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ABSTRACT We consider the detection and characterization of brain state transitions based on ongoing
electroencephalography (EEG). Here, a brain state represents a specific brain dynamical regime or mode of
operation that produces a characteristic quasi-stable pattern of activity at the topography, sources, or network
levels. These states and their transitions over time can reflect fundamental computational properties of the
brain, shaping human behavior and brain function. The hidden Markov model (HMM) has emerged as a
useful tool for uncovering the hidden dynamics of brain state transitions based on observed data. However,
the limitations of the Geometric distribution of states’ durations (dwell times) implicit in the standard HMM,
make it sub-optimal for modeling brain states in EEG. We propose using hidden semi Markov models
(HSMM), a generalization of HMM that allows modeling the brain states duration distributions explicitly.
We present a Bayesian formulation of HSMM and use the variational Bayes framework to efficiently
estimate the HSMM parameters, the number of brain states, and select among candidate brain state duration
distributions. We assess HSMM performance against HMM on simulated data and demonstrate that the
accurate modeling of state durations is paramount for making reliable inference when the task at hand
requires accurate model predictions. Finally, we use actual resting-state EEG data to illustrate the benefits
of the approach in practice. We demonstrate that the possibility of modeling brain state durations explicitly
provides a new way for investigating the nature of the neural dynamics that generated the EEG data.

INDEX TERMS Brain state, hidden semi Markov model, state duration, EEG.

I. INTRODUCTION
There is great current interest in the identification and
characterization of transiently stable and recurrent patterns
of activity in resting-state EEG at topography [1], [2]

The associate editor coordinating the review of this manuscript and

approving it for publication was Humaira Nisar .

sources [3], [4], or functional connectivity levels [5], [6].
These switching patterns are often interpreted as traces of
hidden brain states or modes of operation with functional
and clinical relevance [2], [7], [8]. Although the relationship
between such ‘‘phenomenological’’ description and the
causal mechanisms of brain dynamics is not clear, the
described brain state switchingmight still reflect fundamental
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computational properties of the brain, which shape human
behavior and brain function [9], [10]. Of particular interest
is the duration of the brain states (dwell-time of each
brain state). A heavy-tailed duration distribution of transient
interhemispheric synchronization patterns can be a sign
of metastable brain dynamics [10], and longer brain state
durations are found in patients of Lewy body dementia
compared to Alzheimer’s disease and healthy controls [11].
However, current methods of inferring brain state transitions
(i.e. dynamic brain state allocation [4]) in EEG are not ideally
suited to model the brain state duration. This study advances
the state of the art by proposing a newmethod that overcomes
this limitation.

Current brain state allocation methods are dominated by
descriptive rather than explanatory methods, including tem-
poral sliding windows [12], [13] and adaptive segmentations
using clustering [14], [15], [16], among others [8], [17]. The
shortcomings of these methods are well established [17],
[18] and stem from the fact that the properties of brain state
dynamics are not considered during brain state allocation, but
are assessed post-hoc. On the contrary, explanatory methods
go about brain state allocation by inverting an assumedmodel
of the generative process by which the hidden brain state
dynamics gives rise to data [5]. The switching and recurrent
behavior of brain state dynamics suggests using a Hidden
Markov Model (HMM) to represent the generative process.
Although HMM has proved to be an effective generative
model for EEG brain state allocation [3], [4], [6], [10], [19],
it still imposes restrictions on the type of brain state dynamics
that can be modeled. In brief, the HMM generates data
sequentially by using a Markov chain to model the hidden
brain state transitions, while one observation is emitted by
the active brain state at each time point. The Markov chain
however, satisfies the first-order Markov property, which
requires that, given the current brain state, the probability
of a future brain state is independent of the past history of
the chain. This induces a memoryless Geometric distribution
(discretized exponential) of brain state durations, so that
the probability of staying in the same brain state for a
fix duration does not depend on the time already spent in
the brain state. Moreover, the Geometric distribution places
higher probability on shorter brain state durations [20],
[21]. Therefore, the dynamics prescribed by a HMM are
characterized by short-term correlations (short memory) and
fast brain state switching, which is not consistent with
observed features of resting-state EEG data.

Recent findings suggest that resting-state EEG is a lot more
complex typically showing multiscale dynamics. On one
hand, using HMM and microstates analysis [22] to study
power amplitude fluctuations and time-dependent functional
connectivity, has revealed brain state switching in the
50-100 ms time-scale [2], [3], [4], [5], [15], [19], [23]. On the
other hand, haemodynamic correlates of this fast dynamics
show spatial patterns that resemble the resting-state networks
observed in functional Magnetic Resonance Imaging (fMRI),

which vary in the seconds scale [1], [8], [24]. The link
between such disparate time-scales is hypothesized to be
mediated by underlying mechanisms of dynamic instabil-
ity (see [25] for a review), such as multistability [26],
metastability [10] and criticality [27], which endow brain
state dynamics with long-term dependencies (memory) and
scale-invariance across several timescales [27], [28], [29],
[30]. For example, [30] found signs of monofractality (scale-
invariance) over 6 dyadic time-scales (256ms-10s range) in
EEGmicrostate sequences. Notably, the degree of long-range
dependency was destroyed when microstate durations were
equalized, suggesting that important information about
the nonlinear mechanisms underlying resting-state EEG is
carried in the brain state switching times. The complex
dynamics described above can induce brain state duration
distributions which are far from the memoryless Geometric
distribution predicted by HMM.

Realistic computational simulations of large-scale spon-
taneous brain activity have demonstrated the emergence of
metastable traveling patterns of activity with heavy-tailed
duration distributions [10]. This result was in broad agree-
ment with the duration distribution of phenomenological
brain state obtained from resting-state MEG data [6]. More
generally, heavy-tailed and power-law distributions also
occur in human behavioral data, such as the duration of
percepts in perceptual multi-stability [31], [32], [33] and
the duration of active periods during human activity [34].
These distributions are consistent with persistent (long-
lived) brain states (‘‘trapping’’ effect) and the existence
of long-term dependencies in the data. Therefore, while
standard HMM seems like a natural fit to the dynamic
brain state allocation, it inadequately models the temporal
properties of the resting-state EEG and can potentially
bias the inference towards unrealistically fast brain state
switching.

The present paper proposes to extend HMM into a
more flexible model called Hidden Semi Markov Model
(HSMM) [35]. HSMM is a generalization of HMM where
the Markov assumption is relaxed to allow for explicit
modeling of the brain state duration distribution. By choosing
an appropriate duration distribution HSMM can naturally
encapsulate prior beliefs that brain states are persistent,
while at the same time allowing brain state switching
and recurrence. This flexibility comes at the cost of an
increased model complexity. We will show however that
in many situations, the added complexity is compensated
for by the explanatory power of the HSMM model. Using
simulations, we investigate the sort of problems the HMM
assumptions can have a negative impact on, and demonstrate
how HSMM resolves these issues. We use a variational
Bayes formulation of HSMM [36], which allows for coherent
and efficient estimation of the parameters of the model, the
hidden brain state sequence and its dimensionality (number
of brain state modes). The proposed Bayesian framework also
allows for selection of the appropriate brain state duration
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distribution based on data by means of formal Bayesian
model comparison. This is demonstrated in practice using
actual resting-state EEG data from 5 subjects to arbitrate
between different brain state duration distributions to model
the data. A MATLAB (Mathworks ®) implementation of
our Brain State Dynamics (BSD) toolbox is also available (
https://github.com/daraya78/BSD)

The paper is organized as follows. Sections II-A and II-B
describe the technical aspects of HSMMhighlighting its main
differences with respect to the standard HMM. Sections II-C
and II-D summarize the variational Bayes framework used
to infer the parameters of the models. Sections II-E and II-F
present the computational simulations and the performance
evaluation metrics used to compare HSMM vs HMM.
Sections II-G and II-H describe the EEG data used in this
paper, its preprocessing and the methodology used for its
analysis with HSMM. Finally, sections III and IV describe
respectively the results obtained, and a discussion of the main
findings in relation to the existing literature, as well as the
limitations of the work and future research directions

II. METHODS
The proposed method is motivated by hybrid dynamical
systems’ (HDS) theory for multivariate time series anal-
ysis [36] applied to EEG. The principles of HSMM are
summarized and interested readers are referred to Appendices
and previous descriptions of these models for additional
mathematical and algorithmic details.

