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1 Introduction

Four-dimensional maximally supersymmetric Yang-Mills (N = 4 SYM) theory with gauge
group SU(N) is of great interest for a variety of reasons. It is a non-trivial four-dimensional
superconformal gauge theory parameterised by the complex coupling τ ≡ θ

2π + i 4π
g2

YM
with

Montonen-Olive duality group SL(2,Z) [1];1 it is a toy model of QCD and an integrable system
in the planar limit. Importantly for our present considerations it provides a non-perturbative
formulation of type IIB string theory in an AdS5 × S5 background [3].2 In this holographic

1In this paper we will focus on the theory with gauge group SU(N). S-duality involving more general gauge
groups is discussed by Goddard, Nuyts and Olive in [2].

2Similar holographic dualities exist for other gauge groups [4].
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interpretation, type IIB string theory with coupling τs = χ + i/gs and string length scale ℓs

in a background AdS5 × S5 of length scale L is identified with N = 4 SYM with gauge group
SU(N), where τs = τ and (L/ℓs)4 = g2

YMN . Therefore, the gravity description at small ℓs is
dual to SYM at large N and finite τ .3 Super-graviton scattering amplitudes in string theory
on AdS5 × S5 are then dual to correlation functions of the stress tensor multiplet. While
this duality in principle gives a non-perturbative definition of string theory in terms of a well
defined CFT, in practice it is difficult to use the duality to study string theory in the gravity
regime since the CFT is strongly coupled at large N . We thus need to study N = 4 SYM
non-perturbatively to make progress in studying quantum gravity via AdS/CFT.

1.1 Brief review of integrated correlators

Certain properties of N = 4 SYM can be obtained analytically for all values of N and τ using
supersymmetric localisation (see [5] for a review). This method was originally used to compute
non-local quantities such as supersymmetric partition functions and Wilson loops [6]. More
recently, it was understood [7, 8] that certain integrals of the correlator of four superconformal
primary operators in the N = 4 stress tensor multiplet are obtained from the following
derivatives of the S4 partition function ZN (m, τ) deformed by the N = 2 preserving mass m:

CN (τ) ≡ 1
4∆τ ∂2

m logZN (m, τ)
∣∣
m=0 , HN (τ) ≡ ∂4

m logZN (m, τ)
∣∣
m=0 , (1.1)

where ∆τ ≡ 4τ2
2 ∂τ ∂τ̄ is the hyperbolic laplacian and τ = τ1 + iτ2 with τ1 = θ/(2π), and

τ2 = 4π/g2
YM . The quantities CN and HN are identified with integrals over the insertion points

of the operators in the four-point correlator. The choice of integration measure distinguishes
the choice of integrated correlators.

The relations (1.1) are useful because ZN (m, τ) can be computed using supersymmetric
localisation in terms of an (N − 1)-dimensional matrix model integral [6]. The integrand is
a product of a classical contribution that depends on gYM , a one-loop contribution that is
τ -independent, and a sum over an infinite number of instanton contributions that depend
on τ and τ̄ [9–12]. In order to use these integrated correlators to study the gravity regime
of string theory via AdS/CFT, we need to compute these (N − 1)-dimensional integrals
explicitly for large N .

In particular thanks to [7, 8, 13, 14], we know how to reconstruct from the large-N
expansion of the integrated correlators (1.1), the first low-energy corrections R4, d4R4,
d6R4 (with R a suitable contraction of the Riemann tensor), to the tree-level supergravity
contribution to four-graviton scattering in AdS5 × S5 as well as flat-space. In the present
paper we find intriguing large-N relations between the two integrated correlators (1.1), which
in the future will hopefully shed light on higher derivative corrections, beyond d6R4, to
flat-space four-graviton scattering which are not known at the present time. The application
of the integrated corerlators to constrain scattering amplitudes in AdS5 ×S5 will be discussed
further in section 6.

3At large N and finite τ , the bulk is weakly curved because ℓs is small, but the string theory is still strongly
coupled because τs is finite. One can further take gs to be weakly coupled, which is then dual to the familiar
large-N large-λ ≡ g2

YM N limit of SYM.
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The perturbative sector of CN (τ) was first computed for both finite N and in a large-N
expansion in [15]. The instanton sectors were then also computed at large N in [13], and
the large-N expansion of CN (τ) was found to take the following form

CN (τ) = N2

4 − 3
√

N

24 E( 3
2 ; τ) +

45
28
√

N
E( 5

2 ; τ) +
1

N
3
2

[
− 39
213 E( 3

2 ; τ) +
4725
215 E( 7

2 ; τ)
]

+ 1
N

5
2

[
−1125

216 E( 5
2 ; τ) +

99225
218 E( 9

2 ; τ)
]
+ O(N− 7

2 ) ,

(1.2)

where E(s; τ) is the non-holomorphic Eisenstein series, that may be defined by the two-
dimensional lattice sum4

E(s; τ) = 1
πs

∑
(m,n) ̸= (0,0)

τ s
2

|m + nτ |2s
, (1.3)

which is the unique SL(2,Z) invariant solution of polynomial growth at the cusp τ2 ≫ 1
to the homogeneous Laplace eigenvalue equation

(∆τ − s(s − 1))E(s; τ) = 0 . (1.4)

It was shown in [16, 17] that, for all N and τ , CN (τ) can be written as a two-dimensional
lattice sum,

CN (τ) =
∑

(m,n)∈Z2

∫ ∞

0
dt BN (t) exp

(
−tπ

|m + nτ |2

τ2

)
, (1.5)

where BN (t) = QN (t)/(t + 1)2N+1 and QN (t) is a polynomial of degree (2N + 1). Although
the expression for BN (t) was arrived at in [17] by analysing the perturbative and instanton
contributions for many values of N , a derivation of its form was given in [18] based on
the construction of a generating series, C(z; τ) ≡∑∞

N=1 CN (τ)zN . The expression (1.5) was
shown to satisfy a Laplace difference equation

∆τCN (τ) = N2[CN+1(τ)− 2 CN (τ) + CN−1(τ)
]
− N

[
CN+1(τ)− CN−1(τ)

]
+ 2 CN (τ) . (1.6)

Using the initial condition C1(τ) = 0, this recursion relation can be used to efficiently compute
all CN (τ) in terms of C2(τ).

The 1/N expansion (1.2) is non-convergent, and the explicit modular invariant trans-series
containing the large-N completion was obtained by analysing the generating series [18]. In the
large-λ limit, the large-N completion behaves as e−2

√
λ as obtained first using resurgence [17,

19]. Many other results concerning the integrated correlator CN (τ) as well as its extensions
for other gauge groups and more general 1/2-BPS operators can be found in the literature,
see e.g. [20–33].

Much less is known about the second correlator HN (τ), which is the focus of this paper.
While the perturbative sector was computed at finite N in [8], the large-N expansion of these

4The normalisation of E(s; τ) differs from that of [13] in a manner that eliminates factors of π in the
coefficients of the series in (1.2) and subsequent expressions.
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perturbative terms is much more challenging and only the first few orders were computed
in that study. In [14], it was shown that instanton terms could be computed more easily
at large N , which were used to compute the first few terms at large N and finite τ . The
resulting series has the following form

HN (τ) = 6N2 +Hh
N (τ) +Hi

N (τ) + . . . , (1.7)

where ellipsis denotes terms that are exponentially suppressed in N . The series Hh
N contains

terms with half-integer powers of 1/N ,

Hh
N (τ) =

√
NE( 3

2 ; τ)−
9

2
√

N
E( 5

2 ; τ) +
1

N
3
2

[117
28 E( 3

2 ; τ)−
3375
210 E( 7

2 ; τ)
]

+ 1
N

5
2

[675
210 E( 5

2 ; τ)−
33075
212 E( 9

2 ; τ)
]
+ O(N− 7

2 ) ,

(1.8)

where the coefficients are rational multiples of non-holomorphic Eisenstein series, just as in
the case of CN in (1.2). The series Hi

N contains integer powers of 1/N . The terms up to
O(1/N3) were evaluated in [14] and take the following form

Hi
N (τ)=C0+

27
23N

E(4, 3
2 , 3

2 ;τ)+
1

N2

[
C1−

14175
704 E(7, 5

2 , 3
2 ;τ)+

1215
88 E(5, 5

2 , 3
2 ;τ)

]
(1.9)

+ 1
N3

[
α3E(4, 3

2 , 3
2 ;τ)+

∑
s=6,8,9

[αsE(s, 3
2 , 3

2 ;τ)+βsE(s, 5
2 , 5

2 ;τ)+γsE(s, 7
2 , 3

2 ;τ)]
]
+O(N−4) ,

where αs, βs, γs are known rational constants, while the values of the constants C0 and
C1 require further knowledge of the perturbative sector. The function E(s, s1, s2; τ) is a
generalised Eisenstein series, which is an SL(2,Z) invariant solution of the inhomogeneous
Laplace eigenvalue equation5

(∆τ − s(s − 1)) E(s, s1, s2; τ) = E(s1; τ)E(s2; τ) . (1.10)

An example of such a function, E(4, 3
2 , 3

2 ; τ), entered as the coefficient of d6R4 in the low
energy expansion of the type IIB effective action in [34, 35] where it was expressed as a
four-dimensional lattice sum and its Fourier expansion was studied in [36]. More general
examples of such lattice sums were obtained in [37].6 Starting at eigenvalue s = 6 it was
shown, in [38] for cases when s1 and s2 are integers and in [39] when s1 and s2 are half-integers,
that the Fourier-mode decomposition of E(s, s1, s2; τ) in general contains terms which are
related to holomorphic cusp forms. This fact will play an important in our analysis.

We will now summarise the main results of this paper, which will shed much more
light on the structure of the large-N expansion of HN and hint at its possible structure
for all values of N .

5Note that in [14] a different convention was used in which Ê(s, s1, s2; τ) = −πs1+s2E(s+1, s1, s2; τ), where
Ê(s, s1, s2; τ) denotes the generalised Eisenstein series of [14].

6We will later see that such lattice sums require more careful definitions than those given in [35] and [37].
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1.2 Summary of results

Most of the explicit results in this paper apply to the large-N expansion of HN . This involves
developing techniques for determining the explicit form of the perturbative terms in HN to
any desired order in 1/N . When combined with the large-N instanton expressions obtained
following [14], this determines the full HN to any desired order in 1/N .

