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We show that large scale oscillons, i.e., quasiperiodic, long-living particlelike solutions, may exist in
massless theories, too. Their existence is explained using an effective (smeared) mass threshold which takes
into account nonlinear (finite) perturbations.
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I. MOTIVATION

Oscillons [1] are quasiperiodic nonperturbative localized
excitations with exceptionally long lifetimes [2–5]. They are
found in many models and in various dimensions, and have
applications extending from phase transitions in condensed
matter to astrophysics [6] and cosmology [7–10], especially
in the context of inflation [11–13]. They also exist in the
fundamental theory of the electroweak interactions [1].
However, they are still quite mysterious, and their surprising
stability has yet to be fully understood. In particular, it is not
related to any conservation law nor it is based on any
topological reasons, although a picture of adiabatic invariants
does shed some light on the question [14,15]. Recently a
close relation between oscillons and sphalerons has been
suggested [16] (further studied in [17]), which underlines
their importance in the dynamics of nonlinear systems.
Being exceptionally long lived, and performing a huge

number of oscillations, an oscillon changes its amplitude,
width and fundamental frequency ω very slowly, losing
energy by emission of radiation. Importantly, the funda-
mental frequency is always below the mass threshold m of
the theory, ω < m, where m is the mass of infinitesimally
small (meson) perturbations above the vacuum. Therefore,
oscillons can only radiate due to nonlinear effects through
second [18] (or even higher [19]) harmonics. This prevents

the rapid dissipation of energy stored in the oscillon. In fact,
it is commonly assumed that existence of a mass gap in the
linear perturbation of the field, i.e., a nonzero quadratic
term of the potential in the vicinity of the vacuum, is a
necessary condition for an appearance of oscilllons [9,20].
In the present work we demonstrate that this condition

can be relaxed. Concretely, we show that large amplitude
oscillons can easily exist in gapless theories. This enlarges
the range of application of oscillons to include certain
massless models, rendering them more common, and
therefore more important, than previously thought.
Unlike more-usual oscillons, these oscillons radiate
through their first harmonics. Nonetheless, they can live
for a long time, performing a large number of oscillations.
Furthermore, in higher dimensions their lifetimes can
sometimes be significantly longer than those of oscillons
in a similar but massive theory.

II. LARGE OSCILLONS IN MASSLESS MODELS

Let us consider a real scalar field theory in (dþ 1)
dimensions

L ¼
Z �

1

2
ϕ2
t −

1

2
ð∇ϕÞ2 −UðϕÞ

�
ddx: ð1Þ

In our work we assume d ¼ 1 or 3. Next, we choose the
potential UðϕÞ to have a form very similar to the simplest,
most prototypical, double vacuum potential, i.e., ϕ4, except
for the near vacuum regime. In this region, we assume that
instead of a quadratic approach, which provides a nonzero
mass of infinitesimally small perturbations, it has a quartic
behavior. These requirements are fulfilled by the following
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particular choice of a family of the potentials:

UðϕÞ ¼ W2

W þ ϵ
; W ¼ 1

2
ð1 − ϕ2Þ2; ð2Þ

where ϵ is a small positive parameter, which controls the
size of the deformed region. This is plotted in Fig. 1 where,
in addition, we shifted U by a constant U0ðϵÞ ¼ −1=
ð4ϵþ 2Þ þ 1=2 to visualize the near vacuum regime better.
Obviously, increasing ϵ makes the potential flatter in the
vicinity of the vacua.We underline that for each ϵ > 0weget
a model with a perfectly smooth potential.
Importantly, due to the fact that the potential is not

quadratic at the vacuum U ≈ 1
4ϵ ð1 − ϕÞ4ð1þ ϕÞ4, the mass

of (infinitesimally) small perturbations vanishes,

m2 ¼ d2U
dϕ2

����
ϕ¼�1

¼ 0: ð3Þ

Thus, as required, there is no mass gap in these models.
Therefore, according to the current state of art there should
be no oscillon in this theory. In particular, the usual
perturbative expansion [21] does not find any oscillons.
To verify the existence of long-lived excitations we start

in one spatial dimension and use Gaussian initial data:
ϕðx; 0Þ ¼ 1 − A0e−x

2=x2
0 and ∂tϕðx; 0Þ ¼ 0. Specifically, we

assume A0 ¼ 0.7 and x−20 ¼ 0.204, although other choices
our also possible. In Fig. 2 we show the time dependence of
the field at the origin for ϵ ¼ 0.002 and 0.003. As is clearly
visible, the field oscillates with a significant amplitude for a
large number of oscillations, extending from, e.g., ∼300 for
ϵ ¼ 0.003 to much greater numbers as ϵ decreases. In fact,
the lifetime of the oscillon in (1þ 1) grows as ϵ tends to
zero and we approach the ϕ4 model. Although the lifetime
of oscillons in these massless deformed models is shorter
than that of a standard oscillon in one space dimension—
see Fig. 3—we will see later that this distinction goes away
in higher dimensions, justifying our calling these excita-
tions oscillons.
It is also clearly seen that the amplitude of the oscil-

