization when currents are below their limits. Furthermore, 

in [17], the author has proposed an online current optimisation 

algorithm for a symmetrical multi-phase machine under OCF 

across the entire TOR so that preserving the controller memory 

in pre-stored look-up tables for any offline optimisation 

algorithm is no longer required. However, multi-phase machine 

with asymmetrical windings is not considered and the online 

optimisation algorithm still requires considerable 

computational resources.  

This paper is an extended work of [18], which presents an 

FTC scheme that is applicable for the entire TOR in an 

asymmetrical DT-PMSM to achieve minimum copper loss, for 

both 1N and 2N. The novelty is that the analytical solution for 

the design variable K is derived so that neither pre-stored look-

up tables nor online optimisation are required. The solution is 

obtained by analytically solving the optimisation problem, 

using the Lagrange multiplier method. The outcome not only 

guarantees minimum copper loss across the entire TOR, but also 

paves the way to exploit a wider speed range under OCF for the 



calculation of the reference current where the DC bus voltage 

limit becomes a constraint. The solution for 1N is numerically 

calculated. The result derived is universal regardless of motor 

parameters.  

This paper is organized as followed. The mathematical 

model of a DT-PMSM under OCF in phase w is derived in 

section II using the vector space decomposition (VSD), for both 

1N and 2N. In section III, the two FTC strategies ML and MT 

and their associated TOR are first studied and derived, followed 

by which, the full-torque-operation-range minimum loss 

(FTOR-ML) strategy is proposed. In section IV, experimental 

work is carried out, to validate the proposed control scheme and 

results are discussed. Finally, conclusion is drawn and future 

work is inspired based on the analysis and discussion of the 

experimental outcome. 
 

II. CONTROL AND MODELLING OF 

FAULTY DT-PMSM  
Similar  to the conventional 3-phase machine, the 6-phase 

electrical quantities fabc,uvw, where f∈{ U,I,ψ}, are mapped to the 

stationary frame using the amplitude invariant Clarke 

Transform  matrix for VSD, 𝑓𝛼𝛽,𝑋𝑌,𝑜1𝑜2 = 𝑇𝐶𝑓𝑎𝑏𝑐,𝑢𝑣𝑤  [19]. 
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. (1) 

The first two rows define the electromagnetic-torque-

relevant αβ subspace. The quantities in this dual 3-phase αβ 

subspace can be considered as the sum of the quantities from 

each set of the 3-phase winding that is projected to the stationary 

frame. The third and fourth row defines the non-

electromagnetic-torque-relevant XY subspace, and it can be 

regarded as the differences between the 2 sets of winding. It 

reflects the imbalance level between the 2 sets. The last two 

rows are related to the zero-sequence quantities, which is more 

of interest in the case of 1N and can be ignored in the 2N case 

because of Kirchhoff's Current Law. Under the healthy 

condition, the quantities on the XY and zero-sequence subspace 

should be controlled to zero, to avoid imbalance within and 

between the winding sets and thus any excessive copper loss. 

In order to maintain stable and ripple-free torque output, the 

reference currents in the stationary αβ subspace must be a pair 

of orthogonal AC phasors with identical magnitude such that 

the currents in the synchronous DQ subspace are a DC value. 

Hence, for any random AC phasors in the non-torque-

generation XY subspace, they can be expressed as 
 

{
𝑖𝑋 = 𝐾𝑋

𝛼𝑖𝛼 + 𝐾𝑋
𝛽
𝑖𝛽

𝑖𝑌 = 𝐾𝑌
𝛼𝑖𝛼 + 𝐾𝑌

𝛽
𝑖𝛽
, 

 

(2) 

where Kn
m (n = X,Y; m = α, β) are the design variables for the 

optimisation algorithm in next section. The objective of ML/MT 

and the proposed FTOR-ML can be achieved by searching for 

optimum design variables. 

In the case of 2N connection, according to the Kirchhoff’s 

Current Law, 𝑖𝑢 + 𝑖𝑣 = 0. By substituting this into the DT Clarke 

Transform, the following identities are derived, 
 

{
𝑖𝑌 = −𝑖𝛽 =

1

3
× (−

√3

2
𝑖𝑏 +

√3

2
𝑖𝑐)

𝑖𝑜1 = 𝑖𝑜2 = 0                                      

 

 

(3) 

Hence, there are 3 degrees of freedom for the FTC of DT-

PMSM in single OCF with 2N, i.e. iα iβ and iX. With equations 

(2) and (3), the following equation is derived as, 

𝑖𝛼𝛽,𝑋𝑌,𝑜1𝑜2 = 𝑇2𝑁 ∙ 𝑖𝛼𝛽 (4) 

where iαβ = [iα iβ]T; 𝑇2𝑁 = [
1 0 𝐾𝑋

𝛼 0 0 0

0 1 𝐾𝑋
𝛽

−1 0 0
]

𝑇

. 

On the other hand, in the case of a connected neutral point 

(1N), 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 + 𝑖𝑢 + 𝑖𝑣 = 0 . Substituting this into the 

Clarke Transform, (5) is obtained as 

{
𝑖𝑜1 = −𝑖𝑜2    

𝑖𝑜2 = 𝑖𝛽 + 𝑖𝑌
. (5) 

Therefore, there are 4 degrees of freedom with 1N to be 

controlled - iα, iβ, iX and iY. (4) with 2N connection becomes, 

𝑖𝛼𝛽,𝑋𝑌,𝑜1𝑜2 = 𝑇1𝑁 ∙ 𝑖𝛼𝛽 (6) 

where 𝑇1𝑁 = [
1 0 𝐾𝑋

𝛼 𝐾𝑌
𝛼 −𝐾𝑌

𝛼 𝐾𝑌
𝛼

0 1 𝐾𝑋
𝛽

𝐾𝑌
𝛽

−1 − 𝐾𝑌
𝛽

1 + 𝐾𝑌
𝛽]

𝑇

. 

Furthermore, by using the Park transform matrix for the 6-

phase winding, the quantities in the stationary frame are 

transferred to the synchronous DQ subspace, DQz harmonics 

subspace and the O1O2 zero-sequence subspace 𝑓𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 =

𝑇𝑃6𝑓𝛼𝛽,𝑋𝑌,𝑜1𝑜2 , and 

𝑇𝑃6 = [
𝑇𝑃(𝜃𝑒) 𝑂2 𝑂2
𝑂2 𝑇𝑃(−𝜃𝑒) 𝑂2
𝑂2 𝑂2 𝐼2

] (7) 

 where O2 and I2 are the 2×2 zeros and identity matrix; θe is the 

electrical angle and 

𝑇𝑃(𝜃𝑒) = [
cos (𝜃𝑒) sin (𝜃𝑒)
−sin (𝜃𝑒) cos (𝜃𝑒)

]. (8) 

After the transformation, the mathematical model of the DT-

PMSM in the synchronous frame is defined as, 

{
 
 
 
 

 
 
 
 𝑢𝑑 = 1st 𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 − 𝜔𝑒𝐿𝑞𝑖𝑞 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡
                 

𝑢𝑞 = 2
nd 𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 + 𝜔𝑒𝐿𝑑𝑖𝑑 +𝜔𝑒𝜓𝑓 + 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡

𝑢𝑑𝑧 = 3𝑟𝑑  𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 − 𝜔𝑒𝐿𝑞𝑧𝑖𝑞𝑧 + 𝐿𝑑𝑧
𝑑𝑖𝑑𝑧
𝑑𝑡

       

𝑢𝑞𝑧 = 4𝑡ℎ 𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 + 𝜔𝑒𝐿𝑑𝑧𝑖𝑑𝑧 + 𝐿𝑞𝑧
𝑑𝑖𝑞𝑧