Several interesting relations between HN and CN will emerge from these explicit large-
N results. For example, we find that the half-integer power terms, Hh

N in (1.7) satisfy a
Laplace difference equation

∆τHh
N (τ) =N2(N2 − 1)

[
Hh

N+1(τ)
(N + 1)2 − 2H

h
N (τ)
N2 +

Hh
N−1(τ)

(N − 1)2

]
(1.11)

+ 16N

N2 − 1

[
3N3

4 − (N − 1)2CN+1(τ) + 3NCN (τ) + (N + 1)2CN−1(τ)
]

,

which allows us to efficiently compute Hh
N to all orders in 1/N . This recursion relation is

similar to that of CN in (1.6), except now both integrated correlators appear on the right
hand side, and furthermore we cannot use (1.11) to compute the full HN at finite N because
Hi

N does not satisfy this recursion relation.
We also derived several new results concerning the integer power terms Hi

N . Firstly,
the τ -independent terms C0, C1, . . . that appear at even powers of 1/N in (1.9) can now
be evaluated. These coefficients can be used to constrain contact-term ambiguities of loop
corrections to the holographic correlator. In particular, we will use the C0 term to give a
consistency check on the unique contact-term ambiguity of the one-loop graviton exchange
term [40, 41], which was originally fixed using CN in [15]; while C1 can be used to fix one of
the four contact-term ambiguities of the 2-loop graviton exchange term [42, 43].

Although we suspect that the full integrated correlator, HN , satisfies some differential
equation analogous to the Laplace difference equation satisfied by CN , this remains to be
understood. However, we find that the laplacian acting on Hi

N is related to CN via a
nonlinear relation

∆τHi
N (τ)

∣∣
E
= 96

N2 − 1

(
CN (τ)− N2

4

)2

, (1.12)

where ∆τHN |E means that the expression is restricted to the terms that are bilinear in non-
holomorphic Eisenstein series that appear when acting with the laplacian on the generalised
Eisenstein series E , as appeared in the right-hand side of (1.10). Although this relation
cannot recursively fix each order of Hi

N as (1.11) did for Hh
N , we will see that it does strongly

restrict the space of E that arise in Hi
N at each order in 1/N expansion.

As we commented earlier, an individual generalised Eisenstein series E(s, s1, s2; τ) with
eigenvalue s ≥ 6 in general contains contributions which originate from holomorphic cusp
forms of modular weight 2s. However, we will show that the combinations of E(s, s1, s2; τ)
that appear at each order of 1/N in (1.9) and its extension to higher orders are very special
ones in which the holomorphic cusp forms contributions cancel. Closely related to this, the
combinations appearing in the 1/N expansion are precisely the combinations of generalised
Eisenstein series that admit four-dimensional lattice sum representations.

– 5 –
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More precisely we will see that at each order in 1/N up to order O(N−7) that we
have checked explicitly, the combination of generalised Eisenstein series that appears has
the form of an integral of a four-dimensional lattice sum of the type that has appeared
in [36, 37, 44] in the study of the low energy expansion of type IIB string amplitudes. Such
specific sums of generalised Eisenstein series (modulo linear combinations of single Eisenstein
series) have the form

Ew
i,j(τ) =

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

∫ ∞

0
d3t Bw

i,j(t1, t2, t3) exp
(
− π

τ2

3∑
i=1

ti|pi|2
)

, (1.13)

where pi = mi + niτ with mi, ni ∈ Z. The function Bw
i,j(t1, t2, t3) is a symmetric function

of (t1, t2, t3) which satisfies a Laplace eigenvalue equation7

(∆t − s(s − 1))Bw
i,j(t) = 0 , (1.14)

within the domain ti > 0, where s = 3i + j + 1 with i, j ∈ N and ∆t is a laplacian expressed
in terms of derivatives with respect to ti, as given in (4.22). The value of the index w ∈ N
determines the specific combinations of generalised Eisenstein series that arise in Ew

i,j . Some
details of this expression will be described later. In previous work, such as [37, 44] the
function Bw

i,j(t) was expressed in the form V (t)wAi,j(ρ(t)), where ρ = ρ1 + iρ2 is a simple
complex function of t1, t2, t3, as will be reviewed in appendix C.

The motivation for combining generalised Eisenstein series into expressions such as (1.13)
can be seen already at O(N−3) in (1.9). As we will show, the coefficients αs, βs, γs (with
s = 6, 8, 10) of the generalised Eisenstein series at order 1/N3 in (1.9) satisfy a constraint for
each value of s. We will further see that this pattern continues to all the orders in 1/N that
we have evaluated — at each order the coefficients are in the basis defined by the integrated
lattice sums, Ea

i,j , which is a smaller basis than that defined by generalised Eisenstein series.
Since the non-holomorphic Eisenstein series in Hi

N are already written as lattice sums in (1.3),
this shows that the full HN can be written as a lattice sum to all orders in 1/N , up to at
least O(N−7) which we have verified explicitly.

All the explicit results concern properties of HN at large N and finite τ , and we have
not yet found an analytic expression at finite N and τ , as was found for CN in [17]. However,
we will show that the asymptotic large N expansion for both HN and CN can be used to
accurately estimate these quantities at finite N for all τ in the fundamental domain. We do
this by combining the exact N expressions for the perturbative terms from [8, 15] with the
instanton sectors of the 1/N expressions in this work truncated to a certain order in 1/N .
The result is shown to numerically match N = 2, 3 expressions for all τ to good precision,
which have been evaluated numerically from the matrix model integrals in [45].

1.3 Outline

The rest of this paper is organised as follows. In section 2 we review the localised expression
for HN with emphasis on the zero instanton sector. We then determine the large-λ expansion

7Here and in subsequent expressions we use the shorthand notation B(t) ≡ B(t1, t2, t3).

– 6 –
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(where λ = g2
YMN is the ’t Hooft coupling) of the correlator, explicitly displaying the first

few terms in the 1/λ expansion at order N2 and N0.
In section 3 we will use the above methods to compute the coefficients of half-integer

powers of 1/N that arise in Hh
N . We will see that this expression satisfies a recursion

relation, which generates Hh
N to all orders in 1/N and at finite τ , thereby enabling us to

determine the expression for Hh
N to all orders. The structure of this expression is remarkably

similar to that of CN .
In section 4 we consider terms with integer powers of 1/N in the large-N expansion

of Hi
N . We will see that the coefficients of each term in the 1/N expansion is a particular

combination of generalised Eisenstein series in which contributions from holomorphic cusp
forms cancel. We further show that Hi

N admits a four-dimensional lattice sum representation
at each order in the large-N expansion.

In section 5 we show how to use the large-N expansion of HN and CN to accurately
estimate the value of the integrated correlator at finite values of N and generic values of τ .

In section 6, we show how our new results for the τ -independent terms in HN can be
used to constrain higher loop corrections to the stress tensor correlator at loop level.

We conclude in section 7 with a discussion of how these results might suggest further
insights. Technical details are relegated to the appendices, and we also include various results
in a Mathematica file incleded in the supplementary material attached to this paper.

2 Free energy at large N

In this section, we will review the form of the S4 partition function ZN (m, τ) of N = 2∗
SYM, which reduces to the partition function of N = 4 SYM with gauge group SU(N) in the
m → 0 limit. We will be particularly interested in computing the large-N expansion of HN .
The emphasis in this section is on the large-N and large-λ expansion, which is not sensitive
to instantons. In subsequent sections we will then combine this new data as well as instanton
results obtained following [14] to fix the large-N finite-τ expansion to very high orders.

The N = 2∗ SYM S4 partition function can be determined using supersymmetric
localisation and can be expressed as a matrix model integral [6]

ZN (m, τ)=
∫

dN−1a
(∏

i<j

a2
ij

)
e
− 8π2

g2
YM

∑
i

a2
i

∏
i ̸=j H(aij)

H(m)N−1∏
i ̸=j H(aij + m) |Zinst(m, τ, aij)|2 ,

(2.1)

where aij ≡ ai − aj . The integration is over N real variables ai, i = 1, . . . , N , subject to the
constraint ∑i ai = 0. The function H(z) = e−(1+γ)z2

G(1 + iz)G(1 − iz) is the product of
two Barnes G-functions, and Zinst is the contribution from instantons localised at the poles
of S4. We can write the instanton partition function as

Zinst(m, τ, aij) =
∞∑

k=0
qkZ

(k)
inst(m, aij) , with q = e2πiτ , (2.2)

where Z
(k)
inst(m, aij) represents the contribution of the k-instanton sector and is normalised

such that Z
(0)
inst(m, aij) = 1. Explicit expressions for Z

(k)
inst(m, aij) can be found in [11, 12]. We

– 7 –
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can then take mass derivatives to get the perturbative contribution

∂4
m logZN

∣∣pert

m=0 = −12ζ(3) +
∑
i,j

⟨K ′′′(aij)⟩+ 3
∑

i,j,k,l

[
⟨K ′(aij)K ′(akl)⟩ − ⟨K ′(aij)⟩⟨K ′(akl)⟩

]
,

(2.3)

where K(z) ≡ −H′(z)
H(z) and expectation values are taken with the Gaussian matrix model

measure so that

⟨O(aij)⟩ =
1
N

∫
dN a δ

(∑
i

ai
) (∏

i<j

a2
ij

)
e−

8π2N
λ

∑
i

a2
i O(aij) , (2.4)

where the normalisation factor N is chosen such that ⟨1⟩ = 1.
The instanton terms in (2.1) are contained in Nekrasov partition function, Zinst(m, τ, aij),

whose small-m expansion has been studied in [13, 14]. In [14], it was already shown how
to compute these instanton terms to any order in 1/N , so in the following we will focus on
the perturbative terms (2.3) which we denote by ∂4

m logZN |pert
m=0.8

To evaluate ∂4
m logZN |pert

m=0, we write the function K ′(z) in terms of the integral rep-
resentation [46]

