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1 Introduction

The direct experimental exploration of the electroweak (EW) scale is in full swing at the LHC,
and we are closing in on the answers to questions historically central to particle physics: the
hierarchy problem, the mechanism for electroweak symmetry breaking, and mass generation.
Looking out into the cosmos, on the other hand, has proven to be a source of invaluable
input to our theories of Nature, the latest potential window into early cosmology — possibly
including electroweak transitions — being gravitational waves.

At the front line of this exploration is the Higgs scalar and its properties. Given the
absence of particles beyond the Standard Model (SM) spectrum thus far, the formalism
of Effective Field Theories (EFTs) provides a general, model independent framework to
characterise the Higgs particle. This formalism presents a dichotomy in that the electroweak
EFT might or might not admit a linear representation. These two options are dubbed
SMEFT and HEFT\SMEFT where backslash is the mathematical symbol for the difference
of sets. A schematic picture for them is displayed in figure 1. The HEFT is the most
general gauge and Lorentz invariant EFT we can write, and thus it includes both options.
However, the literature often refers to the HEFT\SMEFT simply as HEFT. Here, we use

– 1 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
9

non-linear theory space ≡ HEFT\SMEFT to make it clear that we are referring to EFT’s
that do not admit a linear representation.

The characterisation of these theories has been laid out [2–4], examples of UV completions
and general results for certain classes have been derived [5–10] and new features continue to
emerge and be explored [11–21]. A pertinent remark is that the SMEFT vs HEFT\SMEFT
characterisation is an IR one, and there are known cases in which the UV description that
completes a non-linear HEFT\SMEFT theory presents linear scalar representations; what
sets apart such linear UV theories is that they are non-decoupling with an upper bound
on the mass of new states of ∼ 4πv. If such a contrast of UV and IR descriptions seems
counter-intuitive, an example in nature is QCD and its natural low energy description using
the chiral Lagrangian. Fully comprehensive characterisations are nonetheless elusive, in
essence because the question is non-local in field space. Scattering experiments can only probe
our theory around the vacuum to higher terms in our Taylor expansion of the Lagrangian
in fields, incrementally improving our knowledge of the theory with more particles involved
in the scattering process, yet still inherently local. It is here that cosmology offers a global
view of our theory and the possibility of testing it non-locally via phenomena such as phase
transitions or topological defect formation. It is the aim of this work to examine the window
that cosmology opens on HEFT\SMEFT theories, especially those hardest to distinguish
locally from the SM, and chart its complementarity with LHC data.

The elementary result for EFT characterisation is the presence or absence of a point in
scalar field space which is invariant, i.e. stays fixed, under the gauge group action. A useful
visualisation in a two-dimensional field space with rotation as the gauge group has the fixed
point at the origin. The extension to the electroweak theory led to naming it an O(4) fixed
point with SU(2)L×U(1)Y ⊂ O(4). If this fixed point is present, it is possible to cast the EFT
as a SMEFT, and if absent the EFT is non-linear. This absence can arise in two broad forms:

• type A, theories entirely without a fixed point,

• type B, theories with a singularity at the would-be fixed point in scalar space.

This distinction with SMEFT and within non-linear theories is one about the possible
realisation of the symmetry, and therefore one can expect the electroweak phase transition
epoch of the universe to shed light on the question — we do not consider here low energy
inflation or other scenarios that bypass a universe at Tew. The cosmology of ultraviolet
completions giving rise to theories with a singularity, i.e. type B, has in fact been studied
already in ref. [22] (see also [23]); this work focuses on type A. For a discussion of possible
UV completions of type A theories see [1].

Non-perturbative dynamics depend generically on extended field configurations which
hence probe the theory globally in field space. As such, these would be sensitive even to
theories that locally resemble the SM. One of the prominent, phenomenologically relevant
examples of such non-pertubative dynamics is B- and L-number violating sphaleron processes.
The sphaleron energy is given by field configurations which will be modified in non-linear
theories, and section 3 explores this modification.

The absence of a fixed point in type A theories requires, in turn, a revision of the
behaviour of the theory at high temperature. Indeed strictly speaking, electroweak symmetry
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Figure 1. Visual depiction of the space of HEFT theories. There is some evidence for the boundary
beetween non-linear and SMEFT theories belonging to the former, see e.g. ref. [1].

cannot be restored at high temperature since there is not a point in the manifold for such
restoration. One can still talk about discrete symmetry restoration nonetheless; a type A
theory does not present a fixed point where the electroweak gauge boson masses would vanish,
but it might contain a point where they reach their minimum. Let us suppose this point is a
field distance v⋆ away from our current vacuum. One can then define reflection around this
point: if h is the Higgs fluctuation around the vacuum, let us define ϕ = h + v⋆, and the
reflection as ϕ→ −ϕ. The case of SMEFT has no such possible symmetry: v⋆ can be taken
instead to be the distance to the fixed point, and by definition ϕ, a radius, is always positive.
The geometric approach helps visualise such theory. The possibility of extending a ‘radius’
to negative values leads to a wormhole-like structure as shown in figure 2(a).

Even with this discrete parity introduction, one might not have symmetry restoration at
high temperature. In fact, given the variety of possibilities for minima in these theories, it
is convenient to consider the history of extrema of the finite temperature potential in this
extended range for the Higgs field including ‘negative’ values. We represent such histories
as diagrams where time flows from left to right and the Higgs field value increases upwards,
with lines showing the evolution, emergence and disappearance of extrema of the effective
potential, see for example figure 3. For reference, the characterisation of possibilities for
the extrema history in the case of the Standard Model with variable Higgs mass are well
known but still useful to cast in this diagrammatic approach. One can have a transition from
the symmetry-restored high temperature phase — with a potential of a single minimum at
h⋆ — to the broken low temperature phase — with a minimum at h0 and a maximum h+
sitting where h⋆ used to be — via either (i) the splitting of the original minimum into a
maximum and minimum (figure 3(b)), or (ii) the formation of a maximum-minimum pair at
a finite distance and with a barrier between the new minimum and the symmetric minimum
(figure 3(c)). The latter gives rise to a first order phase transition while the former contains

– 3 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
9

(a) (b)

Figure 2. In figure 2(a), from top to bottom and left to right, 2D representations of the 4D
scalar manifold for the SM case (top left) and type A theories with the metric of eqs. (2.1), (2.6)
and sin2 χ = 0.01, 0.1, and 0.2. The Goldstone bosons correspond to the angle around the z axis,
while the Higgs h parametrises the surface in the orthogonal direction to them. Figure 2(b) shows
MW (h)/MW (0) for the SM and the type A theories in figure 2(a) with the same colour coding.

h⋆ h+

h0


t

(a)

h⋆ h+

h0

(b)

h⋆ h+

h0

(c)

Figure 3. The possible extrema histories in SMEFT, minima in blue and maxima in green.

the case of the SM with its measured couplings, yielding a cross-over phase transition. The
extension to SMEFT allows for changing the EW transition to possibility (ii), see e.g. ref. [24],
but still not changing the qualitative picture of possibilities as drawn above.

In non-linear theories by contrast, the range for h need not have bounds, and the sym-
metric minimum might lose its natural extrema status (see ref. [25]) but further, new minima
arise from small deviations to SM couplings. The extension of the Higgs manifold shown in
figure 2 is symmetric under the discrete reflection (ϕ→ −ϕ), which introduces a doubling of
the minima, with a new one arising on the other side of the wormhole. This symmetric limit
with Higgs parity restoration at high temperature — i.e. a single minimum h⋆ — is shown
in figure 4(b), history P, and without parity restoration in figure 5. For no high temperature
symmetry restoration we can find high and low temperature configurations as in figure 6.

All the diagrams shown in figures 4–6, are selected not by an artistic whim but rather
because they do occur in the theories here considered. Generically one needs the further input
of potential difference between extrema or barrier height to determine the phenomenology,
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h⋆

h−

h+

h0


(a)

h⋆

h−

h+

h0

(b) History P

h⋆

h−

h+

h0

(c) History Q−

Figure 4. Extrema histories we encounter in non-linear theories with one extrema at high temperature
and three at low temperature.

h⋆

h0


(a)

h⋆

h0

(b)

h⋆

h0

(c) History R

Figure 5. Possible extrema histories for a single minimum at high and low temperature.

h⋆

h+⋆

h−⋆ h−

h+

h0

(a)

h⋆

h+⋆

h−⋆

h0

(b)

Figure 6. Initial and T = 0 extrema we find as realisations in non-linear theories without high-
temperature symmetry restoration.

but certain diagrams do however necessarily lead to processes markedly distinct from the SM.
An example is first instance in figure 5(b) with a single minimum for all history and hence no
phase transition; while this in itself is a qualitative difference from the SM case, it is not one
easily testable. History R in figure 5(c) by contrast does necessarily lead to a phase transition
before the original minimum meets a sudden end encountering a maximum. Histories P,Q
and R — figure 4 shows Q−, while Q0 is the parity-reflected case — will be the main cases of
this study since they leave potentially observable traces or are partially ruled out.

In figures 4–6 we have also introduced notation to label extrema; we will use h0 for
the minimum of the potential we find ourselves in today, h+ and h− for possible maximum
and minimum in the T = 0 potential. Note that our definition of h0 as our vacuum today,

— around which we have e.g. measured the mass of the Higgs to be 125GeV — while
conventional, does mean that any evolution of the universe that leads to the vacuum at h−
today is discarded, without loss of generality.
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2 Classical action

The tree level Lagrangian for the electroweak sector we use here to model non-linear the-
ories reads

L = 1
2∂h

2 + F 2(h)
2 v2

1
2Tr

[
DµUD

µU †
]
− V (h)−

[
Fψ(h)v√

2
ψ̄LY UψR + h.c.

]
(2.1)

≡ 1
2dµΦ

iGijd
µΦj − V (h)−

[
Fψ(h)v√

2
ψ̄LY UψR + h.c.

]
, (2.2)

where F (0) = Fψ(0) = 1 and v = 246GeV. Here, U is a special unitary 2 × 2 matrix
parameterised by 3 scalar degrees of freedom φa, the Nambu-Goldstone bosons, which,
together with the Higgs degree of freedom h, span a four-dimensional manifold with coordinates
Φi = (φa, h). We have used the latin letters i, j, k for the components of Φ, running from
1 to 4, and a, b, c for Nambu-Goldstone bosons running from 1 to 3. The gauged covariant
derivative dµΦ = ∂µΦ + tCA

C
µ , with electroweak bosons ACµ = {W I

µ , B
µ}, where I = 1, 2, 3

and tC are the killing vectors [3] defined as, together with the metric

g̃ab =
v2

2 Tr
(
∂U

∂φa
∂U †

∂φb

)
= v2

∂uT

∂φa
∂u

∂φb
, Gij =

(
F 2g̃ab

1

)
, (2.3)

taI
v2

= igg̃ab

4 Tr
(
U
∂U †

∂φb
σI

)
taY
v2

= igY g̃
ab

4 Tr
(
U † ∂U

∂φb
σ3

)
(2.4)

= gg̃ab

2 uTTI
∂u

∂φb
, = gY g̃

ab

2 uTTY
∂u

∂φb
, (2.5)

where u is a real four vector of norm one, uTu = 1, and σ are the Pauli matrices. We use T
to stand for a subset of the generators of SO(4) such that T T = −T , Tr[TT ] = −4. There
are a number of relations these objects obey due to unitarity such as (∂U)U † = −U∂U †.
For simplicity we will take a universal F , Fψ = F with no flavour structure, which for
concreteness will read, as a function of the Higgs field,

F (h) =
√
s2χ + c2χ(1 + h/v⋆)2 =

√
s2χ + c2χ(1 + γah/v)2 , (2.6)

where one has γa = v/v⋆. In the general formulation of the HEFT, F 2(h) can be an arbitrary
analytic function F 2(h) = 1 +∑∞

n=1 fnh
n. Our choice corresponds to setting

f1 =
2 cos2 χ
v⋆

, f2 =
cos2 χ
v2⋆

, fn>2 = 0 , (2.7)

which just amounts to imposing that F 2(h) is quadratic in h with generic coefficients. This is
enough to model the main feature of our non-linear theory: a scalar manifold with a double
sheet structure, connected by a throat at a distance v⋆ from our vacuum h = 0. It is at the
narrowest point of this throat where F reaches its minimum, and so do electroweak particle
masses. For χ > 0, Min[F (h)] > 0 which we maintain throughout, a limit of decreasing
χ is depicted in figure 2 for both F and the shape of the manifold. The field-dependent
mass term for gauge bosons then reads

mW (h) = gv

2 F (h) , mZ(h) =
v

2F (h)
√
g2 + g2Y , (2.8)
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with F ≥ sinχ over the full range of h, and the minimum is achieved for

Min[mW (h)] ≡ gv

2 F (−v⋆) =
gv sinχ

2 . (2.9)

We dub the reflection transformation introduced in the previous section Higgs parity
— not to be confused with other acceptations [26] — whose action on ϕ, the distance to
the throat of the manifold, reads

ϕ = h+ v⋆ ≡ h+ vγ−1
a , (2.10)

Higgs Parity ϕ→ −ϕ , (2.11)

which as remarked in the introduction is not a symmetry applicable to SMEFT.
A scalar manifold and metric differing from the SM flat case will imply different couplings

and deviations in observables. Scattering matrix elements are given in terms of tensors in
field space projected on the different directions with vierbeins; in particular, the tensor that
dictates scalar couplings to order p2 is the curvature tensor and its covariant derivatives [2, 4].
One has in our case a Riemann tensor R that follows from the metric G as

R b d
a c = Rφ(g̃acg̃bd − δdaδ

b
c) , Rah

bh = Rhδ
b
a , (2.12)

and the only two independent functions

v2Rφ(h)≡
1
F 2−v

2[(logF )′]2=
c2χ(1+h/v⋆)2(1−c2χγ2a)+s2χ

(s2χ+c2χ(1+h/v⋆)2)2
, v2Rφ(0)= 1−c4χγ2a , (2.13)

v2Rh(h)≡−v
2F ′′

F
=−

γ2as
2
χc

2
χ

(s2χ+c2χ(1+h/v⋆)2)2
, v2Rh(0)=−γ2as2χc2χ , (2.14)

where we also present curvature evaluated at the origin because this is what LHC is sensitive
to and can set bounds on, as in ref. [10].

