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Abstract—Limited edge server resources and uneven distribu-
tion of traffic density in vehicular networks result in problems
such as unbalanced network load and high task processing la-
tency. To address these issues, we proposed an efficient caching
and offloading resource allocation (ECORA) strategy in vehicu-
lar social networks. First, to improve the utilization of vehicular
idle resources, a collaborative computation and storage resource
allocation mechanism was designed using mobile social similarity.
Next, with the optimization objective of minimizing the average
task processing delay, we studied the combined resource allocation
optimization problem and decoupled it into two sub-problems. For
the service caching subproblem, we designed a stable matching
algorithm by mobile social connections to dynamically update the
cache resource allocation scheme for improving the task unloading
efficiency. For the task offloading subproblem, a discrete cuckoo
search algorithm based on differential evolution was designed to
adaptively select the best task offloading scheme, which minimized
the average task processing delay. Simulation results revealed that
the ECORA strategy outperformed the resource allocation strat-
egy based on particle swarm optimization and genetic algorithm,
and reduced the average task processing delay by at least 7.59%.
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Meanwhile, the ECORA strategy can achieve superior network
load balancing.

Index Terms—Cuckoo algorithm, resource allocation, task
offloading, vehicular social networks.

I. INTRODUCTION

W ITH the rapid development of 5G communication tech-
nologies, novel compute-intensive and latency-sensitive

mobile vehicular services have attracted considerable research
attention for applications such as remote driving, environmental
awareness, and 4 K live streaming [1], [2], [3], [4], [5]. Mobile
Edge Computing (MEC) is used in the Internet of vehicles
can reduce the transmission distance, improve user experience,
and enhance resource allocation efficiency [6], [7]. Therefore,
studying the resource allocation strategy for vehicular networks
is crucial [8], [9], [10], [11]. However, considering the rapid
increase in the number of intelligent connected vehicles and
data traffic in the future, the limited edge server resources render
timely response to the massive task requests from vehicle users
difficult. Therefore, the resource allocation efficiency of edge
server is reduced, and task processing delay is considerably
affected, which renders the design of the resource allocation
algorithm challenging [12], [13], [14], [15], [16].

Recently, multi-edge server collaboration have attracted con-
siderable research attention [17]. In this technique, multiple
edge servers collaborate to perform computing tasks, includ-
ing scheduling storage and computing resources, to maximize
network performance and resource utilization [18], [19], [20].
Based on superior edge server collaborations, a new cooperation
system should be considered to integrate and use the idle com-
puting resources in intelligent networked vehicles [21]. Thus, the
original available resources in the server collaboration system
should be extended to optimize the quality of the user experience.
According to the global intelligent connected vehicle forecast
report (2020-2024) released by International Data Corporation
(IDC), the global shipments of intelligent networked vehicles
will reach approximately 76.2 million units by 2024 [22]. More
than 71% of new cars shipped globally will be equipped with
smart connectivity systems. Full use of the idle resources of
a large number of intelligent networked vehicles will relieve
the resource shortage of the Internet of vehicles, enhance the
scalability of the computing services, and improve the service
quality of vehicle users.
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However, research on edge server and vehicle collaborative
resource allocation has some key problems. First, in most stud-
ies, only the task unloading process between mission vehi-
cles, edge servers, and collaborative vehicles in the Internet
of vehicles is analyzed, and the effect of the collaborative
vehicle service caching process on task unloading is ignored.
Specifically, cooperative vehicles exhibit sufficient computing
resources. However, if the cooperative vehicles do not exhibit
cache-related services, it cannot perform corresponding com-
puting tasks. Thus, this phenomenon leads to the inadequate
utilization of the computing resources of cooperative vehicles.
Second, because of the limited storage resources of collaborative
vehicles, only a few services can be cached at a time. Considering
the task between vehicle unloading request is random and the
inability to perform advance prediction, the current allocation of
resources process should be overhauled to incorporate an intelli-
gent caching mechanism to perceive mobile social connections
between the vehicles. Finally, in the Internet of vehicles, the task
load and resource status of various edge servers change with
the vehicle flow density, speed, and other factors. Therefore,
the influence of vehicle movement can be attributed to load
balancing among edge servers should be considered.

This study proposed an efficient caching and offloading re-
source allocation (ECORA) strategy in vehicular social net-
works. Unlike existing studies, this study focuses on resource
allocation of joint service caching and task offloading between
vehicles and mobile edge servers, in the cooperative communica-
tion scenario. To realize edge server load balancing and improve
the utilization rate of idle resources of intelligent networked
vehicles, we comprehensively analyzed the influence of social
contact and motion state between vehicles on service caching
and task unloading process. We propose a stable matching
algorithm based on mobile social contact and a discrete cuckoo
search algorithm based on differential evolution. This strategy
supports dynamic update and allocation of cache resources and
assists the vehicle to adaptively select the best task unloading
location. Thus, the service quality can be improved, and the
average task processing delay can be reduced. The main contri-
butions are summarized as follows.
� A social vehicle communication system model combining

service caching and task unloading was designed. By using
multi-edge servers and vehicle cooperation to allocate re-
sources, it realized network load balancing and optimized
the efficiency of idle resources allocation.

� An efficient caching and offloading resource allocation
strategy in vehicular social networks was proposed. In this
strategy, the average task processing delay is minimized for
achieving high service quality and the NP-hard resource
allocation problem of joint service cache and task unload
are categorized into two sub-problems of service cache and
task unload. To address the subproblem of service cache, a
stable matching algorithm based on mobile social contact
was designed. To address the task unloading subproblem,
a discrete cuckoo search algorithm based on differential
evolution was designed.

� Our results revealed that compared with the particle swarm
optimization (PSO) [23] and genetic algorithm (GA) strate-
gies [24], the ECORA strategy reduced the average task

processing delay by at least 7.59% and 9.98% with im-
proved network load balancing.

