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Abstract: 8 

This paper tests the hypothesis that human population and city function are key drivers of biochemical burden 9 
in an inter-city system, which can be used to inform One Health actions as it enables a holistic understanding 10 
of city’s metabolism encompassing all of the activities of a city in a single model: from lifestyle choices, 11 
through to health status and exposure to harmful chemicals as well as effectiveness of implemented 12 
management strategies. Chemical mining of wastewater for biochemical indicators (BCIs) was undertaken to 13 
understand speciation of BCIs in the context of geographical as well as community-wide socioeconomic 14 
factors. Spatiotemporal variabilities in chemical and biological target groups in the studied inter-city system 15 
were observed. A linear relationship (R2 >0.99) and a strong positive correlation between most BCIs and 16 
population size (r >0.998, p <0.001) were observed which provides a strong evidence for the population size 17 
as a driver of BCI burden. BCI groups that are strongly correlated with population size and are intrinsic to 18 
humans’ function include mostly high usage pharmaceuticals that are linked with long term non-communicable 19 
conditions (NSAIDs, analgesics, cardiovascular, mental health and antiepileptics) and lifestyle chemicals. 20 
These BCIs can be used as population size markers. BCIs groups that are produced as a result of a specific 21 
city’s function (e.g. industry presence and occupational exposure or agriculture) and as such are not correlated 22 
with population size include: pesticides, PCPs and industrial chemicals. These BCIs can be used to assess 23 
city’s function, such as occupational exposure, environmental or food exposure, and as a proxy of community-24 
wide health. This study confirmed a strong positive correlation between antibiotics (ABs), population size and 25 
antibiotic resistance genes (ARGs). This confirms the population size and AB usage as the main driver of AB 26 
and ARG levels and provides an opportunity for interventions aimed at the reduction of AB usage to reduce 27 
AMR. Holistic evaluation of biophysicochemical fingerprints (BCI burden) of the environment and data 28 
triangulation with socioeconomic fingerprints (indices) of tested communities are required to fully embrace 29 
One Health concept.    30 

 31 
Key words: water fingerprinting, wastewater-based epidemiology, AMR, pharmaceuticals, illicit drugs, 32 
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1. Introduction 34 

One Health assumes that the health of people is closely linked with the health of animals and surrounding 35 
environment. It is a cross sectoral and multidisciplinary effort aimed at holistic understanding and management 36 
of public and environmental health. One Health has been widely adopted in the antimicrobial resistance (AMR) 37 
challenge as it is multifaceted with human and animal health impacts, as well as food security and safety. One 38 
Health model incorporates a dynamic set of biophysicochemical (e.g. multichemical complex mixtures 39 
impacting environmental and public health via variable exposure status) and socioeconomic/health indicators 40 
(e.g. level of industrial/agricultural activity, deprivation index, disease prevalence) that are difficult to unravel. 41 
Here we present an approach that enables research within the One Health domain – wastewater fingerprinting 42 
or wastewater-based epidemiology (WBE). 43 

Wastewater represents a fingerprint of a city’s production, metabolism and disposal. It is a complex mixture 44 
of substances of biological and chemical origin including city stressors (e.g. toxicants and infectious agents) 45 
and urban physiological processes (e.g. specific disease-linked proteins, genes and stressor metabolites). The 46 
quantitative measurement of these substances continuously pooled by the sewerage system can provide 47 
evidence of a city’s exposure to stressors (Kasprzyk-Hordern 2019). Wastewater can also provide data on the 48 
biochemical burden released by a city (Figure 1). Several papers focussed on quantification of various 49 
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chemicals and biological agents in wastewater but none, to the authors knowledge, attempted to correlate 50 
biochemical fingerprint with city’s size and its function. 51 

In order to understand biochemical burden produced by a city, WBE pipelines developed in Bath (Kasprzyk-52 
Hordern, Proctor et al. 2021) were used in this manuscript. WBE focusses on wastewater as a medium for 53 
epidemiological information about a community contributing to the wastewater (usually a city or town). WBE 54 
currently informs illicit drug use trends (Ort, van Nuijs et al. 2014) (Thomas, Bijlsma et al. 2012) (González-55 
Mariño, Baz-Lomba et al. 2020) and other lifestyle chemical use: e.g., alcohol (Reid, Langford et al. 2011, 56 
Baz-Lomba, Salvatore et al. 2016), tobacco (Castiglioni, Senta et al. 2014), counterfeit medicines (Venhuis, 57 
de Voogt et al. 2014) (Causanilles, Cantillano et al. 2018, Causanilles, Nordmann et al. 2018), antibiotics and 58 
corresponding resistance genes (Castrignano, Yang et al. 2020) as well as levels of stress biomarkers such as 59 
isoprostanes (Ryu, Gracia-Lor et al. 2016, O'Brien, Choi et al. 2019). WBE has revolutionised population 60 
health studies, especially in the context of the COVID pandemics (Ahmed, Angel et al. 2020, Bivins, North et 61 
al. 2020, Medema, Been et al. 2020, Sodre, Brandao et al. 2020). WBE has also focussed on public exposure 62 
to chemicals: pesticides (Rousis, Gracia-Lor et al. 2017) (O'Brien, Choi et al. 2019, Rousis, Gracia-Lor et al. 63 
2020) and industrial chemicals (Lopardo, Petrie et al. 2019) (Been, Bastiaensen et al. 2018).  64 

This paper tests the hypothesis that human population and city function are key drivers of biochemical burden 65 
in an inter-city system, which can be used to inform One Health actions. Several groups of chemical and 66 
biological agents (biochemical indicators, BCIs) were subject of investigation: water quality indicators (COD, 67 
BOD, N, P), industrial chemicals, personal care products, pesticides, illicit drugs, lifestyle chemicals, 68 
prescription pharmaceuticals, as well as genetic targets, such as antibiotic resistance genes (ARGs). We have 69 
selected five contrasting town/cities served by five major wastewater treatment plants (WWTPs) contributing 70 
to one river catchment in the South-West UK and covering an area of approximately 2,000 km2 and a 71 
population of ~1.5 million (this constitutes >75% of the overall population in the catchment). Chemical mining 72 
of wastewater for BCIs was undertaken to understand spatiotemporal speciation of BCIs in the context of 73 
geographical as well as community-wide socioeconomic factors. The five cities and towns tested have different 74 
characteristics: (1) they are different in size, as well as (2) in industry presence and socioeconomic status. We 75 
applied WBE pipelines to: 76 
(1) Understand spatiotemporal variabilities in chemical and biological target groups in the studied inter-city 77 

system. 78 

(2) Identify target groups that are strongly correlated with population size and are intrinsic to human function. 79 

(3) Identify target groups that are produced as a result of a specific city’s function (e.g. industrial presence or 80 
agriculture) and as such are not correlated with population size. 81 

(4) Select markers that can inform the size of population served by WWTPs. 82 

(5) Test which BCIs can be used as proxies for city health and AMR prevalence, including potential for at 83 
source interventions.  84 

 85 

Figure 1. Water Fingerprinting and One Health 86 



 87 

2. Materials and Methods 88 

2.1. Reagents and analytical standards 89 

Several BCI groups were studied (Table 1). These include pharmaceuticals, chemicals in personal care 90 
products, pesticides, industrial chemicals, illicit drugs and other lifestyle chemicals as well as genetic material 91 
(ARGs) and water quality indicators. The internal standards (IS) used in chemical analysis are discussed in 92 
(Proctor, Petrie et al. 2021) and are also gathered in Table S1, S2. Water was purified using a Milli-Q 93 
purification system from Millipore (Nottingham, UK). All solvents used were of HPLC grade or higher. 94 
MeOH, HCOOH, HCl, NaOH, NH4OH, NH4F and 2-propanol were purchased from Sigma (UK) and Fisher 95 
(UK).  All glassware was deactivated using a 5% (v/v) dimethyldichlorosilane (DMDCS) in toluene (Sigma, 96 
UK) to prevent loses from analyte sorption according to the procedure described in (Proctor, Petrie et al. 2021). 97 

Table 1. Classes of BCIs.  98 
Class Compound Class Compound 

UV Filter 

Benzophenone-1 Anaesthetic and 
metabolite 

Ketamine 

Benzophenone-2 Norketamine 

Benzophenone-3 

Anti-depressants 

Venlafaxine 

Benzophenone-4 Desvenlafaxine 

Parabens 

Methylparaben Fluoxetine 

Ethylparaben Norfluoxetine 

Propylparaben Sertraline 

Butylparaben Mirtazapine 

Plasticizer 
Bisphenol-A Citalopram 

Bisphenol A sulphate Desmethylcitalopram 

Steroid Estrogens 

E1 Paroxetine 

E2 Duloxetine 

EE2 Amitriptyline 

Antibiotics and 
Antibacterial 

Sulfasalazine Nortriptyline 

Clarithromycin Norsertraline 

Azithromycin  

Trimethoprim 

Anti-epileptic 

Carbamazepine 

Sulfamethoxazole Carbamazepine10,11-epoxide 

Triclosan 10,11-Dihydro-10-
hydroxycarbamazepine Triclosan sulphate 

Amoxicillin Calcium-channel 
blocker 

Diltiazem 

Metronidazole Verapamil 

Sulfadiazine 

Hypnotic 

Temazepam 

Cefalexin  Oxazepam 

Ofloxacin Diazepam 

Ciprofloxacin 
Anti-psychotic 

Quetiapine 

Tetracycline Risperidone 

Danofloxacin 
Dementia 

Donepezil 

Oxytetracycline Memantine 

Chloramphenicol Creatinine Creatinine 

Penicillin G 

Lifestyle 
Chemicals 

Nicotine 

Penicillin V Caffeine 

Erythromycin Cotinine 

Prulifloxacin 1,7 dimethylxantine 

Norfloxacin 

Analgesics and 
Metabolites 

Morphine 
Nalidixic acid 

Antifungal 
Griseofulvin Dihydromorphine 

Ketoconazole Normorphine 

Hypertension 

Valsartan Methadone 

Irbesartan EDDP 

Lisinopril Codeine 

NSAIDs 

Ketoprofen Norcodeine 

Ibuprofen Dihydrocodeine 

Naproxen Tramadol 

Diclofenac N-desmethyltramadol 

Acetaminophen O-desmethyltramadol 

Lipid regulator 
Bezafibrate 

Stimulants and 
metabolites 

Amphetamine 

Atorvastatin Methamphetamine 

Anti-hyperlipidemic Gemfibrozil MDMA 

Anti-hyperintensive Candesartan Cilexetil MDA 

Antihistamine 
Fexofenadine Cocaine 

Cetirizine Benzoylecgonine 

GUD/ED Sildenafil Anhydroecgonine methylester 

Diabetes 

Metformin Cocaethylene 

Gliclazide Mephedrone 

Sitagliptin MDPV 

Cough suppressant Pholcodine Opioid and 
metabolite 

Heroin 

Beta-blocker 
Atenolol 6-acetylmorphine 

Metoprolol Thiamethoxam 



Propranolol 

Pesticides, 
fungicides and 

herbicides 

Imidacloprid 

Bisoprolol Clothianidin 

H2 receptor agonist 
Ranitidine Metazachlor 

Cimetidine Terbuthylazine 

X-ray contrast media Iopromide Methiocarb 

Various Buprenorphine Dichlofluanid 

Drug precursor 
Ephedrine/pseudoephedrine Flufenacet 

Norephedrine Oxadiazon 

Anti-cancer 

Azathioprine Chlorpyrifos 

Methotrexate 
Triallate 

3PBA (3-phenoxybenzoic acid) 

Ifosfamide 

Veterinary 
Pharma 

Tylosin 

Tamoxifen Sulfapyridine 

Imatinib Sarafloxacin 

Capecitabine Ceftiofur 

Bicalutamide Diazinon 

Genes/ARGs 

16SRNA 

WQIs 

Ammonia N 

ermB COD 

qnrS N total 

sulf Nitrite as N 

catA Nitrate as N 

  Orthophos 

  Chloride 

 99 

2.2. Sample collection 100 

Untreated wastewater samples (1L) were collected (between coarse screening and primary sedimentation) for 101 
7 consecutive days from Wednesday to Tuesday between June and October 2015 from five major WWTPs 102 
(Figure 2, sites A-E) serving 5 cities and towns: Chippenham (town), Trowbridge (town), Bath (city), 103 
Keynsham (town) and Bristol (city). These WWTPs contribute to >75% of the overall population in studied 104 
Avon River Catchment (an area of approximately 2,000 km2 and the population of ~1.5 million).     105 

Untreated wastewater samples were collected as volume proportional 24 h composites with average sub-106 
sample collection frequencies of approximately 15 minutes using an ISCO 3700 autosampler packed with ice 107 
to maintain 4oC during collection to limit biological activity (Petrie et al., 2017).  River water samples were 108 
collected as grab samples on the same days as wastewater samples (see S1-S8 in Figure 2). All samples were 109 
transported on ice to the laboratory, spiked with the internal standards and stored at -18°C until sample 110 
preparation and analysis.  111 

    112 
Site Populati

on 

Industrial 

Contribution 

Sewer 

Residence 

(h) 

Wastewater 

Treatment 

Process* 

Solid 

Retention 

Time (d) 

Hydraulic 

Retention 

Time (h) 

River sampling distance to 

discharge point (km) 

Up stream Down Stream 

WWTP A 
(serving 

Chippenham) 

37,714 0.4% <0.5 -4 AS 19 46.2 0.5 0.5 



WWTP B 

(serving 

Trowbridge) 

68,453 30.0% <0.5 -4 TF n.a 24.5 0.5 0.5 

WWTP C 

(serving Bath) 

109,543 1.2% <0.5 -9 TF n.a 13.9 2 2 

WWTP D 

(serving 
Keynsham) 

18,274 0.1% <0.5 -2 TF n.a 17.6 1 1 

WWTP E 

(serving 
Bristol) 

867,244 23.9% <1 -24 90% SBR 

10% AS 

4 

8 

10.9 

25.8 

- - 

* AS – activated sludge, TF – trickling filter, SBR – sequencing batch reactor. 113 

Figure 2 Site information of studied WWTPs and corresponding river locations (note: Towns A, B and D are 114 
called City A, B and C in the text for simplicity reasons). 115 