Lastly the tree level potential, which might generate new extrema, is a quartic potential
accommodating the Higgs mass but with free cubic and quartic terms

V (h) = m2
h

2 h2 + mh

√
λ

2 γ4(1− ϵ)h3 + λ

8γ
2
4h

4 , (2.15)

with the SM limit γ4 → 1, ϵ → 0. We have defined
√
λ = mh/v ≃ 125/246 as a way to

parametrise our system, but note this does not imply an SM-like quartic coupling.
The tree-level potential has a minimum by design at h = 0, where we define the vacuum

we inhabit today. There are two other possible extrema at a distance v± which read, in
terms of γ4, ϵ:

h∓(T = 0) ≡ −v∓ ≡ −vγ−1
4

3(1− ϵ)±
√
1 + 9(ϵ2 − 2ϵ)
2 ≡

{
−2vγ−1

4 γ−1
ϵ

−vγ−1
4 γϵ

, (2.16)

where we have defined

γϵ ≡

 3(1−ϵ)−
√

1+9(ϵ2−2ϵ)
2 ϵ ≤ 1−

√
8/9√

2 ϵ > 1−
√
8/9

. (2.17)
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(a) (b)

Figure 7. Schematic diagram of the tree level Higgs potential V (h) in blue and in red the Higgs-
dependent W mass, v2m2

W (h), in arbitrary units to set our conventions. Along the horizontal axis
runs the Higgs field h. Figure 7(a) shows the SM and SMEFT case, with h ∈ [−v+,∞) , and
figure 7(b) shows the non-linear case where h ∈ (−∞,∞) . The quantities v±, v∗ and δ are defined in
eqs. (2.16), (2.6) and (2.20) respectively.

Only in the former range of ϵ are two other extrema present because for the solutions to
be real one needs

9(1− ϵ)2 ≥ 8 . (2.18)

That is, numerically, ϵ ≤ 1−
√
8/9 ≃ 0.057. At the upper limit of this inequality γϵ =

√
2,

and the two extrema meet at h/v = −
√
2γ−1

4 to form an inflection point, which informs
our definition of γϵ for the upper interval. It should be stressed that this small range for
positive ϵ where two extrema are present does not guarantee an expansion in small epsilon
is viable, in particular not when close to the upper limit.

The values of the potential at the different extrema are

V (−v∓)=
λv4γ−2

4
4

(
v∓

vγ−1
4

)2(
1+1−ϵ

2

(
−v∓
vγ−1

4

))
=
{
γ−2
4 γ−2

ϵ λv4(1−γ−1
ϵ (1−ϵ))

γ−2
4 γ2ϵ λv

4(2−γϵ(1−ϵ))/8
. (2.19)

Note that only differences in these values are significant, and so we have chosen V (0) = 0 in
the definition of the potential in eq. (2.15). It is useful to define the distance between the
local maximum of the potential and the minimum value of electroweak masses as

δ ≡
{

v+−v∗
v = γ−1

4 γϵ − γ−1
a ϵ ≤ 1−

√
8/9

γ−1
4

√
2− γ−1

a ϵ > 1−
√
8/9 , (2.20)

and a visual definition of δ in the presence of two tree-level minima is given in figure 7.
In the limit of small deviation from (local) SM couplings ϵ, δ ≪ 1, we have — noting

that this expansion is in the ϵ < 1 −
√
8/9 interval,

γϵ ≃ 1 + 3ϵ, V (h∓) ≃
{
4γ−2

4 λv4ϵ+O(ϵ2)
γ−2
4 λv4/8 +O(ϵ) . (2.21)
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Figure 8. The effect of the 4 free parameters of our effective Lagrangian on the tree-level potential
V (h) and the F (h) function. Top: variation of the potential V (h) with ϵ (left) and γ4 (right). Bottom:
variation of the F (h) function with χ (left) and δ (right).

Now through the definition of v⋆ in eq. (2.10), those of v± in eq. (2.16) and the above,
we can write the theory in terms of 4 free parameters δ, χ, ϵ and γ4 which control respectively,

χ the width of the throat, defined in eq. (2.6) and depicted in figures 2 and 8.

ϵ the energy difference between the two tree-level minima and the Higgs triple coupling;
this is defined in eq. (2.15), and its effect depicted in figure 8.

γ4 the distance between the two tree level minima and the triple and quartic Higgs coupling,
defined in eq. (2.15), and depicted in figure 8.

δ the distance between the throat and the potential tree level maximum, defined in
eqs. (2.6) and (2.20) and depicted in figures 7 and 8.

As we shall see, this modelling of non-linear theories is versatile enough to unveil a rich phe-
nomenology of which here we purport to show what we believe to be a representative sample.
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3 Modification of sphaleron solutions

The absence of a O(4)-symmetric point in the HEFT\SMEFT leads to manifolds topologically
different from the SMEFT case. Thus, one may be able to differentiate both theories, even
when they appear to be the same locally (and hence inseparable by processes described by
the perturbative S-matrix), by studying the physics of field configurations that depend on the
global properties of this manifold. In this section, we focus on the sphaleron configurations
which, in principle, rely on the existence of O(4)-symmetric point to exist.

In the SM, a sphaleron is the maximum-energy point in a minimal-energy non-contractible
loop through scalar and gauge field space. This loop can be approximated by a family of
static field configurations depending on a parameter α ∈ [0, π] as

h = h(r), U = eiασ3/2 (cos(α) + i sin(α) x̂ · σ⃗) eiασ3/2, (3.1)

W0 = 0, Wj = − i

g
a(r)U∂jU † (3.2)

where x̂ = x⃗/|x| is the unit vector in space, U and W are the SU(2) Goldstone and gauge
fields,1 and h(r) and a(r) are radial functions that minimise the energy and satisfy the
boundary conditions

h(0) = h⊙, a(0) = 0, lim
r→∞

h(r) = 0, lim
r→∞

a(r) = 1, (3.3)

with h = h⊙ being the O(4)-invariant point. The fact that U |α=0 = U |α=π = 1 ensures that
the curve described in field space by varying α is indeed a loop. Furthermore, U can be
viewed as a topologically non-trivial mapping from the 3-sphere into itself, and therefore
the loop is not contractible (see ref. [28] for the original proof).

The sphaleron is the configuration at the midpoint of the loop, with α = π/2. In order
for it to be well-defined everywhere in space, it is crucial that h(0) = h⊙. This is because
U |α ̸=0,π is singular at the origin. Indeed, taking the limit r → 0 from different spatial
directions will yield different U matrices. This makes the field configuration undefined at
r = 0, unless all values of U can be identified and collapsed into a single point, making it
single-valued. This can only be done if there is a O(4)-invariant point h⊙ where F (h⊙) = 0.2
Therefore, fully well-defined sphaleron configurations cannot exist in HEFT\SMEFT theories
which have F (h) > 0 for all h.

One can nevertheless work with the definition we have given for U away from the origin,
and see if the singularity there has physical consequences. In particular, in order for it to
be physically meaningful, the sphaleron solution must have finite energy, using an ansatz
as that of eqs. (3.1) with α = π/2:

E =
∫
d3x

[
4

g2r2

(
da

dr

)2
+ 8a2(1− a)2

g2r4
+ 1

2

(
dh

dr

)2
+ v2F (h)2

r2
(1− a)2 + V (h,Φ)

]
. (3.4)

While the energy density around r = 0 would diverge as 1/r2 if F (h) ̸= 0, the volume
integral cancels this divergence for a finite result. Another road to reach the same finiteness

1The effects of the U(1) sector are neglected here which is an approximation valid up to corrections of order
g′/g, see ref. [27].

2See ref. [29] for a study of sphalerons in non-SM theories with this property.
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conclusion is to remember that the sphaleron energy remains finite when λ→ ∞ in the SM,
i.e. we freeze the Higgs field value on its vacuum and take the particle out of the spectrum.
It should be noted nonetheless that had we been dealing with a 2-dimensional theory, the
solutions would have indeed disappeared.

The question that follows is then how is the sphaleron energy, which we now know to be
finite, modified. This energy does know about the Higgs manifold non-locally and is, as such,
qualitatively different from, say, scattering experiments. In particular, the relevant question
(even if just theoretical) as posed in ref. [10] is whether a non-linear theory locally SM-like
around the vacuum but globally different can be told apart by the sphaleron energy.

A smooth set of functions Fn for non-linear theories that look locally ever more SM like
for increasing integer n were proposed in ref. [10], here we rewrite them as

Fn = 1 + h

v
+ cn

(
h

v

)n
, cn = (−1)n (n− 1)n−1

nn(1− F⋆)n−1 . (3.5)

These functions have a minimum F⋆ at f⋆ = −v⋆/v = −n(1−F⋆)/(n−1), we take 0 < F⋆ < 1
with the lower limit in particular to keep a non-linear type A theory. We use them as a probe
for approaching the SM while in non-linear theory space. As the origin boundary condition
for the Higgs, we take as h(0) = −v⋆ where F ′(−v⋆) = 0.

The dimensionless radius ζ = gvr simplifies the energy to read

E = 4πv
g

∫
dζ

[
4ȧ2 + 8a2(1− a)2

ζ2
+ ζ2

2 ḟ
2 + F (vf)2(1− a)2 + ζ2

λ

8g2 (f
2 + 2f)2

]
, (3.6)

with f = h/v. The sphaleron is obtained by minimising this energy as a function of the
profiles a(ζ) and f(ζ). We use two different approaches to minimize it for different values
of n in the Fn functions defined above:

A) Analytical ansatz. While, due to their non-linear character, one cannot solve the Euler-
Lagrange equations that follow from the variational principle for the energy E:

−8ä+ 16a(1− 1)(1− 2a)
ζ2

− 2(1− a)F (f)2 = 0, (3.7)

−ζ2f̈ − 2ζḟ + 2FF ′(f)(1− a)2 + ζ2
λ

g2
f(1 + f/2)(1 + f) = 0, (3.8)

one can solve their asymptotic form in the limits ζ → 0,∞. Following ref. [27], we
devise an ansatz as a piece wise function with the solutions to the asymptotic equations
which we join at a radius ζa (ζh for the Higgs function). Such a function has therefore
4 integration constants, two of which are fixed by the boundary conditions, while the
other two are found by imposing the same value for the function and its first derivative
at ζa (ζh). This leads to

â(ζ) =

 ζ2
(

ζaF 2
⋆ +6

6ζa(4+ζa) −
F 2

⋆
12 log(ζ/ζa)

)
ζ < ζa

1− 4−F 2
⋆ ζ

2
a/6

4+ζa
e−(ζ−ζa)/2 ζ > ζa

, (3.9)

f̂(ζ) =

 f⋆
(
1− p+σζh

2p+σζh

(
ζ
ζh

)p)
ζ < ζh

f⋆
pζh

2p+σζh

1
ζ e

−σ(ζ−ζh) ζ > ζh
, (3.10)
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Ansatz n

1(SM) 2 3 4 5 6

ESph 1.948 2.079 1.991 1.971 1.966 1.966
A) Eqs. (3.9), (3.10) ζa 1.4 1.2 1.4 1.4 1.4 1.4

ζh 1.6 2.4 2.0 1.8 1.7 1.6

B) Neural network ESph 1.919 2.053 1.976 1.952 1.943 1.938

Table 1. Values of the sphaleron energy (and corresponding radii ζa and ζh) at F⋆ = 0.2 and varying
n, as computed with methods A) and B).

(a) (b)

Figure 9. Figure 9(a): sphaleron energy as a function of n for different values of F⋆. Figure 9(b):
square root of the difference between the limit value of the energy as n→ ∞ (taken from n = 10) and
the SM energy as a function of F⋆, together with a linear fit.

where σ = mh/(2mW ), 2p = (
√
1 + 8F ′′

⋆ F⋆ − 1). Substituting this ansatz back in the
energy expression eq. (3.7) allows for minimisation in two variables ζa, ζh which we do
numerically. This semi-numerical method will not yield the true minimum energy since
the ansatz are not solutions to the full equations, but it does have the advantage of
treating boundary conditions analytically. Results are shown in table 1.

B) Numerical ansatz. Directly minimise E numerically, employing a small neural network
as an ansatz for f and a. We use the Elvet package [30] for this purpose. The neural
network is densely connected, with 1 input (ζ), two outputs (f and a) and 2 hidden
layers with 5 units each.

Both approaches lead to similar results, shown in figure 9, with B) giving slightly lower
energies than A) as expected. From these results, it is clear that, as n→ ∞, the sphaleron
energies tend to a value differing from the SM one, provided F⋆ ̸= 0. We find that the difference
between this value and the SM one is approximately proportional to F 2

⋆ , as displayed in
figure 9(b). This non-pertubative phenomenon is hence sensitive to non-linear theories that
would be indistinguishable for perturbative scattering.
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The prospects for observation of zero-temperature sphaleron-mediated processes rely on
B+L violation and involve all three families of fermions. Such a process might be initiated by,
e.g., the impact of an energetic neutrino and the production of a multiparticle flavourful final
state on IceCube [31, 32], or by a high-energy collision at LHC and future colliders [33, 34],
although exponential suppression factors might make it unobservable in practice [35, 36]. At
finite temperature, the sphaleron energy is to be computed with the temperature-dependent
effective potential and processes that are sensitive to it include the decoupling temperature
for B + L violating effects in baryogenesis, see e.g. [37]. In practice, however, finding percent
deviations in sphaleron energy is not a feasible strategy to explore these theories. As we shall
show, phase transitions on the other hand offer a much more promising avenue.

4 Finite temperature potential

The key quantity to study phase transitions and defect formation is the effective potential at
finite temperature. The computation of this potential is not without obstacles, long since
identified and discussed in the literature extensively, see e.g. ref. [38] for a review. In such
context, here we opt for laying out our derivation with all assumptions and choices explicit
while emphasising the limit of applicability of our results. In addition by facing old problems
from a new theory, we believe this work might bring novel approaches and perspective.

The effective potential will be computed to one loop at finite temperature. This suffices to
chart possible new phenomena that HEFT brings to the electroweak phase transition. Before
proceeding to the computation, however, let us first discuss its limitations. The potential
estimate here is not valid in all the field domain since perturbation theory breaks down in
thermal field theory for gauge theories in the limit of vanishing transverse mode mass (i.e.
the infrared problem [39]) — for the EW theory this occurs around the O(4) fixed point.
While the perturbative expansion can be supplemented with resummation techniques and
dimensional reduction as detailed in refs. [38, 40],3 the deciding say lies in lattice. Rather
than attempting to extend the potential computation to this domain beyond perturbativity,
we will mark its limits and base our conclusions on results outside of it. It is worth noting
already that the IR problem arises as the masses of gauge bosons approach zero and the
presence of a lower bound on such masses in our theory ameliorates the problem.