K ′(z) = −
∫ ∞

0
dω

2ω[cos(2ωz)− 1]
sinh2 ω

, (2.5)

so that the perturbative sector in (2.3) can be written as

∂4
m logZN

∣∣pert

m=0 = −12ζ(3) +
∫ ∞

0
dω

8ω3I(ω)
sinh2 ω

+
∫ ∞

0
dω1dω2

12ω1ω2J (ω1, ω2)
sinh2 ω1 sinh2 ω2

, (2.6)

where we define the 2-body and 4-body expectation values

I(ω) ≡
∑
i,j

⟨e2iωaij ⟩ , J (ω1, ω2) ≡
∑

i,j,k,l

[
⟨e2iω1aij e2iω2akl⟩ − ⟨e2iω1aij ⟩⟨e2iω2akl⟩

]
. (2.7)

In [8, 15], it was shown how these expectation values can be computed to any order at large
N and finite λ using topological recursion, where the expansion takes the form

I(ω) = N2I2(ω) + N0I0(ω) + N−2I−2(ω) + . . . ,

J (ω1, ω2) = N2J2(ω1, ω2) + N0J0(ω1, ω2) + N−2J−2(ω1, ω2) + . . . .
(2.8)

The 1/N2 coefficients Ii(ω) are expressed as products of two Bessel functions with the same
argument. For instance, the first two terms are

I2(ω) =
4π2J1

(√
λω
π

)
2

λω2 , I0(ω) =

√
λωJ1

(√
λω
π

)
J2
(√

λω
π

)
12π

, (2.9)

while higher terms are given in [15]. The coefficients Ji(ω1, ω2) can be expressed as products
of four Bessel functions. For instance,

J2(ω1, ω2) =
8πJ1

(√
λω1
π

)
J1
(√

λω2
π

)
√

λ(ω2
2 − ω2

1)

[
ω1J0

(√
λω1
π

)
J1
(√

λω2
π

)
− ω2J1

(√
λω1
π

)
J0
(√

λω2
π

)]
,

J0(ω1, ω2) = J non-fac
0 (ω1, ω2) + J fac

0 (ω1, ω2) , (2.10)
8Note that the perturbative terms have k = 0 (zero instanton number), but there is also an infinite set of

k = 0 instanton/anti-instanton terms, which do not contribute to the perturbative sector.
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where we defined the auxiliary functions

J non-fac
0 (ω1,ω2)≡

λ

12π2(ω2
2−ω2

1)

[
ω1J0

(√
λω1
π

)
J1

(√
λω2
π

)
−ω2J1

(√
λω1
π

)
J0

(√
λω2
π

)]
(2.11)

×
[
ω3

2J1

(√
λω1
π

)
J2

(√
λω2
π

)
+ω3

1J2

(√
λω1
π

)
J1

(√
λω2
π

)]
+ λω1ω2(ω2

1+ω2
2)

2π2(ω2
2−ω2

1)2

[
ω1J0

(√
λω1
π

)
J1

(√
λω2
π

)
−ω2J1

(√
λω1
π

)
J0

(√
λω2
π

)]
×
[
ω2J0

(√
λω1
π

)
J1

(√
λω2
π

)
−ω1J1

(√
λω1
π

)
J0

(√
λω2
π

)]
,

J fac
0 (ω1,ω2)≡−

7λω2
2J1

(√
λω1
π

)
2J1

(√
λω2
π

)
2

12π2 −
λω2

2J1

(√
λω1
π

)
2J0

(√
λω2
π

)
2

2π2 (2.12)

−
7λω2

1J1

(√
λω1
π

)
2J1

(√
λω2
π

)
2

12π2 +
λω1ω2J0

(√
λω1
π

)
J1

(√
λω1
π

)
J0

(√
λω2
π

)
J1

(√
λω2
π

)
2π2

+
λω1ω2J1

(√
λω1
π

)
J2

(√
λω1
π

)
J2

(√
λω2
π

)
J1

(√
λω2
π

)
12π2 −

λω2
1J0

(√
λω1
π

)
2J1

(√
λω2
π

)
2

2π2 .

Note that at order O(N0) we have separated the terms into J fac
0 , which factorises in terms

of ω2 and ω1, and J fac
0 , which does not factorise. Higher order terms take a similar form;

they can be found in [8] and up to order O(N−8) in the Mathematica file included in the
supplementary material.

The large-λ expansion of the 2-body term I(ω) in (2.6) is straightforward at all orders
in 1/N2. As shown in [7], we start by writing bilinears of Bessel functions in the Mellin-
Barnes form

Jµ(x)Jν(x) =
∮

ds

2πi

Γ(−s)Γ(2s + µ + ν + 1)
(

x
2
)µ+ν+2s

Γ(s + µ + 1)Γ(s + ν + 1)Γ(s + µ + ν + 1) , (2.13)

where the contour separates the poles of each Gamma function. We then perform the ω

integrals in (2.6) using the identity∫ ∞

0
dω

ωa

sinh2 ω
= 1

2a−1Γ(a + 1)ζ(a) , (2.14)

and then close the contour to the left to get an expansion in 1/λ. For instance, using the
explicit expressions in (2.9) we get

∫ ∞

0
dω

8ω3I(ω)
sinh2 ω

= N2
[
16π2

λ
− 32π2

λ
3
2

+ 24π2ζ(3)
λ

5
2

+ O(λ− 7
2 )
]

+ N0
[
4π2√λ

15 − 13π2

16λ
3
2
− 75π2ζ(3)

32λ
5
2

+ O(λ− 7
2 )
]
+ O(N−2) ,

(2.15)

where the expansion at each order in 1/N2 including a finite number of positive powers of
λ, plus an infinite number of negative powers.

The large-λ expansion of the 4-body terms J (ω1, ω2) in (2.6) is much harder to evaluate
because the dependence on ω1 and ω2 does not in general factorise. As a result, even if we
write each pair of Bessel functions in Mellin-Barnes form, it is still difficult to perform the
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ω1, ω2 integrals. In [8], the 4-body terms were instead computed at large λ by numerically
evaluating the ω1, ω2 integrals in (2.6) for many values of finite λ, and then using a numerical
fit to guess the large λ values. This method only worked for the lowest few orders in 1/λ

at each order in 1/N2, where it gave∫ ∞

0
dω1dω2

12ω1ω2J (ω1, ω2)
sinh2 ω1 sinh2 ω2

=

N2
[
6 + 96ζ(3)

λ
3
2

− 288ζ(5)
λ

5
2

− 144ζ(3)2

λ3 −
(
16π2

λ
− 32π2

λ
3
2

+ 24π2ζ(3)
λ

5
2

)
+ O(λ− 7

2 )
]

+ N0
[(

2− 4π2

15

)
λ

1
2 + O(λ0)

]
+ N−2

[(
π2

504 − 1
60

)
λ

3
2 + O(λ)

]
(2.16)

+ N−4
[
− λ3

120960 + O(λ
5
2 )
]
+ O(N−6) .

Note that the π2 terms here exactly cancel those from the 2-body term in (2.15) up to
the order shown.

We now show how to evaluate the 4-body terms at large λ analytically to any order.
Let us begin with the leading N2 term J2(ω1, ω2) in (2.10):

I(0)(λ)

≡
∫ ∞

0
dω1dω2

12ω1ω2J2(ω1,ω2)
sinh2 ω1 sinh2 ω2

(2.17)

=
∫ ∞

0
dω1dω2

96πω1ω2J1

(√
λω1
π

)
J1

(√
λω2
π

)
√

λ(ω2
2−ω2

1)sinh2 ω1 sinh2 ω2

[
ω1J0

(√
λω1
π

)
J1

(√
λω2
π

)
−ω2J1

(√
λω1
π

)
J0

(√
λω2
π

)]
.

We start by applying the Bessel kernel identity

ω1J0
(√

λω1
π

)
J1
(√

λω2
π

)
−ω2J1

(√
λω1
π

)
J0
(√

λω2
π

)
ω2

2−ω2
1

=
∞∑

ℓ=1

4ℓπJ2ℓ

(√
λω1
π

)
J2ℓ

(√
λω2
π

)
ω1ω2

√
λ

, (2.18)

to write (2.17) as an infinite sum of terms

I(0)(λ)=
∞∑

ℓ=1

384π2ℓ

λ

∫ ∞

0
dω1dω2

J1
(√

λω1
π

)
J2ℓ

(√
λω1
π

)
sinh2 ω1

J1
(√

λω2
π

)
J2ℓ

(√
λω2
π

)
sinh2 ω2

. (2.19)

Since this expression now factorises in ω1 and ω2, we can convert each pair of Bessel functions
to Mellin-Barnes form using (2.13), shift the contour integral variables by 1− ℓ, and perform
the ω1 and ω2 integrals using (2.14), which gives

I(0)(λ) =
∮

ds

2πi

dt

2πi
p(s, t)c(s, t) , c(s, t) =

∞∑
ℓ=1

cℓ(s, t) , (2.20)

where the ℓ-independent prefactor is

p(s, t) = 3λs+t+2 sin(πs) sin(πt)Γ(2s + 4)2Γ(2t + 4)2ζ(2s + 3)ζ(2t + 3)
24s+4t+3π2(s+t+2) , (2.21)
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while the ℓ-dependent terms are

cℓ(s, t) = ℓ(ℓ − s − 3)(ℓ − t − 3)Γ(ℓ − s − 3)Γ(ℓ − s − 1)Γ(ℓ − t − 3)Γ(ℓ − t − 1)
π2Γ(ℓ + s + 2)Γ(ℓ + s + 3)Γ(ℓ + t + 2)Γ(ℓ + t + 3) . (2.22)

We can now perform the contour integrals by closing the contours to the left, which includes
poles where s and t are each negative numbers, as well as poles where the sum s + t is a
negative number. The details of this pole counting are summarised in appendix A. The
result matches the leading large-N term in (2.16), but now we can extend the series to
any order in 1/λ systematically.

