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Abstract—For engineers to create durable and effective electri-
cal assemblies, modelling and controlling heat transfer in rotating
electrical machines (such as motors) is crucial. In this paper, we
compare the performance of three multi-objective evolutionary
algorithms, namely NSGA-II, NSGA-III, and MOEA/D in find-
ing the best trade-offs between data collection costs/effort and
expected modelling errors when creating low-complexity Linear
Regression (LR) models that can accurately estimate key motor
component temperatures under various operational scenarios.
The algorithms are integrated into a multi-objective thermal
modelling strategy that aims to guide the discovery of models
that are suitable for microcontroller deployment. Our findings
show that while NSGA-II and NSGA-III yield comparably good
optimisation outcomes, with a slight, but statistically significant
edge for NSGA-II, the results achieved by MOEA/D for this use
case are below par.

Index Terms—data-driven thermal models, electrical ma-
chines, linear regression, cost vs accuracy, NSGA-II, NSGA-III,
MOEA/D

I. INTRODUCTION AND MOTIVATION

As energy is transformed from electrical to mechanical
form during operation, electrical machines (such as motors)
generate heat. Engineers who design electrical machines are
concerned about this heat because it lowers the machine’s per-
formance, shortens its lifespan, and occasionally even causes
total machine failure. Therefore, modelling of heat in electrical
machines (also known as thermal modelling), is crucial in
assisting electrical engineers to better understand how heat
affects the performance of the machines, and in designing
effective and long-lasting electrical machines [1]. Thermal
models can also be used to monitor and regulate operating
electrical machines in real time [2]. The models for these
applications must be as simple as possible in order to be
installed and operated on (inexpensive) microcontrollers.

Our general research efforts concern the construction of
low-complexity and explainable data-driven thermal models
that can characterise the dynamic thermal behaviour of elec-
trical machines. In a recent publication [3], we proposed a
multi-objective optimisation strategy for discovering accurate,
low-complexity and explainable linear regression (LR) models
that can be used for estimating temperatures of key motor
components under various operational scenarios. The aim
of this strategy is to provide decision makers with a clear
overview of optimal trade-offs between data collection costs,
the expected modelling errors and the overall explainability of
the generated thermal models. The strategy in [3] builds on
the earlier works of Wöckinger et al. [4] and Zăvoianu et al.
[5] in modelling the thermal behaviour of electrical machines
using linear regression and synthetic features and is governed
by a multi-objective evolutionary solver (i.e. NSGA-II).

In this present work, we evaluate the multi-objective opti-
misation thermal modelling strategy [3] by integrating three
different state-of-the-art evolutionary solvers and comparing
their performance and optimisation behavior. The numerical
experiments indicate that any effective evolutionary solver can
be integrated into the strategy, but caution the effectiveness of
a purely decomposition-based solver on our type of problem
formulation. Furthermore, the run-time variable frequency
heatmaps we constructed in an effort to understand differences
in solver performance, have also proven helpful in enhancing
the interpretability of the overall thermal modelling strategy.

The rest of the paper is structured as follows: Section II
describes the targeted modelling scenario and its requirements.
In Section III we provide a description of the overall multi-
objective thermal modelling strategy. Section IV covers a
short background to multi-objective optimisation. In Section



V we describe the problem formulation and experimental
setup. Section VI demonstrates the results and provides their
interpretation, and finally, Section VII contains conclusions
and an outlook on future work.

II. THERMAL MODELLING SCENARIO

Our thermal modelling scenario entails the creation of low-
complexity regression models that can be applied to accurately
estimate operating temperatures of the key components of a
3-phase brushless outer rotor permanent magnet synchronous
motor under various operational scenarios. The motor is used
in low-cost fans where higher levels of utilisation are expected.
Creating a thermal model for this kind of motor using the
traditional lumped parameter thermal network (LPTN) [6] is
known to be challenging because the rotating bell leads to a
complex flow of heat; and the air gap between the rotor bell
and the mounting flange allows an exchange of air and heat,
which further complicates the modelling [4]. That being the
case, modelling the motor using data driven-techniques is ideal
as long as relevant data is available. As with most modelling
exercises, accuracy is critically important, but in this particu-
lar case, equally important is interpretability, microcontroller
compatibility and the minimisation of modelling costs.

