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Abstract  

Alkali-activation is one of the most promising routes for utilisation of versatile aluminosilicate 

resources. However, the variations of chemical compositions in these resources have increased 

the challenge of designing alkali-activated materials (AAMs) with multiple sources, posing the 

demand for establishing composition-property correlations that can represent a wide range of 

AAMs. This study proposes a data-driven approach to develop such composition-property 

correlations combining machine learning with global sensitivity analysis and thermodynamic 

modelling. The strength performance of alkali-activated concretes was investigated for a 

benchmark study (196 data inputs). The impact of the five key chemical compositions, CaO-

SiO2-Al2O3-MgO-Na2O, has been assessed. The results show that despite the use of different 

aluminosilicate precursors, there appear to be coherent connections between bulk binder 

chemical compositions, phase assemblages, and the performance of AAMs. The composition-

property correlations established via machine learning can be used to facilitate the on-demand 

design of AAMs utilising varying aluminosilicate resources. 
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1. Introduction 

The production of clinker cement currently takes around 25% of the global industry CO2 

emission, which is  

expected to grow by further 7 % in 2050 under the as-is scenario [1], posing significant 

pressure on achieving the 2050 net-zero target set out by the Paris Agreement. Alkali-activated 

materials (AAMs) are non-clinker cementitious materials that have demonstrated great 

potential as sustainable and durable alternatives to Portland cement [2-4]. Despite some 

standing engineering challenges [5], the AAMs have demonstrated superior performances in 

specialised engineering applications, such as marine structures [6], sewage pipes [7], and even 

hazardous waste immobilisations [8]. The choice of AAMs over traditional clinker cement for 

these specialised areas can result in improved performances and longevity, and thus improving 

the sustainability and resource efficiency of infrastructures.  

 

Alkali-activation is one of the most promising and efficient chemical routes that can 

drastically improve the resource efficiency by utilisation of versatile aluminosilicate resources, 

including natural minerals [9-11], waste and recycled materials [12-14]. The reaction kinetics, 

phase evolution, mechanical performances, and durability of alkali-activated materials are 

primarily controlled by the chemistry of the aluminosilicate precursors and the dosage and type 

of activators [2, 15, 16]. A wide range of aluminosilicate rich precursors can be used to prepare 

AAM, from high calcium content precursors (e.g. blast furnace slag), to intermedia and/or low 

calcium content precursors (e.g. fly ash, rice husk ashes, and metakaolin) [17-19]. Sodium 

based alkalis, including siliceous sodium silicate and non-siliceous sodium hydroxide and 

sodium carbonate, have been widely used as chemical activators due to their effectiveness of 

reaching desirable engineering performances and affordable costs [20-22].  

 

However, the variations of chemical compositions in these aluminosilicate precursors 

have increased the challenge of designing AAMs with desirable performances. This has posed 

great demand for establishing composition-property correlations that can: 1) reflect the 

physical and chemical nature of the AAM binder system and relative importance of different 

chemical compositions; 2) estimate the performance of AAMs with known binder chemical 

compositions. Such understanding of the AAM system from the composition-performance 
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perspectives, independent of specific types of precursors used, is particularly important for 

providing essential guidance for performance-based on-demand materials design and 

optimisation of a wide range of AAMs. 

 

Despite a large number of existing studies on the effects of the chemistry of precursors 

and/or activators on the performances of alkali-activated materials [15, 16, 19, 23-28], it is still 

very difficult to establish a general composition-property correlation for AAMs in a single 

model. This is because the reaction kinetics and microstructure developments in AAMs are 

extremely complex and vary when different precursors are been used [15, 29-31]. Kinetic-

controlled reactions, such as the dissolution of the precursors, are determined by much more 

complex factors, such as surface areas and mineralogy, and should not be overlooked [32-34]. 

However, from the thermodynamic point of view, the bulk chemical compositions of the AAM 

binders play dominant roles in determining the phase assemblage and microstructure (e.g. 

density) of the AAM [35-37], which further affect the mechanical and durability performances 

of AAMs [28, 38, 39]. The thermodynamic modelling of the AAM binder systems can provide 

a reliable semi-quantified prediction of the phase assemblages, density, as well as durability 

performances in the AAM system for matured samples [35-37]. Similar thermodynamic 

modelling approaches have been proven effective for OPC binder systems [40]. This implies 

that there might be coherent connections between bulk chemical compositions, phase 

assemblages, and performance of AAMs, serving as the theoretical support of the composition-

performance correlations. However, the number of experimental tests and materials 

characterisations required for verifying these hypotheses would increase exponentially with the 

increasing number of chemical compounds investigated. It is sometimes impractical to obtain 

sufficient data from single laboratory-based research to perform rigid statistical parametric 

analysis.  

 

In order to tackle these challenges, this paper proposes the use of a data-driven approach 

to developing such composition-property model for alkali-activated materials. The data-driven 

approach has gained increasing interest in recent years to establish composition-performance 

correlations for understanding materials performances and developing new materials [41-45]. 

Machine learning models (such as support vector machines, artificial neural networks, and 

Gaussian processes models) , trained and validated using experimental-based observations, can 
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serve as the surrogate models for describing the relationships between inputs (e.g. concrete 

ingredients) and outputs (e.g. mechanical or durability performances) [46-50]. Then, sensitivity 

analysis of the model inputs can be performed using the machine learning model to identify 

the significance of input variables [50-52].  

 

Sensitivity analysis includes both local sensitivity analysis (around fixed data point) and 

global sensitivity analysis (full data input ranges). The variance-based sensitivity analysis 

(Sobol indices)[53] is particularly useful for global sensitivity analysis, in order to identify and 

quantify input(s) whose uncertainty has/have the largest impact on the variability of the model 

output. The impact of interactions of two or more inputs on the model output can also be 

quantitively evaluated through second or higher-order Sobol indices. By identifying the high 

impact (sensitive) input variables, the sensitivity analysis would also enable further reduction 

of the model complexity. The machine learning assisted sensitivity analysis can also be used 

to assess whether the data-driven model follows the physical or chemical roles of the simulated 

system [50, 54]. Details of the mathematical background of the Sobol indices can be found in 

section 2.2.  