2.3. Sample preparation and analysis  116 

2.3.1. SPE/MAE-UHPLC-QqQ - targeted analysis of chemical BCIs 117 

Methodology used in this paper was as published by Proctor et al. (Proctor et al. 2019). Briefly, liquid samples 118 
(50 mL, at pH 7.5 -8.5) were filtered with GF/F glass microfibre 0.7 µm filter (Whatman, UK), and spiked 119 
with 50 ng of internal standard (IS) mix (50 µL of a 1 µg mL-1 methanolic IS solution). Solid phase extraction 120 
(SPE) with 60 mg Oasis HLB sorbents (Waters, UK), pre-conditioned using 2 mL MeOH and 2 mL H2O at 1 121 
mL min-1, was used to extract and concentrate BCIs from the matrix. 50 mL of wastewater samples were then 122 
loaded at 5 mL min-1 and dried under vacuum.  BCIs were then eluted using 4 mL MeOH at a rate of 1 mL 123 
min-1.  Methanolic extracts were dried under nitrogen using a TurboVap evaporator (Caliper, UK, 40 ºC, N2, 124 
<5 psi).  Dried extracts were reconstituted in 500 µL 80:20 H2O:MeOH and analysed with UHPLC-QqQ.   125 

Suspended particulate matter (SPM) obtained from GF/F filters was freeze-dried and 0.25 g samples were 126 
spiked with 50 ng of IS mix (50 µL of a 1 µg mL-1 methanolic IS solution). Microwave assisted extraction 127 
(MAE) was used to extract BCIs from SPM. Briefly, samples were mixed with 25 mL of 50:50 MeOH:H2O 128 
(pH 2), heated at 110 ºC using a 800 W MARS 6 microwave (CEM, UK) and methanolic extracts adjusted to 129 
<5 % of MeOH using H2O (pH 2). The extracts were then passed through pre-conditioned Oasis MCX SPE 130 
cartridges (Waters, UK) and eluted with 2 mL 0.6 % HCOOH in MeOH (acidic compounds) followed by 3mL 131 
7% ammonium hydroxide in MeOH (basic compounds).  After drying, the extracts were reconstituted in 500 132 
µL 80:20 H2O:MeOH, filtered using pre-LCMS 0.2 μm PTFE filters (Whatman, Puradisc) and analysed with 133 
the method described below.  134 

Extracted BCIs were analysed using a Waters Acquity UPLC system (Waters, Manchester, UK) equipped with 135 
BEH C18 column (150 x 1.0 mm, 1.7 µm particle size) (Waters, Manchester, UK) and coupled with Xevo 136 
TQD Triple Quadrupole Mass Spectrometer (Waters, Manchester, UK) equipped with an electrospray 137 
ionisation source. Analysis was performed in both ESI+ and ESI- with a capillary voltage of 3.20 kV, the 138 
desolvation temperature of 400 °C and the source temperature of 150 °C. Nitrogen was used as the nebulising 139 
and desolvation gas, and argon as the collision gas. The cone gas flow was 100 L h−1and the desolvation gas 140 
flow was 550 L h−1. Further details regarding method’s conditions and performance can be found in Proctor et 141 
al. (Proctor et al. 2019) and in Tab S1 and Fig S1.  142 

2.3.2. SPE-UHPLC-QTOF – retrospective analysis of chemical BCIs 143 

Methodology used in this paper was as published by (Lopardo, Rydevik, and Kasprzyk-Hordern 2018). 100 144 
mL of unfiltered wastewater samples were spiked with IS mix (25 µL of a methanolic solution, 1 µg mL-1), 145 
filtered using GF/F glass microfibre filter (Whatman, UK) and passed through Oasis HLB.  BCIs were then 146 
eluted using 4 mL MeOH at a rate of 1 mL min-1.  Methanolic extracts were dried under nitrogen using a 147 
TurboVap evaporator (Caliper, UK, 40 ºC, N2, <5 psi).  Dried extracts were reconstituted in 500 µL 80:20 148 
H2O:MeOH and analysed with UHPLC-QTOF. Extracted BCIs were analysed using Dionex Ultimate 3000 149 
HPLC equipped with a BEH C18 column (50 x 2.1 mm, 1.7 µM, Waters UK) coupled with a Bruker Maxis 150 
HD Q-TOF equipped with an ESI source, which was operated in both positive and negative ionisation mode. 151 
The source settings were as follows: capillary voltage was set at 4.5 kV, the end plate offset was set to 500 V, 152 
a pressure of 3 Bar was used for the nebulizer gas, the drying gas (nitrogen) flow was 11 L min-1 and the drying 153 
temperature was set at 220°C. Analysis was run in both full scan mode (MS) and broadband collision induced 154 
dissociation (bbCID) mode. Calibrant solution was injected before each run. Further details regarding 155 
method’s conditions and performance can be found in (Lopardo, Rydevik, and Kasprzyk-Hordern 2019) and 156 
in Table S2 and Fig S2. 157 



2.3.3. Gene analysis 158 
Unfiltered influent wastewater (1 mL) was centrifuged (3000 g, 5 min) and the pellet formed was re-suspended 159 
in 200 µL of phosphate buffered saline (PBS) to which 5 µL of lysozyme was added followed by incubation 160 
at 37 °C for 15 minutes. 200 µL of binding buffer and 40 µL of proteinase K were then added and samples 161 
incubated for 10 minutes at 70 °C.  DNA was then extracted using the High Pure PCR Template preparation 162 
Kit (Roche, Germany) following manufacturer’s instructions. After extraction, the DNA was quantified using 163 
a Thermofisher Nanodrop instrument and stored a -80 °C before genetic BCIs’ quantification using the 164 
QuantStudio 3D Digital PCR system and the QuantaStudio 3D PCR V2 Kit (Life Technologies, Thermo Fisher 165 
Scientific).  PCR reaction consisted of 7.3 µL Master Mix V2, 0.7 µL ARG specific TaqMan assay (20 X 166 
primer/probe mix), 1.5 µL DNase free water and 6.0 µL of DNA sample. 14.5 µL of PCR mix was then loaded 167 
onto the high density nanofluidic PCR chip.  Amplification was carried out using a GeneAmp PCR 9700 168 
system. The reaction was initiated through heating to 95 °C and held for 10 minutes with thermocycling carried 169 
out for 40 cycles; 2 minutes at 60 °C followed by 98 °C for 30 seconds. Each chip was processed using the 170 
QuantStudio 3D Digital PCR system and Thermo Scientific AnalysisSuiteTM software was used to analyse 171 
results. Further details regarding the method are presented in Castrignano et al. and Elder et al. (Castrignanò 172 
et al., 2020)(Elder, Proctor et al. 2021). 173 

2.3.4. Water quality indicators 174 

Water quality indicators (WQIs) were analysed at Wessex Water Scientific Centre. The Aquakem (Thermo 175 
Scientific) analyser was used for the quantitative measurement of water quality indicators except for COD. 176 
The following parameters were studied: Ammonia N, N total (NON), Nitrite, Nitrate, Orthophosphate, 177 
Chloride, COD. Detailed methodology is included in the Supplementary Section. 178 

 179 

2.4. Calculations 180 

Daily mass loads of BCIs (mg day-1) were calculated by multiplying total BCI concentrations (mg L-1) in a 24 181 
h composite raw wastewater sample by daily wastewater flow rates (L day-1). Total BCI concentrations in raw 182 
wastewater were calculated after accounting for both liquid and SPM fractions using the following formula:  183 

𝐵𝐶𝐼𝑙𝑜𝑎𝑑[𝑚𝑔 𝑑𝑎𝑦−1] = 𝐶𝐵𝐶𝐼 𝑥 𝑉 184 

where: CBCI is the total concentration of BCI (mg L-1) in influent wastewater (both liquid and SPE phase), V is 185 
the volume of wastewater received by the WWTP per day (L day-1). 186 

Population normalised daily mass loads (mg day-1 1000inh-1) were calculated using the following formula: 187 

𝐵𝐶𝐼𝑃𝑁𝐷𝐿[𝑚𝑔 𝑑𝑎𝑦−1 1000𝑖𝑛ℎ−1] =
𝐵𝐶𝐼𝑙𝑜𝑎𝑑

𝑃𝐸𝑊𝑊 𝑜𝑟 𝑁𝐻𝑆
 𝑥 1000 188 

where: BCIload is the daily mass load of BCI (mg day-1) in influent wastewater, PEWW is the water utility 189 
estimate and PENHS is population size of patients registered in primary care (see Figure 3). 190 

 191 
Statistical analysis was undertaken using Excel and Regression Analysis. ANOVA was used to calculate p 192 
value. PCA analysis was undertaken using Analyse-it. Seven sampling days, each analysed in duplicate, in 193 
five different cities were investigated. Constant values for population equivalents were applied for system 194 
calibration. Two population size estimates were used (Figure 3): PE-WW and PE-NHS. PE-WW was 195 
calculated based on water utility estimates as presented in Figure 3. Resident population estimate was 196 
calculated by multiplying number of properties by occupancy rate, adjusted for care homes, residential schools 197 
etc. The occupancy rate is set at district level.   198 

Resident population included care homes, schools, universities, prisons and military bases. Tourism was 199 
counted under the non-resident population. Day trippers were not counted. Commercial waste was calculated 200 
based on supply flow to commercial properties and estimate of 60 g BOD per capita per day. Tankered waste 201 
imports were calculated based on COD strength. As the volume of waste was known, therefore a load could 202 
be calculated and converted into a PE (using the assumption of 120 g COD per capita per day). However, 203 
tankered waste could not be associated only with ‘septic’ waste as a proportion of the waste was of industrial 204 
origin.  205 

PE-NHS (population size by GP surgeries) was calculated based on the number of people registered in the GP 206 
surgeries located in the WWTPs catchment zone. GP surgeries information, such as, postcode and number of 207 



people registered were obtained from NHS Digital (https://digital.nhs.uk/). Briefly, we have used PrAna 208 
(Jagadeesan et al., manuscript in submission, http://pranaviz.bath.ac.uk:3838/pranaviz/) tool to identify the GP 209 
surgeries present in each WWTPs catchment zone. Briefly, the WWTPs catchment maps were used to identify 210 
and collect GP surgeries information inside each catchment region, including number of patients registered 211 
using R, an open source software for statistical computing and graphics.  212 

 213 

Figure 3. Populations equivalents used in the study (2015) 214 

As seen from Figure 3 both PE-WW and PE-NHS provide comparable PE estimates, especially in Cities A 215 
and C. The highest % CV are observed for City B and E, likely due to industry presence, and in City D, likely 216 
due to small population size. 217 

 218 

3. Results and discussion 219 

3.1. Spatiotemporal patterns of BCIs in the inter-city system 220 

Most pharmaceutical targets are used to treat chronic conditions. These are cardiovascular, diabetes, and 221 
mental health pharmaceuticals. Due to their long-term usage daily loads showed low temporal variability (as 222 
seen in Figure S3) both in terms of lack of weekly trends (no ‘weekend’ effect that is characteristic for illicit 223 
drugs) and inter-city variability. Most cities had similar population normalised drug loads (PNDLs) (Figure 224 
S4), also discussed in our previous paper ((Kasprzyk-Hordern, Proctor et al. 2021), with some inter-city 225 
variabilities that are discussed in section 3.4.1. for example, city D showed slightly higher presence of 226 
cardiovascular drugs and city C, as opposed to city E, showed lower prevalence of antidiabetics, but higher 227 
prevalence of cardiovascular drugs. As opposed to pharmaceuticals a clear ‘weekend’ trend of increased 228 
PNDLs was observed in the case of illicit drugs (cocaine and MDMA). Interestingly, the largest studied city 229 
(E) had the highest illicit drug share, more than double, when compared to city A (Figure S5). Population 230 
normalised daily loads of caffeine and nicotine stayed relatively constant across the week in all studied cities, 231 
with city C and D showing relatively higher PNDLs when compared to cities B and E. IPCPs (industrial and 232 
personal care products) were city-function dependent with the highest pesticide PNDLs (for imidacloprid and 233 
diazinon) recorded in cities A, B and E (Figure S6). Industrial chemical PNDLs of IPCPs (BPA, 234 
benzophenones and parabens) were much higher in cities B and E due to a much more substantial industrial 235 
presence including food manufacture, toiletry manufacture, paint stripping commercial laundrette, vehicle 236 
washing, packaging industry, food warehousing and distribution (Figure S6). Further discussion on using 237 
pharmaceuticals as a proxy for public health can be found in section 3.4.1. 238 

3.2. BCIs’ intercity daily loads as a function of city’s population size 239 

Linear regression was applied to describe statistical relationship between daily BCI loads and population size 240 
with R2 in most cases >0.99 showing very good fit of the model. Pearson's r being on average >0.998, indicated 241 
a very strong positive linear correlation between cumulative weekly and daily average (from 7 days) BCI loads 242 
and PE. The p-value obtained for all but a few BCIs was <0.001 proving further evidence of a significant 243 
correlation between BCIs loads and PEs described by the model (Table 2).  244 

http://pranaviz.bath.ac.uk:3838/pranaviz/


The results clearly indicate that there is a strong positive correlation between BCIs and population size with a 245 
very few BCIs showing weaker correlations. BCIs were divided in three main groups (Table 2): 246 

Group 1:  BCIs with the strongest correlations (R2>0.998, r>0.999, p<0.001), with usage independent of city 247 
functions. These are mostly, as expected, (non-communicable disease) NCD pharmaceuticals with multi-248 
spectrum applications focussed on chronic disease and high prescription patterns: analgesics (e.g. tramadol 249 
and its metabolites), antidepressants (e.g. citalopram and its metabolites), antidiabetics (e.g. glicazide), 250 
antiepileptics (e.g. carbamazepine and its metabolites), NSAIDs (e.g. naproxen), and most importantly lifestyle 251 
chemicals (e.g. nicotine, caffeine and their metabolites) as well as some cardiovascular drugs (e.g. irbesartan 252 
or propranolol).   253 

Group 2: BCIs with medium-high correlation (0.990<R2>0.998 and 0.999 <r>0.990, 0.05>p>0.001) and with 254 
usage of seasonal nature. These are mostly cardiovascular pharmaceuticals, antibiotics and WQIs. 255 

Group 3: BCIs with lower correlations (R2 <0.990, r<0.999 and p>0.05) with usage dependent on city function. 256 
These are mostly individual pharmaceuticals with low usage, seasonal/short-term prescription patterns and 257 
specific application e.g. anticancer drugs, antihistamines, as well as some individual pesticides, personal care 258 
products and ARGs. 259 
 260 

  261 



Table 2. Biochemical indicator daily loads in wastewater influent vs population size (calculated using PE-262 
WW) 263 

 