A second relevant consideration is that our potential, since it is computed in an EFT, is
not valid to arbitrarily high temperatures. The amplitude for longitudinal boson scattering
scales as Rs, where s is the square of the centre of mass energy. This points to a cutoff
where new states would appear at Λ ∼ 4

√
π|R(0)|−1/2 [10], see also [6] where unitarity

leads to an estimate of Λ ∼ 4πv. Experimental data from LHC constrains the curvature
around the EW vacuum at zero temperature to be small so that the cut-off is above the
TeV. In the evolution of the universe, however, the electroweak vacuum changes position
in field space and scans over a range of values. Approximating as customary the thermally
averaged cross-section in this environment as the zero temperature result convoluted with
the thermal distributions, one can expect the cut-off estimation outlined above for h = 0
to be extended to different manifold values Λ(h) ∼ 4

√
π|R(h)|−1/2. This naive extension of

3Another promising direction using nonperturbative methods is presented in [41].
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Figure 10. Field-dependent cut-off as estimated from perturbative unitarity to be 4
√
π |RI(h)|−1/2

for sectional curvatures Rφ(h) (solid) and Rh(h) (dashed) as defined in eqs. (2.13) and (2.14). The
parameter χ =

√
0.1 and the following γa = v/v⋆ values are chosen as those that lead to domain walls,

γa = 1 (see section 5); the doom scenario, γa = 1.1 (see section 6.2 and figure 27 in section 8); and
γa = 1.2 a conservative value for the observable bubble region shown in figure 26. For comparison,
the nucleation temperature in phase transitions studied here is around 100GeV.

the cut-off estimate to thermal field theory ignores the extra Boltzmann suppression that
the contribution of heavy states receive (indeed UV divergences in thermal field theory are
much softened with respect to zero temperature), but doing so is erring on the conservative
side. We therefore consider the cut-off for the whole range that the Higgs field explores, and
one has that it would be lowest at the highest curvature, i.e. the throat, see figure 10. At
the throat one has Λ ∼ 4

√
π[Rφ(h = −v⋆)]−1/2 = 4

√
πv sin(χ) = 1.7 sin(χ)TeV, imposing

a minimum value for χ for our EFT to be applicable, and we impose a similar expression
for Rh. In the following phenomenological study it is ensured that the cut-off is at least
450GeV at the throat for the allowed parameter space.

4.1 Calculation of the one loop finite temperature potential

The geometric description presents relevant differences with the standard computation of one
loop corrections for the effective potential, so let us sketch them here in some length. Path
integral methods allow us to write one loop corrections in a few lines of algebra, while the
notation is abstract enough to encompass both the finite and zero temperature case which
we discuss simultaneously. In this functional computation one expands around a background
value for the fields Φ̄, which satisfy the EoM at one loop order, along geodesics if the field space
has curvature. This expansion reads, with δΦ being the field variation we will integrate over,

Φi[δΦ] = Φ̄i + δΦi − 1
2Γ

i
jk(Φ̄)δΦjδΦk +O(δΦ)3, Aµ = Āµ + δAµ, (4.1)

with Γ the connection derived from the metric G. An expansion for fermions can be similarly
derived to that for gauge bosons.

The path integral for the effective action Γeff to one loop reads

eiΓeff = eiS[Φ̄,Ā]
∫ √

G[DδΦ][DδA]ei
1
2 δ

2
ΦS+i

1
2 δ

2
AS+iδΦδAS , (4.2)
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where
√
G is the scalar metric inserted for an invariant volume element and the second

variation around the background field for gauge bosons is a standard result, whereas for the
scalars we have, when applied to the action in eq. (2.1),

δ2ΦS =
∫
d4xδΦi

(
−GijD2 −∇i∇jV

)
δΦj , ∇i∇jV =

(
V ′′ 0
0 FF ′V ′g̃ab

)
, (4.3)

with ∇ the covariant derivative w.r.t. field coordinates and D the covariant spacetime
derivative acting in the scalar manifold tensor space [3], which hereafter setting the background
field to a constant equals the ordinary derivative. The extension to higher loop order can
be found in ref. [15]. It is well worth remarking that the mass term for Goldstones, FF ′V ′,
(which vanishes at the vacuum) will be altogether missed in this coordinate system if not
doing a covariant treatment. This non-covariant treatment would lead to inconsistency as
one can realise by resorting to the SM with linear scalar coordinates where all 4 d.o.f. have
a mass term away from the vacuum; in essence the point is that even in flat space, when
in spherical coordinates, one has to use a covariant formulation. The mixed term in gauge
and scalar fields one can borrow from ref. [42]:

δΦδAS =
∫
d4x[−δABDµtB,iδΦj ]. (4.4)

This term can be absorbed in a redefinition of the path-integral fields without changing the
measure as done in ref. [42], but here instead as is more common practice in thermal field
theory we cancel it out with the introduction of a gauge fixing term

Lg.f. = − 1
2ξ
∑
B

(
ξtiBGijδφ

j +DµδA
µ
B

)2
, (4.5)

which puts our gauge bosons in the Rξ gauge while producing an extra mass term for the
scalars as

δ2Φ(S + Sg.f.) = −δΦ(D2 +∇2V + ξm2
gf )δΦ, (4.6)

with the additional gauge dependent term[
m2
gf

]i
j
=
∑
B

tiBtj,B = (Fv)2
4

(
g2δba + g2Y g̃

acv2uTTY
∂u
∂φc uTTY

∂u
∂φb 0

0 0

)
, (4.7)

with Tr[m2
gf ] = 2m2

W (h) +m2
Z(h). We note that the last term does depend on the angular

degrees of freedom, the Goldstones φ; this does not mean they will feature in the effective
potential (which could only come about via explicit breaking) but that the final result, when
all tensors have had their indices contracted, will make any Goldstone boson dependence
disappear. The second variation of the action for gauge bosons on the other hand is

δ2A(S + Sg.f.) = δAµ
(
ηµνD

2 − (1− ξ−1)DµDν +m2
A

)
δAν . (4.8)

When it is only the effective potential one is after, derivatives of the background field can be
neglected, and we obtain loop corrections as, for the scalar correction

−i
∫
d4xVℏΦ = −1

2Tr
[
log

(
G∂2 +∇2V + ξm2

gf

)]
+ 1

2Tr log(G) (4.9)

= −T2 Tr
[
log

(
δji ∂

2 +∇i∇jV + ξ[m2
gf ]

j
i

)]
. (4.10)
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The trace is over internal indexes, position and momentum, and for the full one loop corrections
one adds over fermions and gauge bosons. This trace can now be made specific to thermal (with
periodic time of interval 1/T ) and T = 0 corrections as (with momentum in Euclidean space)

V1-loop = 1
2

∫
d4ℓ

(2π)4 tr
[
log

(
ℓ2 +∇2V + ξm2

gf

)]
, (4.11)

VTh = T

2
∑
n

∫
d3ℓ

(2π)3 tr
[
log

(
E2
n + ℓ2 +∇2V + ξm2

gf

)]
, (4.12)

where the trace is now over scalar indexes, and the 0 components of the momenta are the
Matsubara frequencies [43] in VTh. While the first term requires counterterms, the second
only has a field independent divergence that one can leave aside. Let us renormalise the
corrections in vacuo next by dividing our effective potential into

Veff(h, T ) = V (h) + ∆VCW(h) + ∆VTh(h, T ), (4.13)

where the one loop correction at T = 0, ∆VCW has the form, with cut off regularisation,

∆VCW =
∑
i

[
∆V1-loop,i +∆V c.t

1-loop.i

]
, (4.14)

∆V1-loop,i =
1

64π2ni
(
m4
i

(
log(m2

i /Λ2)− 1
2

)
+ 2Λ2m2

i

)
, (4.15)

where i runs over Φ scalars, electroweak gauge bosons, ghosts and fermions, for the latter
for practical purposes, as all other fermions contribute negligibly, only the top. There are
three types of masses as far as the field dependence is concerned which will dictate the
number of counterterm operators needed

F 2(h), V ′′(h), V ′(h)F ′(h)
F (h) . (4.16)

The counterterms needed are of the form either of the three above or their square and due to
functional dependence similarities they amount to 6 terms; 4 could be taken as the tree level
terms present in the Higgs potential and the other two from (V F ′/F ) are rational rather
than polynomial and require an additional two counterterms. Equivalently here we take

V c.t
1-loop,i =aim4

i (h) + bim
2
i (h), Counter-terms (4.17)

Which are fixed by the renormalisation conditions here imposed as

dVCW,h

dh

∣∣∣∣
h=0

= d2VCW,h

dh2

∣∣∣∣∣
h=0

= dVCW,φ

dh

∣∣∣∣
h=0

= d2VCW,φ

dh2

∣∣∣∣∣
h=0

= 0, (4.18)

∑
AB ,t

dVCW,i

dh

∣∣∣∣
h=0

=
∑
AB ,t

d2VCW,i

dh2

∣∣∣∣∣
h=0

= 0. (4.19)

These imply that h = 0 will stay a minimum of the potential with mass mh. The vanishing
of the field dependent mass for φ conflicts with these renormalisation conditions in Landau’s
gauge. While one can, as in ref. [44], approach this problem by resummation, here we avoid
this gauge and rather in the following select for concreteness Feynman’s gauge, ξ = 1.
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The thermal contributions on the other hand are

∆VTh = T 4

2π2
∑
i

niJSi

(
mi(h)2
T 2

)
, (4.20)

with ni the number of degrees of freedom and Si identifying the statistics, Bose-Einstein
(b), or Pauli-Dirac (f); explicitly

Jb/f (x2) =
∫ ∞

0
y2dy log

(
1∓ exp

[
−
√
x2 + y2

])
. (4.21)

All the above leads to the 1-loop finite temperature potential

Veff = V (h) +
∑
i

ni

{
m2
i (h)

64π2

(
m2
i (h)

[
log

(
m2
i (h)

m2
i (0)

)
− 3

2

]
+ 2m2

i (0)
)
+ T 4

2π2JSi

(
m2
i (h)
T 2

)}
.

(4.22)

Each term in this sum, in our Feynman gauge, is

m2
t (h) = m2

t (0)F (h)2, nt = −12, m2
h(h) = V ′′(h), nh = 1, (4.23)

m2
WT

(h) = m2
W (0)F (h)2, nWT

= 4, m2
WL

(h) = F ′V ′

F
+m2

WT
(h), nWL

= 2, (4.24)

m2
ZT

(h) = m2
Z(0)F (h)2, nZT

= 2, m2
ZL

(h) = F ′V ′

F
+m2

ZT
(h), nZL

= 1. (4.25)

In the following, to avoid cluttered notation, a mass with no argument (mW ) is to be
understood as a constant, the mass measured at the vacuum; for a field-dependent mass the
dependence will be made explicit, e.g. mW (ϕ). It is useful to extend the extrema defined
in section 2 to be the extrema of the finite temperature effective potential, h±(T ), h0(T )
so that the end-point of the temperature ‘trajetory’ returns h0(0) = 0, h±(0) = −v±. On
the other hand, potential differences and barriers read

∆V (T ) = Veff(h−(T ), T )− Veff(h0(T ), T ), (4.26)
U0(T ) = Veff(h+(T ), T )− Veff(h0(T ), T ), (4.27)
U−(T ) = Veff(h+(T ), T )− Veff(h−(T ), T ). (4.28)

At high temperatures, given the importance of electroweak particle corrections, the
relevant point in field space is to be found around h = −v⋆ rather than our vacuum at
h = 0. For this reason, we will write in the following the potential as a function of ϕ as
in eq. (2.10) where e.g.

ϕ± = h± + v⋆ , ϕ0 = h0 + v⋆ . (4.29)

4.2 Limitations of the calculation

Were one to aim at more precision, the present approximation can be improved by higher
zero temperature or thermal loop corrections. These however suffer from an infrared illness
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as outlined in the beginning of this section. This problem is identified when the expansion
parameter controlling the IR divergences

εIR ≡ g2T

πmW (ϕ) , (4.30)

ceases to be small.4 While some amelioration can be provided by daisy resummation [45],
the ‘magnetic modes’ stay massless in perturbation theory and make these divergences
unavoidable [39]. Whenever the expansion parameter is larger than one, we simply cannot
trust perturbation theory and must resort instead to non-perturbative methods in the form
of lattice. Luckily, we do not need access to this non-perturbative region of the parameter
space to unveil a range of novel phenomenology. We address the IR problem by identifying
the region of the field values ϕ that possess a controlled expansion εIR(ϕ) < 1, and only
there do we trust the analytically and perturbatively computed potential. The expression
that determines this region in ϕ reads(

ϕ

T

)2
> γ−2

a

( 2g
cχπ

)2

− tan2 χ v
2

T 2

 , IR Bound (4.31)

where we note that for temperatures below TIR = πsχv/(2g), the r.h.s. is negative and
this constraint disappears for a controlled expansion in the entire range of ϕ. Above TIR
nonetheless the bound applies, and it implies that for small values of ϕ the computation
of the potential is unreliable.

Let us exemplify how this IR bound is used here in practice by taking the SM as a case
study. The SM potential for high temperature is a 4th degree polynomial in the fields and
the extrema can be solved for analytically, for a pedagogical exposition see section 4.1 of [43].
One finds that a minimum-maximum pair appears at a temperature T1 as an inflection point
at a distance ϕ0(T1)/T1 = 3(2m3

W +m3
Z)/(4πλv3) ∝ 1/m2

h from the origin. This minimum
becomes degenerate in potential energy with the origin at the critical temperature Tc and sits
at a distance ϕ0(Tc)/Tc = (4/3)ϕ0(T1)/T1 from it. After Tc, we would naively expect to have
a first order phase transition. For this perturbative argument to be trustworthy, however, one
should require the new minimum to be in the region εIR(ϕ0) < 1. The region εIR(ϕ) > 1 is an
interval around the origin (ϕ = 0) which shrinks with time and disappears at TIR, whereas the
distance of ϕ0 to ϕ = 0 generally increases monotonically. It suffices then to specify the earliest
time/highest temperature at which this condition is imposed: if satisfied at a temperature T ,
lower temperatures will continue to respect the bound. We distinguish two possibilities:

• Weak IR constraint. The new minimum should be at a position where the IR expansion
is under control at the critical temperature, that is

εIR(ϕ0(Tc)) < 1, (4.32)

which when applied to the SM returns

SM: g

π
≤ (2m3

W +m3
Z)

2πλv3 , mh ≤

√
(2m3

W +m3
Z)

2gv3 v ≃ 75GeV, (4.33)

4A similar effective expansion parameter to eq. (4.30) exists for both the Z and h bosons.
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Strong IR constraint compliant

h⋆
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h+

h0

Strong IR constraint non-compliant

Figure 11. Schematic representation of thermal histories for the extrema of the effective potential
satisfying (left) and violating (right) the strong IR constraint.

which translates into an upper bound on the Higgs mass for a reliable first order phase
transition prediction, a well known qualitative condition here made quantitative as
outlined.

• Strong IR constraint. The new minimum should be at a position where the IR expansion
is under control already at the temperature when it first appears, that is

ε(ϕ0(T1)) < 1, (4.34)

which applied to the SM gives

SM: g

π
≤ 3(2m3

W +m3
Z)

8πλv3 , mh ≤

√
3(2m3

W +m3
Z)

8gv3 v ≃ 65GeV. (4.35)

This a stronger demand and as such demands a smaller allowed ranged of the Higgs field.

None of these bounds, however, are satisfied in the SM given the measured Higgs mass,
and one cannot affirm there is a first order phase transition; in fact lattice computations reveal
that the SM with the measured couplings presents instead a crossover transition [46, 47].
The bounds we obtain are not far from the actual value for the first order phase transition
(1OPT) endpoint as determined by lattice 72 ± 7GeV [48] and are also in line with more
explicit estimates of the loop expansion breakdown [49].

