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Abstract   12 

Background 13 

The recently discovered glymphatic system may support the removal of neurotoxic proteins, 14 

mainly during sleep, that are associated with neurodegenerative diseases such as Alzheimer’s and 15 

Parkinson’s Disease. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) 16 

has been suggested as a method to index the health of glymphatic system (with higher values 17 

indicating a more intact glymphatic system). Indeed, in small-scale studies the DTI-ALPS index 18 

has been shown to correlate with age, cognitive health, and sleep, and is higher in females than 19 

males.  20 

Objective 21 

To determine whether these relationships are stable we replicated previous findings associating 22 

the DTI-ALPS index with demographic, sleep-related, and cognitive markers in a large sample of 23 

participants from the UK Biobank. 24 

Methods 25 

We calculated the DTI-ALPS index in UK Biobank participants (n = 17723). Using Bayesian and 26 

Frequentist analysis approaches, we replicate previously reported relationships between the DTI-27 

ALPS index. 28 

Results 29 

We found the predicted associations between the DTI-ALPS index and age, longest uninterrupted 30 

sleep window (LUSWT) on a typical night, cognitive performance, and sex. However, these 31 

effects were substantially smaller than those found in previous studies. Parameter estimates from 32 
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this study may be used as priors in subsequent studies using a Bayesian approach. These results 33 

suggest that the DTI-ALPS index is consistently, and therefore predictably, associated with 34 

demographics, LUWST, and cognition.  35 

Conclusion 36 

We propose that the metric, calculated for the first time in a large-scale, population-based cohort, 37 

is a stable measure, but one for which stronger links to glymphatic system function are needed 38 

before it can be used to understand the relationships between glymphatic system function and 39 

health outcomes reported in the UKBiobank. 40 

 41 

Keywords: Glymphatic system; DTI-ALPS index; UK Biobank; Sleep; Cognition 42 

Word count: 6517 43 
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Diffusion Tensor Imaging Analysis Along the Perivascular Space in the UK Biobank 44 

The glymphatic system is a brain-wide vascular network that may remove toxic proteins, 45 

and is therefore proposed to slow the formation of plaques (including those associated with 46 

neurodegenerative conditions like Alzheimer’s Disease, Nedergaard & Goldman, 2020), and 47 

other waste materials from the brain parenchyma (Iliff et al., 2012; Nedergaard & Goldman, 48 

2020). This system is proposed to become more active during sleep (Dredla, Brutto, & Castillo, 49 

2023; Hablitz et al., 2020; Xie et al., 2013), and may therefore explain the relationship between 50 

impaired sleep and increased risk of neurodegenerative disease (Wu, Dunnett, Ho, & Chang, 51 

2019). Since sleep could represent a population-level, modifiable risk factor for progression of 52 

neurodegenerative cognitive conditions, it is necessary to explore relationships between sleep, the 53 

glymphatic system, and cognitive ability in a large population. 54 

A proposed method for measuring glymphatic system health is the calculation of the 55 

Diffusion Tensor Imaging Along the Perivascular Space (DTI-ALPS ) index (Taoka et al., 2017). 56 

This method mathematically isolates the diffusion of fluid towards in the anterior-posterior 57 

direction using the Apparent Diffusion Coefficients (ADC) of water molecules in regions within 58 

projection and association fibers at the level of the lateral ventricles. By isolating movement in 59 

the anterior-posterior direction, a single value (the DTI-ALPS index) that is proportional to the 60 

degree of diffusivity may be calculated to reflect glymphatic system integrity. Indeed, the DTI-61 

ALPS index has been closely associated with the classical measure of glymphatic activity using 62 

clearance of intrathecal gadolinium (W. Zhang et al., 2021).  Clearance of this tracer has been 63 

shown to be slower in sleep deprived subjects than in subjects who had a normal night's sleep 64 

(Eide et al., 2023). 65 

 66 
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Previous research indicates the DTI-ALPS index is lower in people with Mild Cognitive 67 

Impairment (MCI) and Alzheimer's disease (AD) than those without (Steward et al., 2021; Taoka 68 

et al., 2017). It is positively correlated with global cognitive ability as measured by the Mini-69 

Mental State exam (MMSE; Taoka et al., 2017), negatively correlated with progression of 70 

Parkinson’s disease (Shen et al., 2022), and negatively correlated with severity of vascular 71 

conditions (Y. Zhang et al., 2021). In addition, the DTI-ALPS index has been shown to mediate 72 

the relationship between white matter hyperintensity volume, amyloid beta deposition, and 73 

memory in participants with AD (Hong et al., 2024).  These studies imply that a reduction of the 74 