𝑑𝑡
       

 (9) 

{
𝑢𝑜1 = 5

𝑡ℎ  𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 −𝜔𝑒𝐿𝑜2𝑖𝑜2 + 𝐿𝑜1
𝑑𝑖𝑜1
𝑑𝑡

        

𝑢𝑜2 = 6
th 𝑅𝑜𝑤(𝑅𝑠)𝑖𝑑𝑞,𝑑𝑞𝑧,𝑜1𝑜2 + 𝜔𝑒𝐿𝑜1𝑖𝑜1 + 𝐿𝑜2

𝑑𝑖𝑜2
𝑑𝑡

        

 (10) 

where ωe is the electrical frequency; ψf is the flux linkage 

induced by the permanent magnet; Lj (j = d, q, dz, qz, o1, o2) is 

the decoupled inductance on their corresponding axis 

respectively, Ldq,dqz,o1o2 = TcTp6×Labc,uvw×(TcTp6)-1, and  

𝐿𝑎𝑏𝑐,𝑢𝑣𝑤 =

[
 
 
 
 
 
𝐿𝑎𝑎 𝑀𝑎𝑏 𝑀𝑎𝑐 𝑀𝑎𝑢 𝑀𝑎𝑣 𝑀𝑎𝑤

𝑀𝑏𝑎 𝐿𝑏𝑏 𝑀𝑏𝑐 𝑀𝑏𝑢 𝑀𝑏𝑣 𝑀𝑏𝑤

𝑀𝑐𝑎 𝑀𝑐𝑏 𝐿𝑐𝑐 𝑀𝑐𝑢 𝑀𝑐𝑣 𝑀𝑐𝑤

𝑀𝑢𝑎 𝑀𝑢𝑏 𝑀𝑢𝑐 𝐿𝑢𝑢 𝑀𝑢𝑣 𝑀𝑢𝑤

𝑀𝑣𝑎 𝑀𝑣𝑏 𝑀𝑣𝑐 𝑀𝑣𝑢 𝐿𝑣𝑣 𝑀𝑣𝑤

𝑀𝑤𝑎 𝑀𝑤𝑏 𝑀𝑤𝑐 𝑀𝑤𝑢 𝑀𝑤𝑣 𝐿𝑤𝑤 ]
 
 
 
 
 

; (11) 

Rs is the resistance matrix in the synchronous frames, Rs = 

TcTp6×Rabc,uvw×(TcTp6)-1,  and Rabc,uvw = diags(Ra, Rb, Rc, Ru, Rv, 

Rw). It should be noted that during simulation, resistance in the 

faulty phase w should be set to a sufficiently large value to 

mimic the open-circuit situation. This imbalanced stator 

resistance leads to a fluctuating, coupled resistive voltage drop 

in the synchronous frames. This is different from the healthy 



condition where resistive voltage drop is a pure DC value 

depending solely on the decoupled currents in each axis. 

It is worth noting that the optimisation algorithm proposed in 

next section is valid regardless of motor parameters and hence 

nonlinearities such as cross-coupling and magnetic saturation 

does not need to be considered. Therefore, the electrical 

mathematical models in (9) and (10) are linearly modelled for 

simplicity except for the resistive voltage drop.    

Fig. 2 outlines the complete control scheme of the fault-

tolerant control for DT-PMSM. The scheme is almost identical 

to a conventional field-oriented control scheme using VSD in 

the case of 2N, with a 3rd proportional-resonant controller being 

applied to regulate the 3rd order harmonics projected on the 

zero-sequence subspace in 1N. In order to guarantee minimum 

modification, while the control scheme in healthy condition is 

preserved, second and first order resonant controllers are added 

to the synchronous DQ/DQz-frame and zero-sequence subspace 

respectively to regulate the reference current with 2nd and 1st-

order component, as demonstrated in (17), where 𝑖𝑠
∗ = √𝑖𝑑

∗ 2 + 𝑖𝑞∗
2 

and 𝑡𝑎𝑛(𝜙𝑑𝑞𝑧) = 

[(𝐾𝑋
𝛽
− 𝐾𝑌

𝛼)𝑖𝑑
∗ − (𝐾𝑋

𝛼 + 𝐾𝑌
𝛽)𝑖𝑞

∗]

(𝐾𝑋
𝛼 + 𝐾𝑌

𝛽)𝑖𝑑
∗ + (𝐾𝑋

𝛽
− 𝐾𝑌

𝛼)𝑖𝑞
∗

⁄ . 

 

III. OPTIMISATION ALGORITHM OF 

POST-FAULT OPERATION 

A. Minimum Loss and Maximum Torque 
As long as the current in the electromagnetic-torque-relevant 

αβ subspace is maintained, a stable torque and hence smooth 

operation can be guaranteed. Therefore, iα and iβ are solely 

dependent on the reference torque at specific operating 

conditions, and hence they can be regarded as a constant value 

that is not manipulatable during the optimisation. 

1. Isolated Neutral Point (2N) 

To achieve minimum copper loss with 2N, the objective can 

be mathematically expressed as 

min
𝐾𝑋
𝛼, 𝐾𝑋

𝛽
∈𝑅

𝑖𝑋
2 + 𝑖𝑌

2 + 𝑖𝑜1
2 + 𝑖𝑜2

2 . (12) 

With (2), (3) and the matrix T2N, (12) is equivalent to  

min
𝐾𝑋
𝛼, 𝐾𝑋

𝛽
∈𝑅

𝐹(𝐾𝑋
𝛼 , 𝐾𝑋

𝛽
). (13) 

where 𝐹(𝐾𝑋
𝛼 , 𝐾𝑋

𝛽
) = 𝐾𝑋

𝛼2 +𝐾𝑋
𝛽2
+ 1 .The solution of this 

optimisation problem is apparent and minimum loss is achieved 

when, 

𝐾𝑋
𝛼 = 𝐾𝑋

𝛽
= 0. (14) 

The corresponding phase current waveform is calculated as 

𝑖𝑎𝑏𝑐,𝑢𝑣𝑤 = 𝑀2𝑁 ∙ 𝑖𝛼𝛽, where 

𝑀2𝑁 = 𝑇𝐶
−1 ∙ 𝑇2𝑁 =

[
 
 
 
 
 
 
 
 
 
 1 + 𝐾𝑋

𝛼 −𝐾𝑋
𝛽

−
1

2
−
1

2
𝐾𝑋
𝛼 √3 +

1

2
𝐾𝑋
𝛽

−
1

2
−
1

2
𝐾𝑋
𝛼 −√3 +

1

2
𝐾𝑋
𝛽

√3

2
−
√3

2
𝐾𝑋
𝛼 √3

2
𝐾𝑋
𝛽

−
√3

2
+
√3

2
𝐾𝑋
𝛼 −

√3

2
𝐾𝑋
𝛽

0 0 ]
 
 
 
 
 
 
 
 
 
 

, (15) 

and hence 

{
 
 
 

 
 
 
𝑖𝑎 = 𝐼𝑠 cos(𝜔𝑒𝑡 + 𝜃𝑇)                            

𝑖𝑏 =
√13

2
× 𝐼𝑠 cos(𝜔𝑒𝑡 − 106.1° + 𝜃𝑇)

𝑖𝑐 =
√13

2
× 𝐼𝑠 cos(𝜔𝑒𝑡 + 106.1° + 𝜃𝑇)

𝑖𝑢 =
√3

2
× 𝐼𝑠 cos(𝜔𝑒𝑡 + 𝜃𝑇)                   