A. HIDDEN SEMI MARKOV MODEL AS A
GENERALIZATION OF HIDDEN MARKOV MODELS
HSMM and HMM are successful models of HDS. A HDS
can be thought of as a continuous system with some hidden
discrete logic so that it produces continuous observations
while its hidden dynamics can rapidly transition or switch
among a discrete set of states or modes of operation. HSMM
and HMM both use two stochastic processes to capture such
dual behavior, which is shown in their Dynamic Bayesian
Network (DBN) representations in figure 1 (a, b). The
underlying discrete process generates the hidden states of the
system. This influences the continuous process that generates
the observed data or emissions [21], [37].
However, HSMM and HMM differ in the way the state

duration is considered. In HMM, the hidden process is a
Markov chain where the state emits one observation at a
time (figure 1a). In this case the state duration is implicitly
captured as consecutive transitions to the same state, which
induce a Geometric distribution over the state duration [21].
In HSMM, the hidden process is a semi-Markov chain
where the state is a ‘‘super-state’’ that emits a segment of
observations of random length (figure 1b). The segment’s
length determines the state’s duration explicitly and is
assumed to be sampled from a duration distribution that
can be of arbitrary form. In order to uniquely define the
state duration, self-transitions between super-states are not
permitted. The super-state representation does not lead to

FIGURE 1. Dynamic Bayesian Network (DBN) representations of the
hybrid system models used in this paper. Shaded grey circles represent
observations, clear circles represent hidden state variables. Parameters
have been omitted for simplicity. (a) HMM: A hidden Markov chain (st )
emitting one observation (yt ) at each time point. (b) Super-state
representation of HSMM: A hidden Markov chain on a set ‘‘super-states’’
(zl ) where each super-state visited emits a segment of observations of
random duration dl .(c) HMM embedding of HSMM: A hidden Markov
chain on the augmented state-space of states and residual times (st , τt )
emitting one observation at each time point. The augmented joint-state is
highlighted in blue. When the chain first enters the state st at time t , the
residual time τt is set to a duration sampled from the state’s duration
distribution; it then deterministically counts down to 1 at which point the
state is free to transition and τt is reset to a duration sampled from the
duration distribution of the new state.

a valid DBN, because the number of observation nodes of
each segment is random and then so is the structure of
the DBN (figure 1b). Therefore, standard inference methods
developed for DBN are not applicable [38]. Instead, we use
the equivalent representation in figure 1c, where the HSMM
is embedded in a standard HMM [36], [38]. The state-space
is augmented to consider the joint process of states and their
residual times (time left in the state) as a single Markov
chain. The HMM embedding allows the efficient inference
algorithms developed for standard HMM to be used for
HSMM. In this case, the data are generated in the following
way. When the chain first enters a state, the residual time is
set to a duration sampled from the state’s duration distribution
and it then deterministically counts down to 1. At this point,
the chain is free to switch to a different state, and the
residual time is reset to a duration sampled from the duration
distribution of the new state. The state’s value is copied
across every time slice spent in the state to ensure a regular
structure. There are several modeling approaches to semi-
Markovianity [35], [39]. Our focus is on the setting where
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each state is given an explicit parametric duration distribution
(so-called Explicit-Duration HMM).

B. HSMM AS GENERATIVE MODEL FOR BRAIN STATE
ALLOCATION
We consider the brain as a HDS that can switch between a
discrete set of hidden brain states while emitting continuous
EEG signals or related features. This is modeled using
a HSMM (figure 1c), where y1:T (yt ∈ Rn) denotes the
n-variate time-series of EEG signals of length T at n emission
channels; s = s1:T is the sequence of hidden brain states
taking values in the set S = {1, 2, . . . ,K } of possible brain
states at each time point (st ∈ S); and τ = τ1:T with (τt ∈ D)
is the sequence of residual times taking values in the set
1 = {1, 2, . . . ,D} of possible brain state durations. The
HSMM is then defined by four distributions: the initial,
the transition, the duration and the emission distributions of
the brain states; which will be specified as follows.

1) BRAIN STATE TRANSITION DISTRIBUTION
In the present setting it is assumed that: (i) the transition to a
brain state is independent of the duration of the previous brain
state, (ii) the duration is only conditioned on the brain state;
(iii) the observation at a given time point only depends on the
active brain state; and (vi) the transition probability of each
segment is constant. The joint process (s, τ )t taking values in
S × D, then evolves according to a stationary Markov chain
with a transition kernel such that the probability of transition
from brain state i with residual time d’ at time t to brain state
j with residual time d at time t+1, is

8(i,d ′)(j,d) ≜ p((s, τ )t+1 = (j, d)|(s, τ )t = (i, d ′))

=


I (i = j)I (d = d ′

− 1) if d ′ > 1
remain

decrement
aijpj(d) if d ′

= 1
transition
reset

(1)

where aij are the elements of the K × K brain state transition
matrix A with diagonal elements aii = 0; pj(d) = p(d |λ(j))
is the duration distribution of brain state j with parameters
λ(j); and the indicator function I (x) =1 if x is true and
zero otherwise. In words, equation (1) means that during a
transition, the brain dynamics evolves in two stages. If the
brain is in state i, and the end of the segment has not
been reached (d ′ >1), then it remains in that state and
decrements by 1 its residual time (d = d ′

−1). Instead, if the
end of the segment has been reached (d ′

=1), then the brain
probabilistically transitions to a different state j(aii = 0) with
transition probability aij and the residual time is reset to a
duration d sampled from the duration distribution pj(d) of
state j. Note that the transition kernel is factorized over states
and durations.

2) BRAIN STATE DURATION DISTRIBUTIONS
We model duration distributions based on Normal and
Lognormal densities. Since EEG measurements are always

in discrete time (encoded as positive integers) and states’
durations have a pre-defined maximum duration, the dura-
tion probabilities were then obtained by discretisation and
truncation of the corresponding probability density. That is,
the duration probabilities of the duration distribution with
probability density function gk of state k, is obtained as:

pk (d) =

∫ u
u−1 gk (x)dx∫ D
0 gk (x)dx

, k = 1, . . . ,K , u = 1, . . . ,D

(2)

Almost all probability densities can be used in this way to
model the states’ duration probabilities. In this paper we use
a Normal density to model states’ durations in the simulated
data

gk (x) = N(x; ν(k), ρ(k)−1
) (3)

and compare its performance to using a Lognormal density in
the empirical data section

gk (x) = LogN(x; ν(k), ρ(k)−1
) (4)

where ν(k) and ρ(k)−1 are respectively location and dispersion
parameters of the two densities for the k − th brain state.
Other options of duration distributions are available in our
MATLAB (Mathworks ®) toolbox.

3) EMISSION/OBSERVATION DISTRIBUTIONS
Since our focus is on the modeling of brain state durations,
without loss of generality we assume that the brain states
are characterized by simple features where the observations
emitted during the k-th brain state are independently sampled
from a multivariate Normal distribution of dimension n with
state-specific mean µ(k) and precision 6(k) [1], [3], [4], [40].
The conditional probability of observing yt given the brain
was in state k at time t is then

p(yt |st = k, θ (k)) = Nn(yt ; µ(k), 6(k)−1) (5)

where θ (k) = [µ(k), 6(k)]

4) INITIAL DISTRIBUTION AND BOUNDARY CONDITIONS
The initial brain state distributionπ = {πkd } is defined so that

p((s, τ )1 = (k, d)|π ) = πkd (6)

and represents the probability of the brain being in state
k with residual time d at the beginning of the sequence.
To completely specify a HSMM, boundary conditions at
the beginning and end of the observation sequence must
also be defined. Commonly used simplifying conditions
assume that observations start and/or end at a state segment
boundary [35], [41]. Here we assume the more realistic case
that observations may start and end at any time during a state
segment [35], [37].
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C. BAYESIAN INFERENCE OF HSMM
We followed the variational Bayes (VB) approach to HSMM
in [36], and adapted it to the model specification used here.
We present the main principles of VB for HSMM, and
refer the reader to Appendix for mathematical details. The
specification of the HSMM defines a complete likelihood
function of the form

p(y1:T , s, τ |2,M )

= p(s1, τ1|π )p(y1|s1, τ1, θ (s1))

·

T∏
t=2

p(yt |st , θ (st ))p(st |st−1, τt−1,A)p(τt |st , τt−1, λ
(st ))

(7)

where θ = θ (1:K ) and λ = λ(1:K ) denote the collection of
parameters of the emission and duration distributions of all
the states, respectively; M is the model class defined by
the choice of the model type (HSMM or HMM) or by the
choice of the number of brain states given a model type,
and 2 = {π ,A, θ , λ} denotes all the parameters that specify
a model within the class. HMM is completely defined by
the reduced set of parameters 2 = {π ,A, θ}, because the
duration distribution is not explicitly defined for that model.
For notational simplicity, dependency onM in the right-hand-
side of equation (7) and in the rest of the paper is implicit and
only used when strictly necessary.

The Bayesian approach requires defining prior distribu-
tions on all the parameters. After combination with the
likelihood via the Bayes rule, the joint posterior distribution
of parameters and hidden states given the data is obtained,
based on which statistical inference can proceed. We assume
that all parameters are independent a priori so that the
posterior is:

p(s, τ , 2|y1:T ,M ) ∝ p(y1:T , s, τ |2,M )

· p(π )p(A)p(λ)p(θ) (8)

where the prior distributions p(π), p(A) and p(θ ) are assumed
to be conjugate (see Appendix B).
Exact Bayesian inference based on (8) is not possible

due to the dependence between the parameters and the
hidden states. However, the augmented state representation
of HSMM allows using the efficient VB algorithm developed
for HMM [36], [42]. VB allows making inference on
parameters, hidden states, and models by approximating the
joint posterior with a simpler variational density. The usual
Mean Field Approximation [43] requires the approximate
posterior to factorize over subsets of parameters and states:

q(s1:T , τ1:T , 2) = q(s1:T , τ1:T )q(2)

= q(s1:T , τ1:T )q(π )q(A)q(λ)q(θ) (9)

Note that the structure of the HSMM implies an exact
posterior that is already factorized over π , A and θ

(equations (7) and (8)), therefore only the factorization over
parameters and states is an actual approximation in (9). In the

present paper additional factorizations were required over the
parameters of the duration, and the emission distributions (see
Appendix A).
The VB algorithm minimizes the Kullback-Leibler (KL)

divergence [44] between the true and the approximate
posterior. This is equivalent to maximizing the Negative Free
Energy (NFE), a lower bound on the logarithm of the model’s
evidence log(p(y(1:T )|M ))). By approximating the model’s
evidence, the NFE becomes a measure of model quality that
trades model accuracy for model complexity and can be
used for both model class selection and for monitoring the
convergence of the VB algorithm.