The 4-body term at order N0 is more complicated, as J0(ω1, ω2) in (2.10) now includes
twice the non-factorised denominator ω2

2 − ω2
1.9 To make the ω1, ω2 factorise, we must

therefore apply the Bessel kernel identity (2.18) twice, so the resulting expression will be a
double infinite sum. In appendix A, we show how the above method is modified to compute
the large-λ expansion in this case. After combining these 4-body results with the 2-body
expression (2.15), we find that the expansion of the full perturbative sector (2.6) is given by

∂4
m logZN

∣∣pert

m=0 =N2
[
6+96ζ(3)

λ
3
2

− 288ζ(5)
λ

5
2

− 144ζ(3)2

λ3 − 3375ζ(7)
4λ7/2 − 1080ζ(3)ζ(5)

λ4 +O(λ− 9
2 )
]

+
[
2
√

λ− 96ζ(3)+23
10 − 3ζ(3)

λ
+117ζ(3)

16λ
3
2

− 45ζ(5)
8λ2 +O(λ− 5

2 )
]
+O(N−2) .

(2.23)

We note that the π2 terms from the 2-body contribution (2.15) cancel at all orders, and
the λ0N0 term also receives a contribution from the first term in (2.6). All higher 1/N2

corrections can be evaluated similarly. In the Mathematica file included in the supplementary
material, we show explicit results to higher orders in both 1/N2 and 1/λ. They take a similar
form to the above expressions, except the number of positive powers of λ grows with each
order in 1/N2, and all subsequent λ0 terms are simple fractions. In the following sections we
will use these perturbative data, combined with the instanton results obtained following [14],
to determine the coefficients of the large-N finite-τ expansion.

3 Half-integer powers of 1/N at finite τ

We now consider the large-N and finite-τ expansion. As discussed around (1.7), this expansion
can be divided into terms with half-integer powers of N contained in Hh

N (τ), as well as terms
with integer power of N in Hi

N (τ). In this section we will consider the form of Hh(τ). We can
detemine the coefficients of the powers of 1/N using the perturbative sector of the localisation
expression (2.3), as well as the instanton terms. As discussed earlier, the instanton terms
were obtained in [14], so we will mainly discuss perturbative terms.

The perturbative sector at large N and finite τ only depends on τ2, and can be ob-
tained from the large-N and large-λ expansion in (2.23) by simply setting λ = 4πN/τ2
and reorganising the large-N expansion. In [14] it was observed that Hh

N (τ) is entirely
9This additional complication is only relevant for the O(N0) term.
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written in terms of non-holomorphic Eisenstein series E(s; τ), which have the well-known
Fourier-mode decomposition

E(s; τ) = 2ζ(2s)
πs

τ s
2 +

2Γ
(
s − 1

2

)
πs− 1

2Γ(s)
ζ(2s − 1)τ1−s

1

+ 4√τ2
Γ(s)

∑
k ̸=0

|k|s−
1
2 σ1−2s(k)Ks− 1

2
(2π |k| τ2) e2πikτ1 ,

(3.1)

where the divisor sum σp(k) is defined as σp(k) = ∑
d|k dp with d > 0, and Ks− 1

2
is a

Bessel function of the second kind. The contribution to Hh
N (τ) coming from a particular

non-holomorphic Eisenstein series, E(s; τ), is in fact uniquely fixed by the form of the two
k = 0 terms in the Fourier series (3.1). We can therefore determine Hh

N (τ) to any order in
1/N and finite τ by simply comparing to the perturbative data from (2.23) (and the higher
order terms given in the Mathematica notebook included in the supplementary material).
We can then double check that the k > 0 terms in (3.1) are consistent with the k > 0 terms
derived in [14] (as well as new data obtained following the methods outlined in [14]). We
find that Hh

N (τ) takes the following form

Hh
N (τ) =

∞∑
j,ℓ=0

N
1
2−ℓ−2jdj

ℓ E( 3
2 + ℓ; τ) , (3.2)

where the coefficients dj
ℓ for the lowest few j are found to be

d0
ℓ =−

(ℓ+1)(ℓ+3)Γ
(
ℓ− 1

2

)
Γ
(
ℓ+ 3

2

)2

4ℓ−1πℓ+ 9
2 Γ(ℓ+1)

, (3.3)

d1
ℓ =

(ℓ+1)(2ℓ+13)(ℓ(2ℓ+7)+9)Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 5

2

)
3·4ℓ+2πℓ+ 11

2 (ℓ+2)Γ(ℓ+1)
,

d2
ℓ =−

(ℓ+1)2(ℓ(2ℓ+7)+15)(4ℓ(5ℓ+52)+219)Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 11

2

)
45·4ℓ+5πℓ+ 13

2 Γ(ℓ+4)
,

d3
ℓ =

(ℓ+1)2(ℓ(2ℓ+7)+21)(560ℓ4+10752ℓ3+59272ℓ2+124800ℓ+75771)Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 15

2

)
2835·4ℓ+8πℓ+ 15

2 Γ(ℓ+5)
.

The integrated correlator CN (τ) can be written in a similar form

CN (τ) = N2

4 +
∞∑

j,ℓ=0
N

1
2−ℓ−2j d̃j

ℓ E( 3
2 + ℓ; τ) , (3.4)

where the lowest few coefficients are [17]

d̃0
ℓ =

(ℓ+1)Γ
(
ℓ− 1

2

)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 5

2

)
4ℓ+1πℓ+ 9

2 Γ(ℓ+1)
, (3.5)

d̃1
ℓ =−

(ℓ+1)2(2ℓ+13)Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 5

2

)2

3·22ℓ+7πℓ+ 11
2 Γ(ℓ+3)

,

d̃2
ℓ =

(ℓ+1)2 (20ℓ2+208ℓ+219
)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 11

2

)
45·22ℓ+13πℓ+ 13

2 Γ(ℓ+4)
,

d̃3
ℓ =−

(ℓ+1)2 (560ℓ4+10752ℓ3+59272ℓ2+124800ℓ+75771
)
Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 15

2

)
2835·22ℓ+19πℓ+3Γ

(
ℓ+ 15

2

) .
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While the coefficients in both (3.3) and (3.5) may seem quite complicated, it turns out for
all j they are simply related by(

3 + 8ℓ + 4ℓ2
)

dj
ℓ = −32

(
3 + 6j + 7ℓ + 2ℓ2

)
d̃j

ℓ . (3.6)

These simple polynomials in ℓ, j can be interpreted as coming from derivatives with respect
to τ and N acting on (3.2) and (3.4), which implies the formal relation

∆τHh
N (τ) = −8 (3− 3∂N + 2∆τ ) CN (τ) + 6N2 − 12N , (3.7)

where the polynomial in N cancels the N2/4 term in CN (τ). We can eliminate ∂N , whose
interpretation is confusing for integer N , by acting with ∂N on the recursion relation for CN (τ)
in (1.6) and combining with shifted versions of (3.7), which yields the recursion relation given
in (1.11). This recursion relation, or equivalently (3.6), can be used to generate Hh

N (τ) to
any desired order in 1/N from the known CN (τ) [17]. The new recursion relation essentially
puts Hh

N (τ) on the same level as CN (τ), which is known to any order in 1/N . However,
the full second integrated correlator HN (τ) does not obey the recursion relation (1.11).
In particular, the integer powers in 1/N expansion Hi

N (τ) behave differently, as we will
discuss in the next section.

4 Integer powers of 1/N at finite τ

We will now discuss Hi
N (τ), which contains the integer powers of 1/N in the large-N expansion.

The terms up to 1/N3 were obtained in [14] and are reproduced in (1.9). The coefficients
of these terms are sums of generalised Eisenstein series E(s, s1, s2; τ) with s1, s2 ∈ N+ 1

2 , as
well as τ -independent pure numbers. We find that the generalisation of (1.9) to arbitrary
orders in 1/N takes the following form,

Hi
N (τ) =

∞∑
j=0

Cj

N2j
+

∞∑
j=0

∞∑
ℓ=0

⌊ℓ/2⌋∑
r=0

3ℓ+6j+4∑
s=4+ℓ,6+ℓ,...

αj,ℓ,r,s

N1+ℓ+2j
E(s, 3

2 + r, 3
2 + ℓ − r; τ) . (4.1)

The τ -independent terms Cj are associated with supergravity contributions, and terms
containing E(s, s1, s2; τ) are due to the stringy effects. The choice of the eigenvalues s is to
ensure that the terms at order 1/Nn obeys a boundary condition such that the corresponding
(integrated) d2(2n+1)R4 vertices in the holographic string amplitudes contribute only up to
genus-(2n + 1), which was previously observed in [14]. Whereas the choice of the sources,
which are labelled by s1, s2, can be understood as a consequence of the relation (1.12).

The τ -independent terms Cj in (1.9) were not computed in [14], because they can only
be fixed from the perturbative sector. Using our new perturbative data, we find that

C0 = −96ζ(3) + 23
10 , (4.2)

while for j > 0 they all appear to be rational numbers. For instance, C1 = − 1
10 , and C2 = 1

14 .
It is straightforward (but laborious) to compute higher orders from the perturbative results.

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
4

As for the E(s, s1, s2; τ) terms in Hi
N (τ), we first note that the E(s, s1, s2; τ) have the

Fourier expansion

E(s, s1, s2; τ) =
∞∑

n,m=0
E(n,m)(s, s1, s2; τ2)qnq̄m . (4.3)

The coefficients E(n,m)(s, s1, s2; τ2) correspond to terms in the n-instanton/m-anti-instanton
sector with total instanton number k = n − m. Further discussion of E(n,m)(s, s1, s2; τ2) can
be found in appendix B. The coefficients of terms in the 1/N expansion of Hi

N (τ) can in
principle be fixed directly by comparing with explicit results obtained from localisation for
certain choices of (m, n). This was the procedure used in [14] where all the terms up to
O(1/N3) were determined. This however becomes more and more challenging as we consider
higher-order terms. In order to simplify the computation, we will assume that Hi

N (τ) satisfies
certain conditions at all orders in 1/N that are satisfied by low-order terms. We will then
check that the resulting expression indeed reproduces the localisation result. The conditions
that will be imposed are the following:

• Up to order 1/N3 we observed in (1.12) that the action of ∆τ on Hi
N (τ) results in

terms bilinear in Eisenstein series that are proportional to those in the square of CN (τ).
Assuming that this continues to hold at higher orders in 1/N provides strong constraints
on the coefficients of the generalised Eisenstein series that arise in the 1/N expansion.