 Group Compound R2 r p-value 

Group 
I 
 

Analgesics and 
metabolites 

Tramadol 0.9993 0.9997 0.000007 

N-demethyltramadol 0.9961 0.9980 0.000104 

O-demethyltramadol 0.9972 0.9986 0.000064 

Morphine 0.998 0.9990 0.000037 

Dihydromorphine 0.9985 0.9992 0.000025 

Normorphine 0.9986 0.9993 0.000021 

Codeine 0.9987 0.9993 0.000020 

Norcodeine 0.9991 0.9996 0.000011 

Dihydrocodeine 0.9986 0.9993 0.000022 

Antidepressants  Amitriptyline 0.9996 0.9890 0.001376 

Nortriptyline 0.9994 0.9997 0.000007 

Sertraline 0.9994 0.9990 0.000036 

Norsertraline 0.998 0.9990 0.000035 

Fluoxetine 0.995 0.9975 0.000149 

Norfluoxetine 0.9934 0.9967 0.000229 

Citalopram 0.9998 0.9999 0.000001 

Desmethylcitalopram 0.9996 0.9998 0.000004 

Venlafaxine 0.9995 0.9998 0.000004 

Desmethylvenlafaxine 0.9998 0.9999 0.000001 

Mirtazapine 0.9981 0.9991 0.000034 

Antidiabetics Metformin 0.9973 0.9986 0.000060 

Glicazide 0.9992 0.9996 0.000010 

Sitagliptin 0.9983 0.9991 0.000030 

Anti-epileptic Carbamazepine 0.9965 0.9982 0.000089 

Carb.-10,11-epoxide 0.992 0.9960 0.000302 

10,11-dihydro-10-
hydroxycarb. 0.9988 0.9994 0.000018 

Lifestyle Caffeine 0.9923 0.9962 0.000285 

1,7-dimethylxantine 0.9979 0.9990 0.000040 

Nicotine 0.999 0.9995 0.000014 

Cotinine 0.9993 0.9996 0.000008 

Cocaine 0.998 0.9990 0.000038 

Benzoylecgonine 0.9976 0.9988 0.000050 

Amphetamine 0.9989 0.9994 0.000016 

Methamphetamine 0.9977 0.9989 0.000046 

MDMA 0.9986 0.9993 0.000022 

MDA 0.9965 0.9983 0.000087 

Methadone 0.9992 0.9996 0.000010 

EDDP 0.9991 0.9996 0.000011 

Mephedrone 0.9917 0.9959 0.000319 

NSAIDs Ibuprofen 0.9998 0.9999 0.000001 

Naproxen 0.9999 1.0000 0.000000 

Paracetamol 0.9996 0.9998 0.000003 

Diclofenac 0.9996 0.9998 0.000004 

Group 
II 
 

Anaesthetics Ketamine 0.9934 0.9981 0.000097 

Norketamine 0.9926 0.9963 0.000270 

Antibiotics  Sulfamethoxazole 0.9974 0.9987 0.000056 

Chloramphenicol 0.9909 0.9955 0.000366 

Trimethoprim 0.9951 0.9976 0.000144 

Sulfapyridine 0.999 0.9995 0.000013 

Sulfasalazine 0.9955 0.9978 0.000127 

Clarithromycin 0.9997 0.9998 0.000002 

Azithromycin 0.9874 0.9937 0.000600 

Sulfamethoxazole 0.9974 0.9987 0.000056 

Metronidazole 0.967 0.9834 0.002567 

Cefalexin 0.9275 0.9631 0.008476 

Ciprofloxacin 0.9944 0.9972 0.000177 

Ofloxacin 0.9959 0.9979 0.000113 

Norfloxacin 0.9896 0.9948 0.000452 

Nalidixic acid 0.9936 0.9968 0.000219 

Cardiovascular  Propranolol 0.9985 0.9992 0.000025 

Atenolol 0.9983 0.9991 0.000030 

Metoprolol 0.9322 0.9655 0.007649 

Bisoprolol 0.9905 0.9953 0.000392 

Diltiazem 0.9973 0.9987 0.000059 

Verapamil 0.9582 0.9789 0.003680 

Valsartan 0.9905 0.9952 0.000394 

Irbesartan 0.9993 0.9996 0.000009 

Lisinopril 0.9939 0.9970 0.000201 

Bezafibrate 0.9611 0.9804 0.003291 

Atorvastatin 0.9893 0.9947 0.000468 

 

 Various  Sildenafil 0.9977 0.9988 0.000047 

E1 0.9992 0.9996 0.000009 

Buprenorphine 0.9896 0.9948 0.000454 

(Pseudo)ephedrine 0.9994 0.9997 0.000007 

Quetiapine 0.9968 0.9984 0.000076 

 WQI  Ammonia N 0.9942 0.9971 0.000187 

COD 0.9985 0.9993 0.000024 

N total 0.1762 0.4197 0.481737 

Nitrite as N 0.9945 0.9973 0.000172 

Nitrate as N 0.0002 0.0124 0.984196 

Ortophos 0.9898 0.9949 0.000440 

Chloride 0.9953 0.9976 0.000137 

Group 
III 

Anti-cancer  Capecitabine 0.9891 0.9945 0.000485 

Imanitib 0.9585 0.9790 0.003630 

Bicalutamide 0.9299 0.9643 0.008043 

Antifungals Ketoconazole 0.9752 0.9875 0.001675 

Antihistamines Cetirizine 0.8996 0.9485 0.013939 

Fexofenadine 0.9968 0.9984 0.000077 

Ranitidine 0.9844 0.9922 0.000829 

Cimetidine 0.9783 0.9891 0.001370 

Pesticides Diazinon 0.997 0.9985 0.000071 

Ceftiofur 0.0545 0.2336 - 

Oxadiazon 0.9936 0.9968 0.000217 

Flufenacet 0.9944 0.9972 0.000176 

Methicarb 0.9466 0.9730 0.005318 

Clothiniadin 0.991 0.9955 0.000362 

Imidacropid 0.986 0.9930 0.000705 

Thiamethoxam 0.0966 0.3108 - 

3PBA 0.9975 0.9988 0.000053 

PCPS BP-1 0.9708 0.9853 0.002132 

BP-2 0.991 0.1195 0.848225 

BP-3 0.9931 0.9966 0.000242 

BP-4 0.991 0.9769 0.004194 

EP 0.9904 0.9952 0.000398 

MP 0.8133 0.9018 0.036379 

PP 0.9734 0.9866 0.001851 

BPA 0.9915 0.9958 0.000332 

BPA sulphate 0.9908 0.9954 0.000377 

Triclosan 0.9927 0.9963 0.000266 

Triclosan suphate 0.9756 0.9877 0.001627 

Urinary marker Creatinine 0.9399 0.9695 0.006374 

Gene/ARG 16SRNA 0.8786 0.9373 0.018657 

ermB 0.9939 0.9969 0.000204 

qnrS 0.9613 0.9804 0.003272 

sulf 0.5292 0.7275 0.163623 

catA 0.9701 0.9849 0.002219 

Hypnotic Temazepam 0.9753 0.9876 0.001656 

Oxazepam 0.9906 0.9953 0.000391 

Diazepam 0.9871 0.9935 0.000627 

R2 r p-value 

1 1 <0.005 

0.99 0.99 ≥0.005 

0.8 0.8   

  264 
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3.3.  Intercity WBE as a support tool in One Heath strategy for Planetary Health 267 

3.3.1. Pharma usage as a proxy for population health 268 

As discussed in section 3.2, PNDLs can provide invaluable information on community-wide pharmaceutical 269 
consumption, which can then be used as a proxy of the prevalence of certain diseases. Figure 4 shows 270 
cumulative PNDLs calculated using PE-WW (PNDLs calculated using both PE-NHS and PE-WW are shown 271 
in Fig S9). 272 

 273 

Figure 4. Population normalised daily loads of pharmaceuticals (calculated using PE-WW) in the intercity 274 
system 275 

While prescription data can provide information on prescription patterns, only WBE can inform actual use at 276 
a community level. This is of particular importance in the case of pharmaceuticals that can be sourced over the 277 
counter, such as those used for pain treatment. It is important to note that PNDLs do not allow for a 278 
differentiation of pharmaceuticals’ consumption vs direct disposal. In order to estimate consumption(intake), 279 
human metabolic transformation by-products need to be used as BCIs (see (Kasprzyk-Hordern, Proctor et al. 280 
2021)). 281 



The UK ONS Index of Multiple Deprivation (IMD) 2015 is presented in Table 3 for the two largest cities: C 282 
and E. IMD is a measure of multiple deprivation based on combining seven distinct domains of deprivation: 283 
Income Deprivation, Employment Deprivation, Education, Skills and Training Deprivation, Health 284 
Deprivation and Disability, Crime, Barriers to Housing and Services, and Living Environment Deprivation. It 285 
is interesting to note that the comparison of two largest cities: City C and city E with different IMDs, clearly 286 
shows that usage of pharmaceuticals increases with higher IMD as well as with population demographics. It is 287 
for example notable that antidiabetics usage is lower in city C with lower IMD despite older population. This 288 
is clear in the case of both PE-NHS and PE-WW normalised PNDLs. On the other hand, city C’s geographical 289 
location makes it prone to lower air quality which is manifested in higher antihistamines intake. Interestingly, 290 
some high usage pharmaceuticals (e.g. analgesics, NSAIDs) do not show high inter-city variability. These 291 
pharmaceuticals could be used as population equivalent indicators as discussed in section 3.4.5. 292 
 293 

Table 3. The UK ONS Index of Multiple Deprivation (IMD) 2015 294 
(https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/townsandcitiesanalysis) 295 

City 
  

City C   City E   

Census Age Population aged 0-15  15.2 18.5 

Population aged 16-64  68.2 67.5 

Population aged 65+  16.6 14.0 

Population aged 85+  2.8 2.2 

% health Population "limited a lot" by a health problem or disability, aged 16-64 3.9 5.1 

Population "limited a little" by a health problem or disability, aged 16-
64 

6.2 6.9 

Population "not limited" by a health problem or disability, aged 16-64 90.0 88.0 

Students      % Proportion of Full Time Students, aged 16-74  21.4 12.1 

Qualifications Proportion of resident population with no qualifications, aged 16+ 14.0 20.3 

IMD 
 

Number of LSOAs  61.0 333.0 

IMD rank* 88.0 62.0 

IMD: Proportion of LSOAs in most deprived 20% 8.2 23.4 

Income Deprivation Rank 92.0 59.0 

Income Deprivation: Proportion of LSOAs in most deprived 20% 8.2 21.9 

Employment Deprivation Rank 87.0 60.0 

Employment Deprivation: Proportion of LSOAs in most deprived 20% 8.2 23.4 

Health Deprivation and Disability Rank 83.0 62.0 

Health Deprivation and Disability: Proportion of LSOAs in most 
deprived 20% 

11.5 24.0 

Education, Skills and Training Deprivation Rank 94.0 61.0 

Education, Skills and Training: Proportion of LSOAs most deprived 11.5 27.6 

Crime Rank 98.0 39.0 

Crime: Proportion of LSOAs in most deprived 20% 3.3 31.2 

Barriers to Housing and Services Rank 68.0 40.0 

Barriers to Housing and Services: Proportion of LSOAs most deprived 3.3 9.0 

Living Environment Deprivation Rank 68.0 29.0 

Living Environment Deprivation: Proportion of LSOAs most deprived 11.5 29.7 

* A rank of one indicates the most deprived town or city and a rank of 109 the least. 

 296 

3.3.2. BCI burden and city function 297 

Multi-biomarker suite analysis describing city metabolism can also provide a holistic understanding to 298 
encompass all of the activities of a city in a single model: from lifestyle choices (caffeine intake, nicotine) 299 
through to health status (pharmaceuticals) and exposure to harmful chemicals due to environmental and 300 
industrial exposures (e.g. pesticide intake and industrial exposure). Figure 5 (Fig S10) shows that city C has 301 
the lowest pharmaceutical PNDLs. Higher exposure to industrial chemicals in city B and E indicates industry 302 
presence and is linked with occupational exposure, especially pronounced in higher levels of bisphenol A and 303 
its metabolites PNDLs during working days vs weekends (see (Kasprzyk-Hordern, Proctor et al. 2021) for 304 
further discussion). Higher usage of illicit drugs in city E than city C might be linked with higher IMD as well 305 
as it being a larger urban area (González-Mariño, Baz-Lomba et al. 2020). Larger cities (city C and E) have 306 
also higher nicotine intake. 307 

308 



 309 
Figure 5: Population normalised daily loads of BCIs driven by city function 310 

 311 

3.3.3. Population as a driver of AMR  312 

AMR requires urgent action and due to its multifaceted nature, it is in need of holistic solutions. In this project 313 
we have confirmed that there is a strong positive correlation between ABs and PE as well as ARGs and PE 314 
with p values in most cases <0.001 as well as Pearson coefficient >0.99 (Table 2). There is also a strong 315 
positive correlation between ABs and ARGs (Figure 6). The results indicate that WBE can prove very useful 316 
in understanding antibiotic and resistance genes’ (ARGs) fluxes in a community/at sewerage/river catchment 317 
and an intercity level. The strong positive correlation between three variables is also apparent form multivariate 318 
regression with p value for all AB groups and relevant ARGs denoting <0.005. 319 
 320 



 321 
Figure 6. Correlation between AB daily loads, ARG daily loads and PE in five cities: (a) PCA correlation 322 
monoplot (98.9%) for PEs calculated using ABs and ARGs and (b) Pearson coefficients. 323 
 324 
PNDLs of individual ABs and corresponding ARGs can be seen in Fig 7 (Fig S11). It is apparent that the place 325 
of residence seems not to matter as PNDLs for individual ABs and ARGs are relatively comparable across all 326 
sites; the number of people contributing to the catchment does though. 327 
 328 

Daily Loads of Abs and ARGs (mg/day) 
(a) 

Population normalised daily loads of ABs 
and ARGs (mg/day/1000inh) (b) 

  

Figure 7. ABs and ARGs: (a) daily loads and (b) population normalised daily loads  (chloramphenicol was 329 
excluded in total AB calculation). 330 
 331 
This is of particular importance in the context of One Health, especially if testing the hypothesis that human 332 
population, and its antibiotics’ usage, is the key driver of AMR. Human gut is considered as one of 333 
environmental reservoirs of AMR (Penders, Stobberingh et al. 2013, Singh, Verma et al. 2019). Human 334 
activities including consumption of antibiotics are responsible for the accumulation of AMR genes in the 335 
human gut, and there is a strong link between these and environmental AMR gene carriage (Singh, Verma et 336 
al. 2019). Excessive antibiotics’ use and lack of patient AB prescription compliance (e.g. not finishing 337 
prescribed dose or using leftover antibiotics for self-diagnosis and administration) could be curbed with certain 338 
simple intervention strategies, not only in hospital settings but also in the wider community. Careful 339 
management of AB usage should therefore help with the reduction of AMR prevalence. Possible interventions 340 
aimed at management of AB usage might include educational campaigns and reductions in healthcare usage. 341 

Pearson coefficient 

  PE Sulfamethoxazole 

Sulfamethoxazole 0.998704 1 

Sul1 0.727473 0.694801 

  PE Chloramphenicol 

Chloramphenicol 0.995464 1 

catA 0.984915 0.967056 

  PE Macrolides 

Macrolides 0.999576 1 

ermB 0.996935 0.994663 

  PE Fluoroquinolones 

Fluoroquinolones 0.998584 1 

qnrS 0.980448 0.976258 



WBE’s role could be to identify hotspots as well as monitor effectiveness of interventions. WBEs could be for 342 
example used to monitor resistance genes within a population (as well as the prevalence of certain 343 
microorganisms), and in conjunction with resistance data from national health service, it could be used to 344 
inform antibiotic stewardship within a catchment or intercity as well as national levels.  345 
 346 