D. 2.4 ESTIMATION OF THE NUMBER OF BRAIN STATES
The number of states is assumed to be known (i.e. a structural
parameter), therefore inferring its optimal value given the
data amounts to a model class selection task. In the VB
framework proposed here, we used a model selection strategy
based on the NFE, similar to [5]. First, a model space is
created by inferring multiple models with varying numbers
of states. The optimal number of states is then inferred
by selecting the model with maximal NFE. In practice we
infer models with an increasing number of states until the
NFE peaks. Additionally, during each model’s inference,
an automatic state ‘‘resetting’’ (ASR) was implemented
within the VB algorithm, whereby at each VB iteration, all
parameters of states not receiving support from the data, were
reset to their prior values. The interim irrelevant states were
defined as those getting negligible posterior probability at all
time points after each iteration:

s0 = {k ∈ S :

T∑
t=1

γ
(k)
t ≤ ϵ} (10)

where γ
(k)
t = q(st = k) =

∑D
d=1 γ

(i,d)
t is the marginal pos-

terior probability of being at state k at time t, marginalized
over all possible durations; and ϵ is a small threshold
(0.001 in our case). After convergence of VB, the remaining
irrelevant states were eliminated, which effectively amounts
to an automatic relevance determination of state. Note also
that the ASR makes the VB algorithm more robust to
falling in local minima. This is because, in subsequent VB
iterations, those states reset to their priors, can account for
data points which have not been well explained by the other
states.

E. SIMULATION FRAMEWORK
We used computational simulations as a test ground for
evaluating the performance of HSMM vs HMM for brain
state allocation. The simulations pipeline is shown in figure 2.
The data in all simulations were generated from a HSMM
with uniform distributions over state durations. However, the
HSMMs that are then fitted to this data are not provided
with knowledge of this distribution, they rather assumed a
Normal distribution. All simulations were based on 3 brain
states, each characterized by a specific EEG topography
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map and a specific data covariance matrix. The brain state
topographies were obtained using a generative process,
whereby a simulated source activity was projected to the
sensor space using the linear EEG Forward Model [45].
A realistic lead field matrix relating the source and sensor
spaces was computed based on the digital brain phantom
developed at the Montreal Neurological Institute (MNI) [46].
The source space consisted of a mesh of G=20000 current
dipoles located at the vertices of the tessellated grey/white
matter interface. The sensor space consisted of the standard
128 electrodes BioSemi system, which was digitally placed
on the scalp of the phantom. In each simulation experiment,
the source activity image associated with each brain state
was sampled from a G-variate Normal distribution with zero
mean and covariance matrix 6J = (LTL)−1, where L is
the discrete surface Laplacian operator [47] defined on the
nodes of the vertices in source space. This choice of 6J
is consistent with the assumptions of the popular LORETA
source reconstruction method [48] and ensured producing
spatially smooth distributed source activity. After projection
to the sensor space, the EEG map associated with each brain
state were normalized to have unit norm.

The temporal dynamics of the EEG signals where gener-
ated considering the brain as a HDS using a HSMM with
uniform brain state duration distributions, where at each
brain state, the brain emitted a segment of observations of
length sampled from a uniform duration distribution centred
on a brain state-specific mean duration ⟨d⟩ and with a
brain state-specific width w. During the lifetime of a brain
state, state emissions were generated by sampling from a
multivariate normal distribution with constant mean and
diagonal covariance matrix specific to that brain state. The
total length of the observed data in each realization of a
simulation experiment was T=400 in all cases. The mean
of the brain state emissions was the scalp-projected source
activity associated with the brain state, and the covariance
matrix modeled the (possibly brain state-specific) zero mean
Gaussian iid observation noise. The variance of the noise was
manipulated to achieve the required Signal-to-Noise Ratio
(SNR) in each simulation experiment (see Appendix C for
details).

Brain state transitions were designed to emulate the
quasi-periodicity of empirically observed EEG microstate
sequences [49]. At the end of a brain state segment, a new
brain state swas randomly generated based on the asymmetric
transition matrix:  0 0.8 0.2

0.2 0 0.8
0.8 0.2 0

 (11)

This choice of matrix promotes cyclic brain state transi-
tions (s1 → s2 → s3). Without loss of generality, in all
simulations the system was assumed to be in the brain state
1 at the beginning of the sequence.

Since our focus is on the modeling of brain state durations,
brain state maps were generated ensuring a fair degree of

dissimilarity between the maps of different brain states.
That way, differences in performance between the evaluated
methods could be attributed to the differences in how
brain state duration is modeled, rather than to inability to
discriminate between similar brain state maps.

F. EVALUATION OF MODEL PERFORMANCE
The mathematical details of the evaluation scores used to
assess the performance of the models are summarized in
Appendix D. Following [49], the Auto Information Function
(AIF) (Appendix D) was used to demonstrate that the HSMM
was capable of producing features of state dynamics similar
to those observed in EEG microstate sequences. The AIF of
a brain state sequence measures the amount of information
about the future of the brain state sequence that is contained in
its own past, therefore providing an indicator of the long-term
dependencies in the sequence. The Sequence Accuracy Score
(SAS) (Appendix D.2) was used to compare the accuracy
of HSMM vs HMM in solving the brain state allocation
problem. SAS measured the similarity between the inferred
and the true brain state sequences expressed in percentage,
so that a value of 100% indicated identical sequences, while
0% indicated no matching between any of the elements
of the two sequences. The explanatory power of a model
was assessed in terms of the extent to which new state
sequences predicted from the trained models, showed a
brain state duration distribution similar to the one used to
generate the original training dataset. The Jensen-Shannon
Divergence (JSD) [50] (Appendix D) was used to measure
the dissimilarity between the histograms of the brain state
durations distributions of the training and the predicted
sequences. The JSD is bounded between 0 (perfect similarity)
and 1 (perfect dissimilarity).

Model quality measures were used to evaluate the relative
performance of two given models (or model classes) based
on information theoretic principles, which do not require
comparison to a gold standard. Two model classes were
compared based on the Log-Bayes Factor logBF(M1,M0)
[51] (Appendix D.4) that measures the evidence provided
by the data in favor of the model class M1 (e.g. HSMM)
against M0 (e.g. HMM). Models within the same model
class were also evaluated based on their Discriminative
Power Score DSP(H0,H1) [52] (Appendix D.5). DSP is a
directed divergence that measures the ease of discriminating
between two models (H0 vs H1) of the same model class
(e.g. two HSMMs with different set of parameters 20 and
21) given an observed data sequence. This divergence is
always positive and is zero if the two models are the same
(20 = 21).

G. EMPIRICAL DATA ACQUISITION AND ANALYSIS
EEG data collection was approved by the ethics committee
of the University of Manchester, UK (ref. 14374) and was
conducted according to the declaration of Helsinki. Ten
minutes of spontaneous task-free EEG were recorded from
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FIGURE 2. Simulation pipeline. EEG activity is simulated considering the brain as a hybrid dynamical
system. The hidden discrete state process represents fast transitions between source activity configurations,
which remain stable over a time segment. The length (duration) of the time segments are randomly
sampled from uniform distribution with state-specific mean ⟨d ⟩ and width w . The neural source activity is
instantaneously projected to the sensors’ space using the linear EEG Forward model and subsequently
corrupted with Normal noise to produce the observed EEG signals.

five healthy subjects who were asked to sit comfortably
with eyes open during the experimental session. The
EEG data were recorded from 64 scalp electrodes using
the ActiveTwo system (BioSemi, Amsterdam, Netherlands)
and Actiview® acquisition software (Biosemi, Amsterdam,
Netherlands) at a sampling rate of 2048 Hz.

1) DATA PRE-PROCESSING
For consistent comparisons, we followed a similar
pre-processing pipeline as in [3], but slightly modified
to the case of EEG data. The pipeline was implemented
in MATLAB (Mathworks ®) as follows. Channels and
periods of data containing obvious artefacts were visually
identified and discarded (5%). The signals were band-pass
filtered between 0.1 Hz and 120 Hz using a high-pass and
low-pass FIR filter in sequence; and were subsequently
de-trended and down-sampled to 512 Hz. Artefact detection
and correction was carried out by decomposing the data into
30 temporally independent components using independent
component analysis. Stereotyped components related to
ocular, cardiac, motion, and mains interference artefacts
were classified and rejected based on their topographic,
temporal and spectral features. The remaining components
were then used to reconstruct the clean data. Bad channels
were interpolated using spline interpolation and the data was
subsequently re-referenced to average reference for further
analysis.

2) DATA PREPARATION FOR HSMM ANALYSIS
Following previous studies, the HSMM was applied to the
power envelopes of the EEG signals [1], [3], [40]. The

pre-processed data was first band pass (FIR) filtered between
4 and 30 Hz. The amplitude envelope of the oscillatory
activity at each channel was then derived by computing the
magnitude of the analytic signal, obtained from the Hilbert
transformed data. For computational efficiency, the envelope
amplitudes were down-sampled to 40 Hz using a polyphase
anti-aliasing filter as implemented in the MATLAB signal
processing toolbox. Principal Component Analysis (PCA)
was then used on the normalized envelopes (zero mean
and unit standard deviation) for whitening and dimension
reduction to keep the first 40 principal components (99.21%
explained variance).