lations slowly decreases with time. As expected this
happens due to a direct, but small, coupling of the oscillon’s

quasiperiodic motion to radiation. In other words, there is a
continuous but unexpectedly small leakage of the energy
of the oscillon to radiation due to the lack of the mass
threshold. Interestingly, we found a universal law gov-
erning the amplitude decay in this regime. Namely,

ϕmax ¼ 1þ cðt0 − tÞα; ð4Þ

where α ≈ 0.3–0.4 and c; t0 are ϵ (model) depending
constants, see Fig. 3, upper panel.
During the slow decay the fundamental frequency of

the oscillations grows linearly with time from the value
characteristic for oscillons in the usual ϕ4 model up to

FIG. 1. The massless potential (2) for various ϵ.

FIG. 2. Dynamics of oscillons in the massless deformation of
the ϕ4 model in (1þ 1) dimensions. Value of the field at the
origin for ϵ ¼ 0.001 (upper) and 0.003 (lower).

FIG. 3. Dynamics of oscillons in the massless deformation of
the ϕ4 model in (1þ 1) dimensions. Upper: decay of the
amplitude. Lower: evolution of the frequency of oscillons.
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ωcrit ≈ 2, see Fig. 3, lower panel. At this point the oscillon
approaches the minimal, critical amplitude ϕcrit and, after
this point, it rapidly ceases to exist, quickly radiating all the
remaining energy. Thus, there are no oscillons with
amplitude smaller than the critical one.
One immediately recognizes that the critical frequency is

very close to the value of the mass threshold in the ϕ4

theory. Of course, in our models there is no mass gap in the
linear perturbation analysis. Thus, the appearance of this
value must be of a nonlinear nature.
To understand this phenomenon qualitatively we define

an effective mass threshold, which in contrast to the usual
mass threshold (3), takes into account finite perturbations,
too. In other words, this quantity is determined not only by
U00 at single point, i.e., the vacuum but rather by its
behavior at the vicinity of the vacuum. Specifically,

m2
effðaÞ ¼

Z
∞

−∞

wððϕ − 1Þ=aÞ
a

d2U
dϕ2

dϕ; ð5Þ

where wðϕÞ is a symmetric weight function, normalized to
unit area and second moment. Here a can be thought as the
size of perturbations near to the center of the oscillon (the
field amplitude). The usual mass threshold is obtained in
the a → 0 limit. In Fig. 4 we present the smeared mass
threshold for different ϵ assuming the step-function smear-
ing wðϕÞ ¼ θð1 − jϕjÞ=2. Importantly, meffðaÞ is weakly
affected by other choices of the weight functions as, e.g.,
Gaussian weight wðϕÞ ¼ expð−ϕ2Þ= ffiffiffi

π
p

. Nonzero value of
meff explains why the oscillons do exist although the
perturbative mass threshold vanishes.
The actual frequency of the oscillation may be also quite

well reproduced using periodic motion approximation. We
begin defining an effective period

TeffðϕÞ ¼ 2

Z
ϕ2

ϕ1

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðUðϕ1Þ −UðϕÞÞp ð6Þ

whereϕ1;2 are return points of the field, i.e., amplitudes of the
oscillon. Here ϕ1 ≠ −ϕ2 as the potential is not symmetric

under reflection around the vacuum. In these points the
kinetic energy is approximately zero and thewhole energy is
stored in the potential part. Thus, Uðϕ1Þ ¼ Uðϕ2Þ or
Wðϕ1Þ ¼ Wðϕ2Þ, which relates the reflection points via a
simple quadratic equationϕ2

1 þ ϕ2
2 ¼ 2. Then, the frequency

is ωeff ¼ 2π=; Teff . In Fig. 5 we plot such frequencies for
different values of ϵ. They tend to zero value at the limit of
infinitesimally small perturbations which obviously agrees
with vanishing of the smeared (and perturbative) mass
threshold. One can show that the leading behavior is
ωeff ¼ Γð3=4Þ=ðΓð5=4Þ ffiffiffiffiffiffiffiffi

2πϵ
p Þjϕ − 1j ≈ 0.5394jϕ − 1jϵ1=2.