𝑖𝑣 =
√3

2
× 𝐼𝑠 cos(𝜔𝑒𝑡 − 𝜋 + 𝜃𝑇)           

. (16) 

where Is is the magnitude of the current vector; θT is the torque 

  

[𝑖𝑑𝑧
∗  𝑖𝑞𝑧

∗  𝑖𝑜1
∗  𝑖𝑜2

∗ ]
𝑇
= [

𝑇𝑃(−𝜃𝑒) 𝑂2
𝑂2 𝐼2

] 𝑖𝑋𝑌,𝑜1𝑜2 = [
𝑇𝑃(−𝜃𝑒) 𝑂2
𝑂2 𝐼2

] ∙ [
𝐾𝑋
𝛼 𝐾𝑌

𝛼 −𝐾𝑌
𝛼 𝐾𝑌

𝛼

𝐾𝑋
𝛽

𝐾𝑌
𝛽

−1 − 𝐾𝑌
𝛽

1 + 𝐾𝑌
𝛽]

𝑇

∙ 𝑖𝛼𝛽  

= [
𝑇𝑃(−𝜃𝑒) 𝑂2
𝑂2 𝐼2

] ∙ [
𝐾𝑋
𝛼 𝐾𝑌

𝛼 −𝐾𝑌
𝛼 𝐾𝑌

𝛼

𝐾𝑋
𝛽

𝐾𝑌
𝛽

−1 − 𝐾𝑌
𝛽

1 + 𝐾𝑌
𝛽]

𝑇

∙ 𝑇𝑃
−1(𝜃𝑒) ∙ [𝑖𝑑

∗  𝑖𝑞
∗]
𝑇

 

=

[
 
 
 
 
 
 
 
1

2
[(𝐾𝑋

𝛼 − 𝐾𝑌
𝛽
)𝑖𝑑
∗ + (𝐾𝑋

𝛽
+ 𝐾𝑌

𝛼)𝑖𝑞
∗] +

1

2
𝑖𝑠
∗√(𝐾𝑋

𝛼 + 𝐾𝑌
𝛽
)
2

+ (𝐾𝑋
𝛽
− 𝐾𝑌

𝛼)
2

𝑐𝑜𝑠(2𝜃𝑒 −𝜙𝑑𝑞𝑧)

1

2
[(𝐾𝑋

𝛽
+ 𝐾𝑌

𝛼)𝑖𝑑
∗ + (𝐾𝑌

𝛽
− 𝐾𝑋

𝛼)𝑖𝑞
∗ ] +

1

2
𝑖𝑠
∗√(𝐾𝑋

𝛼 + 𝐾𝑌
𝛽
)
2

+ (𝐾𝑋
𝛽
− 𝐾𝑌

𝛼)
2

𝑠𝑖𝑛(2𝜃𝑒 − 𝜙𝑑𝑞𝑧)

− [𝐾𝑌
𝛼𝑖𝑑
∗ + (1 + 𝐾𝑌

𝛽
)𝑖𝑞
∗ ] 𝑐𝑜𝑠(𝜃𝑒) − [(1 + 𝐾𝑌

𝛽
)𝑖𝑑
∗ − 𝐾𝑌

𝛼𝑖𝑞
∗ ] 𝑠𝑖𝑛(𝜃𝑒)                                            

[𝐾𝑌
𝛼𝑖𝑑
∗ + (1 + 𝐾𝑌

𝛽
)𝑖𝑞
∗] 𝑐𝑜𝑠(𝜃𝑒) + [(1 + 𝐾𝑌

𝛽
)𝑖𝑑
∗ −𝐾𝑌

𝛼𝑖𝑞
∗ ] 𝑠𝑖𝑛(𝜃𝑒)                                                ]

 
 
 
 
 
 
 

 

(17) 

 
Fig. 2 FTC control scheme for DT-PMSM with single OCF 



angle in the synchronous DQ subspace. It is worth noting that 

Is is the magnitude of the current phasor iα and iβ in the 

amplitude invariant transformation. Thus, the derating factor, 

which is the extent of reduction of torque output, of the 

minimum loss control is 
2

√13
 = 55.47%. 

On the other hand, to maximise torque output while 

preserving the current limit, the objective is to maximise the 

derating factor, which is mathematically expressed as 

min
𝐾𝑋
𝛼, 𝐾𝑋

𝛽
∈𝑅

[Max(𝐼𝑎, 𝐼𝑏, 𝐼𝑐 , 𝐼𝑢, 𝐼𝑣)]. (18) 

where Ia-Iv are the amplitudes of the corresponding phase 

currents under single OCF, defined according to (15) as, 

𝐼𝑗 = √2 × 𝑅𝑀𝑆(𝑖𝑡ℎ  𝑟𝑜𝑤 𝑜𝑓 𝑀2𝑁) × 𝑖𝑝𝑢 × 𝐼𝑚𝑎𝑥 (19) 

where j = a, b, c, u, v corresponding to the 1st to 5th row of M2N 

respectively; ipu is the per-unit value of Is, 𝑖𝑝𝑢 =
𝐼𝑠

𝐼𝑚𝑎𝑥
, and Imax is 

the current limit. 

By applying the optimisation algorithm in MATLAB using 

the function “fminsearch”, the solution always converges to an 

identical result regardless of the initial value. The optimum 

design values for MT with 2N are, 

𝐾𝑋
𝛼 = −1;𝐾𝑋

𝛽
= 0. (20) 

Their corresponding phase current waveforms are, 

{
 
 
 

 
 
 
𝑖𝑎 = 0                                           

𝑖𝑏 = √3𝐼𝑠 cos (𝜔𝑒𝑡 −
𝜋

2
+ 𝜃𝑇)

𝑖𝑐 = √3𝐼𝑠 cos (𝜔𝑒𝑡 +
𝜋

2
+ 𝜃𝑇)

𝑖𝑢 = √3𝐼𝑠 cos(𝜔𝑒𝑡 + 𝜃𝑇)         

𝑖𝑣 = √3𝐼𝑠 cos(𝜔𝑒𝑡 − 𝜋 + 𝜃𝑇)

 (21) 

and the derating factor is 
1

√3
 = 57.735%. 

2. Single Neutral Point(1N) 

In the case of 1N, the objective for ML in (12) holds and 

with the matrix T1N it is equivalent to, 

min
𝐾𝑋
𝛼, 𝐾𝑋

𝛽
,𝐾𝑌
𝛼,𝐾𝑌

𝛽
 ∈𝑅

𝐹(𝐾𝑋
𝛼, 𝐾𝑋

𝛽
, 𝐾𝑌

𝛼 , 𝐾𝑌
𝛽
). (22) 

where 𝐹 = 𝐾𝑋
𝛼2 + 𝐾𝑋

𝛽2
+ 3𝐾𝑌

𝛼2 + 3𝐾𝑌
𝛽2
+ 4𝐾𝑌

𝛽
+ 2. Its solution is 

obtained by solving the Jacobian Matrix of F, which gives the 

result as 

𝐾𝑋
𝛼 = 𝐾𝑋

𝛽
= 𝐾𝑌

𝛼 = 0; 𝐾𝑌
𝛽
= −

2

3
 (23) 

The corresponding waveforms of the healthy phase current 

are derived by 𝑖𝑎𝑏𝑐,𝑢𝑣𝑤 = 𝑀1𝑁 ∙ 𝑖𝛼𝛽 in (28). The matrix M1N is 

derived in (29). The derating factor is 
6

√88+20√3
 = 54.18%.  