The motor has six key components that are of interest
when wishing to monitor or manage heat. Two of these
components are categorised by domain experts depending on
their modelling importance as, high priority, and these are,
the winding wire, Tw, and the static ring of the inner ball
bearing, Tbi. The other components with priorities ranging
from medium to low are the mounting flange, Tf ; the rotor,
Tr; the outer ring of the outer ball bearing, Tbo; and the steel
stator yoke, Ts. Domain experts have also identified two input
variables as being highly relevant for modelling the thermal
characteristics of the motor components. The two inputs are
rotor speed, v, and electric current, I , and their importance
is linked to their low cost and the ease with which they
can be measured during operation. Conversely, other relevant
inputs such as torque, ambient temperature and electric power
input are rarely available or not available at all across most
operational scenarios.

Given data availability restrictions within low-cost applica-
tions, our aim is to use the two available inputs, rotor speed
(v), and electric current (I) to construct simple and accurate
thermal models that can be used to estimate (the individual)
temperatures of the two high priority motor components: the
winding wire, Tw, and the static ring of the inner ball bearing,
Tbi. Another requirement imposed by electrical engineers is
that for the models to be effective, they need to have an
average temperature error of less than +/-2 ◦C when the motor
is used within its safe operating area (SOA). Fig. 1 provides
a summary of the modelling requirements.

Domain specialists contributed 20 datasets of time series
data, each representing a different operational situation of
the motor under study, measured with a sample time of
2 seconds, in order to enable the development of dynamic
thermal models. The 20 datasets (designated DS01 . . . DS20)

have a total of 240,200 samples, with individual dataset sample
sizes ranging from 571 to 16,201. The data was collected
over the course of roughly 133.5 hours using an experimental
testbench described in [4] and [7]. An illustration of how the
two original modelling inputs (v and I) were varied across all
20 operational scenarios is shown in Fig. 2.

III. MULTI-OBJECTIVE THERMAL MODELLING STRATEGY

Fig. 3 provides a summary of the multi-objective thermal
modelling strategy [3], which is aimed at providing decision
makers (i.e., electrical engineers) with a complete overview of
the optimal trade-offs between modelling costs and accuracy.
Given that in our modelling scenario described in Section II
there are only two input features to be used for modelling, the
first task is to create additional synthetic features. This is done
in two stages:
■ Using domain knowledge in electrical engineering, it is

known that in a typical electrical machine, torque (τ ) is
directly proportional to current (I) [8] and the total power
losses are directly proportional to rotor speed (v) and I
[9]. Thus, from a physical point of view, input variables
based on several multiplicative combinations of v and I
are considered suitable for thermal modelling resulting in
the creation of 4 expert-suggested additional features: v2,
v3, I2 and v · I .

■ Using the Exponentially Weighted Moving Averages
(EMAs) [10], as proposed by Kirchgässner, Wallscheid,
and Böcker [11], to all the 6 features (2 original + 4
synthetic) based on v and I in an effort to smooth random
fluctuations in the time series data and complement data
samples with information regarding trends. EMA features
were calculated using the formula in Equation 1:

EMAα,t(r) = α× rt + (1− α)× EMAα,t−1(r) (1)

where, α is the weight, t is the current period, and rt
is the value of the time series r in the current period. A
key aspect of using EMA is deciding how much weight
to give to older observations. To capture a wide range of
trends in the data, we generated 10 EMA weights using
the formula αi = 0.001 ·2i, i ∈ {0, 1, 2, . . . , 9}) and used
them to create 60 synthetic EMA features, one for each
of the 6 features based on speed (v) and current (I).