3.3.4. Public health interventions and One Heath 347 

Fluxes of biomarker groups in an inter-city system are critical in understanding a city’s function and have 348 
strong potential to enable city-system focussed interventions. An understanding of population as a driver of 349 
environmental burden of BCIs provides an opportunity to introduce interventions at source. These could 350 
include either social, technology or policy focussed interventions aimed at reduction in usage of BCIs or 351 
change of practice. Environment/water fingerprinting is best placed to provide a comprehensive evaluation of 352 
such interventions, as it is multifaceted, comprehensive and relatively low cost. There are very few examples 353 
of WBE applications where quantitative evidence gathering tools have been used. The 2016 policy intervention 354 
to limit NPS (new psychoactive substances)  usage (UK NPS bill) has been described by Rice et al. (Rice, 355 
Kannan et al. 2020). The potential for wide-ranging applications is apparent and results from proof-of-concept 356 
studies are very encouraging. Future work should focus on the holistic management of industrial and 357 
communal inputs into river catchment systems based on evidence driven WBE to truly embrace the One Heath 358 
philosophy.  359 

3.3.5. Population size estimation using BCIs 360 

Lack of robust and dynamic population size estimation tools in WBE is the key obstacle in quantitative 361 
measurements of per capita exposure or disease status. Current approaches focus mainly on PE estimates 362 
provided by water utilities that, although might be accurate, cannot show inter-day changes in population size 363 
resulting from, for example, commuting or tourism. Chemical analysis of certain BCI groups, especially 364 
metabolites of high-usage pharmaceuticals (e.g. desmethylvenlafaxine or desmethylcitalopram) with well-365 
defined consumption patterns, can provide important insides into diurnal changes in population size 366 
contributing to wastewater. As there is a strong positive correlation between averaged daily loads of NCD 367 
pharma (and their metabolites) and PE-WW and PE-NHS we have considered a catchment calibration 368 
approach using a linear regression model to calculate PE-REG. Our modelling indicated that city B and E 369 
might have population overestimated by <30% due to industry inputs, if using PE-WW, or underestimated by 370 
<30% if PE-NHS is used due to not accounting for commuters and visitors. Therefore, the intercity catchment 371 
was calibrated using both PE-WW and PE-NHS. Most BCIs show strong positive correlation with PE in the 372 
given catchment (Figure 9). However, the choice of best BCIs for PE calculation should account for: inter-day 373 
variabilities (weekday vs weekend, which excludes illicit drugs as markers), seasonal variabilities in usage 374 
(which excludes e.g. antibiotics) and variable usage dependent on city’s socioeconomic status (e.g. 375 
antidiabetics pharma). Population equivalents calculated using selected Group 1 BCIs with the strongest 376 
positive correlation are shown in Figure 8. As expected, metabolites show the lowest spatiotemporal variability 377 
in the studied intercity catchment (e.g. <12% for desmethylcitalopram) than their respective parent pharma 378 
(that might be subject to direct disposal), which indicates their best suitability as population markers. Analysis 379 
of interday patterns indicates that there is little PE variability between weekday and weekend days, which 380 
shows that any population change in this intercity catchment is within method uncertainties (<30%). Indeed, 381 
according to ONS 382 
(https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/townsandcitiesanalysis) there was 383 
estimated 16,602 net in commuting (aged 16-74) in City C and 9092 net in commuting in City E in 2015. 384 
Interestingly, there is a slight increase in PE numbers in City C during weekend, which might be linked with 385 
influx of day visitors (tourism and shopping) as City C is the largest city with established weekend 386 
shopping/leisure destination in the region and a UNESCO site. 387 
  388 
 389 
 390 



 391 
Figure 8. PEs calculated using example Group 1 BCIs. 392 

 393 
  394 

 395 

 396 
Figure 9. PCA correlation monoplot (97%) for PEs calculated using BCIs. 397 



 398 
 399 

Desmethylcitalopram is shown as a promising example. There is a significant positive relationship between 400 
desmethylcitalopram daily loads and population size served by respective wastewater treatment plants 401 
(Pearson coefficient, r= 0.9998, p<0.00001). Population equivalents were calculated using linear regression 402 
and inter-city calibration using wastewater measured daily desmethylcitalopram loads and PE-WW 403 
(coefficient of determination, R2 = 0.9998) as seen in Figure 8. Measurements were undertaken over 7 404 
consecutive days in 5 towns/cities. Daily PE-REG variability in the studied catchment was <12%. It is 405 
important to mention that there are limitations to this study: 5 cities in one geographic location as well as 1 406 
week not accounting for seasonal changes in chemicals. Hence, only NCD chemicals and lifestyle chemicals 407 
are recommended as PEs. Key points in biomarker selection should consider as follows: (1) Appreciation of 408 
temporal changes both weekday-weekend and seasonal; (2) Taking advantage of prescription datasets; (3) 409 
Using spectrum of biomarkers to get more comprehensive assessment of PE changes in studied communities. 410 

 411 

3.3.6. BCIs burden and environmental health – closing the loop in One Health  412 

A holistic understanding of the sources, fate and behaviour of BCIs at a catchment level is also important from 413 
environmental health perspective and particularly important in One Health concept. Knowledge of BCI levels 414 
in wastewater influent is critical in understanding community stressors as well as resulting public health 415 
effects. Daily monitoring of wastewater influent can enable evaluation of public health interventions aimed at 416 
increased public health. An extension of WBE into longitudinal spatio-temporal monitoring of BCI levels 417 
reaching receiving environment (in this case, the River Avon) can provide invaluable information on the 418 
impact of communities on the receiving environment, which in turn can trigger carefully designed, evidence 419 
driven interventions aimed at environmental and public health protection. Detailed discussion on chemicals of 420 
emerging concern can be found in a paper by Proctor et al. ((Proctor, Petrie et al. 2021)). Fig 9 (Fig S12) shows 421 
an increase in BCI daily loads with an increase in population size contributing to the receiving river. Several 422 
factors contribute to BCI levels in the receiving environment. These include, efficiency of treatment, rainfall 423 
and runoff, climate and weather (e.g. sunlight and temperature), BCI load resulting from other geographic 424 
areas arriving with river tributaries to the catchment. It is however apparent that daily loads of those BCIs that 425 
are strongly positively correlated with PE (see Tab 3) are directly linked with population contributing to 426 
environmental burden (e.g. lifestyle chemicals, NCD pharmaceuticals). BCIs that are city function driven, will 427 
be manifested with more variable daily loads linked with their usage which is independent of PE and rather 428 
linked with e.g. industrial activities or agriculture (e.g. BPA or pesticides).  429 

BCI presence, which is directly proportional to the size of the population producing these BCIs, is directly 430 
linked with environmental risks. Indeed, in the studied catchment, several antibiotics (ciprofloxacin, 431 
clarithromycin, azithromycin, and erythromycin) were regularly found exceeding PNECenviro and PNECMIC in 432 
wastewater influent and effluent and at very few occasions in receiving waters (see (Elder, Proctor et al. 2021)) 433 
for further discussion. In another study in the same catchment, pharmaceuticals such as the painkillers 434 
ibuprofen and acetaminophen, have been shown to pose low chronic risk throughout the catchment 435 
(concentrations 1-10% of the PNEC). Other pharmaceuticals, such as carbamazepine and diazepam, show 436 
sporadic increases in concentration up to and over 50% of the PNEC (carbamazepine up to 3.2x PNEC, 437 
however the sampling location (R2) at this point was not well mixed). The concentrations of the lifestyle 438 
chemicals caffeine and nicotine also indicated they might pose a risk to the environment with concentration of 439 
caffeine reaching >13% of its PNEC, and nicotine exceeding the PNEC at several instances across the 440 
catchment (Proctor and Kasprzyk-Hordern 2021). Overall, individual pharmaceuticals have been shown to be 441 
low risk to this catchment, however their combined risk, especially for BCIs, may lead to a combined risk 442 
greater than the individual compounds, as shown in the paper by Fraker and Smith which showed increased 443 
behavioural effects in tadpoles when exposed to caffeine and acetaminophen than when exposed to the 444 
compounds individually (Fraker and Smith 2004) .  445 

 446 



 447 

Figure 10. Daily loads of BCIs in receiving waters. 448 

Conclusions 449 

This paper tested the hypothesis that a biochemical burden in a given catchment (derived from wastewater 450 
from this catchment and measured with WBE tools) is driven by population contributing to this catchment and 451 
city’s function, which could enable management strategies aimed at increased environmental and public health 452 
in this catchment. Such an approach is particularly promising in the context of One Health as it enables a 453 
holistic understanding of city’s metabolism encompassing all of the activities of a city in a single model: from 454 
lifestyle choices, through to health status and exposure to harmful chemicals as well as effectiveness of 455 
implemented management strategies. 456 

Several groups of BCIs were the subject of investigation (water quality indicators, industrial chemicals, 457 
personal care products, pesticides, illicit drugs, lifestyle chemicals, prescription pharmaceuticals, as well as 458 
genetic targets, such as antibiotic resistance genes) in an intercity system including five cities/towns located in 459 



one river catchment. Chemical mining of wastewater for BCIs was undertaken to understand spatiotemporal 460 
speciation of BCIs in the context of geographical as well as community-wide socioeconomic factors.  461 

The main conclusions enabling One Heath are as follows: 462 

1. There are spatiotemporal variabilities in chemical and biological target groups in the studied inter-city 463 
system. There is a linear relationship (R2 >0.99) and a strong positive correlation between most BCIs 464 
and population size (r >0.998, p <0.001) which provides a strong evidence for the population size as 465 
a driver of BCI burden. BCI groups that are strongly correlated with population size and are intrinsic 466 
to humans’ function include mostly high usage pharmaceuticals that are linked with long term non-467 
communicable conditions (NSAIDs, analgesics, cardiovascular, mental health and antiepileptics) and 468 
lifestyle chemicals. These BCIs can be used as population size markers. 469 

2. BCIs groups that are produced as a result of a specific city’s function (e.g. industry presence and 470 
occupational exposure or agriculture) and as such are not correlated with population size include: 471 
pesticides, PCPs and industrial chemicals, as well as pharmaceuticals that are used to treat less 472 
common disease over shorter periods of time. These BCIs can be used to assess city’s function, such 473 
as occupational exposure, environmental or food exposure. Measurement of pharma daily loads in 474 
wastewater can be also used as a proxy of community-wide health.  475 

3. There is a strong positive correlation between ABs and PE as well as ARGs and PE with p values in 476 
most cases <0.001 as well as Pearson coefficient >0.99. There is also a strong positive correlation 477 
between ABs and ARGs. This confirms the population size and AB usage as the main driver of AB 478 
and ARG levels and provides an opportunity for interventions aimed at the reduction of AB usage. 479 

4. Holistic evaluation of biophysicochemical fingerprints (BCI burden) of the environment and data 480 
triangulation with socioeconomic fingerprints (indices) of tested communities are required to fully 481 
embrace One Health concept.    482 

 483 

Acknowledgments 484 

The support of Wessex Water Services Ltd and EPSRC Impact Acceleration Account (Project number: EP/ 485 
K503897/1 and EP/R51164X/1, ENTRUST IAA) is greatly appreciated. The support of the Leverhulme Trust 486 
(Project No RPG-2013-297) and NERC NWESP project (Project No NE/V010441/1) is also greatly 487 
appreciated. All data supporting this study are provided as supporting information accompanying this paper, 488 
as well as in Proctor et al. SI (Proctor, Petrie et al. 2021) and Elder et al. SI (Elder, Proctor et al. 2021). 489 

 490 

CRediT authorship contribution statement 491 
Barbara Kasprzyk-Hordern: Conceptualization, Methodology, Formal analysis, Writing-original draft, 492 
Writing – review-editing, Data curation, Visualization, Project administration, Funding acquisition, 493 
Resources. Kathryn Proctor: Writing - review & editing, Data curation, Methodology.  Kishore Jagadeesan: 494 
Writing - review & editing, Data curation, Methodology.  Felicity Edler: Writing - review & editing, 495 
Methodology. Richard Standerwick: Writing - review & editing, Project administration, Resources, 496 
Methodology. Ruth Barden: Funding acquisition, resources. 497 

 498 

Supplementary Information 499 

Table S1 SPE/MAE-UHPLC-QqQ - method performance. 500 

Table S2 SPE-UHPLC-QTOF – method performance. 501 

Figure S1. SPE/MAE-UHPLC-QqQ – schematic overview. 502 

Figure S2 SPE-UHPLC-QTOF – schematic overview. 503 



Figure S3. Daily loads of BCIs. 

Figure S4. PNDLs of pharmaceuticals (calculated using WW-PE). 

Figure S5. PNDLs of lifestyle chemicals (calculated using WW-PE). 

Figure S6. PNDLs of pesticides and industrial chemicals (calculated using WW-PE). 

Figure S7. PNDLs of antibiotics and ARGs (calculated using WW-PE). 

Figure S8. PNDLs of WQIs (calculated using WW-PE). 

Figure S9. PNDLs for pharmaceuticals. 

Figure S10: PNDLs of BCIs driven by city function. 

Figure S11. AB and ARGs: (a) daily loads and (b) population normalised daily loads - PNDLs (chloramphenicol 

was excluded in total AB calculation). 

Figure S12. Daily loads of BCIs in receiving waters. 

 

References 

Ahmed, W., N. Angel, J. Edson, K. Bibby, A. Bivins, J. W. O'Brien, P. M. Choi, M. Kitajima, S. L. 

Simpson, J. Y. Li, B. Tscharke, R. Verhagen, W. J. M. Smith, J. L. Zaugg, L. Dierens, P. 

Hugenholtz, K. V. Thomas and J. F. Mueller (2020). "First con firmed detection of SARS-CoV-2 in 

untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 

in the community." Science of the Total Environment 728. 

Baz-Lomba, J. A., S. Salvatore, E. Gracia-Lor, R. Bade, S. Castiglioni, E. Castrignano, A. 

Causanilles, F. Hernandez, B. Kasprzyk-Hordern, J. Kinyua, A.-K. McCall, A. van Nuijs, C. Ort, B. 

G. Plosz, P. Ramin, M. Reid, N. I. Rousis, Y. Ryu, P. de Voogt, J. Bramness and K. Thomas 

(2016). "Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in 

wastewater with sale, seizure and consumption data for 8 European cities." Bmc Public Health 16. 

Been, F., M. Bastiaensen, F. Y. Lai, K. Libousi, N. S. Thomaidis, L. Benaglia, P. Esseiva, O. 