For maximum torque control, the objective function in 

equation (18) holds except that in the case of 1N there are 4 

design variables, expressed as, 

min
𝐾𝑋
𝛼, 𝐾𝑋

𝛽
,𝐾𝑌
𝛼,𝐾𝑌

𝛽
∈𝑅

[Max(𝐼𝑎, 𝐼𝑏, 𝐼𝑐 , 𝐼𝑢, 𝐼𝑣)] (24) 

where  

𝐼𝑗 = √2 × 𝑅𝑀𝑆(𝑖𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝑀1𝑁) × 𝑖𝑝𝑢 × 𝐼𝑚𝑎𝑥 (25) 

It is not feasible to solve this optimisation problem with 4 

design variables using “fminsearch” since the result is not able 

to converge to the same value with different initial value. 

Instead, “global search” within the optimisation toolbox in 

MATLAB is used to find the global minimum as it always 

converges to the same value. The optimum result is  
 

𝐾𝑋
𝛼 = −0.296 𝐾𝑋

𝛽
= −0.754    

(26) 
𝐾𝑌
𝛼 = −0.209 𝐾𝑌

𝛽
= −0.641    

and the corresponding waveform of phase current is shown 

below, where the derating factor is equal to 1/1.44 = 69.44%.  

{
 
 

 
 
𝑖𝑎 = 1.44 × 𝐼𝑠 cos(𝜔𝑒𝑡 + 50.6° + 𝜃𝑇)  

𝑖𝑏 = 1.44 × 𝐼𝑠 cos(𝜔𝑒𝑡 − 88.5° + 𝜃𝑇)  

𝑖𝑐 = 1.44 × 𝐼𝑠 cos(𝜔𝑒𝑡 + 103° + 𝜃𝑇)   

𝑖𝑢 = 1.44 × 𝐼𝑠 cos(𝜔𝑒𝑡 − 55.8° + 𝜃𝑇)  

𝑖𝑣 = 1.44 × 𝐼𝑠 cos(𝜔𝑒𝑡 + 175.4° + 𝜃𝑇)

 (27) 

To sum up, Table 1 shows the 4 design variables for ML and 

MT with different configuration of neutral point in single OCF. 

Table 1 Optimum Design Variable for FTC under Single OCF 

 
2N 1N 

ML MT ML MT 

KX
α 0 -1 0 -0.296 

KX
β 0 0 0 -0.754 

KY
α 0 0 0 -0.21 

KY
β -1 -1 -2/3 -0.641 

Derating 

factor 
55.47% 57.74% 54.18% 69.44% 

It is clear that in post-fault operation, the ML strategy is 

applied for minimum copper losses and maintained until the 

phase current that has highest amplitude among the 5 healthy 

phases has reached the current limit. This occurs when the 

magnitude of the current vector Is reaches 55.47% of the current 

limit, i.e. electromagnetic torque output reaches the same 

percentage of the maximum torque output in the healthy 

condition. To further increase the torque output, the MT 

strategy can be applied after the current limit for ML is reached. 

However, there is a gap between the ML and MT, derating 

factor from 55.47% to 57.74% and if a simple switch of strategy 

is applied, the performance may not be optimum in terms of 

losses. In the transition region of torque output from ML to MT, 

there is always some current usage reserved, which can be 

utilised to improve copper loss, until the current limit is reached. 

Moreover, such a gap in the case of 1N connection is even 

greater, with derating factor increasing from 54.18% with ML 

to 69.44% with MT.
    

{
 
 
 
 
 

 
 
 
 
 𝑖𝑎 =

√10

3
𝐼𝑠 cos(𝜔𝑒𝑡 + 18.43° + 𝜃𝑇)                  

𝑖𝑏 =
√88 − 20√3

6
𝐼𝑠 cos(𝜔𝑒𝑡 − 114.25° + 𝜃𝑇)

𝑖𝑐 =
√88 + 20√3

6
𝐼𝑠 cos(𝜔𝑒𝑡 + 105.72° + 𝜃𝑇)

𝑖𝑢 = 𝐼𝑠 cos(𝜔𝑒𝑡 −
𝜋

6
+ 𝜃𝑇)                                    

𝑖𝑣 = 𝐼𝑠 cos(𝜔𝑒𝑡 −
5

6
𝜋 + 𝜃𝑇)                                 

 (28)  

𝑀1𝑁 = 𝑇𝐶
−1 ∙ 𝑇1𝑁

=

[
 
 
 
 1 + 𝐾𝑋

𝛼 − 𝐾𝑌
𝛼 −

1

2
−
1

2
𝐾𝑋
𝛼 − (

√3

2
+ 1)𝐾𝑌

𝛼 −
1

2
−
1

2
𝐾𝑋
𝛼 + (

√3

2
+ 1)𝐾𝑌

𝛼

−1+ 𝐾𝑋
𝛽
− 𝐾𝑌

𝛽 √3

2
− 1 −

1

2
𝐾𝑋
𝛽
− (

√3

2
+ 1)𝐾𝑌

𝛽
−
√3

2
− 1 −

1

2
𝐾𝑋
𝛽
+ (

√3

2
− 1)𝐾𝑌

𝛽

… 

…

√3

2
−
√3

2
𝐾𝑋
𝛼 +

3

2
𝐾𝑌
𝛼 −

√3

2
+
√3

2
𝐾𝑋
𝛼 +

3

2
𝐾𝑌
𝛼 0

3

2
−
√3

2
𝐾𝑋
𝛽
+
3

2
𝐾𝑌
𝛽 3

2
+
√3

2
𝐾𝑋
𝛽
+
3

2
𝐾𝑌
𝛽

0]
 
 
 
 
𝑇

 

(29)  



B. Full-Torque-Operation-Range Minimum 

Loss 
To fill the gap between ML and MT so that the torque 

operation region is maximised while loss is minimised, the 

FTOR-ML is proposed to achieve minimum copper loss when 

delivering torque above the limit of ML. To realise ML, the 

objective function in (13) and (22) still hold, except that extra 

constraints need to be applied to comply with the phase current 

limit. 

1. Isolated Neutral Point (2N) 

It is obvious that the solution in (14) for ML with 2N is the 

global minimum without any constraint. To include a current 

limit that is more sensitive in the MT strategy, the following 4 

inequality constraints are defined based on (19), 

{
 
 
 
 
 

 
 
 
 
 𝑔1:    √(𝐾𝑋

𝛼 + 1)2 +  𝐾𝑋
𝛽2
≤

1

𝑖𝑝𝑢
                  

𝑔2:    √(𝐾𝑋
𝛼 + 1)2 +  (𝐾𝑋

𝛽
+ 2√3)2 ≤

2

𝑖𝑝𝑢

𝑔3:    √(𝐾𝑋
𝛼 + 1)2 +  (𝐾𝑋

𝛽
− 2√3)2 ≤

2

𝑖𝑝𝑢

𝑔4:    √(𝐾𝑋
𝛼 − 1)2 +  𝐾𝑋

𝛽2
≤

2

√3𝑖𝑝𝑢
            

 (30) 

To solve this optimisation problem with inequality 

constraints, graphical means is used to assist the analysis and 

solution. As shown in Fig. 3(a), these 4 inequality constraints 

are essentially 4 circles in the KX
αKX

β plane. Only the 

combination of KX
α and KX

β within the intersection of these 4 

circles are feasible to be applied to the post-fault operation 

under specific condition. It is demonstrated in Fig. 3(a) that the 

global minimum of (13) lays within the feasible region, 

meaning that the inequality constrains in (30) are inactive 

during the ML strategy. As the torque reference continues to 

increase, i.e. ipu increases accordingly, and the 4 circles shrink 

towards their own centres, resulting in a shrinking feasible 

region. It is obvious that the global minimum at the origin is 

feasible until ipu = 55.47%, above which the ML strategy is no 

longer feasible, as depicted in Fig. 3(a). Also as demonstrated 

in Fig. 3(d), the only feasible combination of KX
α and KX

β with 

ipu = 57,735% is (-1,0), which is the intersection point of 

guidelines of g2, g3 and g4 where they are tangential to one 

another. This finding is identical to the optimisation result of 

MT with 2N. Moreover, the feasible region is always 

symmetrical about the KX
α axis because of the locations of the 

centre of those 4 circles. Consequently, in the transient region 

where some of the inequality constraints are active, the 

minimum point within the feasible region is always the left 

vertex, which is the intersection of g2 and g3, as shown in Fig. 