The next step is the creation of the actual regression
models. To discover the optimal combination of datasets and
EMA weights that minimise the size of training samples
and maximises model accuracy, we use a multi-objective-
evolutionary algorithm (MOEA). NSGA-II [12] was used
in [3], but in principle, any effective MOEA can be used.
In this paper we will compare the performance of NSGA-
II with two other state-of-the-art MOEAs, namely NSGA-
III [13], and MOEA/D [14]. Finally, as excessive use of
EMA-based synthetic features increases the complexity of LR
models, thereby making them less understandable, a step-
wise regularisation technique can also employed as part of
the modelling approach in order to remove features with low
coefficients. While it was demonstrated in [3] that up to 50%



Fig. 1: Summary of modelling requirements with input and output variables. Only the 2 input variables marked as “always
available” are used for modelling

Fig. 2: Variation of the two original modelling inputs across the 20 datasets.

Fig. 3: Schematic of the multi-objective thermal modelling
strategy (adapted from [3])

of the original features could be removed without significantly
compromising the quality of the LR models, the numerical
experiments described in this work do not make use of the
model simplification step as our goal is to analyse the intrinsic
ability of the tested multi-objective solvers to explore the main
data collection effort vs model accuracy trade-off proposed by
the considered use case.

IV. MULTI-OBJECTIVE OPTIMISATION

Multi-objective optimisation problems (MOOPs) are a class
of optimisation problems where the goal is to maximise or
minimise two or three conflicting objectives. If unconstrained,
this can be formulated as follows:

Minimise F (x) = (f1(x), . . . fm(x)), m ≤ 3 (2)

where x is a solution candidate, and f1 to fm represent
individual objectives.

In our real-life modelling problems, we want to minimise
modelling costs while at the same time maximise model
accuracy. Unsurprisingly, reducing modelling costs (i.e., the
size of available training data) results in the degradation of
the accuracy of the elicited dynamic thermal models. Optimal



solution candidates to our problems illustrate the best com-
promise / trade-off between the two objectives. By definition,
the set of all optimal trade-off solutions is called the Pareto
optimal set (PS) and its projection in objective space is called
the (true) Pareto Front (PFt). Akin to most real-life problems,
the PS of our thermal modelling MOOPs is unknown.

Multi-objective evolutionary algorithms (MOEAs) denote a
class of population-based nature-inspired metaheuristics that
have over the years proved to be very effective at solving
MOOPs. The working principle of MOEAs is to iteratively
evolve a population of solution candidates that display an
increased fitness by using specialised selection, crossover,
mutation and survival operators. One of the main reasons
MOEAs have become popular in both industry and research is
their general ability to discover, after a single optimisation run,
a set of Pareto non-dominated solutions (PN ) that provides
a good approximation of the PF . This provides decision
makers with a set of optimal trade-offs to choose from [15].
Three of the most widely used state-of-the-art MOEAs are:
the second version of the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [12], NSGA-III [13], and the Multi-
objective Evolutionary Algorithm based on Decomposition
(MOEA/D [14]. In this research we integrate these three
solvers into the multi-objective thermal modelling strategy
described in Section III and compare their performance. These
three MOEAs have been chosen in light of their common
usage and good performance in the optimisation of electrical
machine designs. We continue by providing a brief description
of the three solvers:

■ NSGA-II is an improved version of the original NSGA
[16], which was published in 1994. It solves MOOPs by
initialising a population of randomly selection solutions
and after evaluating their fitness, ranks them according to
non-dominated fronts, with the best taking the top ranks.
Diversity on the fronts is maintained using a method
called crowding distance that aims to penalise solutions
that are too close in objective space. Offspring solutions
are created by applying the simulated binary crossover
(SBX) and polynomial mutation (PM) genetic operators
on parent solutions selected using tournament selection.
NSGA-II is a very robust solver and has been used in
numerous industrial applications [17]. An example of the
application of NSGA-II in the optimisation of the design
of five-phase induction machines is given in Pereira et al.
[18].