DTI-ALPS index may increase risk of neurodegenerative conditions, and lead to more serious 75 

symptoms in those who develop them. 76 

There is pre-clinical and human evidence that sleep plays a large role in the activation of 77 

glymphatic clearance of cerebral waste materials (Dredla et al., 2023; Xie et al., 2013). More 78 

specifically, an increase in efficacy of protein removal during slow wave activity stage 3 NREM 79 

sleep state has been reported (Hablitz et al., 2019). Indeed, time spent in NREM stage 3 sleep 80 

decreases with increasing age (Landolt & Borbély, 2001), and there is evidence of a relationship 81 

between poor quality of sleep and the development of dementia (Wu et al., 2019). 82 

Although previous research has yielded promising findings, the studies using the DTI-83 

ALPS index have drawn valid criticism for making causal claims from associative research and 84 

the simplified use of water molecule movement within a small region of interest to represent a 85 

brain-wide complex process (Ringstad, 2024).  Moreover, current recommendations are that the 86 

DTI-ALPS index should not be described as a proxy for glymphatic system efficacy, and should be 87 

interpreted cautiously until further validation has been achieved (Taoka et al., 2024). The 88 

inclusion of the DTI-ALPS index in a large-scale dataset will give researchers the statistical 89 
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freedom to either corroborate the indexes relationship to glymphatic function or investigate 90 

alternative explanations for the previous findings that demonstrate its utility. 91 

Therefore, in the current study we calculated the DTI-ALPS index in a subset of the 92 

participants in the UK Biobank who provided seven days of wrist-worn accelerometer data. This 93 

can be used to estimate the longest time period spent in uninterrupted sleep (Doherty et al., 2018; 94 

Willetts, Hollowell, Aslett, Holmes, & Doherty, 2018). Sample sizes in studies using the DTI-95 

ALPS index range between 31 (Taoka et al, 2017), and 146 (Y. Zhang et al, 2022).  The purpose 96 

of this paper is to determine if findings from studies with smaller sample sizes are stable in a 97 

large population-based cohort. This would provide the necessary confirmation that the DTI-98 

ALPS index is a meaningful research tool that behaves consistently across larger samples. As 99 

such, we expect to see reductions in the DTI-ALPS index associated with age, poorer cognitive 100 

performance, and worse sleep. Based on previous findings we also expect to see larger values in 101 

women than men (Y. Zhang et al., 2021). 102 

A synthetic dataset and all analysis scripts are available to access https://osf.io/6twca/. 103 

Methods 104 

Participants 105 

Participant data was accessed from the UK Biobank (Ollier, Sprosen, & Peakman, 2005). 106 

Participants were included if they had data for both sleep and MRI imaging. 107 

Of the 44073 participants with DWI images that had been preprocessed according to the above 108 

pipeline, 17723 had wrist-worn accelerometer derived sleep estimates provided by Doherty et al. 109 

(2018). There were 9812 females and 7911 males available for this analysis. Several participants 110 
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had incomplete cognitive ability so sample sizes for each task may be found in the sections that 111 

describe the cognitive tasks. All participants were included regardless of dementia status. 112 

Imaging Data 113 

Diffusion- Weighted Images (DWIs) were collected following the published protocol 114 

(https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367). Participants were scanned using one of 115 

three identical 3T Siemens Skyra scanners with a Siemens 32 channel RF receiver head coils. 116 

MRI scans took place from 2014 in Cheadle, Manchester until 2017 when two identical centres 117 

were set up in Reading and Newcastle. The use of identical scanners precluded the need to adjust 118 

data for variations in scanner hardware (Alfaro-Almagro et al., 2018).  At the time of the current 119 

analysis there were 44073 first instance images available. Images were processed using the 120 

Oxford fsl pipeline (Alfaro-Almagro et al., 2018) which included registration, eddy correction, 121 

and DTI Tensor fitting. 122 

The DTI-ALPS index was calculated using the fMRIB software 123 

library (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Smith et al., 2004) for both 124 

left and right hemispheres following Taoka et al. (2017). The size of the UKbiobank precludes 125 

manual identification of regions of interest. Instead,  5mm spherical regions of interest (ROI) 126 

were created in MNI 152 space (Montreal Neurological Institute, Montreal, Québec, Canada) 127 

centred on co-ordinates for association (Left: x = 50, y = 104, z = 100; Right: x = 128, y = 104, z 128 

= 100) and projection areas (Left: x = 62, y = 104, z = 100; Right: x = 116, y = 104, z = 100) 129 

reported by Y. Zhang et al. (2021). The anatomical locations are presented in Supplemental 130 

Image S1.  Then, for each participant, the affine transformations and non-linear warps that were 131 

available on the UKBiobank as part of a tract-based spatial statistics pre-processing pipeline were 132 

applied to the MNI space ROI images to transform them to individual subject space. Next, the 133 

DTI-ALPS Index. 