3(c). This means that within the transient region, regardless of 

ipu, KX
β is always 0, and thus KX

α is calculated as illustrated in 

(31). 

 
(a) ipu = 0.5 (b) ipu = 0.5547 

(ML) 

(c) ipu = 0.566  (d) ipu = 0.5774 

(MT) 

Fig. 3 Contour of objective function in (18) and guidelines of 

the 4 inequality constraints in (30) 
 

Therefore, the analytical solution of the optimum parameters 

of 2N in 1OCF can be summarised in (32) and implemented in 

the control scheme as shown in Fig. 4. 

 𝐾𝑋
𝛼 = −1 + √

4

𝑖𝑝𝑢
2 − 12. (31) 

{
 
 
 
 

 
 
 
 𝐾𝑋

𝛼 = 0 (𝑖𝑝𝑢 ≤
2

√13
)                                        

𝐾𝑋
𝛼 = −1 + √

4

𝑖𝑝𝑢2
− 12   (

2

√13
< 𝑖𝑝𝑢 ≤

√3

3
)

𝐾𝑋
𝛽
= 𝐾𝑌

𝛼 = 0                                                      

𝐾𝑌
𝛽
= −1                                                               
                                                               

 (32) 

 
Fig. 4 Implementation of FTOR-ML for 2N 

2. Single Neutral Point (1N) 

In the case of single neutral point, the graphical means is no 

longer feasible as there are 4 design variables. Hence, the 

Karush-Kuhn-Tucker (KKT) approach is applied to solve the 

optimisation problem with inequality constraints, using 

Lagrange multipliers, defined as, 

ℒ(𝐾, 𝜇𝑛, 𝑠𝑛) = 𝐹(𝐾) +∑𝜇𝑛[𝑔𝑛(𝐾) + 𝑠𝑛
2]

𝑛

 (33) 

where μn (n = 1,2,3,4,5) is the Lagrange multiplier; K = [KX
α 

KX
β KY

α KY
β]; 𝐹(𝐾) = 𝐾𝑋

𝛼2 + 𝐾𝑋
𝛽2
+ 3𝐾𝑌

𝛼2 + 3𝐾𝑌
𝛽2
+ 4𝐾𝑌

𝛽
+

2; sn is the slack variable. Similarly, recalling from M1N in (29) , 

the inequality constraints gn is defined by the current limit in 

(35). According to the KKT theorem, to find the extremum of 

(33), each term of the Jacobian Matrix is equal to zero, which 

is presented in (A1)-(A6) in Appendix. The derived equation 

set is extremely difficult to solve because of the complementary 

slackness in (33), where either μn = 0 or sn = 0 and μn > 0. 

If μn = 0, the corresponding inequality constraint is inactive, 

meaning that gn < 0; if sn = 0 and μn > 0, the corresponding 

inequality constraint is active with gn = 0. The complementary 

slackness essentially results in 25 = 32 scenarios, and hence the 

same number of equations in the set to be solved, which is not 

efficient mathematically.  

In this specific case where variables and the inequality 

constraints have physical meaning, random complementary 

slackness can be avoided. The inequality constraints are define 

because of the current limit in each phase winding which cannot 

be exceeded, to avoid excessive hot spots. The derived 

optimum design variable Kn
m of 1N using ML strategy in (23) 

is essentially the solution of this optimisation problem when all 

the inequality constraints in (35) are inactive. Recalling from 

the corresponding phase current waveform in (28), it is 

apparent that current in phase c would reach the current limit 

first because of its highest phase current coefficient of 1.84 

while the rest stay below the limit. Therefore, the third 

inequality constraint, that corresponds to phase c becomes 

active while the rest remain inactive until one of the other phase 

currents reaches the current limit. Mathematically, this is when 

the coefficient of such phase current equals that of phase c. 

From this point on, there are 2 phase currents, including phase 

c, that have reached the current limit, and their corresponding 

inequality constraints are active until the next phase current 

also reaches the limit. This process repeats until all 5 phase 



currents reach the current limit, with the same current 

waveform coefficient mathematically. This is essentially the 

MT strategy where current usage is maximised in the most 

efficient way to deliver maximum torque, as demonstrated in 

(27). Therefore, the FTOR-ML with 1N has 5 stages, where the 

first stage starts from ipu = 0 to ipu = 0.5418 without any active 

inequality constraints and the second to fifth stage until ipu = 

0.6944 with corresponding active inequality constraints. Stage 

1 is the ML strategy with its corresponding optimum Kn
m in (23). 

The Kn
m for the second stage, on the other hand, must be derived 

by solving the equation set defined by the KKT condition of the 

optimisation problem. Based on the analysis above that only the 

third inequality constraint is active, we have μ1, μ2, μ4, μ5 and s3 

= 0. Hence, the KKT condition yields the equation set for stage 

2 with 5 unknows, Kn
m and μ3, which is presented in A7. It is 

worth noting that equations involving s1, s2, s4 and s5 are 

ignored in the equation set because the design variable Kn
m is 

independent and their solution are not of interest. The analytical 

solution is given in (36). For the sake of simplicity, further 

derivation of KX
α KX

β and KY
β won’t be given. 

The first half of Fig. 7 for stage 2 depicts the coefficient of 

the phase current waveform on the second stage of FTOR-ML 

with 1N based on the solution given in (36) against the ipu. It 

can be observed that while the current coefficient of the 

saturated phase c decreases, the rest of the phase current 

coefficient increase, resulting in a higher torque output as 

expected. Phase b intersects with phase c first when ipu = 0.6485 

while the rest remain unsaturated. This means that from this 

point on, the stage 3 of FTOR-ML begins and the second and 

third inequality constraints corresponding to phase b and c are 

active, meaning μ1, μ4, μ5 and s2, s3 = 0. Hence, the KKT 

condition of the third stage, ignoring the slack variable s1, s4 

and s5, is defined and shown in (A8). However, this equation 

set has no analytical solution because it can only be simplified 

and manipulated to a single equation of one variable of degree 

of 6. This can be proved by the fact that there are 6 sets of 

numerical solution with an arbitrarily chosen ipu calculated in 

Mathematica. According to the Abel-Ruffini Theorem, there is 

no solution in radicals of equation of degree of 5 or higher. 

Therefore, Mathematica is used to calculate the numerical 

solution of such an equation set with respect to ipu starting from 

ipu = 0.6485. 

A simple “while” loop is used, as shown in Fig. 5, to find the 

relation between the 4 design variables and ipu in the third stage.  