Bigger perturbations correspond to nonzero values of
ωeff . For too big amplitudes ωeff again tends to zero value
reflecting breaking of the usefulness of this quantity.
In Fig. 6, we plot the actual frequency of oscillation of

an oscillon found in the massless model with ϵ ¼ 0.003
(blue curve) as a function of the oscillon amplitude,
i.e., the returning point ϕextr. We compare it with a curve
relating the frequency of oscillon with value of the
returning point in the usual ϕ4 model (red dots) and
with the effective frequency (dashed curve). Of course,
during the time evolution the amplitude changes and
we can measure how the actual frequency changes with
the amplitude of the oscillon. We observe that the
measured frequency reveals a transition from the

FIG. 4. The smeared (finite perturbation) mass threshold: step
function (full line) and Gaussian smearing (dashed-dotted line).

FIG. 5. The effective frequency ωeff.

FIG. 6. The dependence of measured oscillation frequency
on the amplitude of the oscillon in the massless model with
ϵ ¼ 0.003 (blue curve) and in the ϕ4 theory.
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frequencies identical as in the ϕ4 model (occurring for
high amplitudes) to frequencies that agrees with ωeff (for
smaller amplitudes). As the amplitude tends to 0 we
recover the massless regime.
Finally, the last phase of the decay of the oscillon, where

the frequency of the oscillations decreases after taking its
critical value, reveals a self-similar property, see, e.g.,
Fig. 3, lower panel. We found that the frequency of the
oscillations decreases according to a universal law

ωðtÞ ∼ t−β; β ¼ 0.37855� 0.0006: ð7Þ

We also checked that the oscillons in the massless
deformed models (1) lose their energy mainly via radi-
ation through the fundamental frequency (first harmon-
ics). This is clearly seen in Fig. 7 where we plot the power
spectrum for the (1þ 1) dimensional oscillon for
ϵ ¼ 0.001. The power spectrum is computed at the origin
(center of the oscillon) and in the far distance regime,
x ¼ 100 for t∈ ½200; 600�. In both cases, there is a peak at
the fundamental frequency verifying that this is the
main channel of dissipation of energy from the oscillon.
This should be contrasted with massive models where
the fundamental frequency of the oscillon is below
the mass threshold, ωf < m. Therefore, the oscillons
radiate through higher harmonics ωn ¼ nωf such that
ωn > m [19].

III. THREE-DIMENSIONAL OSCILLONS

It is crucial that the existence of oscillons in massless
models is not exclusive to (1þ 1) dimensions. On the
contrary, they frequently show up in higher dimensions as
well. Furthermore, their appearance is due to exactly the
same mechanism as in the lower-dimensional case.
Let us therefore consider our model (1) in (3þ 1)

dimensions. For simplicity we will assume spherically
symmetric initial data, which results in a reduction of
the dynamical problem to the radially symmetric one, i.e.,
ϕ ¼ ϕðr; tÞ and ð∇ϕÞ2 ¼ ϕ2

r .

In Fig. 8 we present time evolution of the field for
radially symmetric initial data ϕðr; 0Þ ¼ 1– 2e−r

2=r2
0 and

∂tϕðr; 0Þ ¼ 0, with r0 ¼ 2.849605 which corresponds to
the values studied in [22]. The upper panel shows the
evolution in the ϕ4 model, ϵ ¼ 0, while in the lower
panel we plot the evolution in the model with ϵ ¼ 10−5.
We see a large amplitude oscillon for the massless model,
whose lifetime is comparable with the lifetime of the ϕ4

oscillon.
It is also visible that, in contrast to the ϕ4 case, this

oscillon does not possess amplitude modulations in its
late-time evolution. Indeed, initial modulations are
smoothed out at t ≈ 200 and from this moment we find
very regular oscillations whose amplitude decreases very
slowly until the oscillon enters into a rapid decay phase.
This is a generic behavior, existing for different initial
perturbations, see Fig. 9, upper panel. It is known that the
existence of such modulations is closely related with the
lifetime of the oscillon and developing larger and larger
modulations is the usual mechanism by which an oscillon
is destabilized, see, e.g., [22,23]. In the ϕ4 theory it has
been shown that their absence, for example due to a
choice of particular initial data, results in a slower decay
of the oscillon [22]. In the massless models (1) we see the
same phenomenon: smaller modulations lead to longer
lifetimes.
In the lower panel of Fig. 9 we show the lifetime of the

oscillon for the initial data with r0 ¼ 2.8496049 but for
ϵ ≤ 6 × 10−6. We see that the lifetime can grow signifi-
cantly if we slightly change ϵ. The resulting value may
significantly exceed the lifetime in the ϕ4 theory. Hence,
the oscillons not only do exist in massless models but can
even be more stable. We also remark that in the small ϵ
regime a resonant structure is visible.