 

In this study, a composition-strength model for AAMs is investigated as a benchmark. A 

Gaussian processes (GP) model is trained using organised dataset from existing literature to 

predict the compressive strength of alkali-activated concrete (AAC) from binder composition 

and concrete mix design (section 4.1.). Global sensitivity analysis is performed on the trained 

GP model using Monte Carlo sampling methods for analysing the impact of chemical 

compositions and mix design on the strength performance of AAC, suggesting that the trained 

machine learning model follows the physical and chemical law of the studied binder system 

(section 4.2.). The proposed composition-property model is further assessed via linking the 

machine learning model predicted strength performance with binder phase assemblages, 

evaluated through thermodynamic modelling from bulk binder composition (sections 4.3.). The 

application and possible future improvement of this proposed composition-property framework 

coupling machine learning with thermodynamic modelling are also discussed. 

 

2. Methodology 
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In this section, we will give a brief introduction to the Gaussian processes, variance-based 

global sensitivity analysis (Sobol indices), and the thermodynamic modelling. 

 

2.1.Gaussian processes (GP)  

Gaussian processes (GP) is a nonparametric Bayesian machining learning method. which 

can be viewed as a one-layer feed-forward Bayesian neural networks with an infinite number 

of hidden units [55]. One unique feature of GP is that there is no predefined model structure, 

such as classes of parametric functions, for describing the relationships between the input and 

output datasets, which has the benefit of achieving more flexible predictive models [56]. The 

mathematical background of the GP is briefly summarised as following. For readers who are 

interested in more details about Gaussian processes, please refers to [57].  

 

2.1.1. Mathematical definition 

GP is designed to estimate the 𝑦∗ (unknown value) at a new input 𝑥⃗∗ (known value), given 

the observations (training datasets) 𝑦⃗ = {𝑦𝑖}𝑖=1
𝑛  at 𝑛 sets of the input 𝑋 = {𝑥⃗𝑖}𝑖=1

𝑛 , where 𝑦𝑖 ∈

𝑅 is an observed function output due to the ith input  𝑥⃗𝑖 ∈ RD. In particular, 𝑋 is a 𝑛 × 𝐷 matrix 

and 𝑦𝑖  is subject to the observational 𝜖~𝒩(0, 𝜎𝑛
2). Predicting 𝑦∗  can also be expressed as 

finding the most plausible 𝑦∗with the knowledge of 𝑦⃗. Therefore, the problem becomes 

argmax
𝑥⃗∈𝐴

𝑃(𝑦∗|𝑦⃗) Eq. 1 

According to the Bayes’ theorem, 𝑝(𝑦∗|𝑦⃗) in Eq. 1 can be written as 

𝑃(𝑦∗| 𝑦⃗) =  
𝑃(𝑦⃗|𝑦∗)𝑃(𝑦∗)

𝑃(𝑦⃗)
  

Eq. 2 

GP assumes that any finite number of a collection of outputs of a latent function follow a 

multivariate Gaussian distribution [57-59]. Hence: 

𝑦⃗ ~ 𝒩(𝑚⃗⃗⃗, 𝐾) Eq. 3 

in which 𝑚⃗⃗⃗ represents the prior mean of 𝑦⃗. 𝐾 is the covariance matrix of 𝑦⃗. The covariance 

matrix essentially describes the data structure and allows the data to determine the form of the 

latent function. The element in 𝐾 are calculated using the kernel function 𝑘(𝑥𝑖⃗⃗⃗⃗ , 𝑥𝑗⃗⃗⃗⃗ ). In this 

study, the 𝑦⃗  is the composite strength with respect to the different composite design. 

Meanwhile 𝑥𝑖⃗⃗⃗⃗  stands for the composite design which lead to the strength 𝑦𝑖. For notational 
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simplicity, 𝑚⃗⃗⃗ values are normally set to zeros. The GP with the prior mean values as zeros is 

also called as the simple kriging in some contexts. Since the mean of the posterior process is 

not confined to zero, this simplification is not necessarily a limitation [57]. The measured data 

𝑦⃗ with an unknown 𝑦∗  at a corresponding location 𝑥⃗∗ , also forms a multivariate Gaussian 

distribution, which can be written as Eq. 4. 

[
𝑦⃗
𝑦∗] ~𝒩 (0⃗⃗, [ 𝐾 (𝐾∗)𝑇

𝐾∗ 𝐾∗∗ ]) Eq. 4 

In Eq. 4, T denotes the transpose of the vector or matrix. 𝐾∗ is a 1 × 𝑛 matrix containing the 

covariance between 𝑦∗ and 𝑦𝑖, and 𝐾∗∗ is the self-covariance of  𝑦∗. The element in 𝐾∗ and 

𝐾∗∗ are also calculated using the kernel function. Subsequently, 𝑃(𝑦∗| 𝑦⃗) is:  

𝑃(𝑦∗|𝑦⃗) =  𝒩(𝐾∗𝐾−1𝑦⃗, 𝐾∗∗ − 𝐾∗𝐾−1(𝐾∗)𝑇) Eq. 5 

 

2.1.2. Hyperparameters determination  

As discussed in 2.1.1, the reliability of a GP model depends on the form and 

hyperparameters of the selected covariance function. The design of the covariance function is 

an active area of research in the GP research community. More about covariance functions can 

be found in [57]. In this study, the squared exponential (SE) covariance function (kernel 

function) is chosen as it generally performances well [60].  

 

With the form of 𝑘(𝑥𝑖 , 𝑥𝑗) determined, the problem then becomes finding the most plausible 

𝜃⃗ with the knowledge of 𝑦⃗ and 𝑋. According to the Bayes’ theorem, the posterior over the 

hyperparameters is defined as 

𝑝(𝜃⃗|𝑦⃗, 𝑋) =
𝑝(𝑦⃗|𝑋, 𝜃⃗)𝑝(𝜃⃗)

∫ 𝑝(𝑦⃗|𝑋, 𝜃⃗)𝑝(𝜃⃗)𝑑𝜃⃗
  

Eq. 6 

, where 𝑝(𝜃⃗) is the prior of the hyperparameters and 𝑝(𝑦⃗|𝑋, 𝜃⃗) is the marginal likelihood. The 

fraction ∫ 𝑝(𝑦⃗|𝑋, 𝜃⃗)𝑝(𝜃⃗)𝑑𝜃⃗ is a normalisation constant. To avoid strong bias, 𝑝(𝜃⃗) has to be 

a flat function over the domain. The maximum of 𝑝(𝜃⃗|𝑦⃗, 𝑋), is effectively determined by 

𝑝(𝑦⃗|𝑋, 𝜃⃗) when 𝑝(𝜃⃗) is sufficiently flat [60]. Hereby, determination of the robust 𝜃⃗ becomes 

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑦⃗|𝑋, 𝜃⃗)) . In practice, the logarithm of 𝑝(𝑦⃗|𝑋, 𝜃⃗), Eq. 7, is usually maximised. 
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log 𝑝(𝑦⃗|𝑋, 𝜃⃗) =  −
1

2
𝑦⃗𝑇𝐾−1𝑦⃗ −

1

2
ln|𝐾| −

𝑛

2
ln2𝜋 

Eq. 7 

, where n is the number of observations. Optimisation algorithm is then applied to determine 

the robust set of 𝜃⃗.  In this study, the adaptive Nelder–Mead algorithm [61] is applied to 

identify the optimal hyperparameters. 