In order to find the right solution within all of the numerical 

solutions calculated by Mathematica, the solution of the current 

iteration is used as the initial guess for the next iteration so that 

a continuous curve of the 4 design variables is guaranteed. It is 

obvious that the selection of δipu directly relates to the 

continuity of the curves of those design variables. The smaller 

the δipu the more continuous the curve. The loop stops when 

one of the current coefficients of the unsaturated phase is equal 

or higher than the saturated phase. As such, the newly saturated 

phase indicates that its corresponding inequality constraint 

become active in the next stage. The numerical result suggests 

that phase u is the newly saturated phase during stage 3. Hence, 

the equation set to be solved for stage 4 with inequality 

constraints g2, g3 and g4 active (μ1, μ5 and s2, s3, s4 = 0) can be 

constructed in (A9). There is no analytical solution for this 

equation set with 7 variables neither and thus the same 

methodology is applied, which is followed by the fifth stage 

with its equation set (A10) to be solved. It is worth noting that 

the equation set for the fifth stage only consists of 4 equations, 

all defined by the 4 inequality constraints, because the 

Lagrange Multipliers are not of interest.  

To summarise the analysis and calculation, the 5 stages of 

FTOR-ML is obtained regarding to ipu as, 

{
 
 

 
 
𝑆𝑡𝑎𝑔𝑒 1:  𝑖𝑝𝑢 ≤ 0.542                    

𝑆𝑡𝑎𝑔𝑒 2:  0.542 < 𝑖𝑝𝑢 ≤ 0.649    

𝑆𝑡𝑎𝑔𝑒 3:  0.649 < 𝑖𝑝𝑢 ≤ 0.673    

𝑆𝑡𝑎𝑔𝑒 4:  0.673 < 𝑖𝑝𝑢 ≤ 0.688    

𝑆𝑡𝑎𝑔𝑒 5:  0.688 < 𝑖𝑝𝑢 ≤ 0.694    

 (34) 

and the 4 design variables derived for each stage are shown in 

Fig. 6. Their corresponding phase current coefficient are 

depicted in Fig. 7. Finally, the control scheme is implemented 

in Fig. 8. 

 
Fig. 5 Flow chart to calculate the design variables of stage 2-

5 of FTOR-ML 

 
Fig. 6 Design variable for FTOR-ML with 1N 

    

{
 
 
 
 
 

 
 
 
 
 𝑔1:  (𝐾𝑋

𝛼 − 𝐾𝑌
𝛼 + 1)2 + ( 𝐾𝑋

𝛽
−𝐾𝑌

𝛽
− 1) 2 −

1

𝑖𝑝𝑢
2
≤ 0                                            

𝑔2: [𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3]

2
−
4

𝑖𝑝𝑢
2
≤ 0

𝑔3: [𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]

2
−
4

𝑖𝑝𝑢
2
≤ 0

𝑔4: (𝐾𝑋
𝛼 −√3𝐾𝑌

𝛼 − 1)
2
+ ( 𝐾𝑋

𝛽
−√3𝐾𝑌

𝛽
− √3)

2
−

4

3𝑖𝑝𝑢
2
≤ 0                             

𝑔5: (𝐾𝑋
𝛼 +√3𝐾𝑌

𝛼 − 1)
2
+ ( 𝐾𝑋

𝛽
+√3𝐾𝑌

𝛽
+ √3)2 −

4

3𝑖𝑝𝑢
2
≤ 0                             
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 𝐾𝑋

𝛼 = (6 + 3√3) 𝐾𝑌
𝛼                     

𝐾𝑋
𝛽
= (6 + 3√3)𝐾𝑌

𝛽
+ 4 + 2𝐾𝑌

𝛽

𝐾𝑌
𝛼 =

√198 − 45√3
409

− 𝑖𝑝𝑢

(8 + 2√3)𝑖𝑝𝑢
         

𝐾𝑌
𝛽
=
(2 + 5√3)𝐾𝑌

𝛼 − 2

3
           

 (36) 



 
Fig. 7 Phase current coefficient for FTOR-ML with 1N 

 
Fig. 8 Implementation of FTOR-ML for 1N 

 

Table 2 Motor parameters of DT-PMSM 

Parameter Value Parameter Value 

No. of Pole Pair 4 Ld [mH] 0.293 

Ωn [rev/min] 3000 Lq [mH] 0.7 

Udc [V] 120 Ldz [mH] 0.017 
Imax [A] 24 Lqz [mH] 0.017 

Ten [Nm] 12.6 Lo1 [mH] 0.011 

Rs [Ω] 0.042 Lo2 [mH] 0.011 

Ψf [Wb] 0.044   

IV. SIMULATION AND EXPERIMENTAL 

INVESTIGATION ON THE FTOR-ML 
To verify the effectiveness of the proposed FTC strategy, 

simulation is performed, and a test rig is setup to implement the 

algorithm of FTOR-ML. Table 2 shows the key parameters of 

the DT-PMSM for simulation and experimental testing. The 

inductances in each synchronous frame were measured by a 

sequence of test procedure demonstrated in [20]. 

A. Numerical Simulation 
The post-fault mathematical model of the DT-PMSM 

derived in section II is built in MATLAB/Simulink. 

To verify the proposed control scheme, based on the control 

scheme demonstrated in Fig. 2, a sequence of reference torques 

is applied to the model at motor speed of 500 RPM. This 

sequence is constructed so that each step of the corresponding 

reference current vector magnitude lays in different stage of the 

TOR. The corresponding reference current is calculated by the 

MTPA scheme.  

As shown in Fig. 9(a) for 2N, the first and second step 

correspond to the conventional ML. None of the phase currents 

have reached the current limit in the first step whereas phase b 

and c have saturated in the second step. To further increase the 

torque reference in the third step, the proposed FTOR-ML 

becomes active and while the current magnitude of phase b and 

c are maintained, currents in phase u and v start to increase to 

boost the torque output. In the final step, all phase currents, 

except phase a, are saturated for maximum torque output under 

single OCF. The current decreasing in phase a, after the TOR 

of ML, is the result of the nature of the mathematical solution 

derived for the FTOR-ML. It is worth noting that the reference 

torque is not linear against its corresponding current vector 

magnitude. This is due to the non-linear MTPA scheme of IPM 

that results in non-linear relation between the torque and 

current references.  

 Fig. 9 (b) presents a similar simulation process for single 

neutral point. The result is as expected, where phase c saturates 

first, following by phase b, u, a, and finally phase v. 

 
(a) 

 
(b) 

Fig. 9 Simulating motor dynamics for (a) 2N and (b) 1N 

under single OCF by FTOR-ML (Top: reference torque 

sequence; Middle: current vector magnitude ipu; Bottom: 

phase current waveform)  

B. Experimental Setup 
Fig. 10 shows the schematic diagram of the back-to-back test 

platform developed for the experimental validation, depicting 

the arrangement of components, sensors and interfaces. On this 

basis, Fig. 11 shows the actual setup in the test cell, where the 

motor under testing (DT-PMSM) is placed on a test rig, and a 

dynamometer (Induction Motor) operates as a prime mover 

under speed control to regulate the shaft speed. The 

dynamometer has its own drive and power supply so that the 

two machines are decoupled electrically. The DT-PMSM is 

driven by an inverter consisting 6 identical half-bridge modular 

units (Imperix PEB8024). Current sensors are mounted on each 

AC output of these units for current measurement. The FOC 

and proposed FTC scheme are implemented in the controller 

(Imperix B-Box), from which PWM signals are generated and 

fed to the inverter through optical fibre. There is also an 

additional interface to read and interpret the resolver signal for 

rotor position measurement. It will be seen that there is a 

connection box placed between the drive cabinet and the DT-

PMSM, to connect the power cables, with a circuit breaker 

mounted inside, to either connect or isolate the 2 neutral points 

to form the 2 different winding configurations, as shown in the 

schematic in Fig. 10. 