Jo
urn

al 
Pre-

pro
of

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367


DTI-ALPS IN THE UK BIOBANK 
9 

b1000 shell was isolated from the pre-processed DWI (based on the recommendations of Taoka 134 

et al., 2017) and fsl’s dtifit was executed with the -save tensor flag to create Apparent Diffusion 135 

Coefficients (ADC) in six directions ￼(𝑥𝑥, 𝑥𝑦, 𝑥𝑧, 𝑦𝑦, 𝑦𝑧, 𝑧𝑧) Finally, mean ADC within each of 136 

the ROIs described above were extracted for calculation of the DTI-ALPS index (below). A 137 

selection of images were visually inspected by first and last authors to ensure that the MNI space 138 

ROIs were accurately transformed into subject space. DTI-ALPS indexes for left and right 139 

hemispheres were then calculated for each participant using the equation: 140 

𝐷𝑇𝐼 𝐴𝐿𝑃𝑆𝐼𝑛𝑑𝑒𝑥 =
𝑚𝑒𝑎𝑛(𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑥, 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑥)

𝑚𝑒𝑎𝑛(𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑦, 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑧)
 141 

(1) 142 

In line with Y. Zhang et al. (2021), the mean average of the left and right DTI-ALPS 143 

index was used as the final value which provides an estimate of the diffusivity of water in the 144 

anterior-posterior direction. 145 

Sleep Data 146 

The calculated  sleep metric was based on probabilities derived from accelerometer data using 147 

machine learning (Doherty et al., 2018; Willetts et al., 2018), and validated in a study on 148 

cardiovascular risk factors (Walmsley et al., 2022). Data were collected between June 2013 and 149 

December 2015, and the derived data yielded a set of per-hour probabilities averaged over 7 150 

consecutive 24 hour periods (Willetts et al., 2018). Because the glymphatic system is reported to 151 

be most active during slow- wave sleep (Dredla et al., 2023) the sleep predictor used in this study 152 

was longest period of uninterrupted sleep (hereafter longest uninterrupted sleep window on a 153 

typical night, or LUSWT). That is, a person might sleep for 8 hours in one day, but this might be 154 
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broken before they enter NREM3 sleep. The low resolution of the derived metric (one reading 155 

per hour) means that pinpointing the most likely period of N3 sleep is impossible.  Instead we 156 

assume thata person with a longer uninterrupted sleep window on a typical night is likely to have 157 

spent more time in NREM3 sleep than someone who sleeps in shorter bursts. To estimate the 158 

longest uninterrupted sleep window on a typical night, one-hour periods in which the probability 159 

that the participant was asleep exceeded 0.9 was treated as an hour in which they were solidly 160 

asleep. One-hour periods in which the probability of sleep was below 0.9 was treated as either 161 

awake or interrupted sleep. A string of consecutive one-hour periods where the probability of 162 

sleep was above 0.9 was treated as a window of uninterrupted sleep. The longest stretch of 163 

probabilities exceeding 0.9 averaged over seven days was taken to be the longest uninterrupted 164 

sleep window. An example may be found in Supplemental Table S2.  We favoured this method 165 

over other measures of sleep such as sleep efficiency (ratio of time actually spent asleep to time 166 

spent and time dedicated to sleeping) since this would rely on the unstandardised sleep-related 167 

items provided in the UK Biobank. 168 

Out of  17723 participants participants in this study, 150 had extreme values of either 0 169 

hours or over 15 hours daily total sleep. These participants were removed from further analysis. 170 

In all cases, cognitive tests were conducted at the first scanning 171 

session. The following tests from the UKBiobank were included: Numeric memory (n = 12026), 172 

Paired associate learning (n = 11789), Prospective memory (n = 16677) (binary outcome of 173 

success/not successful on first attempt), Picture Vocabulary test (n = 11153), Fluid Reasoning (n 174 

= 16383), Matrix completion, (n = 11666), and the Trail Making Task Part A and B were 175 

completed (n = 11789). Participants who did not complete the trail were scored as 0 and were not 176 

included in the completion time analysis (numeric trail: n = 121; alpha-numeric trail: n = 356). 177 

Cognitive Tasks. 
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Field numbers and short descriptions of how the metrics were calculated are presented in 178 

the Supplemental Materials (Table S1). 179 

Statistical Analysis 180 

Correlations between the DTI-ALPS index and all study variables were calculated using 181 

the correlation package in R (Makowski, Ben-Shachar, Patil, & Lüdecke, 2020). To examine 182 

the relationship between the DTI-ALPS index and demographics (age, sex), longest uninterrupted 183 

sleep window on a typical night, and cognitive health we used a combination of frequentist and 184 

Bayesian approaches. To make results comparable with previous literature, variables were z 185 

transformed. Frequentist linear regressions were fitted using the lm function from base R (R Core 186 

Team, 2020). The brms package (Bürkner, 2017) was used to convert the models to the stan 187 

language (Carpenter et al., 2017) and provide Bayesian posterior distributions for the regression 188 

parameters. Posterior distributions were estimated over 8 chains each with 10,000 iterations 189 

(5000 iteration burn-in). 190 

First, bi-variate correlations were run to examine the zero order correlations between the 191 