3) HSMM SETUP
Two HSMMs were inferred using either a Normal or a
Lognormal duration distribution, and maximum brain state
duration of 5 s. In all models, the brain states were assumed to
emit observations using each a 40-variate Normal distribution
(the first 40 principal components of the envelope data),
specified by their corresponding mean vector and covariance
matrix.

Group level parameters were inferred by sharing param-
eters across subjects [21], [42] by assuming that the
observed EEG sequence of different subjects are independent
realizations of the same hidden semi Markov process. This
should be contrasted with other works where subjects’ data
sequences are concatenated in time and a single HMM
model is fit to the full concatenated data sequence [1].
The parameter sharing approach avoids introducing potential
artificial state switches at the boundaries of concatenated
data, as well as allows accommodating boundary conditions
for each subjects’ data sequence.
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4) BRAIN STATE TOPOGRAPHIC MAPS
Due to the PCA dimensionality reduction, the means and
covariance matrices characterising the brain states are not
straightforwardly interpretable since they are estimated in the
low dimensional space spanned by the principal components.
To obtain interpretable scalp activity maps associated with
each brain state, we followed a procedure similar to [3]. The
partial correlation of the estimated brain states time courses
with the amplitude envelope data at all the electrodes, was
computed. brain state time course correspond a binary vector
indicating whether the brain states is on or off at each point of
the most probable brain state sequence, which was estimated
using the Viterbi algorithm for HSMM [37]. The obtained
correlation maps represent the unique contribution of each
brain state to the oscillatory activity power, while components
of the envelope signals that are common across brain states
are minimized.

The partial correlation was computed using a General
Linear Model (GLM) analysis [53] with the brain state time
course as predictors and the full-rank envelope data (prior to
dimension reduction and whitening) as response variables.
Given the brain state time course ŝ1:T , each element of the
[T × K ] GLM’s matrix of predictors X is

Xtk =

{
1, ŝt = k
0, ŝt ̸= k

The columns ofX and the envelope data were both z-scored
prior to GLM analysis. The K vectors of estimated regression
coefficients defined scalp spatial maps representing estimates
of the partial correlation coefficient between each brain
state and the envelope data. To facilitate interpretation,
brain states from different models or model classes were
assigned the same label if they had similar topographic
maps.

H. INITIALISATION OF THE VB ALGORITHM
To account for dependence of the inference on the initial
conditions (e.g. convergence to local minima), the HSMM
and the HMM VB algorithms were ran 10 times each
using different starting points. Each starting point was
determined using k-means to cluster all data points and
defining an initial brain state sequence by assigning each
data point to the closest cluster. The k-means algorithm
was itself initialized 3 times using random data points as
initial centroid positions and the solution producing the
most compact clusters was chosen as the optimal one.
Finally, the sample estimates of the models’ parameters
obtained based on the obtained k-means brain state sequence
were used to initialize the VB iterations. The optimal VB
initialisation was determined as the one with highest NFE
after 10 iterations of the algorithm. In practice, this strategy
produced identical results as compared to running the VB
fully until convergence for every starting point and then
choosing the solution with highest NFE; but it was cheaper
computationally.

III. RESULTS
A. NON-GEOMETRIC BRAIN STATE DURATIONS CAN
GENERATE ‘‘SENSIBLE’’ BRAIN STATE DYNAMICS
We first demonstrated that the brain state sequences
underlying the simulated data showed dynamical proper-
ties of empirically observed EEG microstates sequences.
We focused primarily on the relatively long but finite
memory (temporal dependencies) demonstrated via distinct
periodicities of the AIF of microstate sequences, with a tail
that converges asymptotically to Markovian memoryless in
the long run [54]. Figure 3 shows the AIF of brain state
sequences generated by HSMM with Uniform durations and
the corresponding HMM predictions; as functions of the
mean (⟨d⟩ in figure 3a,b) and width (w in figure 3c,d) of the
generating duration distributions. The HSMM used 3 brain
states with identical duration distributions and the transition
matrix defined in section II-E. The HMM predictions were
generated using the empirical transition matrix computed
based on the matching HSMM sequence. The AIF of HSMM
showed oscillations with amplitude decaying slowly with the
time lag. This behavior corresponds to a process withmemory
(time dependencies), but Markovian ‘‘memoryless’’ in the
long run; which is consistent with empirical results of EEG
microstates analysis [49]. Both the frequency and amplitude
of the AIF oscillations depended on the brain states’ mean
duration, with higher mean durations corresponding to slower
but stronger oscillations (figure 3a). Changes in the width of
the duration distribution however, only affected the amplitude
of the AIF oscillations, so that increased widths were
associated with reduced amplitudes (figure 3c). The AIF of
the predicted HMMsequences showedmonotonic fast decays
with the time lag in all cases. The decay rate was higher
for smaller mean duration values (figure 3b), while it was
insensitive to changes in the width of the duration distribution
(figure 3d).

B. MODELING BRAIN STATE DURATIONS IMPROVES
GENERALIZATION POWER
The generalization power of any model is underpinned by
the accuracy of its predictions. A simulation study was then
carried out to investigate whether the correct modeling of
the brain state duration distribution had an important effect
on the ability of HSMM vs HMM to make accurate out-
of-sample predictions. For this analysis, synthetic EEG data
sequences of length 4000 a.u. were first generated based
on HSMMs with different uniform brain state durations
but identical transition matrix as in previous section. The
duration distribution used to generate each dataset was varied
by changing the mean duration of a target brain state (20-
140 a.u. with 20 a.u. intervals), while the mean of the other
two brain states was fixed (50 a.u.). All brain state duration
distributions had identical width (6 a.u.). Two SNR levels
(30% and 60%) were also used, for a total of 8 simulated EEG
datasets (5 mean durations x 2 SNR levels). Inference on each
dataset was carried out by training models with two different

12342 VOLUME 12, 2024



N. J. Trujillo-Barreto et al.: Explicit Modeling of Brain State Duration

FIGURE 3. Reproducing microstates features in simulated brain state sequences. Auto Information Function (AIF) of the
brain state sequences generated using HSMM (a & c) and HMM (b & d) without emissions, as a function of the mean and
width of the duration distributions of the brain states. In (a) and (b), the mean duration of the three brain states was varied
while the widths were fixed at 6 a.u. In (c) and (d), the widths were varied while the duration means were fixed at 50 a.u.
The periodicities and the asymptotic decay in the case of the HSMM resemble those of the empirically observed EEG
microstates, as illustrated by [49]. The AIF is measured in natural units of information (nats).

brain state duration distributions, a HSMM with Normal
distribution for brain state durations and a HMM with an
implicit Geometric distribution for durations. After training,
new (predicted) brain state sequences were generated from
each of the trained models and the resultant histograms
of durations of the target brain state were compared to
the true duration distribution that generated the training
dataset.

Figure 4 shows the true and predicted histograms for
one exemplary dataset. As expected, the Geometric distri-
bution implicit in HMM allocated nonzero probability mass
across the whole range of possible duration values with
higher probability at shorter durations. On the contrary, the
explicit Normal duration distribution in HSMM concentrated
its probability mass in the correct range of duration
values.

Plots of the JSD between the true and predicted histograms
of each model are depicted in figure 5 as a function of the
brain state mean duration and SNR of the training dataset.
HSMM was consistently more accurate and noise-robust at
regenerating the true duration distributions, as evidenced by
the lower JSD values across all simulations. Notably, HMM
reproducibility deteriorated as mean duration increased. This
primarily reflects the effect of the unrealistic Geometric dura-
tion model implicit in HMM. That is, underlying duration
distributions with longer mean durations have to be captured

FIGURE 4. Histograms of durations of a test brain state, generated from
trained HSMM and HMM. HSMM and HMM were trained on the same
dataset simulated using the uniform duration distribution in red (mean
50 a.u. and width 6 a.u.). Subsequently, new sequences of brain states
were generated from each trained model and the respective duration
histograms corresponding to one brain state were computed and shown.
The geometric distribution implicit in HMM, produced brain state
durations across the whole range of possible values (green bars). The
explicit normal duration distribution in HSMM concentrated the durations
in the correct range of values (blue bars). The best fitted geometric (green
line) and normal (blue line) brain state duration distributions
(respectively for the HMM and the HSMM), are also shown.

by a HMM with a ‘‘flatter’’ Geometric duration distribution
(i.e. higher self-transition probability), which will produce
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more widespread duration histograms when used to generate
new sequences after training. A Geometric distribution that
encourages short brain state durations may also lead to less
accurate estimation of HMM parameters in the training phase
on data produced by long brain state durations. That is, given
a fixed length of data, a longer brain state duration translates
into a lower number of state transitions and therefore less data
is available for a reliable estimation of transition probabili-
ties. In this situation, the ability of HSMM to model brain
state durations helps to regularize and stabilize the inference.
No apparent effect of the SNR was found for any of the two
models.

FIGURE 5. Jensen-Shannon Divergence (JSD) between the true (H0) and
predicted (H1) brain state duration histograms of HSMM and HMM.
A lower JSD value indicates higher similarity between the histograms of
the predicted (out-of-sample) durations by a model after training, and of
the true durations underlying the training dataset. HSMM out-of-sample
predictions consistently and robustly reproduce the brain state durations
of the underlying system. The simulations were the same as in figure 4,
except the mean duration of one of the brain states in the training
sequences was now varied from 20 a.u. to 140 a.u. (step 40 a.u.) at two
SNR values. The error bars over 100 realizations of the experiment are
indicated.