Before implementing the FTC, the motor runs in healthy 

condition with an anti-windup PI controller in DQ- and DQz-

frame and 3rd resonant controller in zero-sequence subspace as 

outlined in Fig. 2, with no harmonics suppression control (HSC) 

introduced. However, due to the nature of non-linearity from 

various sources, e.g. magnetic saturation/non-sinusoidal back 

EMF/dead time effects in the inverter, harmonics current is 



inevitably introduced to form a distorted phase current 

waveform. Fig. 12 shows the current waveform on 2N and 1N 

when HSC is not included. The 5th/7th and 11th/13th harmonics 

components dominate in the waveform, which are the exact 

result of those aforementioned non-linearities [20-22]. 

Therefore, HSC is introduced in order to have a cleaner and 

less-distorted current waveform during the single-phase OCF. 

As demonstrated in [13, 20, 21], a 6th resonant controller is 

introduced in DQz-frame to regulate the 5th/7th harmonics, 

while 11th/13th harmonics are suppressed by a 12th resonant 

controller in DQ-frame. The effectiveness of the HSC is 

demonstrated in Fig. 12 that the total harmonic distortion values 

are improved from 8.61% and 8.81% to 3.1% and 3.38% for 

2N and 1N respectively. More specifically, the 5th/7th and 

11th/13th harmonics components are significantly suppressed. 

 
Fig. 10 Schematic of DT-PMSM experimental platform 

 
Fig. 11 DT-PMSM experimental equipment and setup 

 
             (a)               (b) 

Fig. 12 Current waveform comparison of phase a with or 

without harmonics suppression (a) 2N (b) 1N  

C. Experimental Result of the Proposed 

FTOR-ML 
Three sets of experiment have been carried out to validate 

the proposed FTOR-ML. The first and second set mimic the 

same current reference sequence as the simulation, for 2N and 

1N respectively, to demonstrate the effectiveness of the 

proposed control scheme. The third set studies the copper loss 

to validate the superiority of the minimum losses throughout  

the entire TOR. 

During the first experiment, the same sequence of current 

reference as the simulation has been applied to the faulty DT-

PMSM with 2N. Since the dynamometer does not have good 

low-speed stability, the test was carried out at 500 RPM, which 

is not high enough to induce distorted current. As shown in Fig. 

13, the reference ipu is followed and no phase current has 

exceeded the limitation. The current waveforms of the phases 

in each step of the sequence, as depicted in  Fig. 13(b)-(e), were 

as expected and corresponded to the analysis in III.B.1 and 

simulation results in IV.B, despite the slightly distorted 

component. The torque output, which is measured by a torque 

transducer (HBM T40B) mounted on the shaft, is smooth and 

almost ripple-free throughout the sequence in Fig. 13(a). 

However, in the actual torque waveform, 6th-order ripple is 

noticeable, especially in ②  and ③ . This means that the 

superiority of DT-PMSM without 6th-order torque ripple is not 

preserved during single-phase OCF. The reason is that the 5th 

and 7th current harmonics corresponding to 6th harmonics in the 

synchronous frame cannot be fully decoupled due to the loss of 

one phase, resulting in the presence of 6th harmonic current in 

the torque-relevant DQ-frame and hence 6th-order torque ripple. 

It should be noted that the motor parameters used for the 

mathematical model in the numerical simulation were 

measured under healthy condition. However, when the motor 

is in single-phase OCF, it becomes highly unbalanced and 

hence the inductances and flux linkages under load condition 

are affected. Consequently, the average torque output in each 

step of the sequence in the experiment, is slightly different from  

that in the simulation.  

 

 

Fig. 13 Experimental result of 

motor dynamics for 2N by FTOR-

ML, (a) Sequence (Top: reference 

ipu; Middle: phase current 

waveform; Bottom: output 

torque); (b)-(e) Torque and 

current waveform of each section 

In the second experiment for 1N, as presented in Fig. 14, the 

test outcome matches the analytical solution and numerical 

simulation. Despite the slight high-frequency distortion, the 

current waveforms were sinusoidal and phase c/b/u/a and v 

saturated from step to step that corresponds to each stage of the 

FTOR-ML of 1N derived in III.B.2. Similar to the case of 2N, 

apart from the small 6th-order ripple, the electromagnetic torque 

was maintained at certain level in each step.  



 
Fig. 14 Experimental result of motor dynamics for 1N by 

FTOR-ML, (a) Sequence (Top: reference ipu; Middle: phase 

current waveform; Bottom: output torque); (b)-(g) torque and 

current waveform of each section 
 

During the third test, the copper loss of the faulty machine 

for the entire TOR for 2N and 1N was tested and studied. The 

copper loss is compared to that of the DT-PMSM under healthy 

condition at maximum load, i.e. ipu = 1. It is illustrated in Fig. 

15(a) that the proposed FTOR-ML demonstrates minimum 

copper loss in the transient part between the TOR of ML and 

MT for 2N.  More specifically, Table 3 extracts some of the 

data from Fig. 15(a) for copper loss and maximum phase 

current (in p.u.) comparison. While the FTOR-ML corresponds 

to the same outcome as ML at ipu
*
 = 0.5547 and MT at ipu

*
 = 

0.5774, it demonstrates, as anticipated, the trade-off between 

low copper loss (51.9% for FTOR-ML over 65% for MT) and 

requirement of not exceeding current limitation to avoid 

excessive heat point (100% of current usage for FTOR-ML 

over 102.8% for ML).    

Similarly, for 1N, the FTOR-ML demonstrates minimum 

copper loss throughout the TOR, as shown in Fig. 15(b). Table 

4 compares performance among the ML, MT and proposed 

FTOR-ML. Within the range of ipu
* between 0.5418 and 0.6944, 

FTOR-ML, again, illustrates good compromise between 

minimising copper loss and avoiding excessive heat. For instant, 

at ipu
*

 = 0.59, although the maximum phase current under MT 

reaches 85% of the limitation (as in FTOR-ML), the total 

copper loss is 25% higher than that under FTOR-ML (0.602 

over 0.48). At ipu
*
 = 0.64, while the copper loss under ML is 

lower than that under FTOR-ML, the maximum phase current 

exceeds the limitation by 18.1%, which could result in 

catastrophic failure due to excessive heat. 

It is well-evidenced that, based on the outcome in Fig. 15, 

Table 3 and Table 4, the propose FTOR-ML has filled the gap 

of the 2 conventional strategies, ML and MT, to deliver 

reference torque while maintaining minimum loss. Moreover, 

the test data has shown great alignment with the analytical 

result. These 2 tests have further verified the effectiveness of 

the proposed control scheme. 

 
(a) (b) 

Fig. 15 Copper loss comparison for (a) 2N and (b) 1N 

between ML/MT and FTOR-ML 
 

Table 3 Comparison between different control schemes for 2N 

ipu
* 0.5547 0.57 0.5774 

 Pcu Imax Pcu Imax Pcu Imax 

ML 0.462 1 0.493 1.028 0.505 1.041 

MT 0.615 0.961 0.65 0.987 0.667 1 

FTOR-

ML 
0.462 1 0.519 1 0.667 1 

 

Table 4 Comparison between different control schemes for 1N 

ipu
* 0.5418 0.59 0.64 0.6944 

 Pcu Imax Pcu Imax Pcu Imax Pcu Imax 

ML 0.391 1 0.464 1.09 0.5456 1.181 0.642 1.281 
MT 0.507 0.781 0.602 0.85 0.708 0.922 0.833 1 

FTOR-

ML 
0.391 1 0.48 1 0.61 1 0.833 1 

V. CONCLUSION 
This paper has derived the mathematical model for a post-

fault asymmetrical dual three-phase PMSM under single open-

circuit fault (OCF). Based on the model, a fault-tolerant control 

scheme that is applicable for the entire torque operation range 

with minimum copper loss has been proposed. Winding 

topologies with both single and isolated neutral point have been 

considered. The proposed FTOR-ML scheme has successfully 

combined the merits of minimum loss and maximum torque. 