 

2.1.3. Weighted GP model 

The accuracy of a GP model is purely relying on the hyperparameters of 𝑦⃗ once the form of 

the kernel function is determined. In other words, a set of hyperparameters defines a unique 

GP model. It is well known that most of the optimisation algorithms may end at a local 

maximum due to the improper initial points and may cause overfitting or under-fitting. To 

mitigate this effect, we randomise the initial points and run the adaptive Nelder-Mead search 

for 𝑁 times. We only select the 𝑁′ sets of hyperparameters corresponding to the 𝑁′ largest 

ln 𝑝(𝑦⃗|𝑥⃗, 𝜑⃗⃗) values. Based on the marginal likelihood calculated using the 𝑁′ largest sets of 

hyperparameters, the weight of the ith GP model, defined by 𝜃⃗𝑖, can be calculated using 

𝑤
𝑖

′
=  

𝑝(𝑦⃗|𝑋, 𝜃⃗𝑖)𝑝(𝜃⃗𝑖)

∑ 𝑝(𝑦⃗|𝑋, 𝜃⃗𝑖)𝑝(𝜃⃗𝑖)𝑁′

𝑖=0

=
𝑝(𝑦⃗|𝑋, 𝜃⃗𝑖)

∑ 𝑝(𝑦⃗|𝑋, 𝜃⃗𝑖)𝑁′

𝑖=0

 Eq. 8 

 

  predicted by the GP model with 𝜃⃗𝑖.  

𝐸(𝑦∗) = ∑ 𝑤𝑖
′𝛼𝑖

𝑁′

𝑖=0

 Eq. 9 

 

In this study, a thousand adaptive Nelder-Mead searches with random initialisation points 

are performed. In each search, it stops when the difference between the maximum and 

minimum in the search is smaller than 10−3. The hyperparameters contributing to the first 25 

largest marginal likelihoods have been selected, contributing to 99.9% of the total weights. 

 

2.1.4. Leave-one-out-cross-validation (LOO-CV) 

Since the simplifications adopted in the concept, such adjoint gaussian distribution 

assumption and improper hyperparameters may lead to a strongly biased machine learning 

model. Before applying the trained model in other usage, it is vital to check the validity of the 

model. In this study, the leave-one-out cross-validation (LOO-CV) test is adopted to check the 
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validity of the weighted GP model. In LOO-CV, the training dataset is divided into two groups, 

namely the LOO-CV training data 𝑦⃗−𝑖 = {𝑦1, ⋯ 𝑦𝑖−1, 𝑦𝑖+1, ⋯ 𝑦𝑛} and LOO-CV validation data 

𝑦𝑖. The weighted GP model is then applied to predict the 𝑦𝑖. The integrity of the emulator is 

then qualitatively checked using graphical comparison (quantity-to-quantity plot and error 

histogram) and quantitatively assessed using the following metrics: 

Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑖

∗)2

𝑛

𝑖=1

 
Eq. 10 

Pearson Correlation Coefficient (𝜌) 

𝜌 =
𝑐𝑜𝑣(𝑦⃗, 𝑦⃗∗)

𝜎𝑦𝜎𝑦∗
 

Eq. 11 

 

, where 𝑐𝑜𝑣(∙,∙) is the covariance of two vectors, 𝜎𝑦 and 𝜎𝑦∗  stand for the standard deviations 

of 𝑦⃗ and 𝑦⃗∗, respectively. 

 

2.2. Global sensitivity analysis 

In this study, a variance based Sobol global sensitivity analysis methods [53] is used to 1) 

measure the overall importance of each variables in the predictive surrogate model (total effect); 

2) measure the relative importance of the five key chemical compositions and their interactions. 

The mathematical background can be summarised as follows. 

Any given integrable model can be described as 𝑓(𝑥⃗), where 𝑥⃗ = (𝑥1, ⋯ 𝑥𝑛)  is the n-

dimensional input variable. 𝑓(𝑥⃗) can be decomposed into 2n orthogonal functional terms as:  

𝑓(𝑥⃗) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

1≤𝑖≤𝑗≤𝑑

+ ⋯ + 𝑓1,2,⋯,𝑛(𝑥1, ⋯ 𝑥𝑑) 

Eq. 12 

Due to the orthogonality of the components in Eq. 12, the variance of 𝑓(𝑥⃗) can be written 

as follows: 

𝑉 = ∑ 𝑉𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖,𝑗 

1≤𝑖≤𝑗≤𝑛

+ ⋯ + 𝑉1,2,⋯,𝑑 
Eq. 13 
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, where 𝑉𝑖 is the partial variance due to 𝑥𝑖 whilst others are interactive variance contributions 

due to different combination of inputs.  

 

The Sobol indices (𝑠𝑢) are defined as the relative variance to the total variance of the model 

𝑠𝑖 =
𝑉𝑖

𝑉
 , 𝑠𝑖𝑗 =

𝑉𝑖𝑗

𝑉
, ⋯ , 𝑠1,2,…,𝑛 =

𝑉1,2,…,𝑛

𝑉
 

Eq. 14 

 

, where 𝑠𝑖 is the first-order Sobol sensitivity index (the main effect sensitivity index), 𝑠𝑖𝑗 is the 

second-order Sobol sensitivity index, and 𝑠1,2,…,𝑛  is the n-th order Sobol sensitivity index. 