These results demonstrate that, beyond good data fitting,
an accurate modeling of the brain state durations is important
when prediction and interpretation is the goal. In this case,
using HMM tomodel a systemwith non-Geometric durations
(as seems to be the case with the brain) could lead to wrong
conclusions. In the next sections we investigated how this
problem can affect the performance of HSMM vs HMM,
in some typical EEG applications.

C. BRAIN STATE DECODING UNDER DATA UNCERTAINTY
Common applications of EEG brain state allocation involve
brain state decoding. This is relevant e.g. for developing
systems for Brain Computer Interfaces, online EEG mon-
itoring of patients in intensive care units, identification of
epileptic seizures, sleep monitoring and study of memory
retrieval in movie viewing, among others. Typically, a model
is first trained on a dataset representative of the dynamics
of interest; and then the trained model is used for decoding
the brain states in a new dataset in an unsupervised fashion.
In such a situation, accurate predictions are important for
the model-based monitoring system to perform robustly in
a noisy environment. We tested the impact of incorrectly
modeling brain state durations, on the brain state decoding
task. For this, the accuracy of HSMM (with Normal dura-
tions) and HMM (Geometric durations) was evaluated when
used to decode data generated from a system with uniformly
distributed brain state durations. Given a previously trained
HSMM or HMM, with estimated parameters 2, and a new
observation sequence y(1:T ) (test dataset), we were interested
in the most likely brain state sequence that produced the new
observations. This is solved using the well-known Viterbi
algorithm [37]. In this simulation experiment, the samemodel
was used to generate the training and test datasets, but the test
dataset was noisier. This mimics a situation in which brain
state monitoring is performed under uncontrolled observation
noise fluctuations. Two sets of training and test SNR values
and 100 pairs of training and test datasets in each case were
simulated. All parameters of the simulation setup were the
same as in the previous section, except for the mean duration
of the two fixed brain states, which was 10 a.u. in this case.

As expected, using the more suitable Normal duration
model resulted in a better brain state decoding performance.
Figure 6 shows the SAS for HSMM with Normal durations
and HMM as a function of the mean duration of the target
brain state, and for different SNR values of the training and
the test datasets. In all cases, HSMM showed higher accuracy
than HMM. For increased difference between the SNR of
the training and the test datasets, the accuracy of the HMM
reduced significantly; while HSMM remained stable with a
SAS above 90% in almost all cases. Interestingly, in the case
of greatest reduction in data quality (figure 6 lower panel) the
accuracy of the HSMM increased for increasing values of the
mean brain state duration, while the HMM deteriorated.

D. CLASSIFICATION OF BRAIN STATE TEMPORAL
STRUCTURES
It has been shown that the presence (or absence) of specific
brain states during rest or task conditions can have cognitive
or clinical relevance, because a brain state, as defined
here, could represent short lasting but meaningful modes
of brain operation [55]. Similarly, the temporal structure of
brain state sequences, might contain additional information,
representing ‘‘phenotypes’’ of longer lasting experimental,
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FIGURE 6. Accuracy of brain state allocation based on unreliable test
data. HSMM and HMM were first trained on data produced by a HDS with
non-geometric states’ duration distributions, and were then used to
decode the brain state sequence underlying a new test dataset from the
same system but with reduced SNR. The mean duration of a test brain
state was varied at two levels of SNR of the training dataset (SNR0) and
the test dataset (SNR). The accuracy of the decoding was evaluated using
the Sequence Accuracy Score (SAS), between the decoded and the true
brain state sequence. Higher SAS indicates a more accurate decoding.
HSMM achieved higher SAS for all duration values explored, suggesting
robustness to the noise fluctuations. The error bars over 100 realizations
of the experiment are indicated.

clinical or environmental conditions, for example anesthesia,
sleep or effect of drugs. Therefore, HSMM and HMM can
enable ‘‘condition phenotyping’’, via model-based classifica-
tion of data streams (e.g. task conditions or clinical groups)
corresponding to brain state sequences with distinctive
temporal structures.

The temporal structure of the brain state sequence refers
to the brain states temporal order or brain state ‘‘syntax’’
(given by the transition probabilities), and the dwell time
in each brain state (given by the duration distributions).
We focussed on evaluating the impact of modeling brain
state durations on condition phenotyping. That is, given the
generative assumptions (a specific duration model), which
condition is most likely to be associated with previously
unseen data. That is, given previously trained HSMMs (or
HMMs) each representing one condition, with estimated
parameters 2̂1:C (one for each condition c = 1, . . . ,C), and
given a new sequence of observations y1:T , we are interested
in the probabilities p(y1:T |2̂c,M ) that the new data were
generated by each of the models. These probabilities can
be used for model-based Naïve Bayes classification [56] to
allocate the new data to the most probable model (condition).

HSMM and HMM were then compared in terms of their
ability to classify a test data sequence as belonging to the
correct condition among a set of candidate conditions. The
conditions differed in the mean duration of the underlying
brain states. This experiment mimics a situation in which the
models are used as e.g. diagnostic tools by allocating a new
patient to one among a set of clinical conditions. Each clinical
condition is characterized by a phenotypical alteration of
the mean time that the brain spends in each brain state.
We used a semi-supervised setting for classification, where
labeled data were first used to train different models, with
each label denoting a specific condition. The new unlabeled
test data sequence was then allocated by assigning the label
corresponding to themodel with highest probability of having
generated the test data. The training set consisted of N=11
simulated data sequences (length T=4000 a.u.), one for each
condition, and their corresponding labels. All conditions were
simulated based on HSMMs with the same transition matrix
as in previous sections and Uniform duration distributions for
the 3 brain states. The mean duration of all brain states within
each condition was the same, but varied across conditions
from 2 a.u. to 22 a.u. (step-size 2), which determined each
condition’s label. The unlabeled test sequence was generated
from the model corresponding to condition 10. The widths
of all brain state duration distributions in the training and the
test data were fixed to 6 a.u.

FIGURE 7. Discriminative Power Score (DPS) of HSMM vs HMM.
A previously unseen data sequence (with mean brain states duration of
10 a.u) is classified as being generated by one of 11 HSMM and HMM
models which were trained on data that differed in the mean duration of
the underlying brain states, from 2-22 a.u. in steps of 2. Each point on the
curves is a measure of the discrimination of the hypotheses H0 that the
test data was generated by its true model (⟨d⟩=10) against the hypothesis
H1 that it was generated by the candidate model with duration on the
x-axis. A value of DPS=0 indicates no discrimination between the two
hypotheses, that is the candidate model is very close to the truth. The
shadowed areas represent the 95% confidence interval for discrimination.
HSMM with Normal durations is able to allocate the test sequence to the
correct model, whereas HMM has no discrimination power.

HSMM (with Normal durations) and HMM (Geometric
durations) were used for training and classification in
100 repetitions of the experiment as described above. Figure 7
shows the ability of each model to discriminate between
the test sequence and each condition, measured in terms of
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the DPS. Each point of the curve represents the average
information per test data sample for discrimination of the
hypothesis H0 that the test sequence was generated by the
correct model (mean brain state duration 10 a.u.) against
the hypothesis H1 that it was generated by the candidate
condition model (mean duration in the x-axis). The zero
value represents no ability to discriminate between the two
hypotheses and therefore indicates the condition the test
sequence is allocated to. As expected, using the more suitable
Normal duration model resulted in better classification
performance. Discrimination based on HSMM allowed for
allocating the test sequence to the condition associated
with the correct mean brain state duration. In the case of
HMM, there was not enough information in the test data
for discrimination between the two hypotheses in any of the
conditions, except for the one with the shortest mean brain
state duration (2 a.u.). That is, classification based on HMM
would allocate the test data sequence to any of the conditions
with equal probability except for the case of shortest mean
brain state duration (high sensitivity but low specificity).
This is consistent with the inability of the implicit Geometric
duration distribution to model long durations accurately.

E. RESTING-STATE EEG: LIGHT-TAILED VS HEAVY-TAILED
DURATION DISTRIBUTIONS
We have so far shown that accurate modeling of brain
state durations is paramount for a meaningful brain state
allocation. A key question then is which duration distribution
should we use? The choice of the duration Probability
Density Function (PDF) will ultimately define the kind of
brain state dynamics that the model can explain and therefore
it effectively imposes constraints on the temporal properties
of the brain state process. For example, a light-tailed ‘‘bell-
shaped’’ PDF is typical of a processwith a characteristic time-
scale, while a heavy-tailed right skewed PDF corresponds to a
process with long-term dependencies and possibly temporal
scaling law [28], [29], [57]. A Geometric (or Exponential)
distribution in turn describes a memoryless process, and
separates heavy-tailed from light-tailed distributions. That
is, heavy-tailed (light-tailed) distributions are those whose
tail decays slower (faster) than the Geometric distribution.
We refer the reader to the last section for a more detailed
discussion on the relationship between the shape of the
distribution and the types of dynamics of the underlying
system.

We use real resting state EEG data to select among
two alternative duration models. Specifically, we compare
using HSMM with Lognormal (heavy-tailed and skewed) vs
Normal (light-tailed and symmetric) duration distributions to
model the fluctuations of the EEG amplitude’s envelopes.

First, we investigated whether there is evidence in the data
supporting one duration model vs the other. Two HSMMs,
each using one of the duration distributions with maximum
duration D=5000 ms, were trained on the actual data as
described in section II-G. In the two cases, 5 brain states were

FIGURE 8. Convergence of the VB algorithm. Negative Free Energy (NFE)
of the HSMM for the two duration models used in the EEG resting-state
data. The HSMM with Lognormal durations converged faster and reached
a higher NFE value.

automatically inferred from data using model comparison.
Figure 8 shows the convergence curve of the NFE for the
two optimal models with 5 brain states. The HSMM with
Lognormal durations converged faster and showed higher
NFE with a log-Bayes Factor of 400 in its favor after
convergence.