• The second condition is that the coefficients αj,ℓ,r,s of the expansion (4.1) in generalised
Eisenstein series are related for each eigenvalue s in such a manner that contributions
coming from holomorphic cusp forms cancel. As will be discussed in the next subsection
individual E(s, s1, s2; τ) with s ≥ 6 generically have such cusp forms, but they are
not present in the localisation result of HN . Such cancellation was present (but not
appreciated) in the order 1/N3 expression in [14]. Here it will be extended to arbitrary
order in 1/N . Furthermore, we will show that the combination of E(s, s1, s2; τ) for
which the cusp forms cancel is one for which there is lattice sum representation.

These supplementary conditions significantly reduce the number of independent coeffi-
cients αj,ℓ,r,s at each order in 1/N . For example, at order 1/N3, although there are apparently
10 coefficients only 4 of these are independent once the above extra conditions are satisfied.
At order 1/N4 there appear to be 13 independent coefficients, but this is reduced to 7 after
imposing the above conditions, and at order 1/N5 the 34 apparently independent coefficients
are reduced to 16. Having constrained the coefficients in the 1/N expansion in this manner,
we will then use new perturbative and non-perturbative data obtained in this paper from the
localisation computation to fix these coefficients. In this way, we have determined Hi

N (τ)
completely up to order O(N−7). It is important to stress that we have checked that the
results agree with much more localisation data than is needed to fix the coefficients, This
procedure therefore provides non-trivial consistency checks on the properties observed in
the lower-order results.

Some examples of the coefficients of powers of 1/N will be displayed later in this section,
but in general the explicit expressions at higher orders in 1/N are rather lengthy, so we relegate
them to the Mathematica file included in the supplementary material attached to this paper.
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4.1 Holomorphic cusp forms and their cancellation

In [14], then generalised in [47], it was shown how one can construct particular solutions,
Ep(s, s1, s2; τ), to the Laplace equation (1.10). However, in the earlier works [38, 48] it was
demonstrated that when s1, s2 ∈ N (relevant for modular graph functions), such particular
solutions do not always correspond to modular invariant functions. In such cases it was
shown that the failure of modularity of Ep(s, s1, s2; τ) requires the addition of a suitable
homogeneous solution.

Using the results of [39], a similar argument can be given for the case s1, s2 ∈ N+ 1
2 that

is of present interest. It can be shown that the generalised Eisenstein series E differs from the
particular solution Ep constructed via [14, 47] in the purely instantonic or anti-instantonic
sector, i.e. for (n, m) = (n, 0) or (n, m) = (0, m), and takes the form

E(n,0)(s, s1, s2; τ2) = E(n,0)
p (s, s1, s2; τ2) +

∑
∆∈S2s

λ∆(s, s1, s2)
a∆(n)

ns

√
nτ2e2πnτ2Ks− 1

2
(2πnτ2) .

(4.4)
The asymptotic expansion at the cusp of E(n,0)

p (s, s1, s2; τ2) produces a perturbative expansion
in τ−1

2 , which are the terms that we matched to the instanton sector of Hi
N (τ) here and

in [14]. The second term in (4.4) was missed in the earlier analysis of [14, 47]10 and it involves
a sum over the vector space S2s of all holomorphic cusp forms with modular weight 2s, i.e.
we need to sum over all ∆ ∈ S2s of the form

∆(τ) ≡
∞∑

n=1
a∆(n)qn ∈ S2s , (4.5)

with Hecke normalisation a∆(1) = 1, and again q = exp(2πiτ).
Following [38, 48] we consider the contribution of a fixed cusp form, ∆ ∈ S2s, to

E(s, s1, s2; τ) coming from the second term in (4.4) when summed over all instanton and
all anti-instanton sectors, which takes the form

H∆(τ) ≡
∞∑

n=1

a∆(n)
ns

√
nτ2Ks− 1

2
(2πnτ2)

(
e2πinτ1 + e−2πinτ1

)
. (4.6)

This function is not modular invariant but it does provide for a homogeneous solution to the
Laplace equation (1.10). We refer to the combination λ∆(s, s1, s2)H∆(τ) as the cusp form
∆ contribution to E(s, s1, s2; τ), see appendix B for more details.

For the case s1, s2 ∈ N relevant for modular graph functions, the coefficient λ∆(s, s1, s2)
was determined in [38, 48], while for s1, s2 ∈ N+ 1

2 we use the results of [39] and find that
λ∆(s, s1, s2) takes the schematic form

λ∆(s, s1, s2) = q(s, s1, s2)(−1)s1 Λ(∆; s + 1− s1 − s2)Λ(∆; s + s1 − s2)
π⟨∆,∆⟩

, (4.7)

where q(s, s1, s2) is a rational number depending on s, s1, s2, and symmetric under the
exchange s1 ↔ s2. We denote by Λ(∆; t) the completed L-value of ∆,

Λ(∆; t) ≡ (2π)−tΓ(t)L(∆; t) , (4.8)
10As already mentioned, and will be shown in detail later, the holomorphic cusp forms cancel out in the

final expression of the integrated correlator, therefore the final result presented in [14] is not affected by this.
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which is defined for t ∈ C via analytic continuation of the Dirichlet series

L(∆; t) ≡
∞∑

n=1

a∆(n)
nt

, (4.9)

and the denominator in (4.7), ⟨∆,∆⟩, is the Petersson norm of ∆ ∈ S2s.11 Although not
manifest from (4.7), for ∆ ∈ S2s the coefficients λ∆ are symmetric under the exchange
s1 ↔ s2 as a consequence of the functional equation

Λ(∆, t) = (−1)sΛ(∆, 2s − t) . (4.10)

Therefore, whenever the eigenvalue s is such that dimS2s ̸= 0, the particular solution
to the inhomogeneous Laplace equation (1.10), as constructed from the particular solution
E(n,0)

p (s, s1, s2; τ2) [14, 47], in general does not lead to a modular invariant solution. Only
by adding the second term in (4.4), do we then arrive at the modular invariant solution
to (1.10) that we denote by E(s, s1, s2; τ).

The dimension of the vector space of holomorphic cusp forms S2s is

dimS2s =


⌊

2s
12

⌋
− 1 2s ≡ 2mod 12 .⌊

2s
12

⌋
otherwise

(4.11)

Since dimS12 = 1, we see from our ansatz (4.1) that cusp forms become relevant starting
at order O(N−3) which is the first instance where the eigenvalue s = 6 appears. In this
case, the unique Hecke normalised cusp form of weight 12 is given by the Ramanujan cusp
form ∆12 =∑∞

n=1 τ(n)qn where τ(n) (not to be confused with the coupling τ) denotes the
Ramanujan tau function.

Let us consider the s = 6 terms at order O(N−3) as an example, which were denoted
in (1.9) as

Hi
N (τ)

∣∣s=6
N−3 = 1

N3

[
α6 E(6, 3

2 , 3
2 ; τ) + β6 E(6, 5

2 , 5
2 ; τ) + γ6 E(6, 7

2 , 3
2 ; τ)]

]
. (4.12)

From [39], we find that the contributions from the Ramanujan cusp form to the relevant
generalised Eisenstein series are

E(6, 3
2 , 3

2 ; τ)
∣∣
cusp = 2Λ(∆12; 6)2

π⟨∆12,∆12⟩
× H∆12(τ) ,

E(6, 5
2 , 5

2 ; τ)
∣∣
cusp = − 128Λ(∆12; 6)2

225π⟨∆12,∆12⟩
× H∆12(τ) , (4.13)

E(6, 3
2 , 7

2 ; τ)
∣∣
cusp = 32Λ(∆12; 6)2

105π⟨∆12,∆12⟩
× H∆12(τ) ,

where we have used a classic result due to Manin [49], which implies that

Λ(∆12; 6) : Λ(∆12; 8) : Λ(∆12; 10) = 1 : 54 : 125 , (4.14)

11The precise definition of the Petersson norm is not essential for the following discussion.
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so that all the numerators are expressed in terms of Λ(∆12; 6), The coefficients in (4.12)
were determined in [14], to be

α6 = 135
52 , β6 = 30375

832 , γ6 = 42525
832 . (4.15)

With these particular coefficients we find that the sum of the cuspidal contributions (4.13)
to (4.12) is zero.

The cancellation of the cusp forms contributions is indeed expected, since they do not
appear in the localisation computation. So for each s, they must cancel between the different
E(s, s1, s2; τ) that appear in Hi

N (τ), as we demonstrated explicitly for the above example.
This property leads to the aforementioned constraints on the coefficients αj,ℓ,r,s. We have
verified and exploited similar cancellations for all the other generalised Eisenstein series that
appear in the large-N expansion of Hi

N (τ) up to order O(N−7) and explicit results can be
found in the Mathematica file included in the supplementary material.

4.2 Lattice sum representation

The linear relations between the coefficients αj,ℓ,r,s in (4.1) that lead to the cancellation
of cusp forms suggests that there is a more refined basis of modular functions than the
E(s, s1, s2; τ). Following [37], which we summarise in appendix C, we introduce a new class
of modular invariant objects defined via lattice sums over four integers

Ew
i,j(τ) ≡

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

∫ ∞

0
d3t Bw

i,j(t) exp
(
− π

τ2

3∑
i=1

ti|pi|2
)

, (4.16)

where pi = mi + niτ with mi, ni ∈ Z. The function Bw
i,j(t) is a symmetric function of

(t1, t2, t3) that can be expressed in the form

Bw
i,j(t) ≡ Y (t)

w−3
2 Ai,j(ρ(t)) , (4.17)

where Y (t) = t1t2 + t1t3 + t2t3 and

ρ1(t) =
t1

t1 + t2
, ρ2(t) =

√
Y (t)

t1 + t2
, with ρ(t) = ρ1(t) + iρ2(t) . (4.18)

The domain ti ≥ 0 translates into the domain 0 ≤ Y (t) ≤ ∞ and

0 ≤ ρ1 ≤ 1 , (ρ1 − 1
2)2 + ρ2

2 ≥ 1
4 , (4.19)

which is the fundamental domain of Γ0(2) illustrated in figure 1.
The function A1,0(ρ) originally arose in the construction of the d6R4 coefficient E(4, 3

2 , 3
2 ; τ)

in [35], and a more general discussion in [37] presented the general procedure for constructing
linear combinations of E(s, s1, s2; τ). The expressions for Ai,j(ρ) are Laurent polynomials in
ρ2 with coefficients which are polynomial in ρ1. They satisfy homogeneous Laplace equation
with respect to the Laplace-Beltrami operator ∆ρ = ρ2

2(∂2
ρ1 + ∂2

ρ2)

[∆ρ − s(s − 1)] Ai,j(ρ) = 0 , (4.20)
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ρ1

ρ2

0 1
2 1−1

2−1

1
2

1

(123) (213)

(132) (231)

(312) (321)
t 1

=
0

t1
=

t2

t2
=

0

t2 = t3 t1 = t3

t3 = 0

Figure 1. In the ρ-plane, the domain ti > 0 is mapped to the region shaded in grey, isomorphic
to a fundamental domain of Γ0(2). Here the labels (ijk) denote the ordering ti < tj < tk of the
Schwinger parameters.

inside the domain12 ρ ∈ H\Γ0(2) and where s = 3i + j + 1 (for example, s = 4 for A1,0).
In appendix C.2 we present the systematic construction of Ai,j given by Don Zagier

in unpublished notes that are expanded on in section 5.2 of [44], where they are called
‘modular local polynomials’, see also [50].