Higher Sobol index value means that the corresponded variance(s) has/have higher contribution 

to the total variance. For each individual input assessed, the total effect sensitivity index is the 

total sum of the first to the n-th order Sobol indices involving this variable,  

𝑠𝑖
𝑡 =

𝑇𝑖

𝑉
=

∑ 𝑉𝑢{𝑢:𝑖∈𝑢}

𝑉
 

Eq. 15 

 

, where {𝑢: 𝑖 ∈ 𝑢} means any subset of {1, 2, ⋯ , 𝑑}, which includes 𝑖 in it. As suggested in the 

definition, the total effect index measures the contribution of variance 𝑥𝑖  to the output, 

including all variance caused by its interactions with any other variables. Both the main and 

the total effective indices are portions of the output variance that can be attributed to the 

influence of a single input alone.  

 

According to the definition, calculation of the exact Sobol indices require computing several 

integrals, which can sometimes be impractical. For this reason, the Monte Carlo estimation is 

used in this framework, and the Sobol indices defied in Eq. 14 and Eq. 15 are approximated 

using the estimation proposed by Owen [62]. Details of the mathematical deduction has been 

explained in [50]. To estimate the Sobol indices of each inputs of the GP surrogate model, two 

sets of inputs each containing 100,000 pairs of inputs are generated. The element in each set of 

inputs is sampled uniformly using the latin hypercube sampling (LHS) method within the 

related data range (Table 1).  

 

2.3. Thermodynamic modelling 
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A thermodynamic modelling programme based on Gibbs energy minimisation was used to 

predict the stable phases that may be expected to form as reaction products in the alkali-

activated binder system. The open source software GEM-Selektor v.3 

(http://gems.web.psi.ch/GEMS3/) is used to perform the modelling. An extended Debye–

Hückel equation is used for calculating the activity coefficients of the aqueous species, Eq. 16: 

log
10

𝛾𝑖= 
-A𝑧𝑖

2√I

1+Ba√I
+bI+ log

10
 
x𝑖w

Xw

 Eq. 16 

where 𝛾𝑖 is the activity coefficient, 𝑧𝑖 is the charge of the ith aqueous species, and A (kg0.5mol-

0.5) and B (kg0.5mol-0.5cm-1) are the temperature- and pressure-dependent electrostatic 

parameters. It was assumed that the aqueous phase is dominated by NaOH, so the average ion 

size and parameter for common short-range interactions of charged species (a and b as shown 

in Eq. 16) are 3.31 Å and 0.098 kg·mol-1 [63]. The term x𝑖w represents the molar quantity of 

water, and Xw is the total molar amount of the aqueous phase. I is the total ionic strength of the 

aqueous solution, which is calculated using Eq. 17. 

I =
1

2
 ∑ 𝑐𝑖 ∙ 𝑧𝑖

2 Eq. 17 

where ci is the concentration of the ith ionic species and zi is its charge. 

 

The recently published Cemdata18 [64] was used as the main chemical thermodynamic 

database. The solid solution models for alkali-substituted calcium aluminate silicate hydrate 

gels (CNASH_ss) and for hydroxylated hydrotalcite (MgAl-OH-LDH_ss) were used, the 

thermodynamic properties of these end members are described in detail in [35, 65]. The 

formation of quartz was excluded in the calculations due to their slow formation kinetics under 

ambient conditions [66]. In addition to the Cemdata18 database, the recently published 

zeolite20 database [67, 68] was also included in this study in order to represent the alkali 

aluminosilicate gel (N-A-S-H) formed in AAM with different Si/Al ratios. Crystallised zeolitic 

phases are not observed experimentally in most of the AAMs. However, instead of crystallinity 

and framework structures, the bulk chemical compositions (mainly Si/Al ratios and extra-

framework cations) play primary roles in determining the Gibbs energy of formation of 

framework aluminosilicate minerals [69, 70]. Therefore, it is reasonable to interpret the entirety 

of zeolites as representing the N-A-S-H gel of different compositions. The same approximation 

treatment has been adapted in a recent study [37], where the exclusion of mordenite (both Na 

http://gems.web.psi.ch/GEMS3/
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and Ca endmembers) zeolite was also justified. A full degree of reaction model is used in all 

simulations for simplification, where 1.0 g of dry air is added in all simulations as the gas 

atmosphere. All simulations were performed at 25 °C under standard atmospheric pressure. 

 

3. Data structure 

The original data used to train the composition-strength predictive model are summarised 

from 18 published research [71-88]. The alkali-activated concrete mix designs and the 

corresponded compressive strength involving the three most extensively studied 

aluminosilicate precursors, BFS, fly ash, and metakaolin are included in this study. Five major 

elements in their oxide forms, CaO, SiO2, MgO, Al2O3, and Na2O, are been investigated in this 

study, which representing the bulk chemical compositions without distinguishing the 

crystalline and amorphous phases (such information is largely unavailable from the literature). 

Figure 1 shows the distribution of these five main chemical compositions in the precursors 

included in this study. It suggests that BFS is the main CaO and MgO source while all 

precursors contain a significant amount of SiO2 and a considerable amount of Al2O3. The 

precursors themselves contain a negligible amount of Na2O.  

 

 

Figure 1 Distribution of CaO-SiO2-Al2O3-MgO-Na2O chemical compositions of BFS, fly ash 

and metakaolin precursors assessed in this study.  
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The chemical compositions of the binder in each mix design, which includes the precursor 

and the anhydrous activator, are recalculated from the bulk chemical composition of the 

precursor and dosage of the activator. It should be noted that only samples prepared using the 

sodium hydroxide and/or sodium silicate activators are included in this study. In order to 

investigate if the complex alkali-activated materials system can be reasonably represented by 

the simplified composition model, the silicate content from both the precursors and the 

activator are been added up as the total SiO2 content. Since the precursors included in this study 

contain only a negligible amount of alkalis, the Na2O content is solely contributed by the 

activators. The total water content (free water plus water from activators), fine aggregate, and 

coarse aggregate content are also included. Table 1 shows the data ranges of concrete design 

summarised in this study by binder chemical compositions in the unit of density (kg/m3). A 

total of 196 data points is used in this study for training the composition-strength predictive 

model in section 4.1, each contains 9 variables. Since the GP model assumes that input 

variables are independent, the density of each chemical composition is used as the input 

variable rather than the mass percentage (of the total binder). The distribution of chemical 

compositions as the mass percentage of the total binder of the training data set can be found in 

the Supporting Information (Figure S-1) document. Sample curing temperature was not taking 

into consideration as training parameters as 175 out of the total 196 data points were cured 

under ambient conditions (20-25 °C). 