DTI-ALPS index and age, longest uninterrupted sleep window on a typical night, and cognitive 192 

tasks. In addition, a between-groups t-test was used to compare the DTI-ALPS index between 193 

males and females. To determine whether the DTI-ALPS index could be predicted by sex, age, 194 

and longest uninterrupted sleep window on a typical night, these variables were entered into a 195 

regression model, and relevant interactions were explored in a separate follow-up model. In the 196 

Bayes analysis, priors for sex and age were normal distributions centered on the standardised beta 197 

estimates for these two variables reported by Y. Zhang et al (2021) with a liberal standard 198 

deviation of 0.2 to reflect the smaller sample size in their study. Priors for the relationship 199 
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between longest uninterrupted sleep window and the DTI-ALPS index were taken from estimates 200 

reported by Saito et al. (2023). Their overall self-reported sleep quality estimate for using the 201 

Pittsburgh Sleep Quality Index (PSQI) was -0.27, where the subscale for sleep duration yielded a 202 

non-significant standardised beta of -0.051. Given the uncertainty around the duration estimate 203 

and the fact that the measure was self-reported, a weakly informative prior of 𝑁(0.1,0.2) was 204 

chosen to favour the positive parameter space (a lower score on the PSQI scale means healthier 205 

sleep), but also allow the Monte Carlo algorithm to explore negative values. Both p values (with 206 

a liberal alpha level of 0.05) and Bayes Factors using the simplified cutoffs suggested by Royall 207 

were used to draw inferences (BF < 8 being weak evidence, 8<BF<32 being moderate evidence, 208 

and BF > 32 being strong evidence for the hypothesis, Royall, 2017). 209 

Finally, to determine if cognitive health could be predicted by the DTI-ALPS index 210 

independently of age, sex, and longest uninterrupted sleep window on a typical night, we first 211 

selected all cognitive tasks that were found to be significantly associated at a corrected p<0.05 212 

with DTI-ALPS index in the bivariate correlations for further analysis. Age, sex, and longest 213 

uninterrupted sleep window on a typical night were then entered alongside DTI-ALPS index to 214 

predict each of the selected cognitive tasks (in separate models for each task). Here we carried 215 

out frequentist analysis only as there was no prior information available on the relationship 216 

between the DTI-ALPS index and the cognitive tasks used by the UK Biobank. For the cognitive 217 

task analysis p values were Bonferrioni corrected to 0.005 to account for multiple analyses. The 218 

parameters reported here may be used to inform future Bayesian analyses. 219 

Data were analysed using the R programming language. The lm() function was used to 220 

model the data where responses were expected to follow a normal distribution. In cases where 221 

responses would not be expected to fit a normal distribution, generalised Poisson models were 222 
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applied to count metrics, and binomial regression to dichotomous metrics using the glm() 223 

function in R. 224 

Results 225 

Demographics 226 

After removal of extreme values there were 17573 participants entered into the final 227 

analysis. Of these 9724 were female and 7849 were male. 228 

Table 1 presents the descriptive statistics for all study variables split by sex. 229 

TABLE 1 ABOUT HERE 230 

Bivariate Correlations 231 

Bivariate correlations between all study variables and the DTI-ALPS index are presented 232 

in Table 1. Scatter plots for DTI-ALPS and Age and DTI-ALPS and longest uninterrupted sleep 233 

window on a typical night are presented in Figure 1 and  Figure 2. In brief, the DTI-ALPS index 234 

significantly correlated with participant age (r = -0.27, 95% CI [-0.28, -0.25], t(11431) = -29.52, 235 

p < .001), and there was a significant difference in DTI-ALPS index between males and females 236 

(𝛥𝑀 = 0.13, 95% CI [0.12,0.13], 𝑡(17062.86) = 42.82, 𝑝 < .001). A higher DTI-ALPS index 237 

was associated with a longer uninterrupted sleep window on a typical night (r = 0.03, 95% CI 238 

[0.01, 0.05], t(11431) = 3.34, p < .001). Correlations with cognitive tasks were mostly weaker 239 

but, with the exception of fluid intelligence (r = 8.00e-03, 95% CI [-0.01, 0.03], t(11378) = 0.85, 240 

p = 0.393) and prospective memory (r = -0.05, 95% CI [-0.07, -0.03], t(11431) = -5.39, p < .001), 241 

a higher DTI-ALPS index was associated with better performance. 242 
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 243 

FIGURE 1 ABOUT HERE 244 

FIGURE 2 ABOUT HERE 245 

Linear Regression 246 

Linear regression with age, sex and longest uninterrupted sleep window entered together revealed 247 

that all these variables could independently predict the DTI-ALPS index (Age:𝑏 = −0.17, 95% 248 

CI [−0.19, −0.16], 𝑡(17569) = −23.83, 𝑝 < .001; Sex: 𝑏 = −0.49, 95% CI [−0.52, −0.46], 249 

𝑡(17569) = −33.90, 𝑝 < .001; LUSWT: 𝑏 = 0.02, 95% CI [0.01,0.03], 𝑡(17569) = 2.70, 250 