FIGURE 9. Brain states allocation in resting-state EEG. Partial correlation
maps of the estimated brain states in each duration model. Based on the
pair-wise similarity between the maps of the two duration models, the
brain states were relabeled and matched based on these maps by visual
inspection. The analyzed EEG topographic maps display a distribution of
brain electrical activity in which clearly localized and differentiated areas
of positive and negative polarities are observed. The regions with positive
polarity, indicated by the red color, and the regions with negative polarity,
represented by the blue color.

The partial correlation maps associated with each brain
state are shown in figure 9. Based on the pair-wise similarity
between the maps of the two duration models, the brain states
were relabeled and matched based on these maps by simple
visual inspection. When analyzing the EEG topographic
maps brain state 4 and brain state 5, it is notable that both
maps exhibit identical activation patterns, but with inverse
polarities in all corresponding areas. This symmetry and
inversion of polarities suggest a possible functional operation
with a complementary relationship. When comparing the
EEG topographic maps associated with normal duration
and lognormal duration models, notable differences in brain
activation patterns can be observed. The most prominent
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discrepancies are found in maps brain state 4 and brain
state 5. In the case of the normal duration model, the band
that extends horizontally from the left temporal area to the
right temporal area, crossing the central region of the brain,
is interrupted at the center of the head.

FIGURE 10. Estimated brain state duration distributions. The left panels
show the logarithm of the approximate posterior distribution of duration
for all brain states.The right panels show (in log-scale) the empirical
survival distribution of duration (P(X > x)) for each duration model
(Normal and Lognormal) for the exemplary state S2, as well as their
corresponding estimated parametric distributions (red curve).

Figure 10 summarizes the temporal characteristics of the
inferred brain states in terms of their duration distributions
induced by the posterior expected values of the parameters
of the Lognormal and the Normal duration models. It can be
observed that the Lognormal distribution allows for assigning
probability mass to longer durations, while the Normal
distribution allocates the mass only to shorter durations.
In addition, it can be seen that the empirical durations of brain
state 2 show asymmetric heavy-tailed histograms in the two
cases, which do not follow a Normal distribution, whereas the
Lognormal distribution shows an accurate fit.

IV. DISCUSSION
We have proposed Hidden Semi-Markov Model (HSMM) as
a generative model for brain state allocation in EEG, which
allows for the explicit modeling of the brain state duration
distribution. The added flexibility circumvents a well-known
limitation of the standard HMM where the implicit distri-
bution of brain state duration is Geometric. The Geometric
distribution places more probability mass at shorter than at
longer brain state duration, making HMM intrinsically biased
towards fast brain state switching. A more fundamental
problem is that the Geometric distribution is memoryless.
This property implies that the probability of waiting time
until the next brain state transition is independent of the
time already spent in the current brain state. For a model to
describe such behavior, it must continuously forget the state
the system is currently in (hence memoryless). A Geometric
duration is then not consistent with the long-range temporal

dependency (‘‘long memory’’) and near scale-invariance
(self-similarity) ubiquitous in real EEG data [29], [57],
[58], [59], [60]. This poses limitations on using HMM for
modeling EEG data accurately [49], as demonstrated in the
model generalization study (figure 3). More importantly,
we showed that modeling brain state duration distributions
explicitly with HSMM allows capturing EEG dynamical
features that are inconsistent with the Geometric duration
implicit in HMM. This qualifies HSMM as a more suitable
generative model for brain state allocation when solving
problems where prediction accuracy is important.

Another usually overlooked limitation of HMM is that
it places a small penalty on adding a new state, and no
penalty on the new state having similar features to another
state [20]. Consequently, using model comparison to infer
the number of brain states based on EEG data, where
persistent brain states are expected, can lead to the creation
of unnecessary extra states and unrealistically fast switching,
in order to reproduce the long brain state durations. Indeed,
prior EEG studies using HMM for brain state allocation
noted a problematic increase in NFE with an increasing
number of states, rendering estimation of the number of
states through NFEmaximization impractical [40]. This issue
is crucial as extra states may produce unreliable parameter
estimates and pose a risk of overfitting due to insufficient
data per state. To enhance inference stability, HMM-based
brain state allocation has been commonly applied to extensive
datasets with hundreds of subjects [61]. Nevertheless, this
approach fails to address the challenge of optimal state
number selection. The results in this study demonstrate the
successful application of the proposed HSMM framework for
analyzing EEG data from a limited number of subjects, while
still allowing estimation of the optimal number of brain states
through NFE maximization.

We note that the potentially redundant brain states and
fast switching in HMM is not necessarily a problem if
model averaging is the goal [4]. However, if interpretation
and prediction is important, one would like to incorporate
prior knowledge that a ‘‘slow’’ switching dynamics is more
likely. HMM does not incorporate this kind of prior, while in
HSMM this is done explicitly by choosing a suitable duration
distribution to model the data. We therefore compared the
performance of these model in two tasks which rely on
accurate model predictions. The first task tested whether
an accurate modeling of brain state durations helped brain
state allocation based on data with increased external noise.
The (Bayesian) rationale is that if the data is unreliable,
the accuracy and robustness of the brain state decoding is
determined by the ability of the model to represent the actual
dynamics of the system producing the observations.We found
that HSMM with Normal brain state durations allowed
robust and accurate brain state allocation for different data
uncertainty levels and different mean brain state durations of
the underlying system. This is because the Normal duration
used in HSMM was a good approximation of the true
brain state duration distribution. In contrast, the Geometric
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brain state durations in HMM led to non-robust brain state
inference dominated by the noise fluctuations. The second
task involved identifying data segments whose underlying
state sequence differed in their temporal structure (states’
syntax and durations), rather than the individual states’
emission parameters. We argue that brain state sequences
with a characteristic temporal structure could serve as
phenotypes of complex mental processes, which live in a
time-scale beyond that of an individual brain state. Similar
concepts have been used to interpret both task-related [62],
[63] and resting-state [2], [61] activity. The target phenotype
to be identified differed from the rest of the candidate
phenotypes only in the mean duration of their component
brain states. This task tested whether the implicit Geometric
distribution in HMM was ‘‘good enough’’ to discriminate
between phenotypes, or if the more accurate modeling of the
state duration in HSMM was required. Our results showed
that, HSMM allowed the correct identification of the target
phenotype, whereas HMM could not discriminate between
the target and any of the candidate phenotypes. It can be
argued that in the identification of these long-lived complex
mental processes, the temporal structure of the underlying
brain state sequence might play an even more important
role than in the identification of individual short-lived
brain states, and therefore HSMM is recommended over
HMM.

We argue that the choice of duration PDF determines the
temporal properties of the brain state process, which will
ultimately impose constraints on the kind of dynamics that the
model can explain. In other words, the choice of duration PDF
can be used to represent our beliefs about specific nonlinear
dynamical mechanisms (instabilities) generating the data,
such as multi-stability, meta-stability or criticality (see [27]).
In a multi-stable system driven by noise, the system jumps
erratically between different attractors where it gets briefly
trapped in each basin of attraction. Consequently, the time
series produced by a multi-stable system shows a relatively
heavy-tailed (stretched exponential) dwell distribution. In a
meta-stable system, there are no attractors, but rather a
sequence of linked weakly unstable fixed points, such that
the system dwells in the neighborhood of each, but does
not show trapping. In this case, the distribution of sequential
dwell times show a unimodal but highly skewed heavy-tailed
distribution characteristic of long term dependencies. In a
critical system, a single fixed point is very weakly attracting
or neutral, so that the system noise leads to long and unstruc-
tured excursions corresponding to scale-free fluctuations and
corresponding power-law statistics (e.g. power-law duration
distributions). We can therefore use the explicit brain state
duration PDF in HSMM to express alternative hypotheses
of temporal dependency and scaling-law of the brain state
sequence, and select the best distribution given the EEG
data in a principled way via Bayesian Model Selection.
This approach can help bridge between the observed brain
state data features and the associated underlying neural
mechanisms, which would allow interrogating the data

about such mechanisms. To illustrate the approach we used
actual resting-state EEG data to select between a heavy-
tailed (Lognormal) and a light-tailed (Normal) brain state
duration PDF for brain state allocation using HSMM. Model
comparison demonstrated evidence in favor of the Lognormal
PDF.

The results in figure 10 also showed that the histogram
of brain state durations obtained by fitting a HSMM with
Normal brain state durations did not actually conform to
a Normal distribution. This indicates a ‘‘mismodeling’’ of
brain state durations by the Normal model. Additionally,
the results in figure 9 showed differences in the brain maps
inferred based on the twomodels, which indicates differences
in the identification of the active brain state at each time
point. As both models have the same emission model, then
these differences arise from the type of duration model
assumed. These findings suggest that, in certain time periods,
the information derived from the emission model may be
ambiguous and not allow for accurate identification of brain
states. In these cases, having an appropriate duration model
becomes relevant.

Finally, our results suggest that brain states’ fractional
occupancy (FO), a widely used post-hoc summary statis-
tic [3], [6], [61], is difficult to interpret because it conflates
brain state duration and transition probabilities. A clear
advantage of the proposed HSMM is that it allows dis-
sambiguating the individual contribution of state duration
transitions probabilities to FO because the two parameters
are modelled explicitly and independent of each other. This
implies that experimental or clinical conditions linked to
changes in brain state durations, can be distinguished from
those associated with changes in transition probabilities
between brain states. In contrast, in HMM, this is unfeasible
due to the confounding of brain state transitions and
durations.