 

Table 1 Data structures and ranges of the alkali-activated concrete mix design assessed in this 

study as summarised by bulk density. The natural logarithm values of testing age are used as 

training data. 

 Chemical compositions 

 Unit Min Max 

CaO  kg/m3 1.2 227.0 

SiO2  kg/m3 121.6 410.3 

MgO  kg/m3 0 59.6 

Al2O3 kg/m3 27.6 130.0 

Na2O  kg/m3 11.4 63.8 

Water kg/m3 83.5 263.1 

Fine aggregate kg/m3 500.0 1247.0 
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Coarse aggregate kg/m3 415.0 1221.2 

Testing age ln(day) 3.0 365.0 

Comp. Str. MPa 4.9 94.0 

 

4. Results and discussion 

4.1. Training and validation of GP model  

 

The LOO-CV predictions of the weighted GP model is plotted against the training data in 

Figure 2A. The results show that the predicted values are close to the equilibrium line (the solid 

line with slop equals to 1.0), where the Pearson correlation (ρ) between the LOO-CV prediction 

and the training data is 0.965. The root mean square error (RMSE) of the prediction is 5.80 

MPa, representing the general accuracy of the trained GP model. The distribution of error 

percentage of the LOO-CV results, defined as 

{LOO-CV prediction – training data}×100/training data, is shown in Figure 2B. The results 

indicate that 181 out of 196 of the LOO-CV prediction results are within the ±25% error range, 

accounting for 92.3% of LOO-CV prediction results. Figure 2C presents the histograms and 

the fitted probability distribution functions (PDFs) of the training data and the LOO-CV 

prediction. The close alignment of the fitted PDFs suggests that the statistical characters of the 

trained GP model are akin to the training data set.  
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Figure 2 (A) Leave-one-out-cross-validation (LOO-CV) results; (B) distribution of errors (%) 

of the LOO-CV results; (C) probability density distribution (PDF) comparison of the training 

data compressive strength and the LOO-CV predicted values. 

 

4.2. Global sensitivity analysis: Sobol indices 

Figure 3 presents the total effect, first-order and second-order Sobol indices of the bulk 

binder chemical compositions, water content, fine and coarse aggregate, and age (in natural 

logarithm values) with regards to the compressive strength of the AAC. Figure 3(top) shows 

that SiO2 has the highest total effect, followed by the coarse aggregate, CaO, water, Na2O, fine 

aggregate, MgO, age, and Al2O3 content. The total effect Sobol indices of coarse aggregate, 

CaO and water are very close to each other, while the total effect Sobol indices of the fine 

aggregate, MgO, age, and Al2O3 content are much lower in comparison with the highest five 

factors. However, the first-order and second-order Sobol indices, Figure 3(bottom), show 

different trends comparing to the total effect values. SiO2 has the highest first-order Sobol index, 

followed by the coarse aggregate, water, and Na2O content. The CaO content has none first-

order effect, instead, the second-order interactive effect between CaO and SiO2 is very 

significant.  
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Since the total effect index is the total sum of the first to the n-th order Sobol indices 

involving the assessed variable, the results suggest that for the trained GP predictive model, 

SiO2 content, out of the five major chemical compositions investigated, has the most dominant 

effect on the predicted strength performances, followed by the CaO and the Na2O content. The 

relative impacts of different chemical compositions have not been assessed quantitatively from 

experiments. However, the relative importance of variables assessed here is consistent with 

experimental observations. It has been observed from various experimental studies that the 

CaO content in the precursor is crucial for determining the strength given phase sodium and 

aluminium-substituted calcium silicate hydrate (C-(N)-A-S-H) gel [30, 73, 79, 89], 

corresponding to the high CaO total effect and significant CaO and SiO2 interactive effect. The 

SiO2 content in the training data set includes both SiO2 content from the precursor and the 

activator. In general, the use of sodium silicate activators can result in a denser microstructure 

and higher strength performances in AAMs [24, 90], corresponding to the high first-order 

Sobol index of SiO2 and the relatively significant interactive effect between Na2O and SiO2. 

Apart from the five major binder chemical compositions, the significant total effect of water 

content corresponds to its importance as reaction media and affecting the overall porosity [91]. 

Between fine aggregate and coarse aggregate, the coarse aggregate has a much higher total and 

first-order effect. This is consistent with the average paste thickness (APT) theory, where the 

largest diameter size of the aggregate has the most dominant effect on the strength performance 

of concrete [92, 93]. In additions, it is important to note that since the natural logarithm values 

of sample ages are used in the training data, the Sobol indices relating to sample ages reflect 

the impact of age in logarithm values instead of actual sample ages. Nevertheless, the global 

sensitivity analysis of the trained GP model for predicting the strength performances of AAC 

from binder chemical compositions suggests that the trained surrogate model follows the basic 

physical and chemical rules in the AAC system. 
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Figure 3 The total effect (top), and 1st and 2nd order Sobol indices of the predictors in the 

machine learning surrogate model for predicting the compressive strength of alkali-activated 

concretes (Note: 𝑙𝑛(𝐴𝑔𝑒) is the natural logarithm of ‘Age’). 

 

4.3. Coupling GP model with thermodynamic modelling 

In order to further assess the validity of the proposed composition-strength model, 

parametric studies of the five major chemical compositions are performed. A Monte Carlo 

sampling process is used to generate AAC binder compositions within the training data ranges 

while fixing the water to binder ratio, aggregate contents, and the sample age as constants. A 

total binder content of 450 kg/m3 is assumed, which is approximately the average binder 

content of the training data set. A total of 3803 AAC binder chemical compositions are 

generated. A typical water to binder ratio of 0.4 is used, resulting in 180 kg/m3 total water 

content. The fine and coarse aggregate contents are chosen as fixed values, 800 kg/m3 and 1000 

kg/m3. The compressive strength of these simulated AAC mix design (by binder chemical 

compositions) are predicted using the validated GP model from section 4.1. The results of the 

28 days strength performance are shown in Figure 4. The results of AAC with different water 

to binder ratios and different fixed aggregate content are included in the Supporting 



Composites Part B: Engineering 
Available online 31 March 2021, 108801 

17 
 

Information (Figure S-2), demonstrating that the fixed factors do not cause qualitative changes 

to the trend of results discussed in this session.  