In our scenario with an extended range for ϕ the application is analogous, and we abstain
from making predictions at temperatures where the minima fall in the εIR > 1 region. To be
explicit and consistent across cases, we demand that in a 1OPT, the minimum ϕ0 satisfies
εIR(ϕ0) < 1 at the critical temperature, Tc, (weak constraint) or the temperature when the
minima first appears, T1 (strong constraint). The diagrams for the histories of extrema allow
for a visualisation of the strong IR constraint, as shown in figure 11.

Lastly, the large field regime of the T = 0 potential might suffer from the same instability
as the SM [50] but in some instances is aggravated. One has, in the theory under study

Veff(ϕ≫ v)≃ λγ24
8 ϕ4

(
1+3L(ϕ)

8π2γ24

[
2m4

W+m4
Z−4m4

t

m2
hv

2 γ4ac
4
χ+

m2
h

v2
γ44+

2m2
W+m2

Z

3v2 γ2ac
2
χγ

2
4

])
,

≡ λγ24
8 ϕ4 (1+aloopL(ϕ)) (4.36)
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with L(ϕ) = log(ϕ2/v2). In the SM case, top quark contributions drive the effective quartic
coupling towards negative values and the electroweak minimum is metastable when field
values are extended to the Planck mass. In the present case we will address the same problem
with two prescriptions, perturbativity and boundedness-from-below.

The constraint that we denote perturbativity follows from demanding a loop correction
subleading to the tree level one;5 given the dependence in eq. (4.36) this demand is strongest
at the edges of the field range, and it explicitly reads aloopL(4πv) < 1. These edges should
be chosen to capture a large enough domain of the potential to resolve the features of both
minima, which roughly fall around −v ≤ ϕ ≤ v. We require that this constraint holds instead
over the field range −4πv ≤ ϕ ≤ 4πv, about an order of magnitude larger in field space,
which should safely capture the important features and ensure the probability of tunneling
in some destabilized direction outside this range is considerably suppressed.

A related but independent constraint arises from demanding the potential be bounded
from below in the range we consider, which again we choose to be field values within 4πv
of the origin ϕ = 0. To be conservative, we required that the potential does not start to
turn downwards at high field values. We first checked whether the potential was concave
up or concave down at the ±4πv boundaries. A concave up potential passes the test. If
the potential was concave down at the boundary, however, we required that the potential
was increasing (decreasing) with ϕ at the positive (negative) 4πv boundary. Lastly, we note
that the 1-loop contribution to eq. (4.22) is complex for some values of the field value ϕ —
e.g. when V ′′ changes sign for a concave to convex tree-level potential. However it is the
real part of the effective potential that is relevant for phase transitions [51, 52], given the
imaginary component of ∆VCW is very small relative to the real part, which is found to hold
in all cases studied here. It is therefore the real part of the effective potential which will
be considered in the following for numerical computations.

4.3 Symmetry (non)restoration and roads to the SM

The study of phenomenology will make use of numerical methods guided by analytical
estimates; here we present some of the latter. Much in the way of the well studied electroweak
phase transition in the SM for small Higgs mass, here a high temperature expansion helps
draw the features of the problem and provide an understanding of the underlying dynamics.
In addition, it also sheds some light on the question of limits in non-linear theories that
might lead to the SM.

At high temperatures, the thermal corrections can be approximated by polynomials in
the masses provided we are in the regime [53]:

mi(ϕ)
πT

< 1, (4.37)

and hence this high temperature approximation is valid for a neighbourhood around the
point ϕ = 0 which shrinks with decreasing temperature. We note that (4.31) excludes

5Please note this constraint differs from unitarity bounds since we demand a convergent loop expansion
rather than an effective coupling value below the unitarity limit, which in this study would be a subdominant
constraint to perturbativity as here defined.
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a neighbourhood around the origin as opposed to the above; these two exclusion regions
fortunately do not overlap.

The field coordinate ϕ = h + v⋆ as outlined above is convenient to write thermal
corrections in terms of which

V HT
eff = Gov

3ϕ−Dov
2ϕ2 + Eovϕ

3 + λγ24
8 ϕ4 (4.38)

+
∑
B

ni

(
m2
i (ϕ)
8π2

[
m2
i

4 + π2T 2

3

]
− T (m2

i (ϕ))3/2
12π − m4

i (ϕ)
64π2 log

(
m2
i

T 2AB

))

+
∑
F

ni

(
m2
i (ϕ)

16π2

[
m2
i

2 − π2T 2

3

]
− m4

i (ϕ)
64π2 log

(
m2
i

T 2AF

))
,

where keeping up with our notation masses with no arguments are constants, the values
measured at the vacuum, ni are given in eqs. (4.23)–(4.25) whereas

log(AB) = 5.4076− 3/2, log(AF ) = 2.6351− 3/2, (4.39)

Go = −λδγ
2
ϵ

2 (1− γ−1
ϵ γ4δ)(1 + γ−1

ϵ γ4δ + 3((1− ϵ)γ−1
ϵ − 1)) (4.40)

= −λγ4γ
−1
a γ−1

ϵ

2 (γ−1
4 γϵ − γ−1

a )(2− γϵγ
−1
a γ4), (4.41)

Do =
λ

4
(
6(1− ϵ)γ4γ−1

a − 3(γ−1
a γ4)2 − 2

)
, (4.42)

Eo = −λ2γ4γ
−1
a (γ4 − γa(1− ϵ)). (4.43)

It is useful for phenomenological purposes to highlight the terms that break Higgs parity.
Couplings to the electroweak bosons and top quark are symmetric so that all asymmetry is
sourced by the potential either at tree level, or through the effective masses of Goldstones
and the Higgs. Note that, as in the SM case, a cubic term would arise from thermal loops of
gauge bosons, but this would be parity symmetric as (ϕ2)3/2. All sources of parity violation
are turned off for ϵ and δ vanishing which aligns the maximum of the tree level potential with
the throat of the manifold and sets the energy difference between minima to zero. This limit
of vanishing δ and ϵ simplifies eqs. (4.40)–(4.43) so that the coefficients of parity violating
terms are linear in ϵ and δ as Go ≃ −λδ/2 and Eo ≃ λδγ24/2 − 2λγ4ϵ.

While the high energy expansion yields a potential as a polynomial in the fields and is
amenable to analysis in SMEFT, in our non-linear theory the potential is instead a rational
function of the fields due to the Goldstones contribution, V ′F ′/F ∝ (c2χγ2aϕ2+ s2χ)−1. Naively
recovering a polynomial, as in the SM and SMEFT case, would require taking χ→ 0 while
having the numerator polynomial start at ϕ2 to avoid poles, attainable by δ → 0. Such a limit,
in the direction of recovering the SM, is in fact a discontinuous one in what is a distinguishing
feature of this non-linear theory. This feature is hinted at in the small χ limit with δ ̸= 0,
where plots of the potential in figure 13 show a sharp rise around the throat (ϕ = 0).6

6We have checked that the sharp features of this potential around the origin come primarily from the shape
of the manifold. The imaginary parts of the potential are still much smaller than the real parts here.
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Figure 12. One-loop effective potential plotted for χ =
√
0.1, obeying the high-temperature symmetry

restoration bound in eq. (4.55). The benchmarks chosen here are γ4 = 1, ϵ = 0.02, δ = −0.1.
Figure 12(a) and figure 12(b) show the potential evolution with temperature for T = 246GeV and
T = 190GeV, respectively. Notice, in particular, the large χ smooths the potential around ϕ/v = 0 in
contrast to figure 13.
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Figure 13. One-loop effective potential plotted for χ = 0.05, which unlike figure 12, does not satisfy
the high-temperature symmetry restoration bound in eq. (4.55). The benchmarks chosen here are
γ4 = 1, ϵ = 0.02, and δ = −0.1. Figure 13(a) and figure 13(b) show the potential evolution with
temperature for T = 246GeV and T = 190GeV respectively. For this choice of χ, the potential is
sharply peaked around ϕ/v = 0 in contrast to figure 12.
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This feature can be understood analytically if we inspect the very high temperature
potential while still keeping in mind T < 4πv:

V HT
eff (ϕ) =

∑
B

ni
T 2m2

i (ϕ)
24 −

∑
F

ni
T 2m2

i (ϕ)
48 +O(T 0) (4.44)

= T 2

24

(
(6m2

W + 3m2
Z + 6m2

t )F 2(ϕ) + V ′′(ϕ) + 3V ′(ϕ)F
′(ϕ)

F (ϕ)

)
+O(T 0) (4.45)

= V HT ′
eff (0)ϕ+ V HT ′′

eff (0)
2 ϕ2 +O(ϕ3, T 0), (4.46)

with

V HT ′
eff (0) = T 2v

(
Eo
4 +

Goc
2
χγ

2
a

8s2χ

)
, (4.47)

V HT ′′
eff (0)

2 = T 2
(
2m2

W +m2
Z + 2m2

t

8v2 c2χγ
2
a +

λγ24
16 −

Doc
2
χγ

2
a

4s2χ

)
. (4.48)

This expansion around the Higgs parity symmetric field value ϕ = 0 allows one to discuss
symmetry restoration in analytic but approximate terms as follows.

• V HT ′
eff (0) ̸= 0. The linear term in ϕ breaks Higgs parity and will prevent ϕ = 0 from

being an extremum, its sign for small δ, ϵ determining if this extremum has shifted
to positive or negative values. Assuming V ′′

eff > 0 and that the minimum is in a
neighbourhood of the throat (ϕ = 0), one has a minimum shifted to negative ϕ values
for positive slope, a condition expressed in terms of the model parameters as when
subsituting in eq. (4.47) as

−λ8γ4γ
−1
a (γ4 − γa(1− ϵ))−

λc2χγ4γaγ
−1
ϵ

16s2χ
(γ−1

4 γϵ − γ−1
a )(2− γϵγ

−1
a γ4) > 0, (4.49)

and the opposite inequality for a minimum in the positive ϕ axis. In the limit of small
ϵ and δ we can simplify the expression to derive

δ
c2χ − 2s2χ
16s2χ

< − ϵ

2γ4
high T min atϕ < 0

History Q−
(4.50)

δ
c2χ − 2s2χ
16s2χ

> − ϵ

2γ4
high T min atϕ > 0

History Q0
(4.51)

δ
c2χ − 2s2χ
16s2χ

≃ − ϵ

2γ4
high T min atϕ ≃ 0

History P . (4.52)

The equivalence with histories is not exact given that this analytic approximation does
only hold for small ϵ and δ, but it is useful in sketching the possibilities. This result
divides the (ϵ, δ) plane in half with a negative slope line that goes through the origin as
in figure 16: above this line one would find history Q0, below it Q−.
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• V HT ′
eff (0) = 0. If the linear term vanishes, which is the case for ϵ, δ → 0, ϕ = 0 is an

extremum: a minimum for V HT ′′
eff (0) > 0 and maximum for V HT ′′

eff (0) < 0. The sign of
the second term, s0, will hence determine if Higgs parity is restored or not so

s0 ≡ Sign
[
V HT ′′

eff (0)
]

(4.53)

= Sign
[
2m2

W +m2
Z + 2m2

t

8 c2χγ
2
a

− m2
hγ

2
4

16
(
γ2aγ

−2
4 t−2

χ

(
6(1− ϵ)γ4γ−1

a − 3(γ−1
a γ4)2 − 2

)
− 1

)]
, (4.54)

which to first order in an ϵ, δ expansion returns

s0 ≃ Sign
(
(sin 2χ)2
cos(2χ) − m2

h

m2
W +m2

t +m2
Z/2

)
, (4.55){

s0 > 0 ⇒ χ > 0.3 , Symmetry restoration at high T

s0 < 0 ⇒ χ < 0.3 , Symmetry stays broken at high T .

The small χ limit leading to no symmetry restoration leads to an apparent contradiction:
one expects this limit to yield SM-like couplings and with it the symmetry should naively be
restored at high temperature. This finding sheds light on the question posed in ref. [10] of
whether non-linear theories have a limit in which the SM is recovered. Approaching SM-like
couplings from our non-linear theory, we obtain a locally identical theory around h = 0 which
nonetheless does not have symmetry restoration at high temperature for any infinitesimally
small value of χ since the theory is different at ϕ = 0. This discontinuous limit can be
spotted opening up the term V ′F ′/F in eq. (4.46)

V HT
eff ⊃ Vpeak = −T

2Do

4
ϕ2

ϕ2/v2 + s2χ/(c2χγ2a)
(4.56)

This same limit of χ→ 0 would give an ever smaller cut-off at the throat as the curvature
increases as outlined in the discussion at the beginning of section 4. New light states would
be accessible in the thermal history which would change our EFT to a theory with extra
degrees of freedom. This suggests that for a consistent theory, the functions in our manifold
should be sufficiently smooth. The exploration of this interplay in the χ → 0 limit and
its phenomenology, however, we leave for future work on the connection of UV models
and HEFT\SMEFT.

Figure 14 plots the contribution for different values of χ and the SM, and shows that
at no finite stage is the SM limit (a constant for all field range, in black) reached. Sign
of an anomalous limit is also present in the linear term of eq. (4.46) since it reads in this
expansion Go/s

2
χ ∼ δ/χ2, giving a different result depending on the order of limits that one

takes to the SM. Unlike the behaviour in eq. (4.56) however, the SM can be approached
by first taking δ → 0.
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Figure 14. Contribution Vpeak of the V ′F ′/F term to the effective potential.

5 Domain walls

The finite temperature effective potential is symmetric under Higgs parity in the limit ϵ, δ → 0.
This limit contains couplings that are locally those of the SM yet the doubling of the Higgs
domain implies two degenerate minima at low temperature. One has different possible phases
for the discrete symmetry in the universe history and, although this theory might locally
resemble the SM, the cosmological dynamics change drastically. As the most salient new
possible feature, one has spontaneous breaking of Higgs parity and the creation of domain
walls. The formation of domain walls in the Higgs field is, to the best of our knowledge, a
unique feature of non-linear theories. In this section we describe and identify the conditions
for this approximate symmetry to lead to walls with the assumption, validated below, that
δ, ϵ are small enough to expand on.

Section 4.3 showed that for χ > 0.3 and small ϵ and χ there will be symmetry restoration
in the form of a single minimum at high energies, whereas the zero temperature potential
presents two parity reflected minima. This well studied case of cosmological spontaneous
breaking of discrete symmetry leads in general to the formation of walls and will be the focus
of our study here. The late time phenomenology of walls is quite insensitive to whether the
transition is first or second order, but let us sketch how it occurs in both cases for illustration.
For a first order PT, different patches in the universe will bubble to one of the two vacua,
and after the bubbles collide and lose energy to the bath a network of walls will form, the
characteristic size of this network dependent on the transition properties.