𝑝 = .007). 251 

No significant interaction was found between age and LUSWT (𝑏 = 0.01, 95% CI [−0.01,0.02], 252 

𝑡(17568) = 0.97, 𝑝 = .330). The full regression tables for these analyses may be found in 253 

Supplemental Table S3 254 

The Bayesian analysis replicated the frequentist analysis in that 255 

the distribution of possible parameters did not cross zero in cases where frequentist analysis 256 

showed a non-significant estimate. Parameter point value and 95% credible interval estimates can 257 

be found in Supplemental Table S4. 258 

Parameters of interest from the Bayesian models were tested against a null hypothesis of 259 

zero using the hypothesis() function of the brms package. 260 

We found very strong evidence for the hypothesis that there would be sex differences the 261 

DTI-ALPS index (𝛽 = -0.49 , SE = 0.01 , 95% CI [-0.51, -0.47] , EvidenceRatio > 1000 , 262 

PosteriorProbability > 0.99). 263 

Bayesian Analysis. Jo
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We found very strong evidence for the hypothesis that age predicts the DTI-ALPS index 264 

(𝛽 = -0.17 , SE = 0.01 , 95% CI [-0.18, -0.16] , EvidenceRatio > 1000 , 265 

PosteriorProbability > 0.99). W 266 

We found strong evidence that longest uninterrupted sleep window on a typical night was 267 

associated with the DTI-ALPS index (𝛽 = 0.02 , SE = 0.01 , 95% CI [0.01, 0.03] , 268 

EvidenceRatio = 297.51 , PosteriorProbability = 1.00). 269 

There was only very weak evidence to support an interaction between age and longest 270 

uninterrupted sleep window (𝛽 = 0.01 , SE = 0.01 , 95% CI [0.00, 0.02] , EvidenceRatio = 4.88 271 

, PosteriorProbability = 0.83). 272 

Cognitive Tasks 273 

Parameters are reported in Table 2 for all tests. Bonferroni corrections were applied to the 274 

alpha level such that the threshold for significance was 0.005 In brief, after controlling for age, 275 

sex, and LUSWT, the DTI-ALPS index significantly predicted backwards digit span ( 𝑝 < .001), 276 

verbal paired associates ( 𝑝 < .001), log completion times for numeric ( 𝑝 < .001) and alpha-277 

numeric 𝑝 < .001). 278 

TABLE 2 ABOUT HERE 279 

Discussion 280 

In this study we calculated a proposed index of glymphatic activity (DTI-ALPS index) on 281 

a large number of MRI scans from the UK Biobank. To validate the calculation of the index, we 282 

replicated previously established relationships between age, sex, and the DTI-ALPS index, and 283 

investigated the association between the index and longest uninterrupted sleep window on a 284 
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typical night. Finally, we established a positive, independent relationship between several of the 285 

cognitive tasks completed by UK Biobank participants and the DTI-ALPS index. 286 

Although yielding smaller effect sizes, our findings in this very large sample, are 287 

consistent with previous reports in studies with smaller samples showing that the DTI-ALPS 288 

index decreases with age (Hsiao et al., 2023), and is greater in female participants (Saito et al., 289 

2023; Y. Zhang et al., 2021). We also found that longest uninterrupted sleep window on a typical 290 

night was positively associated with the DTI ALPS index which supports previous findings 291 

(Dredla et al., 2023; Saito et al., 2023) and is consistent with findings from studies that used more 292 

direct measures of glymphatic efficacy (Xie et al., 2013). Importantly, all these findings are 293 

independent of one another, therefore each variable can be assumed to be providing a unique 294 

contribution to variance in the ALPS-index. 295 

The effect sizes in our study were smaller than those reported previously on the 296 

relationship between the DTI-ALPS index, age and sex. Although this is in agreement with 297 

previous meta-scientific findings in which sample size negatively correlates with effect size 298 

(Open Science Collaboration, 2015; Schäfer & Schwarz, 2019), the explanations offered may not 299 

be compatible. For instance, it is claimed that publication bias and selective reporting is largely 300 

responsible for inflated effect sizes in psychological literature (Open Science Collaboration, 301 

2015), and the correlation between standard errors and effect sizes is a function of appropriately 302 

powering studies (Schäfer & Schwarz, 2019). There are still too few studies available to 303 

determine whether this might be the case, but future meta-analytic research would contribute to 304 

this explanation. 305 

It must be noted that the effect sizes we find for the relationship between sleep and DTI-306 