 

Figure 4 suggests that out of the 3803 simulated AAC mix design by chemical composition, 

the highest AAC strengths are been predicted within two binder composition ranges:  

(I) CaO content 36-44 wt.%, SiO2 content 38-44 wt.%, MgO content 0-3 wt.%, Al2O3 

content 9-17 wt.% and Na2O content 3-6 wt.%. The binder compositions in this 

range have the bulk Ca/Si elemental ratio around 1.0, and Si/Al ratio between 2.0 

to 4.5.  

(II) CaO content 1-3 wt.%, SiO2 content 67-71 wt.%, MgO content 0-2 wt.%, Al2O3 

content 17-23 wt.% and Na2O content 5-11 wt.%. The binder compositions in this 

range have the bulk Si/Al ratio between 2.5 to 3.5.  

For binder compositions within the range (I), the C-(N)-A-S-H phase is observed 

experimentally as the dominate reaction product [34, 38, 94]; while for binder compositions 

within range (II), the N-A-S-H phase is observed experimentally as the dominate reaction 

product [95-97]. Both C-(N)-A-S-H and N-A-S-H phases are recognised as the main strength 

given phases in alkali-activated materials [2]. As suggested by Figure 4A, it appears that AACs 

containing a mixed of C-(N)-A-S-H and N-A-S-H phases result in lower strength performance 

when comparing with AAC dominated by either of these two phases. Figure 4B shows that 

higher Na2O content does not seem to favour the high-Ca binder system, while moderate 

amount of Na2O content is required to achieve higher strength in the low-Ca binder system. In 

addition, higher strength performance is predicted in low MgO content mix designs. However, 

under the given results, it is still unclear whether the composition-strength correlation is also 

consistent with the detailed physiochemical properties of the binder system, such as the 

formation of secondary phases, changes in the bulk compositions in the C-(N)-A-S-H and N-

A-S-H phases, and the bulk porosity. Further assessment of the composition-strength 

correlation is conducted via coupling with thermodynamic models. 
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Figure 4 Distribution of 3803 data points (chemical composition and corresponded 

compressive strength) presented in ternary diagrams, (A) CaO-Al2O3-SiO2, (B) CaO-Na2O-

SiO2, (C) CaO-MgO-SiO2. The grey dash line on both sides of the Ca/Si=1.0 (molar ratio) 

indication lines representing the bulk Ca/Si ratio of 0.8 and 1.5. 

 

4.3.3. The role of CaO-SiO2-Al2O3 binder composition  

Figure 5 shows the phase assemblages of AAM binder system predicted using 

thermodynamic modelling via GEMs, where  CaO wt.% in the total binder ranges from 0 wt.% 

to 40 wt.%, SiO2 wt.% and Al2O3 wt.% decreases uniformly from 75 wt.% to 35 wt.% and 20.0 

wt.% to 16.0 wt.% respectively. The MgO wt.% is set to be 10% of corresponded CaO content, 

while Na2O wt.% is fixed at 5 wt.%. These composition ranges are been setup to reflect the 

role of CaO-SiO2-Al2O3 compositions on the phase assemblages, corresponding to Figure 4A. 

The predicted phase assemblages show that N-A-S-H gels (represented by the zeolite phases) 

and a very small fraction of magnesian silicate hydrate (M-S-H) are been predicted at low CaO 

content (high SiO2 and Al2O3 content) region. The formation of M-S-H is due to the presence 

of a trace of MgO setup by the model. However, since MgO content is barely observed from 

metakaoalin and fly ash, the M-S-H gel is not identified experimentally. The C-(N)-A-S-H gel 
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is not been predicted to form until the CaO content is above 6 wt%. Instead, zeolites with Ca 

as extra framework cations are been predicted at low CaO binder content. This is consistent 

with experimental observations that Ca can be accommodated in the amorphous 

aluminosilicate phase through ion-exchange [98, 99]. The total mass and bulk Si/Al ratio of the 

predicted N-A-S-H phase start to decline as C-(N)-A-S-H gel starts to form and consumes Si. 

Mg-Al type layered double hydroxide (hydrotalcite) and Ca-Al type layered double hydroxide 

(strätlingite) are been predicted when the binder CaO content is above 30 wt%, together with 

the C-(N)-A-S-H gel (bulk Ca/Si ratio around 1.0) as dominate reaction product and a small 

fraction of N-A-S-H gel (bulk Si/Al around 1.0 to 1.5), corresponding to the phase assemblage 

of typical alkali-activated slags [100, 101] and alkali-activated slag with a small amount of 

metakaolin [38, 102]. Figure 5B illustrates the predicted zeolites, chabazite (Na-endmember: 

Na2(Al2Si4)O12(H2O)6; Ca-endmember: Ca(Al2Si4)O12(H2O)6), natrolite 

(Na2(Al2Si3)O10(H2O)2), zeolite 4A (Na2(Al2Si2)O8(H2O)4.5) and hydroxysodalite 

(Na8(Al6Si6)O24(OH)2(H2O)2), representing the N-A-S-H phase as shown in Figure 5A. The 

chabazite type zeolite and hydroxysodalite both contains 6 member silica ring structure (6-R), 

consistent with the experimental observations suggesting that 6-R and 4-R structures might be 

the main secondary building units of the amorphous N-A-S-H gel formed in low CaO content 

AAMs [103-105]. The natrolite and zeolite 4A predicted from high CaO content AAMs consist 

of tetrahedral silica with 4 alumina cordination Q4(4Al) and 4-R structure. This is also 

consistent with the deconvoluted 29Si solid-state NMR results of aged sodium silicate-activated 

slag samples [101] and the identification of a small fraction of crystalline gismondine 

(containing 4-R structure) from alkali-activated slag with a small amount of metakaolin 

replacement (~10 wt.%) [38]. 

 

Compressive strength of the AAMs with the same bulk chemical compositions as the 

corresponding GEMs inputs are predicted using the trained GP model, as shown in the top plot 

in Figure 5A. The results show that the optimal strengths are predicted from either the N-A-S-

H gel only region, or the C-(N)-A-S-H dominent region with hydrotalcite and strätlingite as 

secondary reaction products and a small fraction of N-A-S-H gel. Much lower compressive 

strengths are predicted from AAMs binders containing intermedia level of CaO content, 

reflecting experimental observations where lower strength performances are often observed 

from hybrid AAMs, where high calcium precursors (e.g. BFS) are placed by low calcium 

precursors (e.g. fly ash, metakaolin) by approximately 50% while keeping the total alkali dose 
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constent[79, 106]. This might relate to the fact that low calcium precursors often require high 

alkali dose to achieve sufficient reactivity, which is not always favouring the reactivity of high 

calcium precursors [106, 107].  