■ NSGA-III is a modified version of NSGA-II, and was
proposed to address the challenges faced by NSGA-II
when solving many-objective optimisation problems –
i.e., problem with more than three objectives. The main
difference with NSGA-II is that NSGA-III requires a
widely distributed set of predefined reference points to
guide it. The same reference points are used to achieve
diversity and therefore NSGA-III does not use the crowd-
ing distance. The rest of the operators are the same as
in NSGA-II. Examples of NSGA-III in electric machine

design optimisation are found in Sun, Xu, and Yao [19]
and Hernandez et al. [20].

■ MOEA/D solves an MOOP by decomposing it into
multiple single objective sub-problems, each encoding a
predefined trade-off. It then seeks to optimise each sub-
problem using information from its neighbouring sub-
problems. The relationship between neighbouring sub-
problems is defined by the distance between them. In
each generation, the population of solutions is composed
of the best solutions that the algorithm has found for
each sub-problem. In the original paper [14], MOEA/D
outperformed NSGA-II on several benchmark MOOPs.
Some examples of MOEA/D applied in electric machine
design are given in Silva et al. [21] and Chen and
Severson [22].

V. EXPERIMENTS

A. Problem Formulation

We formulated our MOOP grounded on the efficient usage
of the 20 datasets (DS01 . . . DS20) representing relevant op-
erational scenarios (i.e., containing multiple load points) and
EMA weights for generation of synthetic features capturing
trends in the data. Given the cost and complexity of collecting
data, it would be important to know how different combina-
tions of load points are likely to help characterise the thermal
behaviour of a particular motor component and the accuracy
trade-offs related to their usage during modelling. We defined
our MOOP using Equation 2, setting x as a n-dimensional
vector of real-valued variables – i.e., xi ∈ D ⊂ R,∀1 ≤ i ≤ n;
and f1 ∈ R and f2 ∈ R represent individual objectives:
■ f1(x) = the total number of data samples in the training

set encoded by x that are used for creating the LR model;
■ f2(x) = the MAE or the MSE obtained by the trained

LR model on the test set encoded by x.
In order to enable x to easily encode the training-test data

split across our 20 datasets and create the necessary synthetic
features based on the 10 EMA weights, we formulated the
MOOPs as a typical 0,1 Knapsack problem, codified with real
values [23] as illustrated in Fig. 4. A candidate solution is a
decision vector of 30 real-values between 0 and 1 (i.e., x ∈
[0, 1]30). For the first 20 variables, each variable xi represents
its associated dataset DSi. If xi ≥ 0.5, then DSi is selected
and added to the training set of the modelling experiment. On
the other hand, if xi < 0.5, DSi is added to the test set of the
modelling experiment. The next 10 variables of the decision
vector represent 10 predefined EMA weights. If a given weight
is to be used (i.e., xi ≥ 0.5, 21 ≤ i ≤ 30), all the associated
synthetic features (i.e., all 6 EMA features created with αi−21)
are used for training and testing the LR model that informs
the accuracy of f2. In order to evaluate F (x), a counting of
the total number of samples in the training set is performed
(i.e., f1) and an LR model is first trained on the training set
and then tested on the test set to inform f2. If a solution
places all or no datasets in the training subset, the solution is
heavily penalised across both fitness functions, thus making it



non-viable. It is noteworthy that since we are interested in the
independent modelling of the 2 high priority motor component
temperatures, we are considering two problems: MOOP−Tw

and MOOP−Tbi.

B. Experimental Setup

We parameterised the three MOEAs using literature rec-
ommended parameters. We used standard genetic operators,
i.e., Simulated Binary Crossover (SBX) [24] and polynomial
mutation (PM) [25] for both NSGA-II and NSGA-III with
crossover probability rate of 0.8, crossover distribution index
of 20, mutation probability of 1/n and a mutation distribution
index of 20. Population sizes for both solvers were set to 200.
In NSGA-II we set offspring sizes to 200. NSGA-III does not
require defining the offspring size. The number of reference
points for NSGA-III, which is a key feature in the algorithm
was set to a quarter of the population size.