For a second order PT, depicted in figure 4(b) (history P), shortly after the critical
temperature the small separation and barrier between minima implies that thermal fluctuations
for correlation-volume (l3 with l−2 = V ′′(h0) ≃ V ′′(h−)) patches allow for transitions from
one vacuum to another. As temperature decreases, the probability of these jumps will decrease
with the Boltzmann factor, ∼ e−l

3U/T where U is the potential barrier given our approximate
degeneracy assumption U = U0 = U− with U0,− in eq. (4.27), until this suppression is effective
enough to in practice forbid the transitions. At this time patches of the correlation volume
will be stuck in whichever vacuum they happened to be at, and the network of walls will
form. Formation is marked by Ginzburg’s temperature defined as the temperature when
the negative of the exponent in Boltzmann’s factor equals one,

TG ≡
[
V ′′

eff(h0(TG), TG)
]−3/2

U(TG) . (5.1)
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This description allows for a qualitative picture of the symmetry non-restoration case
for χ < 0.3. In this instance two minima survive until high temperature, but noting that
the barrier scales like v2T 2 and naively correlation the length is T−1, one can expect that
above T ∼ v the Boltzmann factor is large enough to allow for these jumps. If this is so,
even without symmetry restoration, the Ginzburg temperature is well defined and one can
expect formation of walls. This must be the case at least in a neighbourhood below χ = 0.3,
but we leave its detailed study for future work.

The definition of the Ginzburg temperature is implicit; in practice however it is well
approximated by the zero temperature potential, in our case

TG ≃ λv4

8γ24m3
h

∼ 60γ−2
4 GeV, (5.2)

where we have expanded on ϵ, δ and kept only the first term. The probabilities P0 and P− to
find a patch of each vacua h0 and h− at the Ginzburg temperature can then be estimated as

P0
P−

∼ exp
(
l3Veff(h−, T )

TG
− l3Veff(h0, T )

TG

)
= exp

(∆V (TG)
U(TG)

)
, (5.3)

where ∆V is as defined in eq. (4.26). A large ∆V/U ratio would imply one vacuum is selected
predominantly and very few walls form. We instead assume this ratio, which depends only on ϵ,
is small, which implies small ϵ according to eq. (2.21). This translates into ∆V/U = 32ϵ≪ 1.

We note that regardless of how the network formed and the typical scale of structure,
both types of phase transition have a large wall stretching out to the horizon. One can
realise this in a 2D case by rolling a dice to fill each correlation patch inside a causal box
with either of the two vacua. Once the filling is done, a zoom out to see the global structure
will reveal the presence of this large wall.

Let us then continue taking l as the typical scale of the network regardless of how it was
formed. The small scale structure dynamics is ruled by the balance of pressure p = ∆V (TG)
and tension µ. The tension is well approximated by the zero temperature potential and
to first non-vanishing order in small ϵ, δ

µ =
∫ ∞

−∞
dℓ T 0

0(hw(ℓ)) =
∫
dℓ

(1
2(∇hw)

2 + V (hw)
)
= 2

√
λv3

3γ24
, (5.4)

where the profile function is found as a solution to the static field equations and reads
γ4
√
λhw(ℓ)/mh = tanh(mhℓ) − 1.
The potential energy difference, eq. (4.26), vanishes in the parity symmetric limit and

here it suffices to estimate it to linear order in δ and ϵ. On top of this expansion, we also
perform a loop expansion, with minima at h− = h

(0)
− +κh(1)− , h0 = h

(0)
0 +κh(1)0 and κ = (4π)−2

to find the energy difference (Veff = V + Vκ , Vκ = VCW + VTh)

∆V = V (h(0)− ) + Vκ(h(0)− ) + dV (h(0)− )
dh

κh
(1)
− +O(κ2)

−
[
V (h(0)0 ) + Vκ(h(0)0 ) + dV (h(0)0 )

dh
κh

(1)
0 +O(κ2)

]
(5.5)

= V (h(0)− ) + Vκ(h(0)− )− [V (h(0)0 ) + Vκ(h(0)0 )] +O(κ2), (5.6)
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where the derivative term cancels since it is evaluated at a minimum to the given approximation.
One can now use that h(0)i , the minima of the tree level potential, do not depend on δ and
are the Higgs parity conjugate of one another to write

h
(0)
− = −2vγ−1

4 + ϵh
(1)
a,− +O(ϵ2), (5.7)

whereas we recall by definition and for all values of the tree level potential h(0)0 = 0. The
expanded energy difference is then

∆V = ϵ

(
∂V (−2vγ−1

4 )
∂ϵ

− ∂V (0)
∂ϵ

)∣∣∣∣∣
ϵ=0

+ ϵh
(1)
a,−

dV (−2vγ−1
4 )

dh

∣∣∣∣∣
ϵ=0

+ δ

(
∂Vκ(−2vγ−1

4 )
∂δ

− ∂Vκ(0)
∂δ

)∣∣∣∣∣
ϵ,δ=0

, (5.8)

where the potential derivative w.r.t. the field will cancel once more given it is evaluated at a
minimum to the given approximation. The leading ϵ contribution comes at tree level and
is straightforward to obtain. For δ, a number of intermediate steps leads to

δ

(
∂

∂δ

[
Vκ(−2vγ−1

4 )− Vκ(0)
])∣∣∣∣

δ,ϵ=0
= δ

∑
i

[
∂m2

i (−2vγ−1
4 )

∂δ
− ∂m2

i (0)
∂δ

]
∂Vκ
∂m2

i

(5.9)

= T 2

2π2
∂F 2(−2vγ−1

4 )
∂δ

∑
nim

2
i (0)J ′

i(m2
i (0)/T 2) (5.10)

=
6γ4δc2χT 2

π2

(
2m2

W (0)J ′
b

(
m2
W (0)
T 2

)
+m2

Z(0)J ′
b

(
m2
Z(0)
T 2

)
− 4m2

t (0)J ′
f

(
m2
t (0)
T 2

))
(5.11)

≡ λv4γ−2
4 δ

(
b(x)x−2

)
, (5.12)

where x = v/T , and we used that our renormalisation conditions of eq. (4.19) imply the
variation w.r.t. the mass vanishes so that the linear term in δ comes from the thermal J
functions, which are F -dependent (and F is δ-dependent). The result is the potential energy
difference to leading order in ϵ, δ,

pV (T ) = ∆V (T ) = 4λv4γ−2
4 (ϵ+ b(x)x−2δ/4) +O(κϵ, δ2) . (5.13)

Wall dynamics will be determined by the balance of the volume pressure pV = ∆V and
an equivalent tension pressure pT = µ/l. Volume pressure ∆V domination at TG means
the lowest energy vacuum patches will quickly expand against the other vacuum patches
and make the l size structure of walls disappear shortly after formation. The opposite case,
approximately given by (ϵ+ b(x)x−2δ/4) < 1/6 [54], has that tension would drive dynamics
together with the friction of the thermal bath. Indeed in vacuo, the tension would make
the walls oscillate converting potential energy stored in tension into kinetic energy and
back. The thermal bath however introduces friction with a pressure T 4vw with vw the wall
velocity which dissipates the energy of the walls efficiently back into the bath, some of it
in the form of gravitational radiation. Both instances then lead to the disappearance of
the l size network shortly after formation.

The dynamics of the large wall are dictated by the horizon rather than l and one can
translate the above discussion by l−1 → H. As long as µH ≥ pV (T ), structure of size H−1
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will enter the horizon, oscillate and radiate as controlled by tension and friction leaving
a potentially detectable trace. The opposite case wipes even this large wall away leaving
virtually no trace. Focusing on detectable phenomenology, we restrict to the condition for
long lived large walls, which is pT > pV as outlined above, and reads explicitly

pT (H(TG)) = µH(TG) > pV = ∆V (TG), (5.14)∣∣∣ϵ+ b(xG)x−2
G δ/4

∣∣∣ ≲ x−2
G v2

6mhMpl

√
4π3g⋆
45 , (5.15)

where x2G = v2/T 2
G. This condition can be met by a cancellation of ϵ and δ, however, if

they themselves are individually much larger than the r.h.s. of the inequality above, the
temperature dependence would mean that the condition will, shortly after TG, not be satisfied.
For this reason we also impose a condition on the logarithmic derivative w.r.t. temperature
of the l.h.s.; explicitly the change after an e-fold variation in temperature should also be
smaller than the r.h.s. of eq. (5.15),

d

d log x
(
b(x)x−2δ/4

)∣∣∣∣
xG

≲
x−2
G v2

6mhMpl

√
4π3g⋆
45 . (5.16)

All the above conditions are met for ϵ = δ = 0, a case in which the perfect degeneracy would
make walls endure the history of the universe to be around today. If so, their effect must
have been negligible in the cosmological evolution and in particular any anisotropic impact
on the CMB less than one part in 105. Given the energy density stored in walls is µH, the
bound can be translated into the tension [54]

µH0 < M2
plH

2
0 ⇒ µ = 2

√
λvv2+
3 = 2

√
λv3

3γ24
≤ (0.1GeV)3. (5.17)

Avoiding this bound would require smaller tension, attainable with larger γ4, of order γ4 ∼ 104,
yet perturbativity from e.g. h+h→ h+h scattering demands λγ24 < 8π/3, and this possibility
is ruled out. The avenue of reducing the tension in our degenerate potential means bringing
the vacua closer together, which is a modification at small field values only. As a result this
conclusion is robust against higher dimensional operator insertions in the potential.

Having ruled out the δ = ϵ = 0 limit, we now turn to finite but small values of the Higgs
parity breaking parameters. We note that the condition that ensures wall survival at the
Ginzburg time, eq. (5.14), is more demanding if translated to later time and larger x; for
finite ∆V it will cease to be satisfied at Tw, i.e.

µHw ≡ pV (Tw) = ∆V (Tw) ⇒ T 2
w =

√
45

4π3g⋆
Mpl∆V

µ
=
√

45
4π3g⋆

6ϵmhMpl. (5.18)

Below this temperature, tension pressure gives way to vacuum pressure and we have that
walls are swept away towards the horizon at a velocity close to the speed of light.

A conservative bound [56] is for this temperature to be higher than our earliest direct
evidence of universe history, big bang nucleo-synthesis. This constraint can be translated
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Figure 15. Figure 15(a) shows the (ϵ, γ4) plane with excluded regions in darker green (from the
upper bound on walls energy density, eq. (5.20)), light gray horizontal (perturbativity, eq. (4.36)),
dark gray (wall annihilation before BBN, (5.19)). The region in dark purple is discarded if one is
to have walls that survive long past the original phase transition (eq. (5.14)). Also shown is the
gravitational wave spectrum value at peak frequency ΩGW(fpeak) in the yellow gradient, see eq. (7.5)
and section 7. Dashed lines for the peak frequencies run from fpeak = 10−6 Hz on the far right to
10−10 Hz on the far left in intervals of 10, and in blue the region SKA [55] would be sensitive to (this
region is however excluded by LHC bounds see section 8). Figure 15(b) shows the (ϵ, δ) excluded by
wall annihilation before BBN in dark gray vertical eq. (5.19), and the regions discarded for long lived
walls following from eq. (5.15) (purple) and eq. (5.16) (gray horizontal).

into a lower bound on ϵ:

Tw > TBBN ⇒ ϵ ≥ T 2
BBN

6Mplmh

√
4π3g⋆
45 . (5.19)

In addition, the energy density of the walls should always be subdominant if one is to
avoid entering an inflationary phase. Given its scaling, this constraint is strongest at the
latest time, i.e. Tw

µH(Tw) ≤ g⋆T
4
w ⇒ ϵ >

m2
h

9λγ24M2
pl
. (5.20)

These constraints are put together in figure 15 for an illustration of the parameter space region
compatible with experimental data. We note that the lower bound in ϵ from eq. (5.20) means
a locally SM-like potential (which has ϵ = 0) is excluded, whereas an upper bound follows
from the LHC (non)measurement of the triple Higgs coupling, see eq. (8.3). Nevertheless the
large disparity of scales involved leaves the possibility to close this window out of reach.

6 Past and future first order phase transitions

The presence of more than one minimum at a given temperature allows for tunnelling
phenomena with potentially detectable imprints in our universe. This requires an evolution
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of the universe whose dynamics initially puts it in the false vacuum and a tunneling rate
large enough to trigger a universe-wide transition, in the past or in the future.

A well studied case that satisfies these conditions is the SM with small Higgs mass. The
history for this case is depicted in figure 3; the high temperature symmetric minimum ϕ = 0
stops being the only extremum after the appearance of a new minimum (and maximum) at a
finite (and large enough, see section 4.3) field distance. The potential energy difference between
minima changes sign at a critical temperature Tc, after which tunneling is energetically viable
but suppressed by the negative exponential of the bounce solution action. Given that the
ϕ = 0 symmetric point turns eventually into a maximum, we have that the potential barrier
between minima decreases and the energy difference increases, so sooner or later the transition
will occur at what is dubbed the nucleation temperature TN , where TN < Tc.

Non-linear theories allow for first order phase transitions as that in the case of the light
SM Higgs but also a set of qualitatively different ones. One could indeed attempt at the
equivalent of the light Higgs SM in our non-linear theory; leaving every other parameter SM-
like, decreasing γ4 effectively increases field distances (i.e. decorrelates the quartic coupling
and m2

h, see eq. (2.15)) and could yield a first order phase transition. It is the case now,
however, that there exist two degenerate true minima, ϕ0, ϕ−, given this limit is Higgs
parity preserving, and uncorrelated patches of the universe will tunnel into one or the other
minimum with equal likelihood. This distribution implies that a network of domain walls
would form in the boundary between different-vacua patches, the subsequent phenomenology
of domain walls having been studied in section 5.

This illustrates the variety of phenomena in non-linear theories. While the picture just
described is more convoluted that typical case studies, one can break it down into staged
transitions, each of which with a known theory formalism. For this reason we will study in this
section scenarios that lead solely to a first order phase transition. Results derived here could
be put together with those of section 5 for more intricate cases as the one described above
with two transitions, however we leave this for future work. Explicitly the cases studied will be
histories Q of figure 4(c) and R of figure 5(c), where we note that both are far from symmetric
under Higgs parity and require sufficiently large ϵ and δ as shown below. For history Q we
have two possibilities by flipping the diagram vertically, these are Q0 and Q− for a continuous
connection of the high temperature with h0 or h− respectively. History R leads necessarily
to a phase transition given the original minimum disappears, while history Q might not lead
to a phase transition if the barrier and separation are never small enough. Following the
discussion above we define the nucleation temperature as the temperature when the tunneling
rate equals the Hubble 4-volume, which will signal the transition in the early universe

v4e−B(TN ) ≡ H4(TN ). (6.1)

History Q does not specify which is the true minimum at low energies; this is dictated by
the sign of ∆V (0) and in our parametrisation, ϵ. The two options for the sign of ϵ then
have to be put against the two histories Q0,− their selection being in turned mapped to
δ. Small χ leads to more than one minimum at high temperature so we choose χ > 0.3 to
ensure we remain over the limit of eq. (4.55).
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ϵ < 0 ϵ > 0
High T Low T High T Low T

(ctg2χ − 2)δ > −8ϵ/γ4 h0(T ) h−(T ) h0(T ) h0(T )
(ctg2χ − 2)δ < −8ϵ/γ4 h−(T ) h−(T ) h−(T ) h0(T )

Table 2. True vacua at high and low temperatures for small ϵ and δ.