 

The micromechanical performances, such as the elastic modulus, of individual reaction 

products formed in AAMs can affect the macroscale mechanical performances of the AAMs 

[108-110]. The elastic modulus of calcium silicate hydrate is around 10-15 GPa with a Ca/Si 

ratio of 1.0 and gel porosity around 20 % [111]. The elastic modulus of N-A-S-H with 7% to 

10% alkali content ranges from 13 to 15 GPa [112]. The elastic modulus of hydrotalcite, the 

Mg-Al type LDH has not been reported in the literature. However, the elastic modulus of 

carbonated Ca-Al type LDH, monocarbonate is around 35 to 45 GPa [113]. It is possible that 

hydrotalcite would possess a similar elastic modulus due to the similarity in crystal structures 

between these two LDH type minerals. In addition, the formation of strätlingite has been 

identified as a critical strength given phase in Imperial Roman architectural mortar [114], 

suggesting that strätlingite might also significantly contribute to the overall strength 

performances of AAMs with high binder CaO content. For AAMs containing mixed reaction 

products, the elastic modulus values are around 18 GP for low calcium content binders [110, 

115], and around 25 to 30 GP for high calcium content binders [113, 116].  
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(A) 

 

(B) 

Figure 5 (A) Comparison of phase assemblages (bottom) of alkali-activated materials 

predicted from thermodynamic modelling and compressive strength (top) of the 
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corresponding concrete mix design by chemical composition as predicted from the predictive 

surrogate model. While the CaO wt.% in the total binder ranges from 0 wt.% to 40 wt.%, 

SiO2 wt.% and Al2O3 wt.% decreases uniformly from 75 wt.% to 35 wt.% and 20.0 wt.% to 

16.0 wt.% respectively. The MgO wt.% is set to be 10% of corresponded CaO content, while 

Na2O wt.% is fixed as 5 wt.%. A total water to binder ratio of 0.4 is used. (B) Zeolites 

representing the N-A-S-H phase as predicted corresponding to the result shown in (A). 

 

Besides, a higher total mass of the reaction products is been predicted when the binder 

content of CaO increases to above 32 wt.%, resulting in higher total volumes of reaction 

products and thus lower overall porosity. The corresponded volume phase plot of Figure 5A 

can be found in Supporting Information (Figure S-3). The total porosities of the predicted 

AAMs are estimated using the method described in [117] from the thermodynamic modelling 

results. Comparing the predicted strength with the predicted total pore volume (plotted together 

in Figure 5A), in the high CaO content region, the predicted high strength binder compositions 

correspond to the lower predicted total porosity, consistent with the experimental observations 

[24, 118]. A similar trend is observed from the N-A-S-H gel only regions (CaO content below 

5%), where a decrease of predicted porosity corresponds to increased predicted strength. 

However, there shows no clear correlation between the predicted strength and the predicted 

total porosity in the intermedia CaO content range.  

 

4.3.4. The role of Na2O content 

Figure 6 shows the predicted phase assemblage of AAMs with varying Na2O content from 

2 wt.% to 10 wt.%, the proportions of CaO wt.%, SiO2 wt.% and Al2O3 wt.% are fixed to match 

the bulk Ca/Si molar ratio of 1.0 and the bulk Si/Al molar ratio of 2.0. The MgO wt.% is set to 

be 10% of corresponded CaO content. These composition ranges are been setup to reflect the 

role of Na2O content on the phase assemblages at the optimal CaO, SiO2 and Al2O3 proportions, 

corresponding to the high CaO content region in Figure 4B. Since in this study, the Na2O 

contents in the binder are contributed solely by the activators, the increase of Na2O content is 

similar to the increase of total alkali content in the activator. The results show that, the 

formation of strätlingite increases as Na2O content increases from 2 wt.% to 6 wt.% and 

decreases to form C3AH6 as Na2O content continuously increasing to 10 wt.%. The formation 

of C3AH6 at high alkalinity binder system matches with experimental observations [94, 119].  
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The strength performances predicted from the GP model of the same binder compositions 

show the optimal strength at around 4 wt.% Na2O content, where a significant increase in total 

alkali content results in lower strength performances. Comparing the predicted strength with 

the phase assemblages, it appears that with constant total binder content, the formation of 

C3AH6 at high Na2O content leads to a lower total mass of reaction product, as well as a lower 

total volume of the reaction products (Supporting Information, Figure S-4), and thus a higher 

predicted porosity. This suggests that extremly high alkali dosage will lead to coarsen of the 

pore structure, impairing the strength performances. This might also be used to explain the 

efflorescence phenomena that are often observed in AAMs with higher Na2O content [120]. In 

addition, the results suggest that this trained composition-property model can be used to 

estimate the optimal activator dosage for precursors of known chemical compositions.  

 

 

Figure 6 Comparison of phase assemblages (bottom) of alkali-activated materials predicted 

from thermodynamic modelling and compressive strength (top) of the corresponding concrete 
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mix design by chemical composition as predicted from the predictive surrogate model. While 

the Na2O wt.% in the total binder ranges from 2 wt.% to 10 wt.%, the proportions of CaO 

wt.%, SiO2 wt.% and Al2O3 wt.% are fixed to match Ca/Si molar ratio of 1.0 and Si/Al molar 

ratio of 2.0. The MgO wt.% is set to be 10% of the corresponded CaO content.  

 

4.3.5. The role of MgO content 

Figure 7 shows the predicted phase assemblages of AAMs with varying MgO content from 

0 wt.% to 12 wt.%. Similar to the previous session, the proportions of CaO wt.%, SiO2 wt.% 

and Al2O3 wt.% are fixed to match the bulk Ca/Si molar ratio of 1.0 and Si/Al molar ratio of 

2.0. The Na2O wt.% is fixed at 5 wt.%. The results show that as MgO content in the total AAM 

binder increases, the amount of strätlingite decreases while the amount of hydrotalcite increases. 