Delémont, A. L. N. van Nuijs and A. Covaci (2018). "Mining the Chemical Information on Urban 

Wastewater: Monitoring Human Exposure to Phosphorus Flame Retardants and Plasticizers." 

Environ Sci Technol 52(12): 6996-7005. 

Bivins, A., D. North, A. Ahmad, W. Ahmed, E. Alm, F. Been, P. Bhattacharya, L. Bijlsma, A. B. 

Boehm, J. Brown, G. Buttiglieri, V. Calabro, A. Carducci, S. Castiglioni, Z. C. Gurol, S. 

Chakraborty, F. Costa, S. Curcio, F. L. de los Reyes, J. D. Vela, K. Farkas, X. Fernandez-Casi, C. 

Gerba, D. Gerrity, R. Girones, R. Gonzalez, E. Haramoto, A. Harris, P. A. Holden, M. T. Islam, D. 

L. Jones, B. Kasprzyk-Hordern, M. Kitajima, N. Kotlarz, M. Kumar, K. Kuroda, G. La Rosa, F. 

Malpei, M. Mautus, S. L. McLellan, G. Medema, J. S. Meschke, J. Mueller, R. J. Newton, D. 

Nilsson, R. T. Noble, A. van Nuijs, J. Peccia, T. A. Perkins, A. J. Pickering, J. Rose, G. Sanchez, A. 

Smith, L. Stadler, C. Stauber, K. Thomas, T. van der Voorn, K. Wigginton, K. Zhu and K. Bibby 

(2020). "Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the 

Fight Against COVID-19." Environmental Science & Technology 54(13): 7754-7757. 

Castiglioni, S., I. Senta, A. Borsotti, E. Davoli and E. Zuccato (2014). "A novel approach for 

monitoring tobacco use in local communities by wastewater analysis." Tob Control. 

Castrignano, E., Z. E. Yang, E. J. Feil, R. Bade, S. Castiglioni, A. Causanilles, E. Gracia-Lor, F. 

Hernandez, B. G. Plosz, P. Ramin, N. I. Rousis, Y. Ryu, K. V. Thomas, P. de Voogt, E. Zuccato 

and B. Kasprzyk-Hordern (2020). "Enantiomeric profiling of quinolones and quinolones resistance 

gene qnrS in European wastewaters." Water Research 175. 

Causanilles, A., D. R. Cantillano, E. Emke, R. Bade, J. A. Baz-Lomba, S. Castiglioni, E. 

Castrignano, E. Gracia-Lor, F. Hernandez, B. Kasprzyk-Hordern, J. Kinyua, A. K. McCall, A. L. N. 

van Nuijs, B. G. Plosz, P. Ramin, N. I. Rousis, Y. Ryu, K. V. Thomas and P. de Voogt (2018). 

"Comparison of phosphodiesterase type V inhibitors use in eight European cities through analysis 

of urban wastewater." Environment International 115: 279-284. 



Causanilles, A., V. Nordmann, D. Vughs, E. Emke, O. de Hon, F. Hernandez and P. de Voogt 

(2018). "Wastewater-based tracing of doping use by the general population and amateur athletes." 

Analytical and Bioanalytical Chemistry 410(6): 1793-1803. 

Elder, F. C. T., K. Proctor, R. Barden, W. H. Gaze, J. Snape, E. J. Feil and B. Kasprzyk-Hordern 

(2021). "Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human 

population as the main driver of antibiotic and antibiotic resistance gene presence in the 

environment." Water Res 203: 117533. 

Fraker, S. L. and G. R. Smith (2004). "Direct and interactive effects of ecologically relevant 

concentrations of organic wastewater contaminants on Rana pipiens tadpoles." Environ Toxicol 

19(3): 250-256. 

González-Mariño, I., J. A. Baz-Lomba, N. A. Alygizakis, M. J. Andrés-Costa, R. Bade, A. 

Bannwarth, L. P. Barron, F. Been, L. Benaglia, J. D. Berset, L. Bijlsma, I. Bodík, A. Brenner, A. L. 

Brock, D. A. Burgard, E. Castrignanò, A. Celma, C. E. Christophoridis, A. Covaci, O. Delémont, P. 

de Voogt, D. A. Devault, M. J. Dias, E. Emke, P. Esseiva, D. Fatta-Kassinos, G. Fedorova, K. 

Fytianos, C. Gerber, R. Grabic, E. Gracia-Lor, S. Grüner, T. Gunnar, E. Hapeshi, E. Heath, B. 

Helm, F. Hernández, A. Kankaanpaa, S. Karolak, B. Kasprzyk-Hordern, I. Krizman-Matasic, F. Y. 

Lai, W. Lechowicz, A. Lopes, M. López de Alda, E. López-García, A. S. C. Löve, N. Mastroianni, 

G. L. McEneff, R. Montes, K. Munro, T. Nefau, H. Oberacher, J. W. O'Brien, R. Oertel, K. 

Olafsdottir, Y. Picó, B. G. Plósz, F. Polesel, C. Postigo, J. B. Quintana, P. Ramin, M. J. Reid, J. 

Rice, R. Rodil, N. Salgueiro-González, S. Schubert, I. Senta, S. M. Simões, M. M. Sremacki, K. 

Styszko, S. Terzic, N. S. Thomaidis, K. V. Thomas, B. J. Tscharke, R. Udrisard, A. L. N. van Nuijs, 

V. Yargeau, E. Zuccato, S. Castiglioni and C. Ort (2020). "Spatio-temporal assessment of illicit 

drug use at large scale: evidence from 7 years of international wastewater monitoring." Addiction 

115(1): 109-120. 

González-Mariño, I., J. A. Baz-Lomba, N. A. Alygizakis, M. J. Andrés-Costa, R. Bade, L. P. 

Barron, F. Been, J. D. Berset, L. Bijlsma, I. Bodík, A. Brenner, A. L. Brock, D. A. Burgard, E. 

Castrignanò, C. E. Christophoridis, A. Covaci, P. de Voogt, D. A. Devault, M. J. Dias, E. Emke, D. 

Fatta-Kassinos, G. Fedorova, K. Fytianos, C. Gerber, R. Grabic, S. Grüner, T. Gunnar, E. Hapeshi, 

E. Heath, B. Helm, F. Hernández, A. Kankaanpaa, S. Karolak, B. Kasprzyk-Hordern, I. Krizman-

Matasic, F. Y. Lai, W. Lechowicz, A. Lopes, M. López de Alda, E. López-García, A. S. C. Löve, N. 

Mastroianni, G. L. McEneff, R. Montes, K. Munro, T. Nefau, H. Oberacher, J. W. O'Brien, K. 

Olafsdottir, Y. Picó, B. G. Plósz, F. Polesel, C. Postigo, J. B. Quintana, P. Ramin, M. J. Reid, J. 

Rice, R. Rodil, I. Senta, S. M. Simões, M. M. Sremacki, K. Styszko, S. Terzic, N. S. Thomaidis, K. 

V. Thomas, B. J. Tscharke, A. L. N. van Nuijs, V. Yargeau, E. Zuccato, S. Castiglioni and C. Ort 

(2020). "Spatio-temporal assessment of illicit drug use at large scale: evidence from 7 years of 

international wastewater monitoring." Addiction 115(1): 109-120. 

Kasprzyk-Hordern, B. (2019). "Editorial Perspectives: could water fingerprinting help with 

community-wide health assessment?" Environmental Science-Water Research & Technology 5(6): 

1033-1035. 

Kasprzyk-Hordern, B., K. Proctor, K. Jagadeesan, L. Lopardo, K. J. O'Daly, R. Standerwick and R. 

Barden (2021). "Estimation of community-wide multi-chemical exposure via water-based chemical 

mining: Key research gaps drawn from a comprehensive multi-biomarker multi-city dataset." 

Environment International 147: 106331. 

Lopardo, L., B. Petrie, K. Proctor, J. Youdan, R. Barden and B. Kasprzyk-Hordern (2019). 

"Estimation of community-wide exposure to bisphenol A via water fingerprinting." Environ Int 

125: 1-8. 

Medema, G., F. Been, L. Heijnen and S. Petterson (2020). "Implementation of environmental 

surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and 

challenges." Curr Opin Environ Sci Health 17: 49-71. 

O'Brien, J. W., P. M. Choi, J. Y. Li, P. K. Thai, G. M. Jiang, B. J. Tscharke, J. F. Mueller and K. V. 

Thomas (2019). "Evaluating the stability of three oxidative stress biomarkers under sewer 

conditions and potential impact for use in wastewater-based epidemiology." Water Research 166. 



Ort, C., A. L. van Nuijs, J. D. Berset, L. Bijlsma, S. Castiglioni, A. Covaci, P. de Voogt, E. Emke, 

D. Fatta-Kassinos, P. Griffiths, F. Hernández, I. González-Mariño, R. Grabic, B. Kasprzyk-

Hordern, N. Mastroianni, A. Meierjohann, T. Nefau, M. Ostman, Y. Pico, I. Racamonde, M. Reid, 

J. Slobodnik, S. Terzic, N. Thomaidis and K. V. Thomas (2014). "Spatial differences and temporal 

changes in illicit drug use in Europe quantified by wastewater analysis." Addiction 109(8): 1338-

1352. 

Penders, J., E. E. Stobberingh, P. H. M. Savelkoul and F. G. Wolffs (2013). "The human 

microbiome as a reservoir of antimicrobial resistance." Frontiers in Microbiology 4. 

Proctor, K. and B. Kasprzyk-Hordern (2021). "A catchment based approach to environmental risk 

assessment of chemicals of emerging concern (in preparation)." 

Proctor, K., B. Petrie, L. Lopardo, D. C. Muñoz, J. Rice, R. Barden, T. Arnot and B. Kasprzyk-

Hordern (2021). "Micropollutant fluxes in urban environment - A catchment perspective." J Hazard 

Mater 401: 123745. 

Reid, M. J., K. H. Langford, J. Mørland and K. V. Thomas (2011). "Analysis and interpretation of 

specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the 

quantitative measurement of regional alcohol consumption." Alcohol Clin Exp Res 35(9): 1593-

1599. 

Rice, J., A. M. Kannan, E. Castrignano, K. Jagadeesan and B. Kasprzyk-Hordern (2020). 

"Wastewater -based epidemiology combined with local prescription analysis as a tool for 

temporalmonitoring of drugs trends-A UK perspective." Science of the Total Environment 735. 

Rousis, N. I., E. Gracia-Lor, M. J. Reid, J. A. Baz-Lomba, Y. Ryu, E. Zuccato, K. V. Thomas and 

S. Castiglioni (2020). "Assessment of human exposure to selected pesticides in Norway by 

wastewater analysis." Sci Total Environ 723: 138132. 

Rousis, N. I., E. Gracia-Lor, E. Zuccato, R. Bade, J. A. Baz-Lomba, E. Castrignano, A. Causanilles, 

A. Covaci, P. de Voogt, F. Hernandez, B. Kasprzyk-Hordern, J. Kinyua, A. K. McCall, B. G. Plosz, 

P. Ramin, Y. Ryu, K. V. Thomas, A. van Nuijs, Z. G. Yang and S. Castiglioni (2017). "Wastewater-

based epidemiology to assess pan-European pesticide exposure." Water Research 121: 270-279. 

Ryu, Y., E. Gracia-Lor, R. Bade, J. A. Baz-Lomba, J. G. Bramness, S. Castiglioni, E. Castrignano, 

A. Causanilles, A. Covaci, P. de Voogt, F. Hernandez, B. Kasprzyk-Hordern, J. Kinyua, A.-K. 

McCall, C. Ort, B. G. Plosz, P. Ramin, N. I. Rousis, M. J. Reid and K. V. Thomas (2016). 

"Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F-2 alpha in wastewater 

associated with tobacco use." Scientific Reports 6. 

Singh, S., N. Verma and N. Taneja (2019). "The human gut resistome: Current concepts & future 

prospects." Indian Journal of Medical Research 150(4): 345-358. 

Sodre, F. F., C. C. S. Brandao, C. S. Vizzotto and A. O. Maldaner (2020). "WASTEWATER-

BASED EPIDEMIOLOGY AS A STRATEGY FOR COMMUNITY MONITORING, MAPPING 

OF HOTSPOTS AND EARLY WARNING SYSTEMS OF COVID-19." Quimica Nova 43(4): 

515-519. 

Thomas, K. V., L. Bijlsma, S. Castiglioni, A. Covaci, E. Emke, R. Grabic, F. Hernandez, S. 

Karolak, B. Kasprzyk-Hordern, R. H. Lindberg, M. L. de Alda, A. Meierjohann, C. Ort, Y. Pico, J. 

B. Quintana, M. Reid, J. Rieckermann, S. Terzic, A. L. N. van Nuijs and P. de Voogt (2012). 

"Comparing illicit drug use in 19 European cities through sewage analysis." Science of the Total 

Environment 432: 432-439. 

Venhuis, B. J., P. de Voogt, E. Emke, A. Causanilles and P. H. Keizers (2014). "Success of rogue 

online pharmacies: sewage study of sildenafil in the Netherlands." BMJ 349: g4317. 

 Jagadeesan, KK, James Grant, Sue Griffin, Ruth Barden and Barbara Kasprzyk-Hordern. 2020. 

"PrAnaViz: an interactive R Shiny application to calculate and visualize England NHS prescribing 

data." BMJ Open (under review). 
http://pranaviz.bath.ac.uk:3838/pranaviz/ 

http://pranaviz.bath.ac.uk:3838/pranaviz/


Supplementary Material 

Human population as a key driver of biochemical burden in an inter-city system: implications for One 

Health concept 

Barbara Kasprzyk-Horderna2, Kathryn Proctora, Kishore Jagadeesana, Felicity Eldera, Richard Standerwickb, 

Ruth Bardena,b 

aDepartment of Chemistry, University of Bath, Bath BA2 7AY, UK 
bWessex Water, Bath BA2 7WW, UK 

 

Table of contents: 

Table S1 SPE/MAE-UHPLC-QqQ - method performance. 

Table S2 SPE-UHPLC-QTOF – method performance 

Figure S1. SPE/MAE-UHPLC-QqQ – schematic overview. 

Figure S2 SPE-UHPLC-QTOF – schematic overview. 

Figure S3. Daily loads of BCIs 

Figure S4. PNDLs of pharmaceuticals (calculated using WW-PE) 

Figure S5. PNDLs of lifestyle chemicals (calculated using WW-PE) 

Figure S6. PNDLs of pesticides and industrial chemicals (calculated using WW-PE). 

Figure S7. PNDLs of antibiotics and ARGs (calculated using WW-PE) 

Figure S8. PNDLs of WQIs (calculated using WW-PE). 