ALPS is very small. Indeed, other studies report no association between self-reported sleep and 307 
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global grey matter volume in the UK Biobank despite using a sample that was twice the size of 308 

ours (Schiel et al., 2023).  It is possible that our measure of sleep (LUSWT) was either more 309 

sensitive or measured a more relevant sleep phenotype than the self-report measures available on 310 

the Biobank.  With increasingly sensitive and specific sleep metrics, findings between studies 311 

may become more consistent. 312 

The relationship between age and the DTI-ALPS index is consistent with previously 313 

reported negative associations between age and glymphatic activity (Salminen et al., 2011).  This 314 

association has been explained as being driven by age-related factors such as loss of arterial wall 315 

integrity and senescent astrocyte pathology. There are fewer attempts at explaining sex 316 

differences in glymphatic activity, with one possibility being differences in CSF influx between 317 

sexes (Y. Zhang et al., 2021). A recent mouse study found no association between biological sex 318 

and glymphatic influx (Giannetto et al., 2020), and a subsequent study found that female mice 319 

produced more CSF, but that the transport kinetics of the fluid did not vary between sexes (Liu et 320 

al., 2020).  The calculation of the DTI-ALPS index in the UK Biobank dataset will allow the 321 

exploration of lifestyle (e.g. alcohol and tobacco consumption) and socio-demographic 322 

(e.g. education) factors which may yield useful findings; especially since these factors are absent 323 

from mouse models.   324 

Taoka et al. (2017) did not control for age and sex in their analysis of the relationship 325 

between the MMSE and the DTI-ALPS index.  Given the strength of association between these 326 

demographic variables and the DTI-ALPS index we recommend that, as a minimum, age and sex 327 

be controlled for in future studies using this measure. 328 

 We also explored whether age would modify the impact of sleep on the DTI-ALPS index, 329 

under the assumption that glymphatic health may deteriorate more quickly due to changes in  330 
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sleep patterns in older people. However, we found no interaction between age and longest 331 

uninterrupted sleep window on a typical night. This was confirmed via a combination of a non-332 

significant frequentist interaction in such a large sample and a Bayes Factor of above 1, but 333 

below our lower threshold. That said, our sleep metric does not comprehensively capture sleep 334 

integrity, and exploring this interaction within more detailed analysis of sleep may be warranted.  335 

We found that the DTI-ALPS index significantly correlated with performance on a range 336 

of neuropsychological tests. Upon follow-up analysis this relationship was also present when 337 

controlling for age, sex, and longest uninterrupted sleep window on a typical night. A higher 338 

DTI-ALPS index was associated with shorter log completion time in both numeric and 339 

alphanumeric versions of the trail making task, the number of words correctly recalled in the 340 

verbal paired associates task, and backwards digit span. Previous research has shown a 341 

relationship between the DTI-ALPS index and global screening measures of cognitive ability 342 

(e.g. the MMSE), however these were not corrected for age (Taoka et al., 2017). Unfortunately, 343 

no screening tasks were available on the UKBiobank dataset, however our findings are consistent 344 

with the expected performances based on previous research on correlations between MMSE 345 

scores and more in-depth cognitive tasks (e.g. Schmitt, Livingston, Goette, & Galusha-Glasscock, 346 

2016) even after accounting for age and sex. 347 

Categorisation of dementia was not an aim of this study, however it is promising that the 348 

DTI-ALPS index predicted performance on versions of several measures that are sensitive to 349 

cognitive decline and are regularly used to assess cognitive decline and in the assessment of 350 

dementia (Lezak, 2004; Venneri, Turnbull, & Della Sala, 1996). Performance on the trail making 351 

task has been shown to be sensitive to cognitive changes in the early stages of neurodegeneration 352 

(Greenlief, Margolis, & Erker, 1985; Lezak, 2004, p. p373; Storandt, Botwinick, Danziger, Berg, 353 
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& Hughes, 1984), and the numeric trail alone is sensitive to early or prodromal stages of disease 354 

(Botwinick, Storandt, Berg, & Boland, 1988). Likewise, impaired verbal associate learning has 355 

been shown to be an early indicator of dementia (Kaszniak, Poon, & Riege, 1986; Lezak, 2004, p. 356 

p442).  Our findings also reflect known relationships between white-matter integrity and 357 

cognition (Bennet & Madden., 2014), and are importantly still present when controlling for age 358 

which is known to sometimes mask smaller white matter effects (Mungus et al., 2009).  The 359 

small but independent relationship between the DTI-ALPS index and behaviour demonstrate that, 360 

as with other white matter indices, age alone is not sufficient to explain cognitive decline.  361 

Although there is debate about the relationship between the DTI-ALPS index and glymphatic 362 

activity, this finding parallels reports of glymphatic activity being associated with cognitive 363 

decline (Nedergaard & Goldman, 2020), and provides evidence for the utility of the DTI-ALPS 364 

index as a tool in neuroscience research.With the DTI-ALPS index now available on the UK 365 

Biobank there is an opportunity to explore more complex relationships such as genetic predictors, 366 

longitudinal survival analysis for both dementia and mortality, associations with lifestyle factors, 367 

brain age, or other physiological conditions such as cardiovascular disease. More importantly, it 368 

is now possible to explore its relationship with therapeutically modifiable factors (Bohr et al., 369 