For MOEA/D, we used the MOEADIEpsilon [26] variant
with the Differential Evolution Crossover (with a crossover
rate of 0.2, F=0.5), and Polynomial Mutation (with probability
rate of 1/n and distribution index of 20) and the Tschebycheff
aggregative function with the dimension set equal to the
number of objectives). The neighbour size was set to 20, the
neighbourhood selection probability to 0.9, and the maximum
number of replaced solutions was set to 2.

We gave each of the three solvers a computational budget
of 50,000 fitness evaluations, thereby evolving 250 gener-
ations. Given the stochastic nature of MOEAs, we carried
30 independent repeats of each optimisation run in order to
enable a statistical comparison of the performance of the
solvers. The experiments were conducted using jMetalPy, a
Python-based framework for multi-objective optimization with
metaheuristics [27], and Scikit-learn, a library for machine
learning in Python [28], was used for the actual modelling.

VI. RESULTS AND INTERPRETATION

We first compare the performance of the three evolutionary
solvers, NSGA-II, NSGA-III and MOEA/D by looking at the
quality of the PN solutions they were able to generate in their
30 respective independent runs. For each solver, we combined
all PN solutions generated by the repeated runs and selected
the best among them using non-dominated sorting [29]. The
resulting overall Pareto fronts (PF ) for the three solvers are
illustrated in Fig. 5 when modelling the temperature of the
winding (a) and the inner bearing (b) using the MSE as the
metric for model accuracy.

The results in Fig. 5 show a general increase in test errors
when the size of the training set decreases. This is expected
as limited training sets are likely to not contain all critical
load points. Nevertheless, our approach can identify high-
quality LR models that require a limited number of training
samples. For instance, in Fig. 6 we present the performance
of the LR Tbi model trained using only DS3 and DS14

(i.e., 9.5% of all available samples) across all 20 datasets.
The importance of also including the EMA weights in the
optimisation is also highlighted in Fig. 6 by the observable

difference in prediction accuracy when contrasting with an LR
model based on features selected using Principal Component
Analysis instead (6 features explain over 92% of the observed
Tbi variance in DS3 + DS14).

The plots in Fig. 5 indicate that (with a few exceptions)
NSGA-II and NSGA-III identified almost the same optimal
trade-off solutions. MOEA/D results are generally of lower
quality than those obtained by the solvers implementing non-
dominated sorting. The PN solutions generated by NSGA-II
and NSGA-III are also widely spread across the PF whilst
MOEA/D failed to identify solutions in the key high accuracy
(i.e., low MSE) part of the Pareto front.

We proceeded to quantitatively measure the quality of the
PFs generated by the three solvers using the hypervolume
indicator [30]. Besides the hypervolume indicator, other indi-
cators that are used for this task are: the generational distance
[31], the inverse generational distance [32], and the epsilon
indicator [33]. We opted to use the hypervolume indicator
(Hv) as our unary PF quality measure because it is widely
accepted in the MOEA community, has a theoretical proof of
a monotonic convergence behaviour and can be easily used on
problems with an unknown PFt. This is because, Hv(PFc)
measures the size of the objective space that PFc dominates
when considering an anti-optimal reference point [30]. Based
on this, larger Hv values are preferred, but in order to make
the numerical values more meaningful, computing the relative
hypervolume as Hr(PF c) = Hv(PFc)

Hv(PFt)
is advisable. In our

case, as PFt is unknown, we decided to assume it only
contains the ideal point (0,0) that would denote an LR model
that requires 0 training data and yields 0 errors. Conversely, the
anti-optimal reference point was set at (5, 240200), denoting a
hypothetical LR model that is trained using 100% of the data
but falls well out of acceptable accuracy thresholds.