When translated into t-variables (4.20) implies that the function Bw
i,j(t) defined in (4.17)

satisfies the homogeneous Laplace equation

[∆t − s(s − 1)] Bw
i,j(t) = 0 , (4.21)

where again s = 3i + j + 1 and the laplacian ∆t is defined by

∆t[F (t)] = −2
3∑

i=1
∂i[ti F (t) ] +

3∑
i,j=1

∂i∂j{[titj + (2δij − 1)Y (t)]F (t)} . (4.22)

Furthermore it is straightforward to show that

∆τ exp
(
− π

τ2

3∑
i=1

ti|pi|2
)

= ∆t exp
(
− π

τ2

3∑
i=1

ti|pi|2
)

, (4.23)

12The upper half ρ-plane is denoted by H = {ρ ∈ C | ρ2 > 0}, while the congruence subgroup Γ0(2) is defined
as Γ0(2) = {( a b

c d ) ∈ SL(2,Z) | c ≡ 0mod 2}.
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so by acting with ∆τ on (4.16) and combining (4.23) and (4.21) we deduce

[
∆τ − s(s − 1)

]
Ew

i,j(τ) = boundary terms , (4.24)

where the boundary terms arise from integrating by parts the Laplacian ∆t. In appendix D,
we show that the boundary terms produce the “source terms” in the inhomogeneous Laplace
eigenvalue equation,

[∆τ − s(s − 1)]Ew
i,j(τ) =

s−2
2∑

δ= 2−s
2

ci,j(w, δ)E
(

w

2 + δ; τ
)

E

(
w

2 − δ; τ
)
+ di,j(w)E(w; τ) ,

(4.25)

for particular values of the coefficients ci,j(w, δ), di,j(w).
We note a few important facts. Firstly, when the weight w and the eigenvalue s =

3i + j + 1 have opposite parity (as in our case), the source terms are bilinears in Eisenstein
series with half-integer indices. Secondly, the modular invariant function Ew

i,j(τ) satisfies an
inhomogeneous Laplace equation where the source terms have total “trascendental weight”
given by w = s1 + s2. It is always possible to use the functional equation

Γ(s)E(s; τ) = Γ(1− s)E(1− s; τ) , (4.26)

to rewrite (4.25) so that all Eisenstein series in the source term appear with positive indices,
with the drawback of spoiling uniform trascendentality in weight.

Lastly, since we are interested in eigenvalues s ≥ w + 1 it is always possible to use (1.4)
and invert the laplacian13 over the single Eisenstein series that appear as source terms to get

Ew
i,j(τ) =

s−2
2∑

δ= 2−s
2

ci,j(w, δ)E
(

s,
w

2 + δ,
w

2 − δ; τ
)
+ di,j(w)

w(w − 1)− s(s − 1)E(w; τ) . (4.27)

Note that for eigenvalue s such that dimS2s = 0 it is possible to find an isomorphism
between the two vector spaces spanned by either Ew

i,j(τ) or by E(s, s1, s2; τ) with s = 3i+ j +1
and fixed weight w = s1 + s2 (modulo the addition of single Eisenstein series). For example,
in the first few cases relevant to (1.9) up to order O(N−2) we have

E3
1,0(τ) = − 9

10πE(4, 3
2 , 3

2 ; τ)−
3
10πE(3; τ) ,

E4
1,1(τ) = −81

28πE(5, 3
2 , 5

2 ; τ)−
99
140πE(4; τ) , (4.28)

E4
2,0(τ) = −15

11πE(7, 3
2 , 5

2 ; τ)−
1
14πE(4; τ) .

13We can check from the lattice sum representation (4.16) that for the range of eigenvalues of present
interest, the coefficient of the homogeneous solution E(s; τ) vanishes. This implies that there is no issue in
inverting the Laplace operator in (4.25).
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We can use these relations and similar ones at higher order in 1/N to express Hi
N (τ) in terms

of Ew
i,j(τ) (and E(s; τ)). For example, up to 1/N3, we have

Hi
N (τ)

∣∣
N−1 =− 15

4π
E3

1,0(τ)−
9
8E(3;τ) , (4.29)

Hi
N (τ)

∣∣
N−2 =C1+

945
64π

E4
2,0(τ)−

105
22π

E4
1,1(τ)−

297
128E(4;τ) , (4.30)

Hi
N (τ)

∣∣
N−3 =

645
572π

E3
1,0(τ)−

[ 945
104π

E5
1,2(τ)+

945
208π

E3
1,2(τ)−

63
104π

E3
0,5(τ)

]
(4.31)

+
[31185
544π

E5
2,1(τ)+

23625
544π

E3
2,1(τ)−

23625
4352π

E3
1,4(τ)

]
−
[45045
512π

E5
3,0(τ)+

183645
2048π

E3
3,0(τ)−

10395
1024π

E3
2,3(τ)

]
− 496125
146432E(3;τ)+ 5805

512 E(5;τ) .

We thus see that Hi
N (τ) can be written in terms of the more refined basis of modular functions

Ew
i,j(τ) and E(w; τ), which manifestly does not include the unwanted cusp form contributions

that appear in generic sums of E(s, s1, s2; τ). Furthermore, they are the objects that are
naturally written as lattice sums. This pattern generalises to all the higher orders, which
we have verified explicitly up to order O(N−7). The explicit expression for the lattice sum
representation is described in some detail in appendix C.

5 Numerical estimate of free energy at finite N

We will now discuss how the large-N finite-τ results for CN and HN can be used to accurately
estimate these quantities at finite N and τ . This is especially important for HN , for which
we have no exact expression. These finite-N numerical results will provide an important
input for the numerical bootstrap study of N = 4 SYM following [45].

Our strategy is to divide CN and HN into perturbative and non-perturbative terms as
g2

YM → 0, or equivalently for τ2 ≫ 1, arising in the matrix model (2.1) and (2.2)

CN = CN

∣∣
pert

+ CN

∣∣
non−pert

, HN = HN

∣∣
pert

+HN

∣∣
non−pert

, (5.1)

which is a meaningful distinction for all N . The perturbative sector only depend on τ2,
and was already computed for finite N and τ2 in [8, 15] using the method of orthogonal
polynomials. For instance, for CN we have [15]14

CN

∣∣
pert

= −τ2
2 ∂2

τ2

∫ ∞

0
dw

e
− w2

πτ2

2 sinh2 w

L
(1)
N−1

(
w2
πτ2

)
−

N∑
i,j=1

(−1)i−jL
(j−i)
i−1

(
w2
πτ2

)
L

(i−j)
j−1

(
w2
πτ2

) ,

(5.2)

where L
(j)
i (x) are generalised Laguerre polynomials, and note that for all N we need only

perform a single integral and some finite sums. The analogous expression for HN |pert from [8]
involves two integrals and some finite sums for all N . Since it is much more complicated, we
do not show it here explicitly, but we include it in the Mathematica file in the supplementary.

14A slightly simplified version of this formula can be found in (A.12) in [18].
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For the non-perturbative sector, we will use the large-N finite-τ expressions from the
previous sections, which were written in terms of Eisenstein series and generalised Eisenstein
series. The advantage of only using the non-perturbative terms of these functions is that
we avoid the divergence at the free theory point τ2 → ∞ that occurs for their perturbative
terms, as seen from the Fourier expansions (3.1) and (B.3). From the Fourier decomposition
of the non-holomorphic Eisenstein series (3.1) we see that non-perturbative terms correspond
to Fourier modes with k ̸= 0 while from (4.3) we see that the non-perturbative terms of the
generalised Eisenstein series correspond to terms with (n, m) ̸= (0, 0). The non-perturbative
sectors converge extremely quickly for τ in the fundamental domain

|τ | ≥ 1 , |Re (τ)| ≤ 1
2 , (5.3)

so that only a few values of k ̸= 0 and (n, m) ̸= (0, 0) need be included from the Fourier
expansions to achieve good accuracy. Since the large-N expansion is an asymptotic expansion,
we expect that the expansion will actually get worse at some order. We observe that the
best approximation is given by keeping terms up to O(1/N

5
2 ) in the non-perturbative sector

for CN ,15

CN

∣∣
non−pert

≈
[
−3

√
N

24 E ( 3
2 ; τ) +

45
28
√

N
E ( 5

2 ; τ) +
1

N
3
2

[
− 39

213 E ( 3
2 ; τ) +

4725
215 E ( 7

2 ; τ)
]

+ 1
N

5
2

[
−1125

216 E ( 5
2 ; τ) +

99225
218 E ( 9

2 ; τ)
]]

k ̸=0
,

(5.4)

and for HN :

HN

∣∣
non−pert

≈
[
6
√

NE ( 3
2 ;τ)−

9
2
√

N
E ( 5

2 ;τ)+
27
23N

E (4, 3
2 , 3

2 ;τ)

+ 1
N

3
2

[117
28 E ( 3

2 ;τ)−
3375
210 E ( 7

2 ;τ)
]
+ 1

N2

[
−14175

704 E (7, 5
2 , 3

2 ;τ)+
1215
88 E (5, 5

2 , 3
2 ;τ)

]
+ 1

N
5
2

[675
210 E ( 5

2 ;τ)−
33075
212 E ( 9

2 ;τ)
]]

k ̸=0
(n,m) ̸=(0,0)

,
(5.5)

where on the r.h.s. we only keep the k ̸= 0 instanton terms in the Fourier expansions for
E(s; τ) in (3.1) and the instanton/anti-instanton sectors (n, m) ̸= (0, 0) for E(s, s1, s2; τ)
given in (4.3). The explicit expressions are given in the Mathematica file included in the
supplementary material.