For exposition purposes, here we use the small ϵ and δ limit to give a connection of
history and parameter space through eq. (4.50); although this expansion does not hold for
the whole regime we explore (where we use the full expressions), it does identify possibilities
and gives a rough outline of the regions. One has a contrast of high and low energy extrema
dependent on the parameters as shown on table 2. Note that out of the four, one option is
discarded since it never had h0, where we are today, as a true vacuum.

It is for a mismatch of high and low temperature minima that transitions are likely
and that is the case for two out of remaining three options. These conditions are visualised
in figure 16, which schematically displays the different phenomena that may be found in
the (ϵ, δ) plane:

• In the first quadrant, both the tree-level potential and the finite-temperature corrections
favor the h0 SMEFT-like vacuum, and so we expect its cosmological phenomenology
to be similar to that of the SMEFT. Note that a phase transition in this quadrant
would require higher powers of h/v (such as dim-6 or higher operators) in the tree-level
potential.

• We mark as unphysical the region where the thermal history selects the vacuum h− at
present times, because, by definition, h− does not have the known measured masses and
couplings of the SM particles. This is the case for the third quadrant, in which both
the tree-level potential and the thermal corrections favor h−; but also for part of the
second quadrant, where h− is the tree-level vacuum; and part of the fourth quadrant,
where the system may become trapped at h− and high temperatures, and not decay
until after today.

• In the rest of the second quadrant, we find ourselves currently in the false vacuum h0,
a situation that we refer to as the doomsday scenario, since a phase transition could
be triggered at any time. However, as we will show in section 6.2, the lifetime of the
false vacuum we are in is much larger than the age of the universe. Notice that this
possibility of the long-term survival of a false vacuum is in sharp contrast with the
SM case.

• In the fourth quadrant, the true vacuum is h0, but the finite-temperature corrections
favor h−. There will thus be a region where h− is selected at high temperatures,
and a first-order phase transition happens before today. We have labelled this region
bubbles, since the phase transition will happen through bubble nucleation, as described
in section 6.1.
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Figure 16. Schematic representation of the of the different cosmological phenomena arising in the
(ϵ, δ) plane. The small diagrams at the top and the bottom borders represent the tree-level potential
in black, and the finite-temperature corrections in gray.

• Finally, around the origin, when both ϵ and δ are small, long-lived domain walls are
generated, as described in section 5.

These considerations have to be put up against the IR problem; section 4.3 outlines our
treatment of this issue. In summary we will discuss a phase transition if the new minimum
appears in the perturbative regime, εIR(ϕ0(T1)) < 1 (strong IR constraint) or if the new
minimum is in the perturbative region by the critical temperature εIR(ϕ0(Tc)) < 1 (weak
IR constraint)

More complicated histories arise for small χ which we shall comment on but not study
in detail. In this case two minima coexist at high temperature and we might have one
or more minima at low energy. If the minima coexist above a temperature where thermal
fluctuations of correlation-distance-size patches overcome the barrier height (above a Ginzburg
temperature, see section 5) one has a mixed spatial coexistence of the vacua. Above this
temperature either the two minima are degenerate to a good approximation and the evolution
is described in section 5, or if they have a sizeable energy difference, thermal jumps from
the true to the false vacuum will cease first to leave predominantly only the true vacuum.
This vacuum might still not be the same as the zero temperature one, in which case a phase
transition would be possible. We leave such cases for future study.
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6.1 First order electroweak phase transition

The possibility of nucleation in the past history of the universe is, given the considerations
above, realised in the quadrant ϵ > 0, δ < 0 of the (ϵ, δ) plane so that the true vacuum is
today ϕ0 and at high temperatures ϕ−. In this quadrant we can find histories Q− and R,
the latter for ϵ > 1−

√
8/9 where there is a single minimum at tree level. For ϕ− to be the

true vacuum at high temperature, however, not only negative but sufficiently sizeable δ is
required; we found in a small ϵ, δ expansion that this condition is δ < −8s2χ/[γ4(c2χ − 2s2χ)]ϵ.
This analytic result is validated around the origin but also extended to large values of the
parameters (where one finds history R) by our numerical results in this section.

The determining factor to characterise the transition, once one has arranged for the
high temperature vacuum turning into a false one, is the bounce action. In particular it will
determine whether the transition took place or whether the probability is too small for it
to have occurred yet. At high temperatures this bounce action can be approximated by a
3-space-rotation symmetric action times the small time interval 1/T

B = S3
T
. (6.2)

There are no closed formulas for this action but rather a series of approximations of various
accuracies and software for numerical solutions of the problem. Here we use both for a
better understanding of the process. The software used is CosmoTransitions [57] and
Anybubble [58] whereas the analytic approximations are:

• Quartic potential. The formula for the bounce action of a polynomial potential of degree
four is known to a good approximation [59]. The formula gives, for a quartic potential
with a local minimum at ϕ = 0, a true minimum at ϕ = ϕm, and maximum at ϕM as:

V̄ = λ̄

2

[
ϕ4

4 − ϕm + ϕM
3 ϕ3 + ϕmϕM

2 ϕ2
]
, (6.3)

and a bounce action as:

SL3
T

= 4.85
√

8ϕmϕM
λ̄T 2

(
α+ α2

4

[
1 + 2.4

1− α
+ 0.26

(1− α)2
])

, (6.4)

α = 9
2

ϕmϕM
(ϕm + ϕM )2 . (6.5)

Our effective potential Veff is not a polynomial, but as an approximation it can be
modelled as such. We do so by identifying the minimum ϕm = ϕ−−ϕ0 (if tunneling out
of ϕ−) which leaves still two parameters in the potential, ϕM and λ̄, which are not fixed
to the maximum and quartic coupling in eq. (4.22), but rather are implicitly defined by
two conditions of equal energy difference between minima and barrier height, i.e.

V̄ (ϕm; λ̄, ϕM ) ≡ ∆V (T ), V̄ (ϕM ; λ̄, ϕM ) ≡ U−(T ). (6.6)

These implicit definitions for λ̄ and ϕM that ensure the model potential has the same
energy difference and barrier height.
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Figure 17. Comparison of the four methods to compute the tunnelling bounce action, as described
in detail in the text of section 6.1. The displayed lines are evaluated for the parameters χ =

√
0.1, ϵ =

0.04, δ = −0.08, with the results from CosmoTransitions in orange, Anybubble in blue, the quartic
potential approximation in red and the thin wall approximation in green.

• Thin wall and triangular approximation. Shortly after the critical temperature Tc, one
has that the thin wall approximation (which assumes a small energy difference between
minima) holds and returns [53]

Stw
3
T

=16π
3

µ3

T (∆V )2 , µ =
∫ ϕ0

ϕ−
dϕ
√
2(Veff(ϕ)− Veff(ϕ−)). (6.7)

Fitting the potential between minima to a triangle yields

µ△ = 2
√
2
∫ ϕ+

ϕ−

√
(U−)ϕ/(ϕ+ − ϕ−) =

4
√
2

3 (ϕ+ − ϕ−)
√
U−, (6.8)

and in this approximation

Stw
3
T

=
(
4
√
2

3

)3 16π
3

v

T

U
3/2
− (ϕ+(T )− ϕ−(T ))3

∆V 2v
. (6.9)

This expression is easy to evaluate, but is only valid for a short time after Tc whereas
eq. (6.5) continues to be valid at lower temperatures.

One can see a comparative plot for the two analytic approximations and the two numerical
estimates of the bounce action for the 1-loop thermal effective potential defined in eq. (4.22)
as a function of temperature in figure 17. The numerical estimates are performed with
Anybubble [58] and CosmoTransitions [57] respectively. For Anybubble, the potential has
been first fitted to a 9th degree polynomial for technical reasons and then passed into the
Anybubble code, for CosmoTransitions we use the tunneling1D module to compute the
bounce action.

The curves all start with a very large value of the bounce action as right after the critical
temperature, the energy difference between true and false minima is small and the thin wall
approximation applies, giving a bounce action inversely proportional to the minima potential
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Figure 18. A slice of parameter space in ϵ, δ for which the region in colour following history Q− meets
the condition of eq. (6.10) for some T = TN , the nucleation temperature. For this plot, χ =

√
0.1

and γ4 = 1.6. The blank area in the upper region follows history Q0, as the thermal corrections
favour the h0 vacuum, leading to a SMEFT-like cosmological history. In the lower blank region while
still following history Q−, the condition for nucleation, eq. (6.10), is not met for electroweak scale
temperatures and as such we do not predict a first order phase transition in the early universe here.
This and figure 19 occupy roughly quadrant IV of figure 16.

energy difference. In the case of history Q−, as temperature decreases the bounce action
decreases and reaches a minimum value after which it grows again. For the case of history R
however, the action decreases until it vanishes since the original minimum disappears and so
does the barrier between minima. The condition for the transition to occur reads

S3(TN )
TN

≃ − log H
4(TN )
v4

≃ 140. (6.10)

This condition will be met in history R but not necessarily in history Q−, where it could be
that the bounce action never decreases below 140 and one is stuck in the wrong vacuum.
In figure 18 we show a slice of parameter space where the condition is met for history
Q−, where the gradient marks the nucleation temperature. Additionally figure 19 extends
this slice to encompass history R. As discussed in the next section, if one is stuck in ϕ−
below electroweak temperatures, one stays there until today. Since this conflicts with our
definition of ϕ0 as our vacuum today these instances are excluded; visually that is the lower
left white region in figure 18. On the edge of this region we have a sizeable barrier, but
just low enough so that the transition occurs, and it does so strongly. Further away from
this lower edge of the wedge in figure 18, we have smaller barriers and weaker first order
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Figure 19. Extension of figure 18 to larger epsilon values and different histories, with γ4 = 1.6, χ =√
0.1 as in the previous plot. The plot is discontinuous at ϵ = 1−

√
8/9 as a result of eq. (2.20). For

ϵ < 1−
√
8/9, the region in colour follows history Q− and the blank, upper region above this follows

history Q0 as in figure 18. However when ϵ > 1−
√
8/9, the T = 0 potential has a single minimum

only and history R is followed for the region in colour. The blank region above only has a single
minimum throughout its evolution. We note that the upper boundary from history R to a SMEFT-like
history is slightly ambiguous as the potential becomes very flat and difficult to treat numerically.

phase transitions until at the upper edge one meets the numerical extension of the condition
(ctg2χ − 2)δ < −8ϵ/γ4 where the history changes to Q0 and the universe is always in the
true vacuum which is connected continuously at low and high temperatures. For history
R with ϵ > 1 −

√
8/9, this condition changes qualitatively and the edge of the first order

phase transition region is found numerically.

6.2 Doom: future vacuum decay

The previous section showed that the tunneling rate out of a false vacuum might not be
large enough to undergo a transition at temperatures near but below the critical temperature.
At later times, the causal 4-volume increases as H−4, and the bounce action is given by
the 4d bounce action, well approximated by the potential for T = 0. It could be that the
growing Hubble volume exceeds both the inverse decay per time and volume at this later
time, and vacuum decay would ensue; if so a conservative bound would be to require this
to happen before BBN,

B ≤ 4 log v

H(TBBN)
≃ 4 log vMpl

T 2
BBN

≃ 250 . (6.11)
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Figure 20. Bounds on the (ϵ, δ) parameter space for the doom scenario at γ4 = 0.95 and χ2 = 0.1.
The upper-left gray region is excluded by the boundedness-from-below (dark) and perturbativity
(light) criteria. The hatched region below the solid red line is excluded by the strong IR constraint,
eq. (4.34), while the dashed red line shows the weak version, eq. (4.32). There is some noise associated
with our method of numerically tracking the temperature evolution of the minima, and this noise
is visible in the strong IR constraint curve. The blue region corresponds to the history displayed in
figure 6, in which two minima exist in the high-temperature potential. The blue line separates the
regions where the sign of the magnitude defined in eq. (4.54) is positive or negative and is an estimate
for the regions for histories Q−,0 respectively.

It is the case however, that for all studied cases of history Q−, if the phase transition does
not occur at Tew, it will also not occur before BBN. This means that any point on figure 18
of section 6.1 on the lower left white region, which marked instances where the universe
remained in the false minimum ϕ− past the electroweak epoch, the universe will remain in
ϕ− until today. For this reason these points are deemed unphysical.

The situation of being stuck in a false minimum is realised in history Q0 in the opposite
quadrant, ϵ < 0, δ > 0, with the further approximate constraint of (ctg2χ − 2)δ ≳ −8ϵ/γ4
as sketched in table 2. In practice, this approximate constraint has to be extended to a
numerical search for history Q0. In figure 20, we display in blue the region where the thermal
history is that of figure 6, with two minima at high temperature. Above this region, we
have history Q0. The infrared problem as sketched in section 4.2 casts doubt on histories
where extrema are to be found in regions with εIR(ϕ−) > 1; for such cases we do not trust
our perturbative computation, and so we do not discuss the region below the red solid and
dashed lines in figure 20. We also show in gray colour in figure 20 the regions excluded by
the boundedness-from-below and perturbativity criteria described above.

Even when history Q0 can be perturbatively treated, the fact that at high temperature
the only minimum is h0(T ), which turns into a false vacuum at Tc, has to be reconciled
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with us being at h0(T ) today; this demands that the decay rate be small enough so that
the transition has not occurred yet

B ≥ 4 log v

H0
≃ 410. (6.12)

This case with negative ϵ is however more restricted from the perturbativity and boundedness
from below constraints. This can be understood since for ϵ < 0, γϵ < 1 and given δγ4 =
γϵ − γ4/γa for positive δ we require small γ4/γa, yet one of the terms in the perturbative
bound of eq. (4.36) scales with (γ4/γa)−2. This perturbative bound then translates into a
lower bound on negative ϵ to obtain a bounded from below potential in a range of ϕ ∼ 4πv.
On the other hand the limit of ϵ → 0− gives an infinite lifetime and hence is compatible
with observation, the question then is if within this allowed window for ϵ decay lifetimes
around the age of the universe can be found.