II. RELATED WORK

Considering that the limited resources of conventional edge
servers cannot timely process the computing task requests of
numerous vehicle users, the collaborative resource allocation of
multiple edge servers has attracted considerable research atten-
tions [25], [26], [27], [28]. For example, Zhu et al. [29] proposed
a collaborative resource allocation strategy for multiple edge
servers. Specifically, in this strategy, the total energy constraint
and individual energy constraint of each server as well as the
limitation of individual computing frequency are considered and
when to unload the corresponding task to the specified server is
determined. Thus, the task processing delay can be minimized.
Guo et al [30] proposed an uninstallation strategy based on game
theory for multi-edge server cooperation scenarios. By studying
the stable balance among computation cost, energy consumption
and delay, they reduced energy consumption and processing
delay. Mao et al. [31] proposed a task unloading mechanism for
Internet of Vehicles based on trusted RSU services, built a new
infrastructure trust management model. According to introduce
social factors to strengthen the security management of RSU,
it can improve the system’s ability to handle task unloading
when attacked and maintain low delay and high task success rate.
Furthermore, Wang et al. [32] proposed a collaborative resource
allocation strategy between edge cloud and central cloud. They
classified tasks into according to priorities based on delay tol-
erance and subsequently reordered the tasks. The reinforcement
learning algorithm was used to intelligently allocate local edge
server resources and cloud resources, thus optimizing the service
quality of vehicle users. Yin et al. [33] designed a UAV assisted
multi-input multi-output non-orthogonal multi-access (MIMO-
NOMA) resource allocation strategy based on the wireless
caching network, and optimized the UAV deployment scheme,
hybrid beamforming scheme and power allocation scheme to
achieve lower user delay during content delivery. Many studies
have focused on maximizing the use of computing resources by
building edge server clusters to reduce computing overhead and
latency [34], [35], [36]. However, in the aforementioned study,
the allocation of resources of edge servers is considered, and
the computing and storage resources of intelligent networked
vehicles are ignored. Moreover, as the number of vehicles and
requests increases, the limited resources of edge servers cannot
satisfy the service user requirement.

Due to the increasing demand of vehicular networks for
resources related to computing and caching, in this case, each ve-
hicle has different types of resources, and these resources can be
shared independently, how to flexibly allocate resources among
multiple vehicles is challenging. Pradhan et al. [37] proposed a
semi-Markovian decision based resource allocation mechanism
to manage resources from different vehicles and allocate nec-
essary resources to their users on demand to improve resource
management revenue. Kim et al. [38] proposed an optimal job
partitioning and allocating algorithm for vehicular cloud com-
puting, which minimized the overall execution time of jobs by
tracking available resources, analyzing the optimal number and
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size of task division. Considering the high mobility of vehicles,
when vehicles frequently join or leave the mobile network, the
risk of communication link failure and communication overhead
will be greatly increased, and the efficiency of resource sharing
will be reduced. Gu et al. [39] proposed a novel three-stage joint
resource allocation and RIS optimization algorithm. Consider-
ing channel quality and social trust between V2X links, they
established a RIS assisted vehicular network communication
system with social trust. Thus, solving RIS reflection coefficient
design, power allocation of each pair of vehicles and spectrum
reuse mode optimization in stages. Huang et al. [40] proposed
a task offloading and resource allocation strategy based on joint
task type and speed perception. Considering that different types
of tasks and speed need different delay requirements, further
analyzed the internal relationship among speed, task type and
delay requirements, and established a joint task type and speed
perception delay constraint model. Enables more accurate task
offloading and resource allocation. The above research focuses
on the consideration of multi-vehicle cooperation to assist the
vehicular networks to carry out the task unloading process,
which can not effectively take advantage of the rich resources
of MEC. If the vehicle requests to unload too many tasks, the
resources of the edge server can not work together to execute
the tasks, the sum of the computing requirements of these tasks
may exceed the total computing resources of the multi-vehicle
collaborative system. Such problems will lead to the overload of
multi-vehicle cooperative system and the deterioration of QoS
of tasks.

Numerous studies have been conducted to alleviate the limited
resources of the Internet of vehicles, enhance vehicular networks
computing service scalability as well as computing power. In the
current research, multi-edge server and multi-vehicles can coop-
erate to allocate resources using idle resources of vehicles [23],
[24], [41], [42]. Thus, effectively satisfying the new generation
vehicle computational and delay sensitive business service re-
quirements is critical. For example, Li et al [24] proposed a
novel resource allocation strategy based on GA in multi-user
and multi-edge server scenarios. In this strategy, the interaction
between unloading decision and resource allocation is analyzed
comprehensively, and reduce the energy consumption in the
unloading decision process by using the GA to constrain the
channel selection and power allocation. Hou et al. [23] proposed
a resource allocation strategy based on PSO for cooperation be-
tween mobile vehicles and edge computing nodes. The strategy
describes the effect of compute node selection on transmission
link reliability during uninstallation and task assignment. Xu et
al. [43] proposed a short-term resource allocation strategy for
content provider (CP) and content requester (CR), which used
the contract theory to allocate communication and computing
resources for each potential CP-Cr pair and matched CP and CR
based on a stable matching algorithm. Thus, realizing efficient
content sharing between vehicles or between vehicles and in-
frastructure. A PSO algorithm was designed to maximize trans-
mission link reliability under delay constraints. A reprocessing
strategy was introduced to prevent possible task computing
interruption and failure, which enhances the fault tolerance of
system task processing and optimizes user service experience.
To alleviate the shortage of spectrum resources, vehicles can

not only communicate through the licensed spectrum, but also
consider offloading part of the computing tasks to the edge server
through the unlicensed spectrum. Furthermore, to address the
uncertainty of vehicle movement and improve service reliability,
a task replication strategy was proposed to allow multiple coop-
erative vehicles to perform a task simultaneously [37], [39], [44].
The aforementioned studies have focused on the task unloading
process in the scenario of cooperation between vehicles and edge
servers, without considering the effect of the service caching
process on resource allocation. The service caching process is
combined with the task unloading process, and the cooperative
vehicle cannot perform corresponding computing tasks without
caching related services. Moreover, most of the work ignores the
mobile social connection between the cooperative vehicle and
the mission vehicle. For example, the initiative of the cooperative
vehicle’s service cache and its willingness to assist the unloading
task are not considered. In this case, the cooperative vehicle
has a high probability of rejecting the unloading request and
the communication link established is short in duration. This
will lead to the reduction of task unloading efficiency and the
decline of vehicle service quality. Therefore, it is critical to joint
optimize the task unload and service caching.