We can check our approximations for CN and HN by comparing to low values of N ,
where the exact expression can be computed from the matrix model integral (2.1) by doing
N − 1 integrals and truncating the instanton expansion in (2.2), which converges very quickly
in the fundamental domain. This finite-N calculation was performed for N = 2, 3 in [45]. In
figure 2, we compare these finite-N expressions to our large-N approximation for two paths
in a fundamental domain of τ : from the free theory τ → i∞ to the Z2 self-dual point τ = i

with τ1 = 0, and from τ = i to the Z3 self-dual point τ = eiπ/3 along the arc |τ | = 1. Along
15For CN (τ) we may use the exact result in [17]. However, as we will show, the simple approximation given

here already provides an extremely good estimate. And in this way, we treat CN (τ) and HN (τ) uniformly.
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Figure 2. Comparison of large-N approximation to exact N for CN and HN for two paths in the
fundamental domain of τ : from the free theory τ → i∞ to the Z2 self-dual point τ = i along the line
τ1 = 0, and from τ = i to the Z3 self-dual point τ = eiπ/3 along the arc |τ | = 1.
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the first path, instantons are very small, so is perhaps not so surprising that our large-N
approximation is so accurate, as we have included the exact perturbative sector. The precise
match is more surprising along the second path, where the range of the plots is much smaller,
and the variation is mostly due to instantons. The greatest discrepancy between large and
finite N is at τ = eiπ/3, but even that discrepancy is only around .01% relative error, and
this error decreases as we increase from N = 2 to N = 3. We are thus confident that our
approximations are very accurate for all N and τ .

6 Constraints on stress tensor correlator

We now show how the stress tensor correlator can be constrained at large N using the
localisation quantities computed in the previous sections. We consider the four point function
of the bottom component S of the stress tensor multiplet, often also denoted by O2. This
operator is a dimension 2 scalar in the 20′ of SO(6)R, and can thus be represented as a
rank-two traceless symmetric tensor SIJ(x⃗), with indices I, J = 1, . . . , 6. For simplicity we
will contract these indices with polarisation vectors Y I , with Y · Y = 0. The four-point
function is then fixed by superconformal symmetry to take the form [51, 52]

⟨S(x⃗1, Y1)S(x⃗2, Y2)S(x⃗3, Y3)S(x⃗4, Y4)⟩ =
1

x⃗4
12x⃗4

34

[
S⃗free + T (U, V )Θ⃗

]
· B⃗ , (6.1)

where x⃗ij ≡ x⃗i − x⃗j , and U ≡ x⃗2
12x⃗2

34
x⃗2

13x⃗2
24

and V ≡ x⃗2
14x⃗2

23
x⃗2

13x⃗2
24

are the usual conformal invariant
cross-ratios. The precise forms of S⃗free, Θ⃗ and B⃗ can be found in [7], and all non-trivial
information is given by the R-symmetry invariant correlator T (U, V ), which will be our focus.

We can expand T (U, V ) at large c = (N2 − 1)/4, whose functional form is fixed by the
analytic bootstrap [14, 53, 54] to take the form

T = 8
c
T R + 1

c2
[
T R|R + B0T 0]+ 1

c3
[
T R|R|R +

∑
i=0,2,3,4

BiT i]+ . . . , (6.2)

where the ellipses denote both higher loop terms as well as contact terms involving higher
derivative terms such as R4, which at large c and finite τ generically come with fractional
powers of c.16 We denote the supergravity exchange term by T R, which is given by [55]

T R = −1
8U2D̄2,4,2,2(U, V ) , (6.3)

where D̄a,b,c,d(U, V ) are standard functions whose explicit form can be found e.g. in [56]. The
coefficient of T R is fixed by the conformal Ward identity [57]. Next we have the one-loop
graviton exchange term T R|R, which was fixed in position space in [41] from tree-level data
using the AdS unitarity method of [58] up to a contact-term ambiguity

T 0 = U2D̄4,4,4,4 . (6.4)
16The first few higher derivative corrections to the correlator, including R4, d4R4 and d6R4, were determined

in [13, 14]. Furthermore, starting from order O(1/c3) there is actually no difference between the loop and
higher derivative expansion in the large-c finite-τ limit, since both d12R4 and T R|R|R are the same order in
derivatives. In this case, we simply define the terms written in (6.2) to be those that are independent of τ , as
higher derivative terms generically depend on τ .
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In general, T n for integer n denotes contact terms with 2n + 8 derivatives, which are related
to the divergences that appear at each loop level. The two-loop graviton exchange term is
denoted by T R|R|R, and was conjecturally fixed in [42, 43] up to four contact-term ambiguities,
whose explicit form we will not use. The coefficients of contact-term ambiguities (i.e. B0 and
Bi) are not fixed by general analytic bootstrap constraints, and so require the supersymmetric
localisation constraints discussed here.

We can constrain T (U, V ) using an exact property of HN (τ) [8]:

HN (τ) = 48ζ(3)c + c2I4[T ] ,

I4[T ] ≡ 32
π

∫ ∞

0
dr

∫ 2π

0
dθ r3 sin2 θ

1 + U + V

U2 D̄1,1,1,1(U, V )T (U, V )
∣∣∣∣
U=1+r2−2r cos θ

V =r2

,
(6.5)

where the 48ζ(3)c term comes from the free theory contribution to (6.1). A similar integrated
constraint between T (U, V ) and CN (τ) was derived in [7] and has been studied in the literature
so we will not use its detailed form here. Since we have two integrated constraints, one from CN

and one from HN , that means we can fix at most two B’s at each order in 1/c in (6.2). There
is just a single B0 at O(1/c2), which was fixed in [15] using the CN integrated constraint to be

B0 = 15
4 . (6.6)

For the integrated constraint arising from HN , we make use of the following integrals:

I4[T R] = 3− 6ζ(3) , I4[T 0] = 16
5 , I4[T R|R] = −48ζ(3)

5 − 83
10 , (6.7)

where the first two integrals were computed numerically in [8] using the explicit expressions
in (6.3) and (6.4), while the last integral we compute now using the explicit expression in [41].
We find that these integrals applied to the correlator (6.2) using the integrated constraint (6.5)
exactly match HN in (1.7) to one-loop order with the one-loop ambiguity B0 fixed as in (6.6)
and C0 fixed in (4.2). We do not have sufficient constraints yet to fix the ambiguities at
higher loop orders, such as the four ambiguities at two loops [42, 43], but the localisation
data for HN is now available for that purpose.

7 Discussion

There are four main results of this paper. Firstly, we found recursion formulae that relate
the half-integer terms and part of the integer terms in the large-N expansion of HN (τ) to
CN (τ). Secondly, we gave striking evidence that the large-N expansion of HN (τ) can be
written as a lattice sum to any order in 1/N . Thirdly, we used the large-N expansion of
HN (τ) to verify the one-loop contact term in the stress tensor correlator as originally fixed
using CN (τ) in [15], and gave new constraints at higher loops. Lastly, we showed how the
large-N expansions of HN (τ) and CN (τ) can be used to accurately estimate these quantities
for all finite N and τ . This estimate will be useful for the numerical bootstrap at finite N

and τ [45], which was previously limited to low N due to the difficulty of performing the
(N − 1)-dimensional matrix model integral.
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While the recursion relations we found were sufficient to fix the half-integer powers of
N in HN (τ) to all orders, we have not found a recursion relation that applies to the full
HN (τ), which could be used to compute HN (τ) at finite N and τ as was done for CN (τ)
in [17]. Since HN (τ) can be written as a lattice sum to all orders in 1/N , it seems likely that
a finite N lattice sum expression should exist, analogous to the lattice sum expression for
CN (τ) in (1.5). Importantly that expression is finite even though it contains the term in the
lattice sum with m = n = 0. Based on the lattice sum for the large-N expansion of HN (τ)
in (4.16), a natural conjecture for the finite-N expression would be

HN (τ) =
∑

p1,p2,p3∈Z+τZ
p1+p2+p3=0

∫ ∞

0
d3tBN (t1, t2, t3) exp

(
− π

τ2

3∑
i=1

ti|pi|2
)

, (7.1)

where the function BN (t1, t2, t3) is a symmetric function that can be shown to satisfy an
inversion relation of the form BN (t1, t2, t3) = 1/Y (t)2 BN (t̂1, t̂2, t̂3) where t̂i = ti/Y (t) and
Y (t) = t1t2 + t2t3 + t3t1. The unknown function BN (t1, t2, t3) must also be well-defined when
ti = 0 and the large-N expansion of (7.1) would have to reproduce the terms with half-integer
as well as integer powers of 1/N . Perhaps a recursion relation could be found for BN (t1, t2, t3)
that would relate it to BN (t) given in (1.5), just as we found a recursion relation connecting
parts of HN (τ) to CN (τ). This would also allow us to compute the contribution to HN (τ)
that is non-perturbative in N , analogous to that found for CN (τ) in [18].

The identities we found that relate HN (τ) to CN (τ) suggest that higher mass derivatives
of the partition function ZN might also be related to lower mass derivatives, or at least certain
parts of the large-N expansion as found in this paper. From the localisation expression for
ZN , it is clear that the perturbative part of the 2p-th mass derivative of ZN can be written in
terms of products of p zeta functions. While the stress tensor correlator was recently shown
to contain single-valued multiple valued zeta functions [59, 60], it appears that these vanish
after taking the integral of the correlator that is related to mass derivatives of ZN .17 It would
be interesting to find the modular completions of these products of zeta functions.

The τ -independent terms in the large-N expansions of HN (τ) and CN (τ) give two
constraints at each orders in the loop expansion of the holographic correlator. At one
loop, there was a single contact-term ambiguity, which was fixed using CN (τ) in [15], and
verified using HN (τ) in this paper. At two loops, there are four such ambiguities, so we
need two additional constraints. It is possible that derivatives with respect to the squashing
parameter b of ZN on the squashed sphere might give an additional independent constraint.
It would be interesting to find another source of constraints, so that the 2-loop term can
be fixed completely.