Figure S9. PNDLs for pharmaceuticals 

Figure S10: PNDLs of BCIs driven by city function 

Figure S11. AB and ARGs: (a) daily loads and (b) population normalised daily loads - PNDLs 

(chloramphenicol was excluded in total AB calculation). 

Figure S12. Daily loads of BCIs in receiving waters. 

 

S2.3.4. Water Quality Indicators analysis 

Ammonia N: utilises ammonia reaction with sodium salicylate and hypochlorite ions, which are 

generated in situ by the alkaline hydrolysis of sodium dichloroisocyanurate. The absorbance of a blue 

product formed at pH 12.6 in the presence of sodium nitroprusside is measured spectrophotometrically 

at 660 nm and related to the ammonia concentration in the sample by means of a calibration curve 

(LOQ, 0.02mg/l, range: 0.02-100mg/l) 

N total (TON): Nitrate is reduced to nitrite by hydrazine under alkaline conditions, using copper (II) 

ions as a catalyst.  The total nitrite is then treated with sulphanilamide and N-1-

naphthylethylenediamine dihydrochloride under acidic conditions (in the presence of orthophosphoric 

acid). The absorbance of a characteristic pink azo – dye is measured spectrophotometrically at 540 nm 

and related to the total oxidised nitrogen concentration in the sample by means of a calibration curve. 

(LOQ, 0.3 mg/l, range: 0.3-50mg/l) 

Nitrite:  The diazotisation of sulphanilamide by nitrite in the presence of orthophosphoric acid, at pH 

1.9, leads to the formation of an azo-dye with N-1-napthylethylenediamine.  Its absorbance is then 

measured at 540 nm and is related to the nitrite concentration by means of a calibration curve. (LOQ, 

0.03mg/L, range: 0.03-10mg/l) 

Nitrate: Nitrate is calculated using TON minus Nitrite.  The calculation takes place after the samples 

have been analysed for both chemistries.  
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Ortophosphate:  Orthophosphate ions react with a solution containing molybdic acid, ascorbic acid and 

antimony (II) ions in the presence of acid, to form a 12-molybdophosphoric acid.  This is reduced in 

situ to a blue heteropoly compound (phosphomolybdenum blue) in which antimony is incorporated.  

The absorbance of the compound is measured spectrophotometrically at 880 nm and related to the 

orthophosphate concentration in the sample by means of a calibration curve.  Soluble reactive 

phosphorus uses the same method as above, but the sample is filtered through a 0.45µm filter prior to 

analysing (LOQ, 0.06 mg/l, range 0.6-20 mg/l).  

Chloride: Chloride ions were mixed with acid chloride colour reagent containing mercury (II) 

thiocyanate.  The released thiocyanate ions then react in acid solution with iron (III) nitrate to give a 

reddish-brown coloured iron (III) thiocyanate complex.  The resulting intensity of the stable colour 

produced is measured at a wavelength of 480 nm and is related to the chloride concentration by means 

of a calibration curve. (LOQ 1mg/l, range 1-1000 mg/l) 

COD: COD was analysed spectrophotometrically. Briefly, samples, either shaken or settled, were 

oxidised in tubes with chromic acid, a mixture of potassium dichromate, sulphuric acid in the presence 

of silver sulphate as a catalyst and mercuric ions to counteract interference from chloride.  The sealed 

tubes are heated to 150 °C for three hours, cooled and the degree of oxidation determined by 

spectrophotometry.  The procedure is calibrated by processing a solution of potassium hydrogen 

phthalate as a standard material. 

 

 
 

 

 

 

 

 

  



 

 

Table S1a: Instrumental performance data for ECs of interest in mobile phase (ordered by class) (Proctor et al. 2019) 
Class of Analyte 

 

Analyte RT RRT Linearity Intra-day instrumental 

performance 

Inter-day instrumental 

performance 

IDLS/N 

(ug L-1) 

IQLS/N 

(ug L-1) 

 Range (ug L-1) r2 Precision 

(Deviation) 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Accuracy 

(%) 

UV Filter Benzophenone-1 9.6 0.9 0.06 – 684.0 0.996 2.3 106.8 3.3 106.7 0.01 0.06 

 Benzophenone-2 7.7 1.0 0.05 – 583.8 0.997 1.1 99.6 4.2 97.6 0.01 0.05 

 Benzophenone-3 21.2 1.2 0.05 – 404.0 0.995 3.2 84.9 4.5 86.8 0.01 0.05 

 Benzophenone-4 6.9 0.9 1.01 – 502.5 0.997 2.3 103.0 3.8 105.1 0.31 1.01 

Parabens Methylparaben 7.5 1.0 0.06 – 1122 0.998 1.1 93.3 6.0 97.4 0.01 0.06 

 Ethylparaben 8.3 1.0 0.11 – 663.6 0.997 2.6 112.3 2.1 113.1 0.03 0.11 

 Propylparaben 9.2 1.0 0.12 – 462.0 0.997 5.7 96.4 4.3 98.4 0.04 0.12 

 Butylparaben 10.1 1.0 0.06 – 696.6 0.997 5.0 97.1 3.6 100.3 0.01 0.06 

Plasticizer Bisphenol A 9.0 1.1 0.10 – 626.4 0.997 2.4 103.6 1.3 104.6 0.03 0.10 

Steroid estrogens E1 9.8 1.0 0.49 – 989.0 0.998 1.8 96.9 2.1 98.6 0.10 0.49 

 E2 9.8 1.0 0.47 – 949.0 0.997 3.1 96.6 2.6 96.3 0.09 0.47 

 EE2 9.7 1.0 0.48 – 950.0 0.997 2.6 94.6 3.3 93.2 0.10 0.48 

Antibiotics and Antibacterial 

 

Sulfasalazine 7.1 0.8 0.90 – 904.0 0.999 3.9 105.2 2.4 104.7 0.27 0.90 

Clarithromycin 18.9 1.1 0.06 – 561.0 0.999 2.6 99.8 2.4 101.8 0.01 0.06 

Azithromycin 14.0 0.9 0.001 – 1000 0.998 4.5 108.9 1.5 102.0 0.01 0.05 

 Trimethoprim 8.4 1.0 0.10 – 500.0 0.998 3.0 96.9 2.2 99.5 0.03 0.10 

 Sulfamethoxazole 9.6 1.0 0.10 – 1000  0.999 3.5 95.1 2.4 96.0 0.03 0.10 

 Triclosana 12.3 1.2 1.13 – 225.6 

112.8 – 1128 

0.997 / 

0.998 

9.4 69.1 6.5 71.4 0.34 1.13 

 Amoxicillin 3.1 0.2 0.06 – 439.5 0.995 5.3 105.7 6.7 94.4 0.02 0.06 

 Metronidazole 5.3 1.0 1.00 – 1000 0.999 2.5 105.0 1.2 102.9 0.06 0.21 

 Sulfadiazine 4.8 0.9 0.05 – 795.2 0.999 2.8 105.3 1.5 104.4 0.01 0.03 

 Cefalexinb  9.2 0.3 15.9 – 200 0.995 9.5 111.3 12.3 102.9 4.78 15.94 

 Ofloxacin 9.6 1.0 0.23 – 986.0 0.998 4.2 97.4 2.8 95.9 0.07 0.23 

 Ciprofloxacin 9.9 1.0 1.18 – 902 0.999 8.7 89.0 5.5 90.2 0.35 1.18 

 Tetracycline 10.0 1.0 0.06 – 864.0 0.999 6.8 115.1 8.5 113.1 0.02 0.06 

 Danofloxacin 10.2 1.0 1.05 – 1000 0.998 7.3 106.0 6.0 99.2 0.32 1.05 

 Oxytetracycline 10.4 1.1 2.36 – 800.8 0.997 4.6 93.5 3.0 88.9 0.71 2.36 

 Chloramphenicol 12.6 0.6 1.74 – 400 0.999 3.8 103.5 3.0 100.8 0.52 1.74 

 Penicillin G 13.1 0.5 4.68 – 93.6 0.994 10.3 115.5 4.4 111.7 0.02 0.07 

 Penicillin V 14.5 0.8 5.00 – 200 0.993 4.4 88.5 15.0 96.8 0.15 0.49 

 Erythromycin 17.2 1.0 204.4 – 1022 0.999 2.3 94.4 2.9 95.2 0.20 0.65 

 Prulifloxacin 18.0 1.9 100 – 1000 0.997 4.4 98.7 8.9 86.4 2.44 8.13 

 Norfloxacin 9.7 1.0 0.01 – 1000 0.996 4.1 85.5 4.4 85.1 0.002 0.01 



Class of Analyte 

 

Analyte RT RRT Linearity Intra-day instrumental 

performance 

Inter-day instrumental 

performance 

IDLS/N 

(ug L-1) 

IQLS/N 

(ug L-1) 

 Range (ug L-1) r2 Precision 

(Deviation) 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Accuracy 

(%) 

Antifungal Griseofluvin 17.2 0.9 0.26 – 205.2 0.999 1.6 89.2 3.0 91.6 0.08 0.26 

 Ketoconazole 21.7 1.2 0.02 – 800.0 0.999 3.8 94.8 2.5 91.7 0.01 0.02 

Hypertension Valsartan 7.6 0.9 1.12 – 1122 0.998 1.9 115.8 3.5 118.6 0.34 1.12 

 Irbesartan 8.6 1.0 0.50 – 603.6 0.998 2.6 96.9 4.1 98.3 0.10 0.50 

 Lisinopril 7.1 0.9 0.93 – 372.5 0.995 2.2 97.2 7.2 95.2 0.09 0.93 

NSAIDs Ketoprofenb 7.9 0.9 0.54 – 1085 0.998 2.2 99.9 2.6 99.4 0.11 0.54 

 Ibuprofenb 9.8 1.0 0.05 – 1071 0.998 2.4 93.7 2.3 94.2 0.01 0.05 

 Naproxen 8.1 1.0 0.49 – 989.0 0.998 1.5 97.7 2.5 98.3 0.10 0.49 

 Diclofenacb 9.0 1.0 0.10 – 619.2 0.997 7.9 89.6 4.5 91.8 0.03 0.10 

 Acetaminophen 5.1 1.0 0.54 – 1070 0.998 1.6 97.4 2.6 99.0 0.11 0.54 

Lipid regulator Bezafibrate 7.9 1.0 0.10 – 976.0 0.998 2.3 97.8 2.8 97.9 0.03 0.10 

 Atorvastatin 9.3 1.1 0.05 – 500.0 0.997 2.6 98.0 3.5 100.9 0.01 0.05 

Anti-hyperlipidemic Gemfibrozil 23.3 1.2 1.01 – 100.5 0.994 7.8 118.5 6.9 121.1 0.11 0.35 

Anti-hyperintensive Candesartan Cilexetil 23.0 0.9 226.8 – 680.4 0.995 5.2 100.5 0.9 106.9 1.58 5.28 

Antihistamine Fexofenadine 8.4 1.0 0.09 – 937.5 0.998 2.1 106.3 6.5 104.6 0.03 0.09 

 Cetirizine 18.7 1.0 0.08 – 417.7 0.999 1.3 100.5 1.3 100.8 0.02 0.08 

GUD/ED Sildenafil 18.3 1.0 0.01 – 1000 1.000 3.5 99.5 3.0 99.1 0.002 0.01 

Diabetes Metformin 2.8 1.0 0.43 – 862.5 0.998 1.5 96.3 1.3 97.0 0.09 0.43 

 Gliclazide 17.8 1.0 0.05 – 508.0 0.997 2.1 93.2 2.8 95.3 0.01 0.05 

 Sitagliptin 11.8 0.7 0.08 – 646.4 0.998 3.2 111.7 3.0 110.3 0.01 0.02 

Cough suppressant Pholcodine 3.7 0.9 1.14 – 570.0 0.999 4.7 99.5 3.3 99.2 0.35 1.14 

Beta-blocker Atenolol 4.3 1.0 0.10 – 502.5 0.999 2.1 95.3 2.3 96.8 0.03 0.10 

 Metoprolol 11.2 1.0 0.05 – 507.5 0.999 1.3 96.8 2.0 96.1 0.01 0.05 

 Propranolol 15.1 1.0 0.09 – 434.9 0.999 2.0 105.4 1.0 106.2 0.03 0.09 

 Bisoprolol 13.7 0.8 0.10 – 1004 0.999 4.8 100.4 2.0 96.0 0.0004 0.0012 

H2 receptor agonist Ranitidine 4.6 1.1 5.17 – 517.0 0.998 2.5 100.1 9.7 97.4 1.03 5.17 

 Cimetidine 5.3 1.0 0.52 – 1043 0.999 4.2 104.1 9.0 99.3 0.10 0.52 

X-ray contrast media Iopromide 4.9 0.9 5.79 – 1158 0.997 5.0 101.2 12.0 105.4 1.16 5.79 

Various Buprenorphine 21.8 1.2 0.08 – 100 0.996 8.9 94.5 11.5 88.2 0.02 0.08 

Drug precursor 

 

Ephedrine/pseudoephedrine 7.2 1.0 0.10 – 500.0 0.997 4.1 94.0 3.4 97.3 0.03 0.10 

Norephedrine 6.3 0.9 0.50 – 1000  0.999 4.3 96.3 5.1 95.2 0.01 0.50 

Anti-cancer Azathioprine 7.8 0.9 0.10 – 490.0 0.999 7.6 97.5 13.9 97.4 0.03 0.10 

 Methotrexate 7.9 1.0 0.92 – 458.0 0.997 8.7 108.0 4.1 112.2 0.28 0.92 

 Ifosfamide 12.7 1.1 0.05 – 509.0 0.999 2.4 93.6 2.7 95.3 0.01 0.05 

 Tamoxifen 22.4 1.0 0.03 – 668.4 0.998 4.0 96.0 2.4 96.8 0.01 0.03 

 Imatinib 15.4 0.8 0.88 – 88.4 0.994 2.5 103.8 1.5 101.3 0.08 0.28 

 Capecitabine 16.1 0.9 0.01 – 594.6 0.999 2.3 89.2 2.8 89.7 0.001 0.004 

 Bicalutamide 18.2 0.9 0.10 – 784.0 0.995 2.7 90.1 2.9 92.0 0.03 0.10 



Class of Analyte 

 

Analyte RT RRT Linearity Intra-day instrumental 

performance 

Inter-day instrumental 

performance 

IDLS/N 

(ug L-1) 

IQLS/N 

(ug L-1) 

 Range (ug L-1) r2 Precision 

(Deviation) 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Accuracy 

(%) 

Anaesthetic and metabolite Ketamine 10.6 1.0 0.05 – 500.0 0.998 1.8 92.5 1.3 93.6 0.01 0.05 