III. SYSTEM MODEL AND DEFINITIONS

In this study, we proposed an efficient caching and offloading
resource allocation strategy in vehicular social networks. First,
we establish a social vehicular communication system model
combining service caching and task unloading (Fig. 1). As
displayed in Fig. 1(a), the model contains two layers, namely the
physical and mobile social layers. The physical layer consists
of several roadside units (RSU), edge servers, mission vehicles,
and collaborative vehicles, which can establish communication,
service caching, and task unloading. The mobile social layer is
mapped by the physical layer and used to determine willing-
ness based on social relations, mobile relevance, and resource
idle rate. Thus, willingness of the vehicles to collaborate on
resource allocation, service caching and task offloading, as well
as between vehicles and edge servers is considered.

As displayed in Fig. 1(b), the model consists of M mis-
sion vehicles, N collaboration vehicles, and K roadside
units (RSUs), and edge servers deployed at the RSUs. Here,
the collection of mission vehicles is referred to MV =
{MV1,MV2, . . .,MVm, . . .,MVM}, which is used for unload-
ing tasks to RSUs (or cooperative vehicles) within the commu-
nication range. A collection of collaborative vehicles, known
as CV = {CV1, CV2, . . ., CVn, . . ., CVN}, provides comput-
ing resources to complete the tasks of mission vehicles. In
this study, RSUs and edge servers configured around them are
regarded as a whole, denoted as access points (APs), and their set
is represented by AP = {AP1, AP2, . . ., APk, . . ., APK}. The
AP has lightweight computing and caching resources that place
the caching service on the collaborative vehicle and provide
computing resources to complete the tasks of the mission vehi-
cle. Furthermore, the total local storage resource size of MVm
is set to Sm, and the total local computing resource size is set to
Cm. The local total storage resource size of collaborative vehicle
CVn is defined asSn, and the local total computing resource size
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Fig. 1. ECORA system model.(a).social vehicular communication system. (b).Physical layer of social vehicular networks communication system.

is defined as Cn. The total local storage resource size of APk

is defined as Sk, and the total local computing resource size as
Ck.

In the mobile social layer, this layer consists of the physical
layer mapping, as well as multi-mission vehicles, collaborative
vehicles, RSUs, and edge servers deployed at the RSUs. Among
them, the mission vehicle can determine whether the cooperative
vehicles and RSUs can unload the task and return the result
according to the mobile social relationship. RSU can determine
whether collaborative vehicles are willing to cache service data
and related applications according to mobile social relations.
Furthermore, RSU can determine whether edge servers of other
RSUs are willing to cooperate to complete computing tasks. The
system model can provide F service cache resources, and SRf ,
f ∈ {1, 2, . . ., F} represents the size of the f kinds of service
caching resources.

In this study, the total bandwidth of the available spectrum in
the system model is assumed to be W , which is categorized
into several orthogonal sub-channels, and the bandwidth of
each subchannel is B0. Each V2V link can reuse one V2I
subchannel resource for data transmission. All service APs and
cooperative vehicles are assumed to constitute a set SD, and
SD = {SD1, SD2, . . ., SDy, . . .}, Y ∈ {CV ∪AP}, y ∈ Y ,
where SDy represents the yth collaborative vehicle (or access
point) in the set that provides the service. Tasks generated by
theMVm of the mission vehicle can be unloaded to cooperative
vehicle CVn, associated access point APk, and cooperative
access pointAPk′ . Therefore, studying theMVm unloading task
process based on three situations is critical.

A. Service Caching Mechanism

When the access point and the collaborative vehicle provide
services to the mission vehicle, the corresponding services
should be cached locally in advance. Because of the limited
cache resources of collaborative vehicles, all services cannot
be cached locally simultaneously. Therefore, at the beginning

of each time slot, the access point determines the services the
collaborative vehicle should cache based on popularity. Here,
popularity ρ is defined as the popularity of different contents
within a certain interaction time, following Zipf distribution and
expressed as follows:

p(f) =
f−α∑F
f=1 f

−α
, f ∈ F, (1)

where parameter α describes the steepness of the Zipf distribu-
tion and reflects the popularity of various contents. Assuming
that St = {St

y, y ∈ Y } represents the service caching policy of
all cache devices in the t slot, and considering that the access
point can directly obtain the cache content from the core net-
work, and the transmission time is ignored. Here, St

y,y∈AP = 1
means all APs in the t slot can provide all cache resource
services. Furthermore, St

y,y∈CV represents the service caching
strategy of t slot cooperative vehicles.
St
y,f ∈ {0, 1}, y ∈ CV is defined to represent the CVy cache

resource allocation strategy in the t slot. For representation,
the variable t representing the time slot is ignored for caching
and unloading the following policies. Furthermore, Sy,f = 1
indicates that the f th service resource was cached by cooperative
vehicleCVy in the t time slot, whereasSy,f = 0 denotes that the
f th service resource was not been cached by cooperative vehicle
CVy in the t time slot. When CVy caches service resources,
it cannot violate its own cache capacity limit Zy . Therefore,
the constraint conditions for collaborative vehicle CVy to cache
service resources are as follows:

F∑
f=1

Sy,f · SRf ≤ Zy, ∀y ∈ CV. (2)

However, the popularity of service resources can change over
time. Therefore, cooperative vehicles consider whether to re-
place cached content at each time slot. When a new data packet
arrives, the cooperative vehicle determines whether its remain-
ing cache capacity is greater than the packet capacity. If the
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remaining cache capacity is sufficient, the data packet is saved.
Otherwise, the existing cache services are sorted quantitatively
by popularity, and the cache services with low popularity are
deleted in batches to replace the new data packets with high
popularity.

Furthermore, to avoid overloading the access point and ensure
CVn can determine whether the desired service cache data
can be downloaded from APk, we introduced an NK ×NN -
dimensional matrix B. Here, bk,n represent the elements in the
kth row and nth columns of the matrix. Furthermore, bk,n = 1
indicates that collaborative vehicle CVn can communicate with
APk and download service resources, whereas bk,n = 0 denotes
that collaborative vehicle CVn cannot communicate with APk

and download service resources. Because of the limited load of
the APk, the APk cannot violate its own maximum connection
number limit Λ when providing cache resources. Therefore, the
APk should satisfy the following constraints when providing
service cache:

N∑
n=1

bk,n ≤ Λ. (3)

B. Task Offloading Mechanism

Each mission vehicle is assumed to generate a computational
task in each time slot, and the mission vehicle prioritizes un-
loading the task to the cooperative vehicle with the best channel
quality within the communication range. Furthermore, the time
required for the access point to download the cache service of
the core network through optical fiber is ignored, and the default
access point can cache all services. If the cooperative vehicle
associated with the mission vehicle has insufficient resources or
does not cache the required services, the mission vehicle offloads
the computing task to the access point. Furthermore, if the
access point associated with the mission vehicle has insufficient
resources, the access point unloads the computing task to another
access point. Therefore, at the beginning of each time slot, the
mission vehicle should determine the unloading position of the
task according to the idle rate of resources, social relations, and
mobility relevance.