To answer this question we turn to the zero-temperature bounce action; a (euclidean)
space-time symmetric solution with the T = 0 potential. A quick estimate of the thin wall
approximation for our zero temperature potential, which holds if

∆V
3σmh

= 1
2γ2ϵ

(1− γ−1
ϵ (1− ϵ)) ≪ 1, (6.13)

gives the tension as in the bubble case expanding in ϵ

σ =
∫ 0

h+
dh
√
2V (h) = µ+O(ϵ) = 2

√
λv3γ−2

4
3 , (6.14)

and an expression for the bounce action as [60]

B = 27π2σ4
2∆V 3 = 33π2

2
λ224γ−8

4
34

1
26λ3ϵ3γ−6

4
= π2

24λγ24ϵ3
. (6.15)

This analytic approximation returns, for γ4 = 1, ϵ > −0.15 decay lifetimes longer than
today. This is not a particularly accurate result: the use of CosmoTransitions and γ4 = 1
returns ϵ > −0.475 for a decay after today. All these values are however ruled out by the
perturbativity and boundedness bound. These bounds are relaxed for smaller γ4 allowing
for larger |ϵ| values, so one might expect this limit to allow for shorter universe lifetimes. In
this same limit however, the bounce action, while not well approximated by the thin wall,
does factor out in the same way for γ4, i.e. B = λ−1γ−2

4 f(ϵ) and so reducing γ4 actually
increases the lifetime exponentially. One concludes then that the lifetime of the universe
is in all instances well beyond the current age.

The question that follows is then what are the allowed values for the lifetime. This turns
our gaze to the future which changes the estimation qualitatively. Indeed the estimation of the
Hubble 4-volume as the relevant spacetime factor is valid in a decelerated expansion with scale
factor a ∼ tp but not in an accelerated expansion. In this case revisiting the estimation for the
relevant 4-volume, i.e. the past light cone of an observer at time tf , one obtains for a ∼ eH0t

∫
light cone

d4x
√
− det(gµν) =

4πH−3
0 tf
3 . (6.16)

light cone eq. − a(t)dχ = dt, χ(tF ) = 0, (6.17)
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Figure 21. Top: excluded values of the lifetime of the universe as a function of γ4. Bottom: example
points with the minimal lifetime allowed by boundedness from below in the second quadrant of the
(ϵ, δ) plane, used to generate the blue line in the top plot. In these three plots, the shaded region is
ruled out from various constraints: boundedness from below (darker, solid), perturbativity (lighter,
solid), and LHC constraints (dashed). See section 8 and figure 27 for more details on all the bounds
shown in these plots.

i.e. an space-time volume which is a sphere of radius H−1
0 times time, and one concludes that

the accelerated expansion from this perspective is ‘living in a box’, the longtime physicist
dream. For a given value of potential parameters we find the lifetime tf by solving

4πH−3
0 tf
3 v4e−B = 1. (6.18)

We have used this estimate to generate figure 21 which further illustrates the point of the
lifetime of the universe being much larger the its age. To generate it, we look for the point
in the second quadrant of the (ϵ, δ) space that gives the minimal lifetime allowed by the
boundedness-from-below criterion, for different values of γ4. Such points are shown in red in
the 3 plots at the bottom of figure 21, corresponding to 3 values of γ4. We then compute
the corresponding lifetime and display it as the blue line in the top plot. The gray region on
the left of the top plot is excluded by a combination of all bounds, as described in section 8.
Thus, the only allowed lifetimes are those in the white region, and are all larger than the
age of the universe by a factor > 102000.
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7 Gravitational waves

The spectrum of gravitational waves is customarily given as

ΩGW = dρGW
d log k = dρGW

d log f , (7.1)

with ρGW the energy density in gravitational waves, k the wave number and f frequency, in
natural units 2πf = k. In our study two sources of gravitational waves have been identified:
walls and first order phase transitions. Let us discuss each in turn.

Gravitational emission occurs for domain walls as smaller curvature (larger radius) wall
structure enters the causal horizon and starts a damped oscillation in the plasma. While
most of the energy goes into the plasma, part of it is emitted as gravitational waves, with the
contribution at time t after the big bang for an interval ∆t estimated as ∆ρGW/∆t ≃ Gµ2/t.
Today the spectrum is redshifted and more so the earlier the emission, so that the peak
frequency corresponds to the annihilation time tw, and one has (see e.g. ref. [61])

fpeak = awHw = g
1/3
0 T0

g
1/3
w̄ Tw

√
4π3gw
45

T 2
w

Mpl
= g

1/3
0

g
1/3
w̄

(
4π3gw
45

)1/4

T0

√
6ϵmh

Mpl
, (7.2)

= g
1/3
0

g
1/3
w̄

√
4π3gw
45

T0TBBN
Mpl

Tw
TBBN

= 1.1× 10−10 Tw
TBBN

Hz, (7.3)

where gw̄ = gw − gν = gw − 21/4 and in the last equality we assumed that Tw occurred
while gw = 10.75 which is the latest allowed. Correspondingly, the power spectrum value
at the peak is given by:

ΩGW(fpeak) =
GNµ

2

ρcr

(
T0
Tw

)4
= Ω0

γ

23πgw
35g0

v4

M4
pl

1
ϵ2γ44

(7.4)

= Ω0
γ

40
3π2g0

m2
hv

4

M2
plTBBN

T 4
BBN
T 4
w

γ−4
4 = 1.4× 10−17T

4
BBN
T 4
w

γ−4
4 . (7.5)

One can note, when expressed in terms of the ratio of temperatures for the BBN and wall
annihilation, that the frequency is bounded to be greater than 0.1 nHz, and the peak in the
spectrum increases with decreasing γ4 and decreasing frequency. These features are shown
in figure 15; given that the strength of the gravitational wave signal is greater for lower
frequencies, one finds that the low frequency Square Kilometer Array (SKA) experiment [55]
would probe part of the parameter space.7 As we shall see in section 8, when put against
LHC bounds for our model, however, the parameter region that would yield a signal at SKA
is already excluded. The shape of the full spectrum can be approximated by k−1, and k3

right and left of the peak respectively [61], in qualitative agreement with simulations [62].
For a first order phase transition undergoing bubble nucleation, the gravitational wave

signal can be estimated using the thermal parameters derived from the tunnelling action:
the speed of the transition β/H and the strength of the phase transition α related to the

7We estimate that SKA is sensitive to the GW signal when its power spectrum evaluated at the peak
frequency lies above the sensitivity curve.
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latent heat, both evaluated at the nucleation temperature TN given in eq. (6.10).8 The
thermal parameters are explicitly:

α = 1
ρrad(TN )

(
∆V (TN )− TN

d∆V
dT

∣∣
T=TN

)
, (7.6)

β

H∗
= TN

d(S3/T )
dT

∣∣
T=TN

, (7.7)

where H∗ is the Hubble constant at the time of nucleation, ∆V (T ) is defined in eq. (4.26),
and ρrad(TN ) = g∗π

2T 4
N/30 is the radiation energy density. The quantity g∗ is the effective

number of relativistic degrees of freedom in the plasma at TN , which was calculated by
tracking particle decoupling following [65]. The GW signal also depends on the velocity
of the bubble wall in the rest-frame of the plasma, vw, which we calculate following the
model-independent prescription in [66].

As demonstrated in section 6.1, our non-linear theory model is capable of FOPTs that
are qualitatively different than those accessible in SMEFT theories. In particular, we are
interested in bubble nucleation that occurs in the parameter space identified in figure 18. We
now present in figure 22 the behaviour of the associated thermal parameters α, β/H∗ along
with TN and vw as a function of ϵ, δ, using the same slice of parameter space as figure 18.
With these parameters associated with bubble nucleation, we can proceed to estimate the
GW signal observable today.

Next, we discuss our calculation of the gravitational wave signal from the thermal
parameters. The following discussion is largely pedagogical, and we note that our analysis
follows standard techniques. There are three sources of gravitational wave production during
bubble nucleation: the bubble collisions, plasma sound waves driven by the expanding bubble
wall, and turbulence [64]. The total gravitational wave energy density, ΩGW, is the sum
of the signal from each of these sources is

ΩGW = Ωcol +Ωsw +Ωtu . (7.8)

The initial source for GW radiation occurs when the bubbles first collide, breaking spherical
symmetry. The contribution from bubble collisions, however, is thought to be small (order
percent) so long as the walls do not enter the runaway regime [63], so here we do not include
them in our estimation of the GW signal.

As the bubbles expand, wave fronts emerge preceding the bubble walls, forming acoustic
sound waves propagating in the plasma. This is typically the dominant contribution to the
GW signal near the peak frequency of the gravitational wave power spectrum. Schematically,
this power spectrum as measured today can be estimated by redshifting the GW signal
at the source,

Ωsw = Fredshift × Ωamp × Ssw(f) , (7.9)

8More precisely, the relevant temperature is the transition temperature T∗. Here we assume T∗ ≈ TN and
do not distinguish between them, a safe assumption for fast phase transitions without significant reheating
and in the absence of large supercooling [63, 64].
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Figure 22. The thermal parameters TN , α, β/H∗, vw for a slice of ϵ, δ parameter space with γ4 = 1.6
and χ =

√
0.1. The thermal parameters are defined respectively in eqs. (6.10), (7.6), and (7.7) with

the wall velocity estimated using prescription outlined in [66]. Note for a small region of parameter
space, runaway bubbles with vw → 1 are predicted. However, the region is numerically noisy as a
result of finite sampling. Figure 18 is included again on the top left plot.

where Ssw(f) is the spectral shape of the GW signal. Accounting for the redshift of GW
radiation from the time of production introduces the factor (as outlined in, for example,
refs. [63, 67, 68])

Fredshift = 3.57× 10−5
(100
g∗

)1/3
. (7.10)

The GW energy density from the sound waves in the plasma is [69]:

Ωsw,0 = 3Γ2Ū4
f (H∗R∗)Ω̃sw , (7.11)

where Γ ∼ 4/3 is the adiabatic index, Ūf is the root mean square (RMS) fluid four-velocity,
and R∗ is the average separation between bubbles R∗ = (8π)1/3vw/β [63]. The efficiency
factor Ω̃sw stems from converting motion in the fluid to metric perturbations, estimated
from simulation to be Ω̃gw = 0.012 [69, 70]. The RMS velocity Ūf is set by the strength
of the phase transition α through

Ū2
f = 3

4κsw
α

1 + α
. (7.12)

The quantity κsw controls how much of the vacuum energy is transferred into kinetic energy
of the plasma. This has been studied in detail in ref. [71], resulting in numerical fits of
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κsw(vw, α) to approximate full solutions to the relativistic fluid equations of the plasma. The
results of these fits are used here and checked against PTPlot [63].

During the phase transition, shock waves will develop, at which point the motion of the
plasma is better described by turbulence than acoustic sound waves. If the time scale of
shock formation is small compared one Hubble time τsh < 1/H∗, the resulting sound wave
signal is reduced by a factor H∗τsh = H∗R∗/Ūfl. The total Ωamp is then9

Ωamp = 2.061Ωsw,0Max[H∗τsh, 1] . (7.13)

Putting all of this together gives

h2Ωsw(f) = 2.59× 10−6h2
(100
g∗

)1/3
Γ2Ū4

fl

(
H∗
β

)
vwMax[H∗τsh, 1]Ssw(f) . (7.14)

The spectral shape of the sound wave power spectrum is [64]

Ssw =
(
f

fsw

)2( 7
4 + 3 (f/fsw)2

)7/2

, (7.15)

written in terms of the peak frequency as observed today,

fsw = (8.876 µHz)
(
geff
100

)1/6 ( TN
100GeV

)( 1
vw

)(
β

H

)(
zp
10

)
. (7.16)

This results from red shifting the frequency profile obtained from numerical simulations,
which predict zp ∼ 10 [69].

The next important contribution to the overall signal is the turbulence term. In this
case, the power of the gravitational wave signal at the source is now generated by turbulence
in the fluid [68, 75, 76]. While our understanding of turbulence during cosmological phase
transitions is still evolving [68, 77–80], the result used here is:

h2Ωtu(f) = 3.35× 10−4
(
H∗
β

)(
κtuα

1 + α

)3/2 (100
g∗

)1/3
vwStu(f) , (7.17)

where the efficiency factor κtu parameterises how much of the kinetic energy is converted
into turbulent motion. Here we use κtu = 0.05κsw, as chosen in ref. [64]. This approximation
is based on simulated fluid motion [70], though this simulation does not last long enough
to realistically capture turbulence effects. We emphasise that, as noted in the literature,
this efficiency factor is not yet well-understood [63, 68, 81, 82]. Finally, the spectral shape
of the turbulence signal is [83]:

Stu(f) =
(f/ftu)3

[1 + f/ftu]11/3 (1 + 8πf/hN )
, (7.18)

where

ftu = 27µHz 1
vw

(
β

H∗

)(
TN

100GeV

)(
g∗
100

)1/6
, (7.19)

hN = 16.6µHz
(

TN
100GeV

)(
g∗
100

)1/6
. (7.20)

9The numerical prefactor ensures the total GW power resulting from integrating the power spectrum Ωsw

reproduces the total power estimate Ωsw,0 [69].

– 43 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
9

10-5 0.1 1000

10-23

10-19

10-15

10-11

10-7

(a)

10-5 0.1 1000

10-23

10-19

10-15

10-11

10-7

(b)

Figure 23. The gravitational wave signal for γ4 = 1.6, χ2 = 0.1. The GW signal curve is the
maximal envelope of the power spectra obtained from varying ϵ and δ. To give a sense of the ϵ- and
δ-dependence, the parameter space is broken up into subsets, and a resulting maximal envelope power
spectrum is drawn for each subset. In figure 23(a), the ϵ-dependence is emphasised by breaking the
parameter space up into subsets of ϵ ranges as specified in the legend, while varying over all δ for each
curve. In figure 23(b), the δ-dependence is correspondingly emphasised, this time varying over all ϵ
for each curve. The GW sensitivity curves are drawn for SKA [55], LISA [72], the Big Bang Observer
(BBO) [73], and the Einstein telescope (ET) [74].

The total gravitational wave signal that results from both the sound wave and turbulence
contributions is plotted in figure 23 for a benchmark choice of γ4, χ in the nonlinear theory
model. We also show the sensitivity curves for planned gravitational wave detectors. Given γ4
and χ, there is still a range of ϵ and δ that give bubble nucleation and generate a gravitational
wave signal. This figure summarizes this parameter space by plotting the maximal envelope
of the many power spectra that result from varying ϵ and δ. While no single choice of (ϵ, δ)
will reproduce the whole curve, the maximal envelope overlapping with the GW detector
sensitivity curves indicates at least one point in (ϵ, δ) parameter space with a power spectrum
that exceeds the sensitivity curve. In the remainder of this work, we estimate that a GW
signal is within observable reach of a GW detector if there exist some frequencies for which
the GW power spectrum exceeds the detector’s sensitivity curve.

8 Complementarity with LHC

While measurements at the LHC have opened the door to the electroweak symmetry breaking
mechanism and made formidable advances in its exploration, these measurements are also
limited to only probe couplings of the electroweak sector around the vacuum. As this work has
tried to underline, cosmology has the potential to reach where such scattering experiments can-
not, to non-local effects in field space. Here we establish this complementarity quantitatively
on a concrete case study by confronting our previous cosmological analysis with LHC bounds.