The torque operation range (TOR) of ML has been extended to 

that of MT, where minimum copper loss is achieved throughout 

the entire TOR (0-57.74% and 0-69.94% of rated torque for 2N 

and 1N respectively), which is validated by numerical 

simulation and a series of experiments. The analytical solution 

for the design variables is derived which significantly reduces 

the complexity of the control scheme and also the computation 

effort required without the use of conventional look-up tables. 
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Appendix 

Each term of the Jacobian Matrix of the Lagrange Equation in (33) is expressed as, 

𝜕ℒ

𝜕𝐾𝑋
𝛼 = 2𝐾𝑋

𝛼 + 2𝜇1(𝐾𝑋
𝛼 − 𝐾𝑌

𝛼 + 1) + 2𝜇2[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1] + 2𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] + 

2𝜇4(𝐾𝑋
𝛼 − √3𝐾𝑌

𝛼 − 1) + 2𝜇5(𝐾𝑋
𝛼 + √3𝐾𝑌

𝛼 − 1) = 0 
(A1) 

𝜕ℒ

𝜕𝐾𝑋
𝛽
= 2𝐾𝑋

𝛽
+ 2𝜇1( 𝐾𝑋

𝛽
+ 𝐾𝑌

𝛽
+ 1) + 2𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3] + 

2𝜇3[ 𝐾𝑋
𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3] + 2𝜇4( 𝐾𝑋

𝛽
−√3𝐾𝑌

𝛽
− √3) + 2𝜇5( 𝐾𝑋

𝛽
+√3𝐾𝑌

𝛽
+√3) = 0 

(A2) 

𝜕ℒ

𝜕𝐾𝑌
𝛼 = 6𝐾𝑌

𝛼 − 2𝜇1(𝐾𝑋
𝛼 −𝐾𝑌

𝛼 + 1) + 2(√3 + 2)𝜇2[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1] − 

2(√3 − 2)𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] − 2√3𝜇4(𝐾𝑋
𝛼 − √3𝐾𝑌

𝛼 − 1) + 2√3𝜇5(𝐾𝑋
𝛼 + √3𝐾𝑌

𝛼 − 1) = 0 
(A3) 

𝜕ℒ

𝜕𝐾𝑌
𝛽
= 6𝐾𝑌

𝛽
+ 4 + 2𝜇1( 𝐾𝑋

𝛽
+𝐾𝑌

𝛽
+ 1) + 2(√3 + 2)𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3] − 

2(√3 − 2)𝜇3[ 𝐾𝑋
𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3] − 2√3𝜇4( 𝐾𝑋

𝛽
− √3𝐾𝑌

𝛽
−√3) + 2√3𝜇5( 𝐾𝑋

𝛽
+ √3𝐾𝑌

𝛽
+√3) = 0 

(A4) 

𝜕ℒ

𝜕𝜇𝑛
= 𝑔𝑛 + 𝑠𝑛

2 = 0, (𝑛 = 1,2,3,4,5) (A5) 

𝜕ℒ

𝜕𝑠𝑛
= 2𝜇𝑛𝑠𝑛 = 0, (𝑛 = 1,2,3,4,5) (A6) 

 

The equation set for stage 2, 3, 4 and 5 of the FTOR-ML with 1N are defined by their corresponding active inequality constraints, 

where only A7 has analytical solution. Equation sets are expressed as  

{
 
 
 

 
 
 𝐾𝑋

𝛼 + 𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] = 0                                                          ①

𝐾𝑋
𝛽
+ 𝜇3[ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3] = 0                                             ②

3𝐾𝑌
𝛼 − (√3 − 2)𝜇3[𝐾𝑋

𝛼 − (√3 − 2)𝐾𝑌
𝛼 + 1] = 0                                      ③

3𝐾𝑌
𝛽
+ 2 − (√3 − 2)𝜇3[ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3] = 0                  ④

[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]

2
=
4

𝑖𝑝𝑢
2
   ⑤

 (A7) 
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 𝐾𝑋

𝛼 + 𝜇2[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1] + 𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] = 0                                                                           ①

𝐾𝑋
𝛽
+ 𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3] + 𝜇3[ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2+ √3] = 0                                                   ②

3𝐾𝑌
𝛼 + (√3 + 2)𝜇2[𝐾𝑋

𝛼 + (√3 + 2)𝐾𝑌
𝛼 + 1] − (√3 − 2)𝜇3[𝐾𝑋

𝛼 − (√3 − 2)𝐾𝑌
𝛼 + 1] = 0                                     ③

3𝐾𝑌
𝛽
+ 2+ (√3 + 2)𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3] − (√3 − 2)𝜇3[ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2+ √3] = 0     ④

[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3]

2
=

4

𝑖𝑝𝑢
2
                                                                           ⑤

[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]

2
=

4

𝑖𝑝𝑢
2
                                                                           ⑥

 (A8) 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐾𝑋

𝛼 + 𝜇2[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1] + 𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] + 𝜇4(𝐾𝑋
𝛼 − √3𝐾𝑌

𝛼 − 1) = 0                                    ①

𝐾𝑋
𝛽
+ 𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3] + 𝜇3[ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]  + 𝜇4(𝐾𝑋

𝛽
−√3𝐾𝑌

𝛽
− √3) = 0        ②

3𝐾𝑌
𝛼 + (√3 + 2)𝜇2[𝐾𝑋

𝛼 + (√3 + 2)𝐾𝑌
𝛼 + 1]                                                                                                                                  

−(√3 − 2)𝜇3[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1] − √3𝜇4(𝐾𝑋
𝛼 −√3𝐾𝑌

𝛼 − 1) = 0                                                                             ③

3𝐾𝑌
𝛽
+ 2+ (√3 + 2)𝜇2[ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3]                                                                                                               

−(√3 − 2)𝜇3[ 𝐾𝑋
𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3] − √3𝜇4( 𝐾𝑋

𝛽
− √3𝐾𝑌

𝛽
−√3) = 0                                                             ④

[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3]

2
=

4

𝑖𝑝𝑢
2
                                                                                 ⑤

[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]

2
=

4

𝑖𝑝𝑢
2
                                                                                 ⑥

(𝐾𝑋
𝛼 − √3𝐾𝑌

𝛼 − 1)
2
+ (𝐾𝑋

𝛽
− √3𝐾𝑌

𝛽
−√3)

2
=

4

3𝑖𝑝𝑢
2
                                                                                                              ⑦

 (A9) 

{
 
 
 
 

 
 
 
 (𝐾𝑋

𝛼 − 𝐾𝑌
𝛼 + 1)2 + ( 𝐾𝑋

𝛽
− 𝐾𝑌

𝛽
− 1)

2
=
1

𝑖𝑝𝑢
2
                                                ①

[𝐾𝑋
𝛼 + (√3 + 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
+ (√3 + 2)𝐾𝑌

𝛽
+ 2 − √3]

2
=
4

𝑖𝑝𝑢
2
    ②

[𝐾𝑋
𝛼 − (√3 − 2)𝐾𝑌

𝛼 + 1]
2
+ [ 𝐾𝑋

𝛽
− (√3 − 2)𝐾𝑌

𝛽
+ 2 + √3]

2
=
4

𝑖𝑝𝑢
2
    ③

(𝐾𝑋
𝛼 − √3𝐾𝑌

𝛼 − 1)
2
+ (𝐾𝑋

𝛽
− √3𝐾𝑌

𝛽
− √3)

2
=

4

3𝑖𝑝𝑢
2
                                ④

 (A10) 

 

 