The framework proposed here enables several lines of
work in the study of brain function and related translational
applications. Future research may delve into refining the
subtle aspects of brain state modeling introduced by HSMM.
Of particular interest, investigating different forms of the
explicit brain state duration distribution within HSMM
could be used to express hypotheses concerning non-linear
dynamical mechanisms, such as multistability, meta-stability,
or criticality inherent in neural processes. In this context,
the proposed application of Bayesian model comparison
for selecting optimal duration distributions presents an
avenue for principled exploration, linking observed EEG data
features with underlying neural mechanisms. Coupling this
approach with integrative research exploring the extension
of the HSMM to other functional imaging modalities (e.g.
MEG, fMRI, fNIRS) or behavioral data, could deepen our
understanding of brain function. Additionally, evaluation
of the proposed approach for multi-subject inference and
addressing challenges associated with extensive data col-
lection could also enhance its utility in large-scale studies.
Future translational research may focus on assessing the
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clinical relevance of the proposed framework, particularly
in identifying aberrant brain state dynamics associated with
neurological disorders. In this context, novel therapeutic
interventions may be developed by adapting HSMM to
real-time EEG-based applications such as brain-computer
interfaces and neurofeedback systems.

V. CONCLUSION
The present study introduced and extensively evaluated
the Hidden Semi-Markov Model as a robust and flexible
generative model for brain state allocation in EEG data.
By explicitly modeling the distribution of brain state
durations, HSMM overcomes limitations of the widely
used (conventional) Hidden Markov Model, particularly its
inherent reliance on a Geometric distribution for representing
brain state durations. The findings presented herein highlight
the advantages of HSMM in capturing the nuanced dynamics
of EEG data, especially in scenarios demanding accurate
predictions and meaningful interpretations, indicating its
potential significance in neuroscientific and clinical research.
Additionally, the demonstrated superiority of HSMM in tasks
involving increased external noise and the identification of
complex mental processes suggests its potential utility in
real-world applications. In summary, the introduced HSMM
framework is a promising avenue for advancing EEG-based
brain state modeling, and future research endeavours can
build upon this foundation to address emerging challenges
and extend its applicability to diverse domains.
(Nelson J. Trujillo-Barreto and David Araya Galvez are

co-first authors.)

APPENDIX A
MEAN FIELD APPROXIMATION AND NEGATIVE FREE
ENERGY
The mathematics of the VB framework for HSMM is
described in detail in [36]. The mean-field approximation
used here has the following form:

q(s, τ , π ,A, θ , λ) = q(s, d, τ )q(π )

(
K∏
k=1

q(ak:)

)
· q(µ)q(6)q(δ)q(ρ) (12)

where, in addition to the factorization between hidden states
and parameters (seemain text) we have assumed factorization
over the parameters of both the duration and the emission
distributions; as well as over the rows of the transition
matrix [42]. This factorization induces the following form of
the NFE:

NFE(q(s, τ , 2)) = −KL(q(π)∥p(π ))

−

K∑
k=1

KL(q(ak:)∥p(ak:))

−

K∑
k=1

KL(q(µ(k))∥p(µ(k))))

−

K∑
k=1

KL(q(6(k))∥p(6(k))

−

K∑
k=1

KL(q(ν(k))∥p(ν(k))))

−

K∑
k=1

KL(q(ρ(k))∥p(ρ(k)) + log(C(s1:T )))

(13)

where KL(q(x)||p(x)) denotes the Kullback-Leibler (KL)
divergence between the approximate variational posterior
q(x) and the prior p(x); and C(s1:T ) is a normalization
constant that can be computed after each VB-E step [36].
Note that due to conjugacy of the priors, all KL divergences
are between known standard distributions and can be
computed analytically. We refrain from including the KL
expressions here, since these are standard results available
somewhere else.

APPENDIX B
PRIORS AND POSTERIOR UPDATES FOR ALL
PARAMETERS
This section presents the update equations of the VB-M-Step.
It uses the following marginal statistics obtained from the
Forward-Backward algorithm implemented in the VB-E step:

• The joint posterior probability of the joint process (st , τt )
being at (i,d) at time t − 1 and at (j, d ′) at time t:

ξt (i, d, j, d ′) = q((st−1, τt−1)

= (i, d), (st , τt ) = (j, d ′)) (14)

• The posterior probability of the joint process (st , τt )
being at (i,d) at time t:

γt (i, d) = q((st , τt ) = (i, d))

=

D∑
d ′=1

K∑
j=1

ξt (j, d ′, i, d) (15)

Given the structure of the HSMM presented here, these
statistics can usually be reduced respectively to ξt (i, 1, j, d),
the posterior probability of a transition occurring at time t;
and γt (i) = q(st = i) =

∑D
d=1 γt (i, d), the posterior proba-

bility of state i being active at time t.

1) MULTIVARIATE NORMAL EMISSION MODELS
The signal emitted from the k-th brain state is modeled as a
n-variate Normal distribution with mean µ(k) and precision
matrix 6(k).

p(yt |st = k, µ(k), 6(k)) = Nn

(
yt ; µ(k), 6(k)−1

)
(16)

For the simulation experiments, the data emitted from each
state was assumed to be independent over channels with
precision matrix 6(k)

= diag(σ (k)), where σ (k) is the n× 1
vector of precisions (inverse variances) of each channel’s
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data. For the empirical data analysis a full precision matrix
was assumed.

• Prior distribution for means of emissions
For both the simulations and the actual data we assumed
that all brain state means are independent across states
and i.i.d a priori with identical conjugate weakly
informative priors

p(µ|µ0, 60) =

K∏
k=1

Nn(µk
; µ0, 6

−1
0 ),

µ0 = 0n×1, 60 = σ0In (17)

where 0n× 1 is a n×1 vector of zeros, In is the
identity matrix of size n× n. We used σ0 = 0.1 for the
simulations and σ0 = 0.001 for the empirical data.

• Prior distribution for precision of emissions
For the emission model used in simulations, precisions
were assumed to be independent over states and
channels a priori, with identical conjugate Gamma priors
and weakly informative shape and scale parameters a
and b, respectively

p(σ |a0, b0) =

K∏
k=1

n∏
i=1

Gam(σ (k)
i ; a0, b0) (18)

where a0 = 0.001 and b0 = 1000. For the full precision
model used in the actual data, precision matrices are
independent over states a priori with identical conjugate
n-dimensional Wishart distributions with degrees of
freedom a and scale matrix B

p(6|a0,B0) =

K∏
k=1

Wishart(6(k)
; a0,B0) (19)

where a0 = n and B0 = nIn
• Posterior updates for means of emissions
Due to conjugacy of the priors, the variational densities
of the states’ means of the two emission models have
both Gaussian forms. For the independent emission
model the posterior is also independent over channels:

q(µ) =

K∏
k=1

Nn
(
µ(k)

; µ̂
(k)

, (diag(σ̂ (k))
−1)

(20)

with posterior mean and precisions given by

µ̂
(k)
i = (σ0µ0i + â(k)i b̂(k)i

T∑
t=1

γt (k)yit )

·

(
σ0 + N (k)â(k)i b̂(k)i

)−1
(21)

σ̂
(k)
i = σ0 + N (k)â(k)i b̂(k)i (22)

where â(k)i and b̂(k)i are the shape and scale parameters of
the approximate posterior of the precisions, associated
with emissions from state k (see below) at channel i;

and N (k) is the expected state’s counts (i.e. the expected
number of state’s visits)

N (k)
:=

T∑
t=1

γ
(k)
t , k = 1, . . . ,K (23)

In the case of the emission model with full precisions,
the variational posterior for the means are independent
over states so that

q(µ) =

K∏
k=1

Nn

(
µ(k)

; µ̂
(k)

, 6̂
(k)−1

)
(24)

with posterior parameters

µ̂
(k)

=

(
60 + N (k)â(k)B̂(k)

)−1

· (60µ0 + â(k)B̂(k)
T∑
t=1

γ
(k)
t yt ) (25)

6̂(k)
= 60 + N (k)â(k)B̂(k) (26)

• Posterior updates for precisions of emissions
Again, conjugacy of the priors ensures that the varia-
tional posteriors have the same functional form as the
prior. In the case of the independent observation model,
the variational posterior of the precisions factorizes over
states and channels so that

q(σ ) =

K∏
k=1

n∏
i=1

Gam
(
σ
(k)
i ; â(k)i , b̂(k)i

)
(27)

with posterior shape and scale parameters

ˆa(k)i = a0 +
1
2
N (k) (28)

ˆb(k)i = b0 +

T∑
t=1

(
γ
(k)
t (yti − µ̂

(k)
i )2 + σ̂

(k)−1

i

)
(29)

In the case of the emission model with full precision
matrices, the variational posterior of the precisions
factorizes over states with state-specific Wishart distri-
butions so that

q(6) =

K∏
k=1

Wishartn
(
6(k), â(k), B̂(k)

)
(30)

with posterior degrees of freedom and scale parameters

â(k) = a0 + N (k) (31)

B̂(k)
= (B−1

0 +

T∑
t=1

γ
(k)
t (yt − µ̂(k))(yt − µ̂(k))T )−1

(32)
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2) DURATION MODELS
• Normal duration model
We impose independent conjugate and weakly informa-
tive prior distributions on the mean and the precision of
the normal duration distribution of each state.
– Prior distribution for the parameters
Independent Normal prior distributions with identical
mean ν0 and precision η0 were assumed on the mean
duration of each state so that the full prior factorizes
over states:

p(ν) =

K∏
k=1

N
(
ν(k); ν0, η

−1
0

)
(33)

where ν0 = 1 (ν0 = 100 for the empirical
data) and η0 =10−5. In the same way, independent
weakly informative Gamma prior distributions with
identical shape and scale parameters ((u0 and v0))
were assumed for the precision of the duration of each
state

p(ρ) =

K∏
k=1

Gam
(
ρ(k)

; u0, v0
)

(34)

where u0 = 0.001 and v0 = 1000, in order to achieve
non-informative priors.