Local observables correspond to coefficients in a covariant expansion of fields of the
action around the vacuum. These can be given in the scalar sector in terms of covariant
derivatives of the cuvature tensor and scalar potential, reproducing here for simplicity the
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curvatures of section 2:

v2Rφ(0) = 1− c4χγ
2
a, v2Rh(0) = −γ2as2χc2χ , (8.1)

which are bounded by ATLAS to a 95% confidence level to be

v2Rφ(0) = −0.080+0.12
−0.13, v2Rh(0) = +0.080+1.0

−1.1 , (8.2)

where these bounds are derived from [84, 85]. Also relevant will be the element of the
third covariant derivative of the potential (∇3V )hhh = V ′′′(0) = 3λγ4(1 − ϵ)v, probed by
measurements of triple Higgs coupling. Bounds from ATLAS [86] give the following constraints
at 95% confidence on the triple-Higgs coupling in the kappa framework (i.e. ratio of the
triple-Higgs coupling to the SM expectation)

−1.0 < κλ = V ′′′(0)
V ′′′

SM(0) = γ4(1− ϵ) < 6.6 . (8.3)

Here, we combine experimental input from the LHC with the cosmological analyses of
sections 5 and 6 in order to present a final comprehensive phenomenological picture. We
categorise these results into different cosmological processes as follows:

• Symmetry restoration. The small ϵ, δ limit allows for identification of χ > 0.3 as the
region for high temperature symmetry restoration. This does not include the χ = 0
limit which returns SM-like couplings locally; the Standard Model itself presents high
temperature symmetry restoration. The feature then arises in this non-linear theory that
the non-local phenomenology of the SM is not recovered in the local SM coupling limit.
A consequence of this is that the region for high temperature symmetry restoration
in our non-linear theory lies a finite distance away in parameter space from the SM
couplings limit and as such provides a target for collider experiments. This is illustrated
in figure 24 where said region for small δ, ϵ is depicted and is partially ruled out by
LHC bounds and would explored in full by future experiments such as the FCC.

• Domain walls. The wall formation scenario required ϵ, δ < 10−15, far smaller than
collider limits can hope to compete with. LHC constraints therefore will have a relevant
impact only in the remaining parameters of the theory, namely γ4, χ. In the case that
χ > 0.3 the theory exhibits symmetry restoration and produces domain walls. As
figure 15 shows, cosmological bounds alone (primarily in the form of wall annihilation
before BBN) allow for potentially detectable GW signals at SKA. To produce a signal
visible at SKA, one requires small γ4 < 0.1 given the parametric dependence in eq. (7.5).
The triple gauge coupling constraint allows very small and even vanishing γ4. However,
the relevant ϵ, δ → 0 limit implies γa = γ4, and curvature bounds of eq. (8.2) apply.
These constrain γ4 to a neighbourhood around 1/c2χ, so that there is a minimum
attainable γ4 well above 0.1. Plugging this value back into eq. (7.5) gives a maximum
peak of the GW power spectrum resulting from domain walls:

Ωmax
g.w.|peak = 2.2× 10−17

(
10−10 Hz
fpeak

)4

fpeak > 10−10 Hz . (8.4)
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Figure 24. The curvature plane v2Rφ(0) and v2Rh(0) as defined in eq. (8.1). In colour is the
region for high-temperature symmetry restoration (see section 4.3), i.e. π/2 > χ > 0.3. We vary γ2

a

independently to account for varying ϵ, δ, γ4. We note for interest but do not show on the plot for clarity
that increasing γ2

a decreases the curvatures radially originating from (v2Rh(0), v2Rφ(0)) = (0.0, 1.0).
The area outside the blue dashed box is excluded by LHC bounds from eq. (8.2). The FCC would be
expected to be sensitive, assuming SM-like couplings, up to the small, inner box [87, 88].

Figure 25(a), shows the impact of LHC bounds and figure 25(b) shows the maximal
prediction for the peak spectrum in this non-linear theory versus SKA sensitivity, see
eq. (8.4). From this figure, it is clear that the parameter region which sources a domain
wall GW signal that SKA is sensitive to is already ruled out by the LHC while the
maximum attainable signal in spectrum lies five orders of magnitude below projected
sensitivity.

• First order phase transition. For first order phase transitions, one requires couplings
sizeably different from the SM, which would naively give collider constraints a more
prominent role than in the walls case. The main LHC constraint arises again through
the bound on Rφ, which constrains c2χγa to lie close to 1. On the other hand we require
largish negative δ in this region. Recalling

δ = γ−1
4 γϵ − γ−1

a (8.5)

together with 1 < γϵ <
√
2 for ϵ > 0 means δ < 0 would require γ4 > γϵγa ≃ γϵ/c

2
χ > 1.

The effect of greater than one γ4 is illustrated in figure 8; as γ4 increases, the extrema
of the T = 0 potential is pushed closer together, which also facilitates nucleation. We
plot γ4 = 1.6 in figure 26 to provide an illustrative example of a region in parameter
space allowed by current LHC bounds that also predicts a gravitational wave signal
detectable at upcoming experiments LISA and BBO, for the region marked in orange
and cyan respectively. To estimate the reach of upcoming experiments, we simply
check that there exists some range of frequencies such that the GW power spectrum
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Figure 25. (a) The (ϵ− γ4) plane delineating the wall formation region in parameter space as in
figure 15 with the addition of LHC bounds, eq. (8.2), in the vertical gray shaded region. (b) Curve for
the value of the spectrum at the peak frequency for the allowed region of parameter space taking into
account LHC bounds and the sensitivity of SKA [55].

exceeds the detector’s sensitivity curve. We leave a full signal-to-noise ratio analysis
taking into account possible astrophysical GW backgrounds for later work. Note that,
since γ4 ̸= 1, χ ̸= 0, in the (ϵ, δ) plane of figure 26 the LHC-allowed region does not go
through the origin.

• Doom. Lastly the quadrant ϵ < 0, δ > 0 can lead to h0 as the single high temperature
vacuum while the true vacuum today, h−, having appeared at a distance in field space
large enough so that we are currently trapped in a false vacuum. The requirement of
δ > 0 in conjunction with LHC bounds with the same reasoning as the one outlined
around eq. (8.5) but now in the opposite direction implies γ4 < 1. This limit decreases
the Higgs quartic coupling at tree level, increasing the relative contribution of loop
effects so that a stronger perturbativity and boundedness from below constraint applies
now. This is illustrated in the lower panel of figure 27 where one can see that the
combination of LHC and perturbativity bounds excludes γ4 < 0.8. The reduced range
for γ4 still allows for a region, partially shown in figure 27 upper panel, where the
IR constraint, the LHC and perturbativity constraints are satisfied and we would be
currently trapped in a false vacuum. This doom possibility has been found to lead to
a lifetime for our universe in excess of 102000 times the lifetime of the universe, see
figure 21.

9 Summary

Today the question of whether electroweak symmetry is realised in Nature linearly or non-
linearly is within experimental reach. The distinction is non-local in field space and thus calls
for non-perturbative phenomena as the unambiguous probe. Such phenomena do arise in
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Figure 26. Summary of first order phase transition parameter space for γ4 = 1.6, χ2 = 0.1. The
region in blue shows the combinations of (ϵ, δ) that we found to admit bubble nucleation while
tunnelling from the false vacuum to the true vacuum today. The region in red (dark red) is excluded
by the strong (weak) IR constraints. The pink (dark pink) regions are excluded by the boundedness
from below (perturbativity) constraint. The light green (green) dashed lines show the LHC constraints
on the curvature to the 1σ (2σ) level. The gray region is unphysical, yielding the wrong vacuum
today. The regions of first order phase transitions that give a GW signal detectable at LISA (BBO)
are shown in orange (cyan). Only a small sliver of parameter space gives signals observable only at
BBO, more visible in figure 26(b).

cosmology, and this paper has focused on studying the cosmological phenomenology of the
non-linear realisation, termed here the non-linear theory space, i.e. HEFT\SMEFT which
opens qualitatively new features with respect to SMEFT.

Our study has revealed non-decoupling deviations in the sphaleron energy, the possibility
of domain wall formation, first order phase transitions at the electroweak scale and vacuum
decay in the very distant future, as well as symmetry non-restoration at high temperature.
These can be used to answer the EW realisation question because processes such as the
formation of electroweak domain walls are, to the best of our current knowledge, exclusive
to non-linear theories.

There is evidence to support the statement that non-linear theories are non-decoupling,
meaning that no limit can be taken in such theories that returns the SM only. A non-decoupling
feature, albeit localised a finite distance away from our vacuum, has been identified with
the non-linear theory used here, which has wormhole-like space as the scalar manifold. This
feature is to be found in the flat limit that corresponds to the SM locally; the closing of
the throat of the wormhole produces a localised singularity in the effective potential that
prevents symmetry restoration at high temperature and would likely lead to light new states.
Conversely, away from this local SM limit, there is a region in parameter space that leads to
symmetry restoration and presents local couplings around the vacuum which are a ‘finite
distance’ away from the SM ones. This minimum size of deviations provides a specific target,
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Figure 27. Top: summary of the parameter space that leads to future vacuum decay (the doom
scenario). Combination of figure 20 with LHC bounds in light green (1σ) and darker green (2σ).
Bottom: series of plots with the combination of LHC exlusion regions (delineated with dashed lines)
and perturbativity to illustrate that values of γ4 < 0.85 are ruled out by a combination of LHC and
perturbativity bounds, and therefore discarded in our analysis.

and we find that FCC would meet it and rule out the symmetry restoring region. Another
non-decoupling effect has been found in the sphaleron energy, although this effect seems
difficult to probe. The exploration of its implications for baryogenesis are hitherto unexplored.

The formation of domain walls requires minima that are approximately degenerate, but
not exactly so. This requirement sets upper and lower cosmological bounds on ϵ, which
is related to the triple Higgs coupling. This window of ϵ is within a range too small to
be probed directly by the LHC, although indirect LHC constraints on other parameters
of the theory have implications on cosmology. Among them, there is an upper bound on
the strength of gravitational waves from walls which lies a few orders of magnitude below
the sensitivity of SKA.
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The case of a strong first order phase transition is realised in this theory in a way not
possible in SMEFT; the extension of the Higgs field range with the wormhole topology
considered here contains naturally a second minimum and a barrier such that no large
potential corrections are needed. This is qualitatively different from 1OPT’s in the SMEFT,
which require the addition of higher dimensional operators to generate a barrier. In order
to achieve first order phase transitions in non-linear theories considered here, as opposed to
walls, we require sizeable energy difference between minima and hence sizeable deviations
from SM couplings. In fact, one has that the region in parameter space that leads to first
order transitions is accessible experimentally via the LHC. However, the combination of
LHC and current cosmological data does only probe this region partially. It is a promising
possibility in fact that non-linear theories could have produced gravitational waves detectable
at LISA and will give rise to new signals at the HL-LHC.

Lastly, a scenario with vacuum decay in the future is difficult to probe with cosmological
observation; the impending annihilation event has been found to be at least 102000 years
in the future. The LHC however can probe the possibility of vacuum decay through the
determination of Higgs couplings.

This paper has explored a small fraction of the possible cosmological phenomenology
of HEFT\SMEFT. It is a fraction which nonetheless included new phenomena not possible
in SMEFT and provides the elementary results to attempt a more comprehensive survey.
Such exploration, to be complete, should include LHC and cosmological data, but also
theory considerations such as perturbativity and the range of validity of an EFT at finite
temperature and its relation to curvature. Indeed non-linear theories are constrained from
all directions and hence, once these lines are drawn, they will provide specific targets for
experiments both on earth and in space, to answer the question of what type of electroweak
symmetry realisation is present in Nature.

A UV model for non-linear type A theory

In this appendix we present a model that presents the geometry of a type A non-linear theory,
i.e. a manifold which does not contain a fixed point, not even a singular one. This model is
not meant to be phenomenologically viable or representative. In particular it is built out of
linear representations and integration of heavy modes which leaves out the tantalizing but
hitherto unrealised possibility of starting from non linear representations.

The model is built with an SU(2) doublet ϕ and a singlet h, with vacuum expectation
values given by

〈
|ϕ|2

〉
= v2/2 and ⟨h⟩ = 0. The Lagrangian is

LUV = 1
2(∂µh)

2 + |∂µϕ|2 − Vh(h)−
λϕ
2

(
|ϕ|2 − v2

2

)2

+ v2G(h)|ϕ|2 , (A.1)

with arbitrary functions Vh(h) and G(h) of the singlet h, with the minimum for Vh(h) at h = 0
and G(0) = 0, without loss of generality. We employ the usual parametrization of the doublet

ϕ = 1√
2
U

(
0

v +H

)
(A.2)
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with a radial coordinate H such that ⟨H⟩ = 0. The Lagrangian becomes

LUV = 1
2(∂µh)

2 + 1
2(∂µH)2 + 1

2(v +H)2 Tr
[
∂µU †∂µU †

]
− Vh(h)− VH(H) + v2

2 G(h)(v +H)2. (A.3)

The H scalar gets a mass m2
H = λϕv

2. Assuming a perturbative λϕ ≲ (4π)2, we have
m2
H ≲ (4π)2v2. Here, we assume that m2

H ≃ (4π)2v2 ≫ v2 and integrate out H at tree level.
This can be done by plugging the solution to the equation of motion for H,

H = 1
m2
H

{
vTr

[
∂µU †∂µU †

]
+ v3G(h)

}
+O

(
1
m4
H

)
, (A.4)

into the UV Lagrangian, which gives:

Leff = 1
2(∂µh)

2 + v2

2 Tr
[
∂µU †∂µU †

]
− Vh(h) +

1
2m2

H

{
vTr

[
∂µU †∂µU †

]
+ v3G(h)

}2
, (A.5)

neglecting O(1/m4
H) terms. In particular, we have

F (h)2 = 1 + v2

m2
H

G(h), V (h) = Vh(h)−
v6

2m2
H

G(h)2. (A.6)

This means that non-linear theories with any F (h) can be achieved with this model. Both
type A and B theories can be obtained with an appropriate choice of G(h). In particular,
a renormalizable UV completion with

G(h)=
c2χm

2
H

v2

(
2 h
v⋆

+h2

v2⋆

)
, (A.7)

Vh(h)=V (h)+ v6

m2
H

G(h)2

=
(
m2
h

2 +
2c4χv6

m2
Hv

2
⋆

)
h2+

(
mh

√
λ

2 γ4(1−ϵ)+
2c4χv6

m2
Hv

3
⋆

)
h3+

(
λ

8γ
2
4+

2c4χv6

2m2
Hv

4
⋆

)
h4, (A.8)

gives the F (h) and V (h) functions we have used in this work, although additional terms
of the form

Leff ⊃ v2

2m2
H

{
Tr
[
∂µU †∂µU †

]}2
+O

(
1
m4
H

)
, (A.9)

which we have not considered, are present in the Lagrangian. Corrections to this Lagrangian
of order m−4

H can be computed systematically with a functional approach as outlined in [4].
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