First, the idle rate of computing resources is defined as ρfy ,
which represents the proportion of idle computing resources
to the total computing resources in SDy , that is, ρfy = ρey/Cy ,
(y ∈ Y ). Here, ρey indicates the size of idle computing resources
of SDy , Cy indicates the total local computing resource size of
the SDy .

Here, Am,y is defined as the computing resource allocation
strategy, which is used to indicate whether the mission vehicle
MVm unloads the task at SDy . Furthermore, Am,y = 0 indi-
cates that MVm is not unloaded from SDy , whereas Am,y = 1

indicates that MVm unloads tasks from SDy . In each time slot,
mission vehicle MVm can select only one unloading position
to perform the unloading task. Therefore, constraint conditions
should be satisfied as follows:

Y∑
y=1

Am,y=

N∑
n=1

Am,n+

K∑
k=1

Am,k+

K∑
k=1

K∑
k′=1,k′ �=k

Am,k,k′ =1

(4)
where Am,n is a binary variable, which is used to indicate
whetherMVm unloads the task atCVn,Am,k is a binary variable
used to indicate whetherMVm unloads the task atAPk,Am,k,k′

is a binary variable used to indicate whether MVm unloads the
task at APk′ associated with APk.

To ensure that the mission vehicle preferentially selects the
cooperative vehicle (or access point) associated with itself to
unload the task, the idle rate threshold ρfth is set. Thus, the times
of cooperation and related costs are reduced considerably. At
this stage, the constraint conditions for the mission vehicle to
select the cooperative vehicle (or access point) to unload the task
are denoted as (5) shown at the bottom of this page, where if a
cooperative vehicle computing resource idle rate ρfy is greater

than the given threshold ρfth, and the cooperative vehicle has
cached the corresponding service content. Next, MVm selects
the unload task of the cooperative vehicle. If the ρfy of any
cooperative vehicle is lower than the specified threshold, and
the ρfy of the access point associated with MVm is greater than
the specified threshold, MVm unloads the task at the access
point. Furthermore, if the computing resource idle rate ρfy of
any cooperative vehicle is lower than the specified threshold,
the computing resource idle rate ρfy of the access point associ-
ated with MVm is lower than the specified threshold, and the
computing resource idle rate ρfy of an access point is greater than

the specified threshold ρfth. Then MVm selects the access point
to unload the task. If none of the aforementioned conditions is
satisfied, MVm stops the unloading task request and waits for
the emergence of the cooperative vehicle (or access point) SDy

that meets the unloading requirements in the next time slot.
However, in vehicular networks, multiple SDy that satisfy

the requirements exist when mission vehicle MVm chooses
unloading task according to constraints. At this stage, MVm
can score and sort cooperative vehicles (or APs) that satisfy
the requirements according to social relationship, mobility as-
sociation, and idle rate of computing resources. Then MVm
selects high-quality cooperative vehicles (or APs) with high
social mobility similarity to unload tasks.

Furthermore, the social relationship between MVm and co-
operative vehicle (or AP) SDy can be expressed by interest
similarity and social trust degree. The similarity of interest can
be defined as the social content similarity of historical browsing

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Am,y = 1, {pfy ≥ pfth, y ∈ CV } ∪ {Sy,f = 1}
Am,y = 1, {pfy < pfth, y ∈ CV } ∪ {pfy ≥ pfth, y ∈ AP and associated with (a.w.)MVm}
Am,y = 1, {pfy < pfth, y ∈ CV } ∪ {pfy < pfth, y ∈ AP and a.w.MVm} ∪ {pfy ≥ pfth, y ∈ AP and not a.w.MVm}
Am,y = 0, otherwise

(5)
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betweenMVm and SDy (the connection duration of interaction
service and the number of interaction service resource). Users
with high interest similarity are often more likely to share data

in the future. Let
−→
Ifa = (Ifa1, I

f
a2) be the interest feature vector

of the users, where
−→
Ifm represents the interest feature vector of

the MVm,
−→
Ify represents the interest feature vector of the SDy .

Cosine similarity is used to measure the interest similarity Sm,y

between SDy and MVm, which is expressed as follows:

Sm,y =

∑F
f=1(

−→
Ifm · −→Ify )∑F

f=1(||
−→
Ifm|| × ||−→Ify ||)

. (6)

We used the intermediary centrality to measure the degree of
social trust between MVm and SDy . Here, dots represented
MVm and SDy . Edges represented the social connection be-
tween MVm and SDy . Therefore, we can develop mobile so-
cial relationship networks and calculate the intermediary center
based on this network. The degree of social trust betweenMVm
and SDy can be expressed as follows:

Bm,y =
∑

m,y∈V

gm,y(e)

Gm,y
, (7)

where Gm,y represents the number of shortest paths between
MVm and SDy , gm,y(e) represents the number of paths con-
taining edges with a weight of e, and V represents the number
of points. To facilitate calculation, the normalized social trust
can be expressed as follows:

Bm,y =
Bm,y

(K +N +M)2
. (8)

Considering the interest similarity and social trust between
MVm and SDy , the social connection betweenMVm and SDy

can be expressed as follows:

θm,y = α2Sm,y + β2Bm,y, (9)

where α2 and β2 are debug factors, satisfying α2 = β2 = 0.5.
Finally, we introduce movement correlation and study its

effect on task unloading. In mobility relevance, each vehicle
change their location and driving direction in real time, which is
the topological mobility in the Internet of vehicles. Therefore,
the position change between MVm and SDy , and the change
of MVm’s own driving direction should be considered compre-
hensively to determine whether MVm and SDy are willing to
unload tasks. For the whole Internet of vehicles, the process of
task unloading should be scattered in various network topologies
of the Internet of vehicles as much as possible, rather than
concentrated in a certain area. This method can reduce the load
pressure of RSU and edge servers and the mission vehicle can
unload data as close as possible. According to vehicle mobility,
we establish the position correlation function Dm,y:

Dm,y = 1 − e

(
− μ·Ry

dm,y

)
, (10)

where dm,y is the Euclidean distance between MVm and SDy ,
and Ry is the communication radius of SDy . Here, μ is the

weight parameter, and its expression as follows:

μ =

{
1, MVm drives toSDy

0.5, MVm leaves toSDy

, (11)

where μ = 1 indicates that when MVm drives to SDy , the
connection between MVm and SDy lasts for a long time. Then
MVm and SDy are highly likely to remain connected in the
future for some time, and the probability of unloading task
increases. Here, μ = 0.5 indicates that whenMVm drives away
from SDy , the connection between MVm and SDy lasts for
a short time, and the probability of unloading tasks decreases
and data interaction increases. At this stage, tasks should be
scattered in the network topology rather than centralized so that
MVm will unload tasks in a further place.