2022). 370 

Limitations 371 

The use of probabilities to estimate length and longest uninterrupted window of sleep  372 

likely oversimplified the complexities of sleep behaviour. For instance, there was no distinction 373 

between night and day sleeping, no consideration of napping, or distinction between lifestyle-374 

related and physical sleep interruption (e.g. Obstructive Sleep Apnoea). A recent study by Katori, 375 

Shi, Ode, Tomita, and Ueda (2022) used accelerometer data from the UKBiobank to calculate 23 376 
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sleep indices (e.g. average lengths and variances in sleep and wake time, short and long sleep 377 

windows, etc). They subsequently categorised participants into sleep phenotype groups such as 378 

‘irregular sleep schedule’, ‘insomnia with short sleep duration’, and ‘sleep without day-time sleep 379 

window’. We believe that using more sophisticated indices of sleep will yield more conclusive 380 

findings. 381 

The calculation of the DTI-ALPS index from unsupervised extraction of ROIs mean that 382 

the estimate of the scores is liable to be noisy. A semi-automated calculation of the DTI-ALPS 383 

index has been previously described (Taoka et al., 2022), although this still required some user 384 

input which is unfeasible for large datasets. A key difficulty is in locating the medullary vein 385 

(Andica et al., 2023), which we achieved by relying on a standardised template. The size of the 386 

sample and consistency with previous findings suggest that any bias is minimal. However, there 387 

is room for improvement. For instance, multiple estimates of measurements could be made at 388 

several sites. Jiang et al. (2023) used DTI-ALPS index estimates from anterior, middle, and 389 

posterior cortical areas. They also estimated glymphatic efficacy using three different methods: 390 

Choroid Plexus volume to establish CSF generation propensity; DTI-ALPS index to estimate 391 

diffusion in perivascular space; and CSF-Global Blood Oxygen Level Dependent coupling to 392 

estimate CSF influx. In future studies multiple measurements and triangulation would facilitate 393 

investigation into glymphatic activity. 394 

In a recent critique of the DTI-ALPS index Ringstad (2024) presents several limitations of 395 

the measure including the use of perivascular space which is rarely observable, and the liklihood 396 

that water diffusivity in a small white-matter ROI does not fully capture brain-wide clearance of 397 

large molecules from the cortex.   Ringstad (2024) then warns against making causal assumptions 398 

about the measure between the DTI-ALPS index and glymphatic clearance based on association 399 
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studies alone, suggesting that observed relationships may be due to age- and/or disease-related 400 

changes to DTI indices.  Our estimation of the DTI-ALPS index in the UKBiobank will allow for 401 

further exploration of these criticisms. 402 

Although benefiting from a large number of participants, the UKBiobank sample is 403 

limited in its representation of the diversity of UK society. Approximately 95% of participants 404 

are white, with 86% being white-British 405 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000). Participants in the UK Biobank are 406 

also on average healthier and more educated than the general population (Davis et al., 2020; 407 

Schoeler et al., 2023; Stamatakis et al., 2021), meaning that the ranges of several variables may 408 

be restricted, thus masking true population effects. Moreover, selection bias may result in 409 

unobserved causal pathways which may lead to unexpected confounds or collider biases when 410 

variables are controlled for (Schoeler et al., 2023). 411 

Conclusion 412 

We have demonstrated that our estimate of the DTI-ALPS index in the UK Biobank can 413 

replicate previous findings from smaller studies. We have also shown that in addition to sex and 414 

age, longest uninterrupted sleep window on a typical night is positively associated with the DTI-415 

ALPS index. Finally we have shown that the DTI-ALPS index has investigative utility since it is 416 

inversely associated with performance on a range of neuropsychological tasks. The inclusion of 417 

the DTI-ALPS index in the UK Biobank showcase data will facilitate future study into risk 418 

factors associated with perivascular diffusion and the development of dementia. We encourage 419 

researchers to contact us for collaborative projects using this metric. 420 
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Table 1 

 Means and standard deviations for age, longest uninterrupted sleep window on a typical night, DTI-ALPS index, and performance on cognitive 

tasks grouped by sex. 

Variable 

Female  Male  

Pearsons r 

Mean SD Mean SD 

Age 63.98 (7.50) 65.75 (7.89) r = -0.27, p < .001*** 

LUSWT 5.29 (1.79) 5.06 (1.83) r = 0.03, p < .001*** 

ALPS 1.62 (0.20) 1.50 (0.19) - 

Prosp 0.12 (0.31) 0.12 (0.31) r = -0.05, p < .001*** 

Picv 0.40 (0.08) 0.41 (0.08) r = -0.06, p < .001*** 

Fintel 6.64 (1.94) 6.84 (2.05) r = 8.00e-03, p = 0.393 

Ntrail 5.34 (0.61) 5.39 (0.62) r = -0.15, p < .001*** 

Atrail 6.24 (1.13) 6.28 (1.12) r = -0.15, p < .001*** 
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Variable 