FIG. 7. Power spectrum of an oscillon in (1þ 1) dimensions in
the massless deformed model with ϵ ¼ 0.001.

FIG. 8. Decay of the amplitude of oscillons in (3þ 1) dimen-
sions. Upper: the ϕ4 model, i.e., ϵ ¼ 0. Lower: the massless
model (1) with ϵ ¼ 10−5.

P. DOREY et al. PHYS. REV. D 109, 085017 (2024)

085017-4



IV. SUMMARY

In this work we have shown that oscillons can exist in
massless field theories. This is an unexpected result which
significantly enlarges the range of possible applications of
oscillons. In particular, and contrary to the current state of
art [24], we expect also to find them in some collisions
between solitons with powerlike decaying tails (the so-
called fat tail kinks of [25,26]) when the colliding solitons
tend to a massless vacuum at �∞.
Although the usual perturbative mass threshold in our

model is zero, suggesting the nonexistence of oscillons,
their appearance may be associated with a nonzero value of
another effective mass threshold, which takes into account
finitely sized perturbations. This quantity better describes
the dynamical features of the model beyond the regime
of infinitesimally small perturbations. It also affirms the
nonlinear character of oscillons, for which the full non-
linearity of the field theoretical potential is more important
than its near vacuum behavior.
It is challenging to understand these oscillons in the

adiabatic invariant framework as adiabaticity requires the
scalar potential to be dominated by a quadratic term [14].
This condition is clearly not satisfied in massless models
where the quadratic term is absent.

Finally, we underline that our results are relevant in
any dimension. In fact, an oscilllon in a massless three-
dimensional model may have a significantly longer lifetime
than one in the original massive theory. All of this opens
new directions for the study of oscillons and their appli-
cations in the physics of nonlinear systems.
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APPENDIX A: LIFETIME

It is instructive to compare the lifetime of oscillons in the
massless deformed model (1) with the original ϕ4 theory in
(3þ 1) dimensions. The Gaussian initial configuration is
identical to that in [22] and reads ϕðr; 0Þ ¼ 1– 2e−2r

2=r2
0 ,

with r0 being a positive parameter, 1.5 < r0 < 3.5. The
results for the ϕ4 theory are presented in Fig. 10 and agree
with previous computations [22]. If compared with the
massless deformed model for ϵ ¼ 10−6, Fig. 9, upper panel,
we see that both in the region of small r0 and of large r0 the
massless deformation gives oscillons with longer lifetimes.
This is also shown in Fig. 11, where we compare the
lifetimes of oscillons in the ϕ4 theory and in the massless
deformed models with ϵ ¼ 5 × 10−7, 10−6 and 2 × 10−6.
In Fig. 12 we present an enlarged version of the lifetime

plot in the region with ϵ ≤ 8 × 10−7, for r0 ¼ 2.8496049.
This clearly shows the appearance of a resonant effect. The
lifetime of the oscillon depends chaotically on the ϵ
parameter and even an extremely small change in its value
can have a very large impact on the oscillon decay.

FIG. 10. Dynamics and lifetime of the oscillon in ϕ4 in (3þ 1)
dimensions—envelope of ϕð0; tÞ.

FIG. 9. Dynamics and lifetime of the oscillon—envelope of
ϕð0; tÞ. Upper: the massless model (1) with ϵ ¼ 10−6 and
different intial data parameters r0. Lower: dynamics in different
massless models and with r0 ¼ 2.8496049.
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APPENDIX B: EFFECTIVE MASS THRESHOLD

It is important to underline that the effective mass
threshold is only weakly dependent on a particular choice
of the weight function wðϕÞ. In Fig. 13 we compare the step

function smearing with a Gaussian one. The observed
differences in the values of meff are very small, even in the
large amplitude regime, and do not have any impact on
presented analysis of the model.

APPENDIX C: MOVIES

(i) [27]—evolution of field profiles at local maxima and
minima of ϕð0; tÞ for the (1þ 1)-dimensional model
with ϵ ¼ 0.003, showing a relation between the
radiation tails and the oscillon core. Specifically,
the blue (red) line is the field at such time that ϕð0; tÞ
reaches its local minimum (maximum).

(ii) [28]—evolution of the field at the center, ϕð0; tÞ, for
various values of ϵ in (3þ 1)-dimensional models
showing somewhat chaotic behavior for small values
of ϵ and decreasing modulations leading to increas-
ing lifetimes.
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