C. Optimization

When mission vehicle MVm generates task Tm and unloads
it to the collaborative vehicle CVn for execution, the execution
delay can be categorized into two parts: 1) The transmission
delay tupm,n of MVm uploading data to CVn. 2) The calculated
delay tulm,n required for CVn to perform the task Tm, that is
tulm,n = cm/cm,n. Here, cm represents the MVm’s computing
amount of the task, cm,n represents the computing resources
that CVn allocates to task Tm. Task Tm generated by MVm is
unloaded toCVn, and the time delay required for task execution
is tpm,n as follows:

tpm,n = tupm,n + tulm,n, (12)

whereMVm generates Tm and unloads it to associatedAPk for
execution. In this case, the execution delay includes two parts:
1) The transmission delay of MVm uploading data to APk. 2)
The calculated delay tulm,k required forAPk to perform the task.
Here, cm,k represents the computing resourcesAPk allocates to
a task. The delay required for task Tm generated by MVm to
unload to APk associated with itself to perform the task is tpm,k

and expressed as follows:

tpm,k = tupm,k + tulm,k. (13)

After MVm generates Tm and unloads it to associated APk for
execution, theAPk may not perform task because of insufficient
computing resources. In this case, APk cooperates with other
surrounding APs to fully utilize idle computing resources. Thus,
system resource utilization and enhancing user experience are
improved. IfAPk selects an idle access pointAPk′ to cooperate
in task execution, then the execution delay can be categorized
into three parts: 1) The transmission delay of MVm uploading
data to APk. 2) The transmission delay of APk uploading data
to APk′ . 3) The calculated delay tulm,k′ required by APk′ to
perform task Tm, that is, tulm,k′ = cm/cm,k′ . cm,k′ represents the
computing resources APk′ allocates to a task. The time delay
required when the task Tm generated byMVm is unloaded from
APk′ to perform the task is tpm,k,k′ , and it is expressed as follows:

tpm,k,k′ = tupm,k + tsk,k′ + tulm,k′ . (14)
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In mission vehicle requesting task unloading, the objective
function of the optimization problem can be expressed as
follows:

T =

min
∑

y=1,y∈Y

N∑
n=1

M∑
m=1

K∑
k=1

K∑
k′=1,k′ �=k

Am,y(t
p
m,n+t

p
m,k+t

p
m,k,k′)

M

s.t. C1 : QoSm,y ≥ ψ,∀m ∈MV, y ∈ Y

C2 :
∑
y=1

Am,y = 1, ∀m ∈MV, y ∈ Y

C3 :

F∑
f=1

Sy,f · SRf ≤ Z, ∀y ∈ CV

C4 :

N∑
n=1

bk,n ≤ Λ,

K∑
k=1

bk,n ≤ 1

C5 : 0 ≤ cm,n ≤ Cn,

M∑
m=1

cm,n ≤ Cn, ∀n ∈ CV

0 ≤ cm,k ≤ Ck,

M∑
m=1

cm,k ≤ Ck, ∀k ∈ AP

0 ≤ cm,k′ ≤ Ck′ ,

M∑
m=1

cm,k′ ≤ Ck′ , ∀k′ ∈ AP (15)

where Am,y is defined as the computing resource allocation
strategy, which is used to indicate whether the mission vehicle
MVm unloads the task at SDy . Constraint C1 indicates that to
ensure the user experience of mission vehicles, the QoSm,y of
communication links is required to exceed the minimum QoS
thresholdψ. The constraintC2 indicates that the mission vehicle
can select only one unloading position to perform the unloading
task. The constraint C3 indicates that, considering the limited
cache resources, to prevent the waste of cache resources, limiting
the cached resources of a CV is necessary while ensuring that the
cache space occupied by any CV does not exceed Z. Constraint
C4 indicates that when an access pointAPk provides a cache re-
source service, its maximum connection number does not exceed
Λ, and the cooperative vehicle can only select one access point to
receive the service cache. Constraint conditionC5 indicates that
the size of computing resources allocated to the mission vehicle
is limited, while ensuring that the total computing resources
allocated to the mission vehicle cannot exceed the maximum
value provided by the cooperative vehicle (or access point).

IV. OUR PROPOSED ECORA STRATEGY

Because the original optimization problem is NP-hard, ob-
taining the optimal joint cache and computational resource
allocation strategy in the polynomial time is critical. To sim-
plify the problem, the combinatorial optimization problem was
categorized into two sub-problems, namely service caching
subproblem and task unloading subproblem.

A. Stable Matching Algorithm Based on Mobile Social
Contact

To address the service cache subproblem. First, the service
cache requirement relationship between APk and CVn was
modeled as a matching model. In t time slot, CVn requests
f th service cache resource. For APk, the data transmission is
assumed to complete in a short time with a mission vehicle with
high social similarity to the service under the QoS requirements
of the requesting business. Therefore, the effect function ofAPk

on CVn is expressed as follows:

Y AP
k,n =

θk,n ·QoSk,n

tupk,n
, (16)

where θk,n represents the social connection between CVn and
APk, and θk,n = α2Sk,n + β2Bk,n can be obtained. At this
stage, Sk,n is the interest similarity between CVn and APk,
and Bk,n is the normalized social trust. QoSk,n represents the
communication service quality between CVn and APk, and
QoSk,n = α1Pk,n + β1QRk,n can be obtained, where α1 and
β1 are debug factors, satisfying α1 = β1 = 0.5. Then QRk,n is
the link state between CVn and APk.