This is consistent with experimental observations where increased quantity of hydrotalcite-like 

phase together with decreased Ca-Al LDHs are identified from alkali-activated slag with higher 

MgO content [34]. The formation of hydrotalcite consumes Al and thus destabilising 

strätlingite. Comparing with the compressive strengths of the same binder compositions 

predicted from the GP model, when the MgO content is below 3wt.%, the predicted strength 

increases as the MgO content increases; while for MgO content above 3 wt.%, the predicted 

strength decreases at higher MgO content. Similar trends have also been identified when adding 

reactive MgO into alkali-activated slag where very high MgO content resulted in lower 

compressive strength [121, 122]. However, this contradicts with the results reported by Ben 

Haha et al. [118], where slightly higher mortar compressive strength was achieved by sample 

with higher MgO content (around 6-8 wt.%) when sodium silicate activator was used. But the 

same study also reported that when sodium hydroxide was used as activator, slightly lower 

mortar compressive strength was achieved by higher MgO content samples. Different from 

previous sections, there appear to be no clear correlations between the strength performances, 

phase assemblages, and the predicted porosity when the MgO content is the main variance. 

According to the data source (Figure 1) and data structure (Table 1) used in this study for 

training the predictive model, MgO processes the lowest mass percentage among the five major 

elements and is mainly contributed by the BFS. It has been reported by various studies that 

MgO play critical roles in affecting the early age reaction kinetics, as well as determining the 

degree of reaction of alkali-activated slag [19, 23, 34, 118, 122, 123]. The main effect of MgO 

on the strength performance of AAM is relating to the densification of the microstructure [81, 
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118, 122], as a result of increased degree of reaction and increased total reaction products. 

Therefore, the effect of MgO content might be dominated by the reaction kinetics rather than 

the phase assemblages. Further studies are required to investigate the role of MgO on 

micromechanical performances of AAMs in addition to its effect on microstructure 

development.  

 

 

Figure 7 Comparison of phase assemblages (bottom) of alkali-activated materials predicted 

from thermodynamic modelling and compressive strength (top) of the corresponding concrete 

mix design by chemical composition as predicted from the predictive surrogate model. While 

the MgO wt.% in the total binder ranges from 0 wt.% to 12 wt.%, the proportions of CaO 

wt.%, SiO2 wt.% and Al2O3 wt.% are fixed to match Ca/Si molar ratio of 1.0 and Si/Al molar 

ratio of 2.0. The Na2O wt.% is fixed at 5 wt.%.  

 

5. Perspectives and future improvement 
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The outcomes of this study prove that the composition-property correlations of alkali-

activated materials developed using the data-driven approach can reflect the chemistry of the 

binder system. Since the composition-property model is independent of the types of precursors 

been used, it can be used to conduct performance-based materials design, as well as selection 

of potential precursor materials for their best uses. The present study showcased the 

composition-strength correlations of AAMs. However, similar composition-property 

correlations can also be developed for assessing a wide range of properties, including chloride 

permeability, carbonation resistance and environmental impact. The variance-based Sobol 

indices and thermodynamic models can be used to evaluate whether the trained machine 

learning model can reflect the true physical and chemical nature of the studied system. Then 

the mathematically and chemically verified machine learning surrogate model can be used to 

perform high-throughput “experiments” to achieve fit-for-purpose design and optimisations. 

Nevertheless, a purely data-driven model puts emphasis on the quality and completeness of 

well-organised data sources, which are not often readily available for interpretations. The 

proposed model can be further improved if additional factors, such as particle sizes, surface 

areas, degree of reactions, and amorphous content can also be included (if the completed 

dataset is available) in the training model. The inclusion of additional physical factors can 

enable the model to take into consideration the effects of microstructure and kinetic-driven 

reactions.  

 

For coupling the composition-property model with thermodynamic modelling, one 

important factor that will need to be considered to further improve the robustness of the model 

is the degree of reaction (DoR). The DoR will determine the percentage of precursors 

participating in the reaction, and thus affecting the predicted total porosity. Different methods 

have been adapted for determining the degree of reaction in AAM, including selective chemical 

dissolution [124, 125] and deconvolution of solid-state 29Si NMR [126-128]. Figure 8 

summarises the DoR of AAMs reported in the literature at 28 days sample age, plotted versus 

the binder chemical contents. The limited existing information suggests that there is no 

significant correlation among bulk CaO, SiO2 and MgO content in the AAM; however, higher 

Al2O3 content and higher Na2O content appear to result in higher DoR. Besides, the lack of a 

universal testing protocol for determining the DoR in AAMs might also cause uncertainties in 

existing observations. Further studies need to be carried out in order to understand the 
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correlation between DoR and bulk binder compositions, as well as additional factors such as 

particle sizes and surface areas.  
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Figure 8 Degree of reaction reported in literature of alkali-activated materials at 28 days with 

different binder compositions. The reported degree of reaction is plotted versus (A) CaO 

wt.%, (B) SiO2 wt.%, (C) Al2O3 wt.%, (D) MgO wt.%, (E) Na2O wt.%. For all the data 

included in this figure, sodium silicate and/or sodium hydroxide were used as activators. 

Longhi et al.-2019 [124], Songpiriyakij et al.-2010 [125], Ben Haha et al.-2011 [24], Le 

Saout et al.-2011 [126], Myers et al.-2014 [127], Palacios et al.-2006 [128], Fernandez-

Jimenez et al.-2003 [27]. 

 

6. Conclusions 

This study proposes a novel material analysis framework coupling machine learning with 

thermodynamic modelling for studying the composition-property correlations of alkali-

activated materials. The results suggest that the trained and validated GP predictive model can 

reflect the statistical features of the training data, with a general model accuracy of 5.80 MPa. 

The global sensitivity analysis further proves that the trained GP model can reflect the relative 

importance of the model inputs (binder chemical compositions and mix designs) with regards 

to the known chemistry of the AAMs system. The strength performances of 3803 random AAM 

mix designs with varying chemical compositions (generated using the Monte Carlo process) 

are predicted by the trained GP model. The results suggest that higher AAM strength 

performances can be expected from either C-(N)-A-S-H dominant binder system or N-A-S-H 

gel dominant binder system, corresponding to the thermodynamic modelling results. The 

predicted strengths within these regions are also consistent with porosity predicted from the 

thermodynamic modelling, where lower porosities are predicted from binder compositions 

with higher strength.  
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Replication of Results 

The data required to reproduce these findings will be available upon request.  
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