 Norketamine 11.1 1.0 0.10 – 500.0 0.999 1.8 94.1 3.2 94.0 0.03 0.10 

 Venlafaxine 14.1 1.3 0.04 – 434.8 0.998 2.5 91.2 1.7 90.5 0.01 0.04 

 Desmethylvenlafaxine 10.8 1.0 0.10 – 500.0 0.998 2.8 101.3 2.1 102.3 0.03 0.10 

 Fluoxetine 18.4 1.0 0.05 – 1000  0.999 1.7 96.8 1.8 98.3 0.01 0.05 

 Norfluoxetineb 18.4 1.0 0.05 – 500.0 0.998 1.5 102.7 3.1 103.1 0.01 0.05 

 Sertraline 19.2 1.0 0.05 – 500.0 1.000 1.6 95.3 1.7 95.7 0.01 0.05 

 Mirtazapinea 13.5 1.0 0.05 – 100.0, 

50.0 – 500.0 

0.999/ 

0.997 

3.4 94.8 2.7 97.6 0.01 0.05 

 Citalopram 15.1 1.0 0.50 – 1000 0.999 0.7 101.2 2.6 101.8 0.05 0.50 

 Desmethylcitalopram 15.2 1.0 0.05 – 500.0 0.998 1.8 103.0 3.0 103.4 0.01 0.05 

 Paroxetine 17.3 0.9 5.00 – 600 0.998 3.2 103.4 1.3 102.1 0.01 0.03 

 Duloxetine 17.8 1.0 1.00 – 1000 0.997 3.0 91.2 13.6 78.3 0.003 0.01 

 Amitriptyline 18.2 1.0 0.11 – 885.0 1.000 4.5 99.6 2.4 96.8 0.03 0.11 

 Nortriptyline 18.4 1.0 0.22 – 800 0.999 4.0 95.5 3.1 92.9 0.07 0.22 

 Norsertraline 19.8 1.0 0.23 – 100 0.999 8.7 99.0 11.0 91.8 0.07 0.23 

Anti-epileptic Carbamazepine 16.2 1.0 0.05 – 514.0 1.000 2.0 91.7 1.6 92.7 0.01 0.05 

 Carbamazepine 10,11-epoxide 13.5 0.8 0.10 – 1000 0.997 1.6 88.9 2.1 89.9 0.03 0.10 

 10,11-Dihydro -10-

hydroxycarbamazepine 

13.5 0.8 0.50 – 100.0 0.997 2.8 92.2 5.6 93.8 0.05 0.50 

Calcium-channel blocker Diltiazem 16.7 1.0 0.10 – 486.2 0.996 2.3 92.7 2.3 93.6 0.01 0.10 

 Verapamil 16.2 1.0 0.01 – 600 0.998 2.9 103.1 2.4 101.9 0.001 0.004 

Hypnotic Temazepam 18.2 1.0 0.05 – 500.0 0.998 1.0 97.0 1.6 97.9 0.01 0.05 
 Oxazepam 17.8 1.0 0.10 – 800 0.999 3.3 94.8 3.4 94.3 0.02 0.08 

 Diazepam 19.5 1.0 0.01 – 1000 1.000 1.6 100.7 4.5 99.6 0.003 0.01 

Anti-psychotic Quetiapine 17.9 1.0 0.05 – 1000  0.997 1.4 95.3 1.2 96.4 0.01 0.05 

 Risperidone 13.7 0.8 0.01 – 200 0.997 3.2 101.6 1.2 96.8 0.002 0.01 

Dementia Donepezil 13.9 0.9 0.01 – 1000 0.998 2.6 110.8 1.3 107.7 0.17 0.58 

 Memantine 15.7 1.0 0.05 – 506.4 0.998 3.5 106.3 0.9 104.3 0.02 0.05 

Human Indicators 

 

Creatinine 2.7 1.0 1.00 – 1000  0.999 1.4 100.5 2.8 100.1 0.30 1.00 

Nicotine 3.3 0.8 1.00 – 500.0 0.998 1.2 98.3 2.4 98.4 0.30 1.00  

 Caffeine 8.3 1.2 0.50 – 500.0 0.999 1.7 99.6 2.8 100.4 0.10 0.50 

 Cotinine 7.2 1.0 0.05 – 1000  0.999 1.5 98.4 1.5 98.8 0.01 0.05 

 1,7-dimethylxanthineb 6.8 0.9 1.00 – 500.0 0.999 6.0 94.3 9.9 94.9 0.30 1.00 

Analgaesics and Metabolites 

 

Morphine 3.5 1.0 1.00 – 500.0 0.998 2.9 99.1 2.5 97.5 0.30 1.00 

Dihydromorphine 3.3 1.0 0.05 – 500.0 0.997 4.4 106.0 2.7 108.5 0.01 0.05 

Normorphine 3.4 1.0 1.00 – 500.0 0.999 1.5 100.9 2.2 99.8 0.30 1.00 

 Methadone 17.6 1.0 0.05 – 400.0 0.998 1.5 98.7 1.4 100.2 0.01 0.05 



Class of Analyte 

 

Analyte RT RRT Linearity Intra-day instrumental 

performance 

Inter-day instrumental 

performance 

IDLS/N 

(ug L-1) 

IQLS/N 

(ug L-1) 

 Range (ug L-1) r2 Precision 

(Deviation) 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Accuracy 

(%) 

 EDDP 14.8 1.0 0.05 – 500.0 0.999 1.2 96.5 1.1 96.4 0.01 0.05 

 Codeine 6.1 1.0 0.50 – 500.0 0.997 2.0 93.5 4.0 95.1 0.10 0.50 

 Norcodeine 6.5 1.1 1.00 – 500.0 0.998 2.8 98.5 4.8 98.6 0.30 1.00 

 Dihydrocodeine 5.5 0.9 0.10 – 500.0 0.999 1.6 94.2 2.1 94.6 0.03 0.10 

 Tramadol 11.0 1.0 1.00 – 500.0 0.999 1.6 100.1 1.9 98.4 0.01 1.00 

 N-desmethyltramadol 11.9 1.1 0.50 – 500.0 0.998 2.5 92.5 2.2 94.4 0.01 0.50 

 O-desmethyltramadol 8.3 1.2 1.00 – 400.0 0.997 3.3 95.3 4.9 98.5 0.01 1.00 

Stimulants and metabolites 

 

Amphetamine 8.4 1.0 0.10 – 500.0 0.999 4.4 100.8 1.6 100.7 0.03 0.10 

Methamphetamine 8.5 1.0 0.10 – 500.0 0.999 2.2 101.0 1.3 101.1 0.03 0.10 

 MDMA 8.6 1.0 0.05 – 1000  0.999 1.3 99.2 1.7 99.8 0.01 0.05 
 MDA 8.6 1.0 0.10 – 1000 0.998 1.1 98.4 0.7 100.0 0.03 0.10 

 Cocaine 11.3 1.0 0.05 – 500.0 0.999 2.2 97.2 1.5 99.0 0.01 0.05 

 Benzoylecgoninea 9.7 1.0 0.05 – 100.0 , 

50.0 – 500.0 

0.998/ 

0.999 

2.4 103.4 0.9 103.2 0.01 0.05 

 Anhydroecgoninemethylester 3.5 1.3 0.50 – 500.0 0.999 2.3 101.1 2.4 98.7 0.10 0.50 

 Cocaethylene 12.9 1.0 0.05 – 500.0 0.999 2.8 95.1 1.7 94.7 0.01 0.05 

 Mephedrone 9.8 1.0 0.05 – 500.0 0.998 1.8 87.1 2.9 85.7 0.01 0.05 

 MDPV 12.1 0.9 0.05 – 500.0 0.999 2.2 99.6 0.7 101.4 0.01 0.05 

Opiod and metabolite 

 

Heroin 10.9 1.0 0.50 – 500.0 0.999 1.9 98.2 1.8 99.3 0.10 0.50 

6-acetylmorphine 7.7 1.1 0.10 – 500.0 0.997 6.1 95.3 5.1 100.1 0.03 0.10 

Pesticides, fungicides and 

herbicides 

 

Thiamethoxam 8.3 0.4 1.00 – 100 0.994 4.7 93.8 5.4 96.9 0.02 0.06 

Imidacloprid 10.1 0.6 0.10 – 595.2 0.996 2.8 100.5 5.5 103.5 0.01 0.04 

Clothiniadin 10.4 0.5 1.00 – 800 0.999 3.2 97.9 3.3 98.6 0.01 0.04 

 Metazachlor 17.1 1.0 0.05 – 1011 0.999 2.5 106.0 2.6 104.7 0.004 0.01 

 Terbuthylazine 19.3 1.0 0.05 – 519 1.000 2.4 99.8 3.3 97.5 0.01 0.02 

 Methiocarb 19.4 1.0 0.08 – 1007 0.999 1.9 101.8 1.8 100.6 0.02 0.08 

 Dichlofluanid 20.4 1.1 6.83 – 1092 0.994 3.8 94.9 4.4 90.9 1.29 4.30 

 Flufenacet 20.5 1.2 0.01 – 986.0 0.997 2.0 104.2 2.9 106.2 0.002 0.01 

 Oxadiazon 24.2 1.2 1.00 – 99.6 0.996 4.0 95.5 2.8 97.1 0.02 0.08 

 Chlorpyrifosc 24.8 1.5 1.87 – 98.5 0.985 11.8 80.7 7.8 83.3 0.56 1.87 

 Triallate 24.9 1.3 0.03 – 79.0 0.992 7.6 81.3 13.2 70.6 0.01 0.03 

Veterinary Pharma Tylosin 17.3 1.0 0.56 –  560.0 0.999 2.2 99.5 4.0 100.2 0.11 0.56 

 Sulfapyridine 6.4 1.2 0.05 – 800 0.999 2.6 110.7 1.1 109.5 0.01 0.03 

 Sarafloxacin 10.9 0.7 0.88 – 442 0.995 5.2 112.1 2.3 107.1 0.22 0.75 

 Ceftiofur 12.1 1.3 0.28 – 800.0 0.993 3.6 89.5 2.0 86.4 0.08 0.28 

 Diazinon 21.9 1.2 0.11 – 2100 0.998 2.7 98.9 4.1 96.0 0.01 0.02 

Key: IDL, instrumental detection limit; IQL, instrumental quantification limit. 



a Linear-range was split into two-overlapping ranges to ensure r2 ≥ 0.997. 
b Semi-quantitative, due to only one MRM transition 
c Semi-quantitiave, due to poor r2 value 

Where possible instrumental performance was determined at concentrations of 10, 100 and 500 ug L-1 i.e. those analytes where these 

concentrations were outside the range of linearity or results were <LOQ were not included.  

  



Table S1b: Method performance data for ECs of interest (ordered by class) (Proctor et al. 2019) 
  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