Unlike APk, CVn mainly considers its relative position with
the access point and the popularity of the cache content of the
request service. CVn also considers whether a communication
link exists between APk and CVn. Based on this, the effect
function of CVn on APk is expressed as follows:

Y CV
k,n =

Dk,n ·QRk,n

1 + e−ρ(f)max
, (17)

where Dk,n represents the moving correlation between CVn
onAPk, and Dk,n = 1 − exp(−μRk/dk,n) can be obtained. In
this case, Rk is the communication radius of APk, and dk,n is
the Euclidean distance between CVn on APk. Here, ρ(f)max

indicates that CVn selects the cache service with the highest
popularity from its uncached service set and requests sharing to
APk.

The order ofCV inAPk’s preference listPRAPk is mainly in
descending order according to the size of Y AP

k,n , that is, the CVn
corresponding to the maximum value of Y AP

k,n ranks first in the
list of PRAPk . Similarly, APk in CV ’s preference list PRCVn

is arranged in the descending order according to Y CV
k,n . Based on

the aforementioned assumptions, one-to-one stable matching is
defined as follows:

B. Discrete Cuckoo Search Algorithm Based on Differential
Evolution

Based on the aforementioned algorithm, the system iterates
continuously until no blocking pair exists in the matching results
of service cache. Thus, the service caching subproblem is solved,
which improves the efficiency of collaborative vehicle service
cache and boosts the success rate of task unloading. Moreover,
we proposed a discrete cuckoo search algorithm based on dif-
ferential evolution to solve the task unloading subproblem.

The position of the ith nest in the t generation is assumed
to be xti, and xti = {xti,1, xti,2, . . ., xti,m, . . ., xti,M}, where M

represents the dimension. Furthermore, xt+1
i represents the new
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Algorithm 1: Stable Matching Algorithm Based on Mobile
Social Contact.

Each APk∗∗ and CVn∗∗ establishes their own initial
preference lists PRAPk∗∗ and PRCVn∗∗ , and records the
unmatched CVn : DM = {CVn, ∀CVn ∈ CV }

while DM �= Oslash; , ∃PRCVn∗∗ �= Oslash; do :
if
∑F

f=1 Sn,f · SRf ≤ Zn then :
CVn in turn sends data caching requests to the APk

with the highest order in the preference list;
else
CVn deletes the least popular local service cache
content;
CVn continues to send data cache requests to the
APk with the highest order in the preference list.

end if
for ∀APk ∈ AP , 1 ≤ k ≤ K do :
if APk prefers CVn to CVn∗ , which matches the last
row of the candidate list, and meets

∑N
n=1 bk,n < Λ

then :
APk temporarily accepts the CVn and reorders the
preference list;
CVn moves out of DM;

else if APk prefers CVn to CVn∗ , which matches the
last row of the candidate list, and meets∑N

n=1 bk,n = Λ then :
APk temporarily accepts CVn and reorders the
preference list;
APk removes CVn∗ from its preference list;
CVn∗ removes APk from its preference list;
CVn∗ is moved into DM and CVn is moved out of
DM.

else if APk does not prefer CVn compared with CVn∗

that matches the last row of the candidate list then :
APk refuses CVn, CVn removes APk from its
preference list;

end if
end for

end while

location of the ith nest after global update of xti of the nest
location of the t generation. At this stage, the path and position
of cuckoo searching for parasitic nests are updated as follows:

xt+1
i,m = xti,m + α3 ·Rand · Levy(β3), i = 1, 2, . . .,K +N,

(18)
where xti,m represents the value of the ith nest in the m dimen-
sion of the nest position in the t generation. Similarly, xt+1

i,m is the
value of themdimension in the new position of the ith nest. Here,
α3 is the step size factor and used to control the step size. This
value is typically set to beα3 = 1. WhereLevy(β3) ∼ u = t−β3 ,
(1 < β3 ≤ 3), β3 is the influence factor, typically β3 = 1.5. The
Levy distribution is expressed as follows:

Levy(β3)=0.01 · u

|v| 1
β3

· (xtj,m−btg,m), j, g=1, 2, . . .,K+N,

(19)

where u and v both obey normal distribution, that is, u ∼
N(0, σ2

u), v ∼ N(0, σ2
v). σu = { Γ(1+β3)·sin(π·β3/2)

Γ[(1+β3)/2]·β3·2(β3−1)/2 }1/β3 ,
σv=1.

In addition, btg =
{
btg,1, b

t
g,2, . . ., b

t
g,m, . . ., b

t
g,M

}
represents

the current optimal solution that can be found in the current
search algorithm. According to (19), the nest position is reserved
for the next generation.

Because the location information of the solution space is a
continuous value, it cannot be directly used by the optimization
objective function to solve the optimal value. Therefore, the
effect function should be constructed to map the continuous
value of position to the binary discrete value between {0, 1}.
The expression of the effect function H is as follows:

H(xi,m(t+ 1)) =
xt+1
i,m − xmin

m

xmax
m − xmin

m

, (20)

xt+1
i,m =

{
1, H(xi,m(t+ 1)) < γ
0, otherwise,

(21)

where xmin
m is the minimum value of m dimension in the nest

position, and xmax
m is the maximum value of m dimension in

the nest position. Furthermore, γ is uniformly distributed, and
γ ∼ U(0, 1).

When the host bird finds the cuckoo’s egg (probability Pa), it
abandons the nest. Therefore, after the complete local search
by Levy flight, some solutions should be searched again to
update their positions and retain a superior set of solutions. In
the process of local search, to obtain the difference between the
current individual and the excellent individual in the population,
xti,m is carried out differential evolution. The individual obtained
after evolution has more genetic information, rendering it close
to the excellent individual in the population. The specific process
is as follows:

1) Mutation Operation: The mutation operation is used to
obtain individual variation through the difference strategy to
obtain the genetic information of multiple individuals. The
expression of individual variation uti,m is as follows:

uti,m = xti,m + κ · (xtp,m − xtq,m), p, q = 1, 2, . . .,K +N,
(22)

where κ is the scaling factor, xtp,m represents the value of the pth

nest in the m dimension of the nest position in the t generation,
and xtq,m represents the value of the qth nest in them dimension
of the nest position in the t generation.

C. Crossover Operation

The crossover operation generates candidate individual vti,m
by crossing between the parent and the mutant, which ensures
that at least one set of information in the next generation of indi-
vidual information originates from the mutant. The expression
of candidate individual vti,m is as follows:

vti,m =

{
uti,m, α4 < CR orm = β4

xti,m, otherwise,
(23)

whereCR ∈ [0, 1] is the crossover probability,α4 = rand(0, 1)
is the random number generated during [0,1], β4 =
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Fig. 2. Change of the average task processing delay under various traffic density conditions, here ECORA is our proposed scheme, PSO is from [23], and GA is
from [24]. (a) Traffic density = 0.06. (b) Traffic density = 0.08. (c) Traffic density = 0.10. (d) Traffic density = 0.12.

unidrnd(M) represents a random positive integer generated
during [1,M ].