– Posterior updates for the parameters
Conjugacy and independence of the priors induce
variational posterior densities of the same functional
form as the priors, which are also factorized over
states, so that

q(ν) =

K∏
k=1

N
(
ν(k); ν̂(k), η̂(k)

−1
)

(35)

where the posterior mean and precision of the
duration of state k are given by

ν̂(k) =

(
η0ϕ0 + û(k)v̂(k)

D∑
d=1

γ
(k)
d d

)
(36)

·

(
η0 + û(k)v̂(k)C (k)

)−1

η̂(k) = η0 + û(k)v̂(k)C (k) (37)

Similarly, the variational densities of the precision of
the durations have the same functional form as their
priors and also factorize over states, so that

q(ρ) =

K∏
k=1

Gam
(
ρ(k)

; û(k), v̂(k)
)

(38)

where the posterior shape and scale parameters of the
posterior Gamma distribution associated with state k
are given by

ˆu(k) = u0 +
1
2
C (k) (39)

ˆv(k) = (v−1
0 +

1
2

D∑
d=1

γ
(k)
d ((d − ϕ̂(k))2+η̂(k)

−1
))−1

(40)

In the above expressions, γ
(k)
d and C (k) are derived

from the sufficient statistics obtained in the VB-E step
of the VB algorithm

γ
(k)
d =

T∑
t=1

K∑
i=1
i̸=k

ξt (i, 1, k, d) (41)

C (k)
=

D∑
d=1

γ
(k)
d (42)

• Lognormal duration model
Similar to the Normal case, we impose independent
conjugate and weakly informative prior distributions on
the parameters of the Lognormal distribution associated
with each state. Given that the conjugate priors for the
parameters of the Lognormal distribution are the same
as for the Normal distribution, the expressions for the
priors and their variational posteriors are the same as for
the Normal case, but replacing the mean and precision of
the Normal model with the first and second parameters,
respectively of the Lognormal model. In this case, the
values of the parameters of the priors (hyperparameters)
were ν0 = 4.5, η0 = 0.2, u0 = 0.001 and υ0 = 1000

3) TRANSITION MODEL
From the definition of HSMM, the transitions between state
segments are governed by a Markov process without self-
transitions. Therefore, the transition distribution between
states is Multinomial. We then use the usual conjugate priors
and assumptions as in the standard HMM [42].

• Prior distribution for the transition probabilities
Using standard results from the Bayesian inference of
HMM, we assume that the rows ai: of the transition
matrix are independent and identically distributed a pri-
ori. We then choose the same conjugate non-informative
prior distribution for all ai:, which is a symmetric
non-informative Dirichlet distribution with concentra-
tion parameter α0 and zero mass on self- transitions,

p(A) =

K∏
i=1

Dir(ai:; α0) (43)

where ai: = (ai1, . . . , aii−1, aii+1, . . . , aiK ) is the i-th
row of the transition matrix A without its i-th element;
and α0 = α011×(K−1) with α0 > 0. A non-informative
prior is achieved by using α0 = 1.

• Posterior updates for the transition probabilities
Due to the conjugacy of the prior, the variational
posterior of all the rows are Dirichlet, so that

q(A) =

K∏
i=1

Dir(ai:; α̂) (44)
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with posterior concentration parameters

ˆ

αij = αa +

T∑
t=1

D∑
d=1

ξt (i, 1, j, d) ∀i ̸= j (45)

4) INITIAL PROBABILITIES
Similar to the transition distribution, the initial probability
distributionπ is alsoMultinomial and therefore can be treated
in a similar way as one row of the transition matrix.

• Prior distribution for the initial probabilities
In the general case (no simplifying initial condition) a
conjugate symmetrical Dirichlet prior can be imposed
on the initial joint state (s1, τ1) as

p(π ) = Dir(π11, . . . , π1D, . . . , πKD; ζ 0) (46)

where ζ 0 = ζ011×KD and ζ0 > 0. A non-informative
prior is implemented using ζ0 = 1. Under the simplify-
ing initial condition τ1 = 1 (so that πkd = 0 for d ̸= 1)
then the prior can be reduced to

p(π ) = Dir(π11, . . . , πK1; ζ 0) (47)

where ζ 0 = ζ011×K and ζ0 > 0.
• Posterior updates for the initial probabilities
Due to the conjugacy of the prior, the variational
posterior of initial probabilities is also Dirichlet

q(π ) = Dir(π11, . . . , π1D, . . . , πKD; ζ̂ ) (48)

with concentration parameters

ζ̂kd = ζ0 + ζ1(k, d) (49)

or under the simplified initial condition

ˆζk = ζ0 + ζ1(k, 1) (50)

APPENDIX C
DEFINITION OF SIGNAL-TO-NOISE RATIO
For a given data sequence, the SNR was defined as the
percentage of noise-free signal energy present in the data:

SNR[%] =
∥signal∥2

∥signal∥2 + ∥noise∥2
100% (51)

For iid Gaussian noise in each channel and normalized
brain state maps, it can be demonstrated that

s̄2 =
T

nT − 1

(
100%
SNR[%]

− 1
)

(52)

where Ns2 is the unbiased sample variance estimate and n
and T are the number of channels and the length of the
data sequence respectively. This expression was then used to
compute the simulated noise variance required to achieve a
selected SNR value.

APPENDIX D
EVALUATION SCORES
1) AUTO INFORMATION FUNCTION
The Auto Information Function (AIF) is analogous to the
autocorrelation function, but for symbolic sequences such
as the brain states sequences. It measures the dependence
between different time points with a given time lag l. This is
done by measuring the Kullback-Leibler divergence between
the symbol distributions at time t and t+l. That is, the AIF for
time lag l is defined as:

AIF(l) = H (st+l) − H (st+l |st ) (53)

This is the difference between the entropies H of the
distributions p(st+l) and p(st+l |st ). For a stationary Markov
chain the AIF can be obtained analytically [54].

2) SEQUENCE ACCURACY SCORE
Denoting the brain state decoded at time t as ŝt and the true
one as s̃t , the Sequence Accuracy Score (SAS) between the
sequences ˆs1:T and s̃1:T of equal length T is defined as

SAS(ŝ, s̃) =
1
T

(
T − HD(ŝ1:T , s̃1:T )

)
× 100%

=

(
1
T

T∑
t=1

δ(ŝ, s̃)

)
× 100% (54)

where δ(·, ·) is the Kronecker’s delta function and HD(x, y)
denotes the Hamming distance between sequences x and y
[64]. Given two sequences of equal length, the Hamming
Distance is an edit distance defined as the minimum number
of substitutions required to change one sequence into the
other. A SAS of 100% means the two sequences are identical
(no substitutions needed), while 0% indicates no matching
between any of the elements of the two sequences (all
elements need to be substituted).

3) JENSEN-SHANNON DIVERGENCE
In probability theory, the Jansen-Shannon Divergence (JSD)
[50] is used to measure the similarity or dissimilarity
between two probability distributions or histograms. JSD is
a symmetrized version of the Kullback-Leibler divergence
KL(P∥Q) between two distributions or histograms P and Q.
It is defined as

JSD(D,Q) =
1
2
KL(P∥M ) +

1
2
KL(Q∥M ) (55)

where H =
1
2 (P+ Q). The JSD is bounded between 0

(perfect similarity) and 1 (perfect dissimilarity) when the KL
is expressed in base 2 logarithm (bits); and its square root is
a metric known as the Jensen-Shannon distance.

4) LOG-BAYES FACTOR
Given a data sequence y1:T and two given model classes M1
and M0, the log-Bayes factor [51] is defined as

logBF(M1,M0) = log
(
p(y1:T |M1)
p(y1:T |M0)

)
≈ NFE(M1) − NFE(M0) (56)
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where p(y1:T |Mk ) is the evidence of model class Mk . Since
the evidence cannot be calculated in closed form, we used
its lower bound approximation in terms of the (variational)
Negative Free Energy, p(y1:T |Mk ) ≈ NFE(Mk ).

5) DISCRIMINATIVE POWER SCORE
Given two models (of the same model class) each defined
by the set of parameters 20 (model 0) or 21, (model 1),
and given a data sequence y(1:T ) that was generated by the
model 0, the Discriminative Power Score is defined in terms
of the directed divergence [52]

DPS(H0,H1) = lim
T→∞

1
T

(
log

p(y1:T |21,M )
p(y1:T |20,M )

)
(57)

where p(y1:T |2k ,M ) is the probability that the data sequence
was generated by model k (i.e. the model with parameters
2k ), after marginalization over all possible brain state paths.
For a sufficiently long sequence, if H0 and H1 are the
hypotheses that the data sequence was generated by model
0 and model 1, respectively, DPS(H0, H1) is the average
information per data sample for discrimination of H0 against
H1. This divergence is always positive and is zero if the two
models are the same (20 = 21).
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