Female  Male  

Pearsons r 

Mean SD Mean SD 

Passo 7.50 (2.48) 6.55 (2.57) r = 0.13, p < .001*** 

Matrix 8.06 (2.08) 8.24 (2.13) r = 0.06, p < .001*** 

BDS 6.69 (1.38) 6.83 (1.44) r = 0.04, p < .001*** 

Note. Age = Participant age at scan session; LUSWT = Longest uninterrupted sleep window on a typical night; ALPS = Mean DTI-ALPS index 

over two hemispheres; Prosp = Binarised prospective memory; Picv = Derived intelligence score from picture vocabulary task; Fintel = Number 

of fluid intelligence questions answered; Ntrail = Log completion time on numeric trail making task; Atrail = log completion time on alpha-

numeric trail making task; Passo = Number of correct responses on verbal paired associates task; Matrix = Number of correct answers on matrix 

reasoning task; BDS = Maximum number of digits recalled on backward digits span task. 

 

 

 

Table 2 

Inferential test statistics for each cognitive task by domain 

 Task Domain Sex Age LUSWT ALPS Index 
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  Fluid Reasoning Executive 

b = 0.30, 95% CI [0.24, 

0.37] 

b = -0.03, 95% CI [-

0.03, -0.03] 

b = 0.02, 95% CI [0.00, 

0.04] 

b = 0.05, 95% CI [-0.12, 

0.21] 

  Matrix Reasoning Executive 

b = 0.34, 95% CI [0.27, 

0.42] 

b = -0.07, 95% CI [-

0.07, -0.06] 

b = 0.05, 95% CI [0.03, 

0.07] 

b = 0.18, 95% CI [-0.02, 

0.38] 

  

Prospective 

Memory 

Memory 

b = -0.16, 95% CI [-

0.32, -0.01] 

b = -0.06, 95% CI [-

0.08, -0.05] 

b = 0.04, 95% CI [0.00, 

0.07] 

b = 0.34, 95% CI [-0.05, 

0.73] 

  

Verbal Paired 

Associates 

Memory 

b = -0.76, 95% CI [-

0.86, -0.67] 

b = -0.07, 95% CI [-

0.07, -0.06] 

b = 0.04, 95% CI [0.02, 

0.07] 

b = 0.46, 95% CI [0.22, 

0.70] 

  Word Naming Memory 

b = 0.00, 95% CI [0.00, 

0.01] 

b = 0.00, 95% CI [0.00, 

0.00] 

b = 0.00, 95% CI [0.00, 

0.00] 

b = -0.01, 95% CI [-

0.02, 0.00] 

  

Trail Making A - 

Finish 

Visuo 

Spatial 

b = 0.18, 95% CI [-0.20, 

0.56] 

b = -0.08, 95% CI [-

0.11, -0.05] 

b = -0.02, 95% CI [-

0.11, 0.08] 

b = 0.41, 95% CI [-0.54, 

1.37] 
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Trail Making A - 

Time 

Visuo 

Spatial 

b = 0.02, 95% CI [0.01, 

0.03] 

b = 0.01, 95% CI [0.01, 

0.01] 

b = 0.00, 95% CI [-

0.01, 0.00] 

b = -0.04, 95% CI [-

0.07, -0.02] 

  

Trail Making B - 

Finish 

Visuo 

Spatial 

b = 0.27, 95% CI [0.04, 

0.49] 

b = -0.10, 95% CI [-

0.12, -0.09] 

b = 0.02, 95% CI [-

0.04, 0.07] 

b = 0.10, 95% CI [-0.47, 

0.67] 

  

Trail Making B - 

Time 

Visuo-

Spatial 

b = -0.01, 95% CI [-

0.02, 0.00] 

b = 0.02, 95% CI [0.02, 

0.02] 

b = -0.01, 95% CI [-

0.01, 0.00] 

b = -0.08, 95% CI [-

0.11, -0.04] 

  

Digit Span 

Backwards 

Working 

Memory 

b = 0.25, 95% CI [0.20, 

0.29] 

b = -0.02, 95% CI [-

0.03, -0.02] 

b = 0.00, 95% CI [-

0.01, 0.02] 

b = 0.26, 95% CI [0.14, 

0.38] 
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Figure 1: Plot of correlations between age and DTI-ALPS index split by sex. 
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Figure 2: Plot of correlations between longest uninterrupted sleep window on a typical night and 

DTI-ALPS index split by sex. Regression line controls for age. 
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Highlights 

 

A proposed index of glymphatic system health, the Diffusion Tensor Imaging Along the 

Perivascular Space (DTI-ALPS index) index, was calculated in a large sample of participants 

from the UK Biobank.  

We replicated analyses from previous studies showing that the DTI-ALPS index decreases 

with age, is higher in women, and is positively associated with sleep, and cognition.  

Although these replications were broadly successful, the effect sizes were substantially 

smaller than previously reported.  
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