D. Select Operation

After the population mutation and crossover operation, the
position is discretized, and the dominant relationship between
the individual vti,m andxti,m the parent is determined by compar-
ing the size of the optimization objective function. Therefore,
a new generation of individuals xt+1

i,m to inherit the dominant
individuals to the next generation:

xt+1
i,m =

{
vti,m, T (vti,m) < T (xti,m)
xti,m, otherwise.

(24)

The specific flow of the discrete cuckoo search algorithm based
on differential evolution is as follows:

V. PERFORMANCE ANALYSIS

Simulations were performed using MATLAB for the two-way
six-lane traffic scenario to compare the convergence properties
of the GA strategy and PSO strategy. The influence of various
traffic conditions on the quality of service, task processing delay,
and other indicators were investigated. The influence of two key
parameters (Pα and α3) on the convergence of the proposed
algorithm is analyzed, and a series of simulations performed.
Furthermore, the input data range of the task generated by
the mission vehicle is [0.3,0.45] Mb/task, and the calculation

demand range of the task is [0.3,0.45]GHz/task. The specific
simulation parameters are summarized in Table I.

The simulation compares the variation rule of average task
processing delay in various resource allocation strategies with
different traffic density, as displayed in Fig. 2. The horizontal
axis represents the number of iterations, and the vertical axis
represents the average task processing delay. Furthermore, the
ECORA, PSO, and GA strategy are represented by rhombus,
square, and circle curves in the figure Fig. 2(a)–(d) reveals
that the average task processing delay of the ECORA strategy,
PSO strategy, and GA strategy increases with the increase in
the traffic density, and the average task processing delay of
ECORA strategy is the lowest because with the increase in the
traffic density, the resources of the system are limited. When
the number of mission vehicles with computing requirements
increases, the computing resources available to each mission
vehicle decreases, and subsequently, the delay of task processing
increases. Furthermore, the PSO strategy and GA strategy ignore
the uneven traffic density and the effect of increasing traffic
density on the resource allocation process, which results in an
unbalanced AP load. When the traffic density increases, the
number of mission vehicles near some AP increases sharply,
but the cooperative vehicles around the AP do not consider the
service caching strategy, and idle computing resources cannot
be utilized. In this case, the limited computing resources of the
AP cannot satisfy the unloading requirements of surrounding
mission vehicles, which results in high task processing delay.
The ECORA strategy can provide popular cache service for
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Algorithm 2: Discrete Cuckoo Search Algorithm Based on
Differential Evolution.

Input: system parameters, including MV , CV , AP ,
service cache matching results Φ, computing tasks
Tm = {ωm, tm, s

in
m , s

out
m , SRfm, cm}, rm,n and other

indicators.
cuckoo algorithm parameters, including nest location set
{x1, x2, . . ., xK+N}, tmax, Pa and other indicators.
Initialization: Initialize the nest position and other
parameters, and record the current optimal solution.
Begin:

for t < tmax do :
Calculate and update all nest positions xt+1

i,m according
to (18);
Binary discretization of all nest locations
xt+1
i,m ∼ (0, 1);

According to (15), the optimization objective function
value T is calculated;
if T is the optimal value in the current iteration then :

The solution space associated with is the optimal
solution space and retaining the current nest position;

else
The current nest position is not retained;

end if
if rand(0, 1) > Pa then :

Perform mutation, crossover and selection operations
to locally update the nest position;
Binary discretization of all nest locations
xt+1
i,m ∼ (0, 1);

According to (15), the optimization objective function
value T ′ is calculated;
if T ′ is the optimal value in the current iteration then :

The solution space associated with T ′ is the optimal
solution space and retaining the current nest
position;

else
The current nest position is not retained;

end if
end if

end for
The current optimal solution space is the task
uninstallation strategy;
Output the optimal task uninstallation strategy x∗.

End

collaborative vehicles in advance according to the position of ve-
hicles, driving direction, and other mobile attributes, combined
with social contact between vehicles. Ensure that cooperative
vehicles exist around the mission vehicle that can unload the
specified task to improve the success rate of mission unloading of
the mission vehicle. Next, the influence of traffic density on task
processing delay is effectively reduced, and the task processing
delay is low. Furthermore, Fig. 2(b) reveals that when traffic
density is 0.08 vehicles/m, the average delay of task processing
of ECORA strategy is 1.777 ms, whereas those of the PSO and

TABLE I
SIMULATION PARAMETERS

GA strategies is 1.923 and 1.974 ms, respectively. The overall
task processing delay of the algorithm improved by 7.59% and
9.98%, respectively.

The simulation compares the variation rules of average task
processing delay in various resource allocation strategies at
different average vehicle speeds, as displayed in Fig. 3. In the
figure, the horizontal axis represents the number of iterations,
and the vertical axis represents the average task processing
delay. Furthermore, addition, ECORA, PSO, and GA strategies
are represented by rhombus, square, and circle curves in the
figure. As displayed in Fig. 3(a)–(d), the average task process-
ing delay of the ECORA, PSO, and GA strategies increases
slowly with the increase in the average vehicle speed, and the
average task processing delay of ECORA strategy is the lowest
because with the increase in the average speed, the duration
of communication between vehicles and between vehicles and
AP decreases, which leads to an increase in the probability of
communication link interruption and the failure rate of task
unloading, which increases the delay of task processing. Fur-
thermore, the PSO and GA strategies ignore the influence of
social connection and mobile attribute on resource allocation
process. When the average vehicle speed increased, the dura-
tion of the communication link between mission vehicle and
cooperative vehicle decreased, and fewer cooperative vehicles
were present around mission vehicle to cache and unload mission
service. Thus, more mission vehicles unload tasks to AP, which
results in an increased AP load and higher task processing time.
In ECORA strategy, cooperative vehicles follow the service
caching principle of high mobility similarity and high social
similarity. Cooperative vehicles with sufficient caching services
around the mission vehicles provide computing resources. The
discrete cuckoo search algorithm based on differential evolution
was used to allocate resources efficiently and determine the
unloading position of the task. Effectively reducing the effect of
high-speed vehicle movement on task processing delay, and the
task processing delay is low. Furthermore, Fig. 3(b) reveals that
when the average speed is 60 km/h, the average delay of task
processing of ECORA strategy is 0.938 ms, whereas those of
PSO and GA strategies is 1.156 and 1.214 ms, respectively. Thus,
the overall task processing delay of the algorithm improved by
18.86% and 22.73% respectively.