UV Filter Benzophenone-1 0.07 0.35 0.14 0.71 0.23 1.15 0.004 0.02 0.14 0.70 

 Benzophenone-2 0.16 0.79 0.34 1.68 0.36 1.82 0.004 0.02 0.09 0.44 

 Benzophenone-3 0.15 0.77 0.19 0.97 0.37 1.87 - - - - 

 Benzophenone-4 2.09 6.90 5.78 19.1 7.83 25.8 0.21 0.70 4.01 13.2 

Parabens Methylparaben 0.08 0.40 0.19 0.94 0.28 1.41 0.003 0.02 0.06 0.31 

 Ethylparaben 0.24 0.79 0.46 1.52 0.49 1.61 0.01 0.05 0.17 0.57 

 Propylparaben 0.25 0.83 0.47 1.54 0.63 2.08 0.01 0.03 0.22 0.72 

 Butylparaben 0.08 0.38 0.14 0.71 0.24 1.21 0.002 0.01 0.10 0.52 

Plasticizer Bisphenol A 0.26 0.86 0.56 1.84 0.85 2.79 0.03 0.09 0.27 0.88 

Steroid estrogens E1 0.78 3.92 0.15 7.69 1.96 9.78 0.04 0.21 1.68 8.38 

 E2 0.90 4.48 1.41 7.03 1.84 9.22 0.04 0.21 1.48 7.41 

 EE2 0.98 4.91 1.46 7.32 1.83 9.15 - - - - 

Antibiotics and 

Antibacterial 

Sulfasalazine 4.31 14.2 9.66 31.9 12.6 41.4 - - - - 

Clarithromycin 0.18 0.90 0.28 1.40 0.34 1.69 - - - - 

Azithromycin 0.08 0.26 0.21 0.68 0.14 0.45 0.03 0.10 0.01 0.04 

Trimethoprim 0.26 0.85 0.51 1.67 0.73 2.41 0.01 0.03 0.07 0.22 

 Sulfamethoxazole 0.19 0.63 0.47 1.56 0.72 2.38 0.02 0.08 0.12 0.41 

 Triclosan 2.93 9.68 4.55 15.0 4.93 16.3 - - - - 

 Amoxicillin - - 0.26 0.86 - - - -     

 Metronidazole 0.29 0.98 0.68 2.27 0.57 1.90 0.03 0.09 0.03 0.10 

 Sulfadiazine 0.05 0.18 0.18 0.59 0.18 0.62 0.003 0.01 0.003 0.01 

 Cefalexin  35.6 118.7 10.2 33.9 18.9 63.1 - - - - 

 Ofloxacin 0.35 1.17 0.72 2.40 0.58 1.93 - - - - 

 Ciprofloxacin 1.85 6.17 5.10 17.0 3.48 11.6 - - - - 

 Tetracycline 0.15 0.50 0.30 1.01 0.18 0.59 - - - - 

 Danofloxacin 1.58 5.28 4.45 14.85 3.62 12.08 - - 2.84 9.45 



  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

 Oxytetracycline 6.04 20.1 10.1 33.6 8.26 27.5 - - - - 

 Chloramphenicol 3.18 10.6 6.52 21.7 4.21 14.0 0.21 0.69 0.15 0.48 

 Penicillin G 0.89 2.98 - - - - - - - - 

 Penicillin V 0.56 1.86 0.92 3.06 2.40 8.00 0.84 2.80 - - 

 Erythromycin 1.15 3.83 2.35 7.85 2.22 7.41 - - - - 

 Prulifloxacin - - 51.3 171.0 35.3 117.6 - - - - 

 Norfloxacin 0.01 0.04 0.02 0.06 0.02 0.07 - - - - 

Antifungal Griseofluvin 0.32 1.06 0.52 1.74 0.59 1.98 0.05 0.16 0.06 0.21 

 Ketoconazole 0.06 0.21 0.03 0.10 0.04 0.12 0.02 0.07 0.00 0.01 

Hypertension Valsartan 2.81 9.26 6.40 21.1 7.24 23.9 - - - - 

 Irbesartan 0.89 4.47 1.88 9.38 2.50 12.5 - - - - 

 Lisinopril 2.17 21.7 4.25 42.5 3.25 32.5 0.04 0.43 0.25 2.47 

NSAIDs Ketoprofen 0.74 3.72 1.60 8.00 2.38 11.9 0.06 0.28 0.47 2.35 

 Ibuprofen 0.06 0.31 0.08 0.42 0.19 0.93 0.005 0.02 0.07 0.36 

 Naproxen 0.61 3.07 1.17 5.85 6.29 31.5 0.05 0.25 0.60 3.02 

 Diclofenac 0.22 0.73 0.44 1.44 0.67 2.22 0.02 0.06 0.75 2.46 

 Acetaminophen 1.20 6.02 2.39 12.0 138.0* 1017* 0.04 0.21 2.74 13.7 

Lipid regulator Bezafibrate 0.22 0.66 0.38 1.25 0.64 2.11 0.02 0.05 0.18 0.60 

 Atorvastatin 0.14 0.70 0.17 0.84 0.17 0.85 - - - - 

Anti-hyperlipidemic Gemfibrozil 0.30 1.00 0.63 2.11 1.12 3.75 - - 0.20 0.67 

Anti-hyperintensive Candesartan Cilexetil 6.89 23.0 - - - - - - - - 

Antihistamine Fexofenadine 0.21 0.69 0.40 1.32 0.56 1.85 - - - - 

 Cetirizine 0.26 0.87 0.32 1.06 0.52 1.72 - - - - 

GUD/ED Sildenafil 0.01 0.03 0.02 0.05 0.01 0.05 0.001 0.003 0.001 0.003 

Diabetes Metformin 156.0* 515.0* 163.0* 460.0* 457.0* 1509* - - - - 

 Gliclazide 0.15 0.77 0.16 0.82 0.22 1.09 - - - - 

 Sitagliptin 0.03 0.09 0.08 0.27 0.06 0.22 0.004 0.01 0.003 0.01 



  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

Cough suppressant Pholcodine 2.25 7.42 8.02 26.5 25.3 83.3 0.28 0.92 1.52 5.00 

Beta-blocker Atenolol 0.20 0.66 0.56 1.84 0.71 2.35 0.01 0.05 0.10 0.33 

 Metoprolol 0.07 0.35 0.19 0.96 0.28 1.40 0.01 0.03 0.03 0.14 

 Propranolol 0.29 0.96 0.73 2.41 0.68 2.25 0.01 0.04 0.13 0.42 

 Bisoprolol 0.001 0.004 0.004 0.01 0.003 0.01 0.0001 0.0005 0.0001 0.0005 

H2 receptor agonist Ranitidine 7.96 39.8 22.3 111.4 14.8 73.8 0.44 2.19 4.81 24.1 

 Cimetidine 1.60 7.98 3.12 15.6 5.06 25.3 - - - - 

X-ray contrast media Iopromide 5.97 29.9 14.1 70.6 24.5 123.0 - - - - 

Various Buprenorphine 0.06 0.20 0.11 0.36 0.18 0.61 0.02 0.07 0.01 0.05 

Drug precursor Ephedrine/pseudoephedrine 0.60 1.97 1.62 5.36 1.32 4.36 0.02 0.07 0.11 0.35 

Norephedrine 0.18 8.82 0.35 17.3 0.37 18.6 0.01 0.39 0.04 1.85 

Anti-cancer Azathioprine 0.17 0.55 0.36 1.20 0.41 1.36 - - - - 

 Methotrexate 6.13 20.2 9.04 29.8 7.11 23.5 0.16 0.53 1.64 5.42 

 Ifosfamide 0.08 0.40 0.24 1.22 0.31 1.53 - - - - 

 Tamoxifen 14.5 72.6 0.76 3.82 0.70 3.50 0.004 0.01 2.23 11.14 

 Imatinib 0.88 2.93 1.13 3.76 1.78 5.95 0.10 0.35 0.06 0.21 

 Capecitabine 0.01 0.02 0.01 0.03 0.01 0.03 0.002 0.01 0.001 0.003 

 Bicalutamide 0.22 0.72 0.31 1.02 0.32 1.07 0.02 0.06 0.01 0.03 

Anaesthetic and 

metabolite 

Ketamine 0.07 0.37 0.19 0.93 0.24 1.20 0.005 0.02 0.03 0.17 

Norketamine 0.23 0.76 0.56 1.86 0.72 2.37 0.02 0.05 0.10 0.33 

 Venlafaxine 0.07 0.37 0.24 1.20 0.37 1.83 0.01 0.03 0.08 0.38 

 Desmethylvenlafaxine 0.24 0.80 0.66 2.18 0.85 2.79 0.01 0.05 0.09 0.29 

 Fluoxetine 1.14 5.71 1.42 7.08 0.50 2.52 0.005 0.02 0.11 0.53 

 Norfluoxetine 1.64 8.21 1.27 6.35 0.42 2.12 0.004 0.02 0.14 0.68 

 Sertraline 1.61 8.07 1.21 6.05 0.74 3.72 0.002 0.01 0.17 0.86 

 Mirtazapine 0.09 0.44 0.25 1.25 0.39 1.94 0.01 0.03 0.05 0.27 

 Citalopram 0.61 6.08 1.41 14.1 1.24 12.4 0.02 0.24 0.16 1.64 



  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

 Desmethylcitalopram 0.14 0.69 0.36 1.82 0.31 1.54 0.01 0.03 0.05 0.24 

 Paroxetine 0.18 0.59 0.21 0.69 0.13 0.45 0.01 0.02 0.005 0.02 

 Duloxetine 0.04 0.13 0.05 0.18 0.04 0.12 0.003 0.01 0.002 0.01 

 Amitriptyline 0.16 0.55 0.33 1.09 0.30 1.02 0.02 0.07 0.01 0.03 

 Nortriptyline 0.33 1.11 0.63 2.11 0.61 2.03 0.03 0.10 0.02 0.06 

 Norsertraline - - - - 1.07 3.58 0.09 0.28 - - 

Anti-epileptic Carbamazepine 
0.08 0.38 0.19 0.93 0.27 1.37 0.01 0.03 0.10 0.48 

Carbamazepine 10,11-epoxide 
0.16 0.53 0.55 1.82 0.53 1.76 - - - - 

10,11-Dihydro -10-

hydroxycarbamazepine 0.34 3.37 0.84 8.41 0.99 9.94 0.02 0.25 0.43 4.35 

Calcium-channel blocker Diltiazem 0.11 1.11 0.32 3.23 0.27 2.68 - - - - 

Verapamil 0.01 0.02 0.01 0.04 0.01 0.03 0.001 0.002 0.0004 0.001 

Hypnotic Temazepam 0.08 0.38 0.14 0.69 0.18 0.92 0.01 0.04 0.16 0.82 

 Oxazepam 0.11 0.36 0.22 0.72 0.20 0.66 - - 0.01 0.03 

 Diazepam 0.02 0.06 0.04 0.13 0.04 0.12 0.002 0.01 0.002 0.01 

Anti-psychotic Quetiapine 0.10 0.48 0.21 1.07 0.26 1.32 0.004 0.02 0.05 0.26 

 Risperidone 0.01 0.02 0.02 0.06 0.02 0.06 0.001 0.004 0.002 0.01 

Dementia Donepezil 0.55 1.83 1.54 5.12 1.48 4.93 0.09 0.30 0.09 0.29 

 Memantine 0.04 0.14 0.11 0.36 0.12 0.39 0.02 0.07 0.01 0.04 

Human Indicators Creatinine 511* 1686* 771* 2544* 945* 3118* - - - - 

Nicotine 3.34 11.0 5.44 18.0 508* 2296* 0.16 - 0.66 2.19 

Caffeine 0.37 1.83 1.11 5.57 121* 581* - - - - 

Cotinine 0.07 0.35 0.21 1.06 0.27 1.34 0.005 0.02 0.24 1.22 

1,7-dimethylxanthine 3.19 10.5 11.4 37.6 560* 2165* - - - - 

Analgaesics and 

Metabolites 

Morphine 2.65 8.75 6.34 20.9 8.85 29.2 0.11 0.37 1.92 6.33 

Dihydromorphine 0.11 0.55 0.32 1.59 0.05 2.51 0.01 0.04 0.09 0.45 

Normorphine 3.54 11.7 7.84 25.9 9.99 33.0 0.12 0.39 1.74 5.75 

 Methadone 0.11 0.54 0.21 1.04 0.20 1.01 0.01 0.03 0.03 0.17 



  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

 EDDP 0.21 1.05 0.29 1.47 0.23 1.13 0.01 0.03 0.04 0.20 

 Codeine 0.74 3.71 1.46 7.31 2.56 12.8 0.04 0.21 0.33 1.66 

 Norcodeine 2.88 9.52 8.32 27.4 8.53 28.2 0.19 0.64 1.26 4.17 

 Dihydrocodeine 0.23 0.75 0.55 1.83 0.88 2.89 0.02 0.05 0.11 0.36 

 Tramadol 0.08 8.20 0.21 21.3 0.30 30.0 0.01 0.62 0.03 3.26 

 N-desmethyltramadol 0.12 5.92 0.30 15.0 0.56 27.9 0.01 0.30 0.04 2.02 

 O-desmethyltramadol 0.09 8.53 0.28 27.8 0.31 31.4 - - - - 

Stimulants and 

metabolites 

Amphetamine 0.68 2.23 1.11 3.65 1.23 4.07 0.01 0.05 0.09 0.29 

Methamphetamine 0.32 1.05 0.71 2.35 0.95 3.13 0.01 0.04 0.09 0.30 

MDMA 0.10 0.50 0.27 1.35 0.34 1.70 0.01 0.03 0.04 0.18 

MDA 0.53 1.74 1.00 3.30 0.99 3.26 - - - - 

Cocaine 0.07 0.35 0.22 1.11 0.46 2.31 0.01 0.03 0.03 0.15 

 Benzoylecgonine 0.07 0.34 0.18 0.91 0.21 1.07 0.005 0.02 0.03 0.14 

 Anhydroecgoninemethylester 0.93 4.67 1.99 9.96 2.95 14.8 - - - - 

 Cocaethylene 0.07 0.35 0.21 1.04 1.31 6.54 0.01 0.03 0.03 0.17 

 Mephedrone 0.22 1.09 0.44 2.19 0.55 2.75 0.01 0.04 0.06 0.31 

 MDPV 0.04 0.22 0.12 0.59 0.48 2.41 0.01 0.03 0.04 0.20 

Opiod and metabolite Heroin 0.92 4.62 3.44 17.2 4.18 20.9 0.05 0.25 0.56 2.79 

6-acetylmorphine 0.28 0.94 0.76 2.50 0.89 2.95 - - - - 

Pesticides, fungicides 

and herbicides 

Thiamethoxam 0.13 0.42 0.44 1.46 0.53 1.76 0.01 0.03 0.01 0.02 

Imidacloprid 0.04 0.15 0.10 0.33 0.10 0.33 0.01 0.02 - - 

Clothiniadin 0.06 0.19 0.14 0.47 0.15 0.50 0.004 0.01 - - 

Metazachlor 0.02 0.06 0.04 0.14 0.04 0.13 0.002 0.01 0.002 0.01 

 Terbuthylazine 0.03 0.11 0.07 0.22 0.07 0.23 0.01 0.02 0.01 0.02 

 Methiocarb 0.13 0.43 0.27 0.91 0.26 0.86 0.01 0.04 0.01 0.04 

 Dichlofluanid - - - - 25.2 83.8 - - - - 

 Flufenacet 0.01 0.04 0.02 0.07 0.02 0.07 0.002 0.01 0.002 0.01 

 Oxadiazon 0.15 0.49 0.26 0.85 0.30 0.98 0.08 0.26 0.05 0.16 



  Surface water 

(ng L-1) 

Effluent 

(ng L-1) 

Influent 

(ng L-1) 

Solid particulate 

matter 

(ng g-1) 

Digested solids 

(ng g-1) 

Class of Analyte Analyte MDL MQL MDL MQL MDL MQL MDL MQL MDL MQL 

 Chlorpyrifos 12.9 42.9 8.54 28.5 - - - - 0.33 1.09 

 Triallate 0.11 0.37 0.20 0.68 0.09 0.31 - - - - 

Veterinary 

Pharmaceuticals 

Tylosin 1.28 6.39 2.23 11.1 3.27 16.3 - - - - 

Sulfapyridine 0.04 0.14 0.11 0.37 0.10 0.33 - - - - 

Sarafloxacin 0.83 2.78 2.66 8.86 2.01 6.72 - - - - 

Ceftiofur 2.17 7.23 1.32 4.41 1.02 3.39 - - - - 

Diazinon 0.03 0.11 0.07 0.23 0.06 0.21 0.00 0.01 0.003 0.01 

            

 

*  Calculated for direct injection



Table S2. SPE/MAE-UHPLC-QTOF- method performance 1 

Analyte IS Linearity Range 

[µg L-1] 

R2 Accuracy* 

[%] 

Precision* 

[%] 

IDL 

[µg L-1] 

IQL 

[µg L-1] 

Bisphenol A 

Sulphate 

4-chloro-3-

methylphenol-D2 

1.4 - 103.4 0.997 98.3 2.1 0.41 1.39 

3-PBA 4-chloro-3-

methylphenol-D2 

0.03-100 0.994 90.1 2.5 0.01 0.03 

Triclosan 

sulphate 

4-chloro-3-

methylphenol-D2 

1.59 - 100 0.999 101.3 0.3 0.51 1.59 

*concentration levels: 0.1, 5 and 100 ng/mL used for inter-day precision and accuracy 

 2 

Figure S1. SPE/MAE-UHPLC-QqQ – schematic overview. 3 

 4 

 5 



 6 
Figure S2 SPE-UHPLC-QTOF – schematic overview. 7 
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Figure S3. Daily loads of BCIs  9 
 10 
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Figure S3. Daily loads of BCIs continued 12 
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Figure S4. PNDLs of pharmaceuticals (calculated using WW-PE) 14 
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Figure S5. PNDLs of lifestyle chemicals (calculated using WW-PE) 16 

 17 

 18 

Figure S6. PNDLs of pesticides and industrial chemicals (calculated using WW-PE). 19 
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 27 

Figure S7. PNDLs of antibiotics and ARGs (calculated using WW-PE) 28 

29 
Figure S8. PNDLs of WQIs (calculated using WW-PE). 30 
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PE-WW PE-NHS 

 
 

Figure S9. PNDLs for pharmaceuticals 48 

  49 
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Figure S10: PNDLs of BCIs driven by city function 50 

 51 



 52 
(a) Daily Loads of Abs and ARGs (mg/day) 

 
(b) Population normalised daily loads of ABs and ARGs (mg/day/1000inh) 

PE-WW PE-NHS 

  

Figure S11. AB and ARGs: (a) daily loads and (b) population normalised daily loads - PNDLs 53 
(chloramphenicol was excluded in total AB calculation). 54 
 55 

 56 



 57 

Figure S12. Daily loads of BCIs in receiving waters. 58 
 59 
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