To obtain a clear overview of the progression of the three
evolutionary solvers during the optimisation, we calculated the
relative hypervolumes of their PFs at the end each generation
and averaged them across the 30 independent optimisation
runs. In Fig. 7 we show the comparative results of the
three solvers for all the 250 generations when modelling
Tw. The results show that NSGA-II and NSGA-III converge
relatively faster, achieving average Hr of 84.06% and 83.94%
respectively by the 25th generation, whereas MOEA/D only
reaches Hr of 81.92% at that time. At the end of the 250
generations, NSGA-II reaches an average Hr of 84.99%,
NSGA-III 84.92% and MOEA/D 82.23%.

While the Hr values for for NSGA-II are slightly higher
(i.e., better) than those of NSGA-III, given the stochastic
nature of the solvers, it is necessary to check if the observed
differences in the end-of-the-run PN quality are statistically
significant. We performed a one-sided Mann-Whitney U test
[34] with a confidence interval of 0.025 that confirmed the
superior average performance of NSGA-II (p-value=0.0010).
A p-value of 3.0199−11 was obtained when comparing NSGA-
III and MOEA/D, confirming that the former outperformed the
latter.

Lastly, in order to gain insights regarding the behaviour



Fig. 4: Schematic of the problem formulation and codification

(a)

(b)

Fig. 5: Pareto-optimal solutions aggregated among all 30 inde-
pendent runs for each solver for MOOP−Tw and MOOP−Tbi.

of the three algorithms, we proceeded to analyse the data
generated by the solvers as they progressed from one gen-
eration to the other. For this, in each generation, we counted
the number of instances a variable in each newly generated
decision vector was marked as selected (i.e., when the real
value was xi ≥ 0.5). The heatmaps in Fig. 8 show averages
for the 30 independent runs of each solver. The intensity of
the colour for a cell (j, i) represents the probability from low
to high that variable xi is selected among the individuals of
generation j. We remind the reader that variables 1 to 20
represent datasets, whereas 21-30 represent EMA weights.
As shown by the heatmaps, the three solvers start with a
relatively equal distribution of selected variables in the first
few generations but begin to lose some genetic diversity as
the evolutionary process progresses. On the one hand, NSGA-
II explores the decision space more widely as evidenced by
the variety of variables being explored during the run. NSGA-
III displays a largely similar behaviour. On the other hand,
MOEA/D, does not seem to explore the solutions space much
widely and only retains a few variables to the end. This loss of
genetic diversity could explain why MOEA/D under-performs
when compared with the non-domination-based solvers.

The variable frequency heatmaps from Fig. 8 can also
provide very useful insights regarding the tackled thermal
modelling use case. For example, the usage of EMA features
that can capture the longest-term trend (i.e., x21), medium-
term trends (i.e., x26 and x27) and short-term trends (i.e., x28

and x29) is generally very important to LR thermal models
discovered by all three solvers. It is also important to note
that MOEA/D aims to compensate a limited choice of datasets
with an aggressive selection of multiple EMA weights.

VII. CONCLUSIONS AND FUTURE WORK

This research has demonstrated that a novel multi-objective
thermal modelling strategy recently proposed in Banda et al.
[3] can employ different MOEAs to guide the discovery of



Fig. 6: Comparative predictive performance of MOEA-based and PCA-based LR models for Tbi across the 20 datasets. The
two datasets used for training are shaded.

Fig. 7: Comparison of Pareto non-dominated solution sets
(PNs) identified by each MOEA

high-quality Linear Regression thermal models. These models
are able to estimate the temperatures of key components of
an electrical machine when considering various operational
scenarios. In particular our experiments have shown that non-
domination-based evolutionary strategies like NSGA-II and
NSGA-III are generally able to discover the optimal data col-
lection vs model accuracy trade-offs proposed by our industrial
modelling use case. Surprisingly, MOEA/D appears unable
to fully explore the decision space when using a standard
parameterisation and future work will explore if insights from
variable frequency heatmaps can be used to better tune the
solver.
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