The variation rule of average task processing delay in ECORA
algorithm is shown in Fig. 4 when different algorithm param-
eters are simulated and compared. In the figure, the horizontal
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Fig. 3. Average task processing delay under various average speed, here ECORA is our proposed scheme, PSO is from [23], and GA is from [24]. (a) The average
speed is 30 km/h. (b) The average speed is 60 km/h. (c) The average speed is 90 km/h. (d) The average speed is 120 km/h.

Fig. 4. Average task processing delay changes under different strategy parameters. (a) Influence of parameters Pα on the strategy. (b) Influence of parameters
α3 on the strategy.

axis represents the number of iterations of the algorithm, and
the vertical axis represents the average task processing delay.
In addition, in Fig. 4(a), curves with rhombus, square, circle,
triangle and dot respectively represent the change of average
task processing delay when Pα is 0.05, 0.15, 0.25, 0.35 and
0.45. Similarly, in Fig. 4(b), curves with rhombus, square, circle,
triangle and dot represent the change of average task processing
delay when the step factor α3 of ECORA strategy is 0.01, 0.1,
1, 5 and 10 respectively. As can be seen from Fig. 4(a), as the
number of iterations increases, when the Pα value is 0.05, the
convergence speed is the slowest and the average task processing
delay is the largest. This is because when thePα value is too low,
the update frequency of local search decreases and the update

frequency of the optimal solution of unloading task decreases. In
this case, the convergence speed is the slowest, and the algorithm
is easy to fall into local optimal, which leads to the maximum
average task processing delay. In addition, it can be seen from
Fig. 4(b) that with the increase of iteration times, the algorithm
has the best convergence capability when the value α3 is 1. At
this point, the convergence speed is the highest and the average
task processing delay is the lowest. This is because when the
α3 value is too large, different bird’s nest positions (equation
solutions) are far away from each other after the global search
in the initial iteration, and it is difficult to determine the optimal
solution by moving the bird’s nest positions in a small range
in the subsequent local search. As a result, the probability of
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Fig. 5. RSU load distribution, here ECORA is our proposed scheme, PSO is
from [23], and GA is from [24].

finding the optimal solution decreases, the convergence speed is
slow, and obtaining the optimal solution using the algorithm is
difficult. Similarly, if the α3 value is too small, different bird’s
nest locations will be close to each other after the global search
in the initial iteration, and it is difficult to determine the optimal
solution by moving the bird’s nest location in a small range in the
subsequent local search. As a result, the probability of finding
the optimal solution decreases, the convergence speed is slow,
and using the algorithm to obtain the optimal solution is difficult.

The load state distribution of all APS in the same section of
road at the same time with different strategies were simulated.
The results are displayed in Fig. 5. In the figure, the horizontal
axis represents the ID of the AP and the vertical axis represents
the load status of the AP. Furthermore, from the top to bottom in
the bar chart are the GA, PSO, and ECORA strategies. The load
value of the GA and PSO strategies atAP3 is considerably higher
than 10, and the load value at {AP1, AP2} is 0. However, the
load value of ECORA policy is not 0 at any AP and is less than 4
at any AP because in the GA and PSO strategies, communication
link reliability and processing delay are considered as the basis
of the optimal solution of task unloading for mission vehicles,
ignoring the influence of service caching process of cooperative
vehicles on the success rate of task unloading. In fact, PSO
and GA strategies cannot allocate idle caching resources for
cooperative vehicles based on mobile social connections. When
the number of cooperative vehicles is reduced, the success rate
of task unloading between mission vehicles and cooperative
vehicles drops sharply, thus reducing the computational resource
utilization rate of cooperative vehicles. Therefore, considering
the uneven distribution of traffic flow density, there are more co-
operative vehicles near {AP1, AP2} and less cooperative vehi-
cles nearAP3. Meanwhile, PSO and GA strategies cannot make
full use of computing resource utilization of cooperative vehicles
around AP3, resulting in waste of the computing resources
of cooperative vehicles and increasing the load of AP3. In
ECORA, the number of cooperative vehicles near {AP1, AP2}
is large, and the mission vehicles there can unload tasks to
select cooperative vehicles. Thus, the {AP1, AP2} load is small.
The ECORA strategy detects popular task unloading types and
performs service caching through social contact and mobile con-
tact between vehicles to ensure that many cooperative vehicles

around mission vehicles that can perform unloading services.
According to the constraints of load limit and the maximum task
completion time and others, the optimal solution of unloading
scheme is calculated. Under the condition of load balancing,
the average delay of vehicle task processing is reduced and
the quality of communication service is improved. Therefore,
the load state distribution of AP under this strategy is more
reasonable. Therefore, the ECORA algorithm can effectively
balance AP load.

VI. CONCLUSION AND THE FUTURE WORK

In this study, we proposed an efficient caching and offload-
ing resource allocation strategy in vehicular social networks.
First, we studied the influence of social contact and motion
state between vehicles on the service cache and task unload-
ing process. Next, we established the social vehicular network
communication system model of joint service caching and task
unloading, thus optimizing the utilization rate of storage and
computing resources under the cooperation mechanism between
vehicles and improving service quality. To minimize the average
task processing delay for achieving high quality of service, we
studied the combined resource allocation optimization problem
of joint service caching and task unloading, and categorized the
NP-hard problem into two sub-problems to be solved separately.
A stable matching algorithm based on mobile social connections
and a discrete cuckoo search algorithm based on differential
evolution were designed. By dynamically updating the cache
resource allocation scheme, the optimal task unloading scheme
was adaptively selected to maximize the quality of service and
minimize the average task processing delay. The simulation
results revealed that compared with PSO and GA strategies,
the ECORA strategy can effectively reduce the average task
processing delay, improve the quality of user data communi-
cation service, and effectively achieve RSU load balancing.
In the future, we will develop an accurate resource allocation
model for the social vehicular network so that the 5G social
network can provide superior services for time-sensitive and
computation-intensive intelligent transportation scenarios such
as unmanned driving and remote driving.
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