The methods developed in this paper to compute the perturbative contributions to HN (τ)
should also apply to other 4d N = 2 gauge theories, since the localisation expressions for all
4d N = 2 gauge theories include Barnes G-functions that lead to Bessel functions at large
N . Indeed, our methods were already used to fix the O(N0) term in the USp(2N) gauge
theory considered in [32, 61].18 It would be interesting to study the large-N expansion of
mass derivatives of ZN for other N = 2 gauge theories.

17Similar phenomena were observed in the weak coupling regime [23, 26].
18Our methods were shared with the authors of those papers prior to this publication.
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A Matrix model details

In this appendix, we will discuss some details of the large-N large-λ expansion from section 2.
We will first discuss the pole prescription that gives the leading O(N2) result in (2.23). We
will then discuss how the O(N0) term in that expression can be computed using a similar
but more complicated calculation due to the double sum.

A.1 O(N2) at large λ

We start with the expression for the 4-body contribution in (2.20), which we repeat here
for ease of access:

I(0)(λ) =
∮

ds

2πi

dt

2πi
p(s, t)c(s, t) , c(s, t) =

∞∑
ℓ=1

cℓ(s, t) ,

p(s, t) = 3λs+t+2 sin(πs) sin(πt)Γ(2s + 4)2Γ(2t + 4)2ζ(2s + 3)ζ(2t + 3)
24s+4t+3π2(s+t+2) ,

cℓ(s, t) = ℓ(ℓ − s − 3)(ℓ − t − 3)Γ(ℓ − s − 3)Γ(ℓ − s − 1)Γ(ℓ − t − 3)Γ(ℓ − t − 1)
π2Γ(ℓ + s + 2)Γ(ℓ + s + 3)Γ(ℓ + t + 2)Γ(ℓ + t + 3) .

(A.1)

We find it convenient to use the following representation for c(s, t)

c(s, t) =
∞∑

q=0
P (3q)(s, t)ζ(4s + 4t + 15 + 2q) (A.2)

= ζ(4s + 4t + 15)
π2 + P (3)(s, t)ζ(4s + 4t + 17) + · · · ,

where P (3q)(s, t) are polynomials of degree 3q, easily computable by expanding cℓ(s, t) for
large ℓ and performing the sum over ℓ. This representation is useful, as it makes explicit poles
located at Re(s+ t) < 0 that are easy to miss otherwise. In addition, we will have poles of the
type Re(s), Re(t) < 0. We now compute all contributions to I(0)(λ) by degree of complexity.

First there is a contribution arising from the explicit poles of p(s, t)c1(s, t) at s = −1
and t = −1,−2,−5/2,−7/2,−9/2, · · · (and the same with s ↔ t). This can be computed
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analytically to all orders in 1/λ and gives

I
(0)
0 (λ) = 6− 16π2

λ
+ 3

∞∑
n=2

(−1)n4n+2π2n− 7
2 λ

1
2−nΓ

(
n − 5

2

)
Γ
(
n − 3

2

)
Γ
(
n + 1

2

)
ζ ′(2− 2n)

Γ(n − 1)Γ(2n − 2) .

(A.3)
Naively there is a contribution when s = −m, t = −n, with m, n = 2, 3, · · · . It turns

out however, that this contribution is zero, as c(−m,−n) = 0. This can be seen from the
representation for c(s, t) in terms of zeta functions. For negative integer s, t the polynomials
are such that the series truncate, and we can directly evaluate c(s, t) at those points and
see that it vanishes. Then there is a contribution from s = −m − 1/2, t = −n − 1/2, with
m, n = 2, 3, 4, · · · . This contribution can be written as

I
(0)
1 (λ) = 3

∞∑
m,n=2

(−1)m+n24m+4n−1π2(m+n−1)ζ ′(2−2m)λ−m−n+1ζ ′(2−2n)
Γ(2m − 2)2Γ(2n − 2)2 c(−m−1

2 ,−n−1
2) ,

(A.4)

where c(−m−1/2,−n−1/2) can be easily computed for any pair of integers m, n. For
s = −m − 1/2, t = −n − 1/2 we find

c(s, t) = Γ(−s − 1)Γ(−s)Γ(−t − 1)Γ(−t)
6π2Γ(s + 3)Γ(s + 4)Γ(t + 2)Γ(t + 3)Ps(t) , (A.5)

where the polynomials Ps(t) can be computed for s = −5/2,−7/2, · · ·

P−5/2(t) = 1,

P−7/2(t) =
1
5
(
−8t2 − 12t + 5

)
,

P−9/2(t) =
1
105

(
−128t4 − 128t3 + 272t2 + 152t + 105

)
,

(A.6)

and so on. Lastly, we have the poles at s = −m and t = −n − 1/2 (and the same with
s, t exchanged). These are slightly subtle because the zeta functions have poles at these
locations. We find their contribution is given

I
(0)
2 (λ)=

∞∑
m=2

22m+1π2m− 5
2 λ

3
2−mζ(3−2m)Γ

(
m− 5

2
)
Γ
(
m− 3

2
)

Γ
(9

2−m
)
Γ(m−2)Γ(2m−3)

−3
∞∑

m=2

22m+2π2m− 5
2 λ

1
2−mζ(3−2m)Γ

(
m− 3

2
)
Γ
(
m− 1

2
)

Γ
(7

2−m
)
Γ(m−1)Γ(2m−3)

(A.7)

−3
∞∑

m=2

64(−1)mπ2m−3λ
1
2−mΓ

(
m− 5

2
)
Γ
(
m− 3

2
)
ζ ′(2−2m)

Γ(m−1)2

−3
∞∑

m,n=2

4m+n+1π2m+2n− 9
2 ζ(3−2m)λ−m−n+ 3

2 Γ
(
m+n− 5

2
)
Γ
(
m+n− 3

2
)
ζ ′(2−2n)

2Γ(2m−3)Γ(2n−2)Γ
(
−m−n+ 9

2
)
Γ(m+n−2)

.

Now we discuss poles where s + t = negative, which are apparent from the expression for
c(s, t) as a sum over zeta-functions in (A.2). More precisely

c(s, t) ∼ Rq(t)
s − 1

2(−(2q + 7)− 2t)
, with q = 0, 1, 2, · · · , (A.8)

– 27 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
4

where we will first perform the integral over s. The residues at those poles can be calculated,
and are given by

Rq(t) = −
4−q−1Γ

(
q − 1

2

)
Γ
(
q + 1

2

)
Γ
(
q + 3

2

)
Γ(2(q + t + 2))

π7/2Γ(q + 1)Γ(2t + 4)
. (A.9)

We can now perform the integral over s for each q, and obtain

I
(0)
3 (λ) =

∞∑
q=0

λ−q− 3
2 I

(0)
3,q , where I

(0)
3,q ≡

∮
dt

2πi
Qq(t) , (A.10)

with

Qq(t)= (A.11)

3
(−1)q+14q+4Γ

(
q−1

2

)
Γ
(
q+1

2

)
Γ
(
q+3

2

)
Γ(2t+4)ζ(2t+3)Γ(−2q−2t−3)ζ(−2(q+t+2))

π− 1
2−2qΓ(q+1)

.

There is a subtle question of which poles to include in the integrals for I
(0)
3 (λ). This is akin

to the precise choice of the contour. It turns out we need to choose all poles for negative
t. Let’s consider the leading order contribution, arising from q = 0, as this already has the
ingredients we will encounter later on:

I
(0)
3,0 = 3π2

∮
dt

2πi
28Γ(−2t − 3)Γ(2t + 4)ζ(−2(t + 2))ζ(2t + 3) , (A.12)

summing over all poles with Re(t) < 0 we can see that the poles in the region −4 < t < 0
cancel each other, and we obtain the following sum

I
(0)
3,0 = 3π227

∞∑
n=4

ζ(3− 2n)ζ(2n − 4) . (A.13)

This is a divergent sum, and we should regularise it. Using the integral representation

ζ(n) = 1
Γ(n)

∫ ∞

0

xn−1

ex − 1dx , (A.14)

which is valid for n > 1, together with the reflection relation, we can obtain the following
expression

I
(0)
3,0 = −3

∞∑
n=4

∫ ∞

0
dxdy

210−2nπ4−2nx2n−3y2n−5 cos(πn)
(ex − 1) (ey − 1) Γ(2n − 4) . (A.15)

We can now exchange the sum and the integral, and perform the sum over n to find

I
(0)
3,0 = 48

∫ ∞

0
dxdy

x2 (2π sin
(xy

2π

)
− xy

)
π2 (ex − 1) (ey − 1) , (A.16)

which is a convergent double integral that yields

I
(0)
3,0 = −96ζ(3)− 8π4

15 + 16π2 . (A.17)
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One may be worried about the regularisation procedure. However, the integral over t can
also be computed numerically, choosing a contour slightly to the left of the imaginary axis,
and the result agrees perfectly with our analytic result. At higher orders we can do exactly
the same, but the sums involved are a bit harder:

I
(0)
3,q = 3

∞∑
n=4+q

(−1)q+122q+7Γ
(
q−1

2

)
Γ
(
q+1

2

)
Γ
(
q+3

2

)
Γ(2n−2q−3)

π−1/2Γ(2n − 3)Γ(q + 1)
ζ(3−2n)ζ(2n−2q−4) .

(A.18)
Introducing an integral representation for the zeta functions and performing the sum over
n we obtain

I
(0)
3,q = −48π2

∫ ∞

0
dxdy

y3x2q+5Γ
(
q − 1

2

)
Γ
(
q + 1

2

)
Γ
(
q + 3

2

)
Hq(x, y)

(2π)2q+9 (ex − 1) (ey − 1) Γ(q + 1) , (A.19)

Hq(x, y) = x2y2
1F̃2

(
2; q + 7

2 , q + 4;−x2y2

16π2

)
− 32π2

1F̃2

(
1; q + 5

2 , q + 3;−x2y2

16π2

)
.

For any integer value of q the regularised hypergeometric functions reduce to something
simpler. The integrals over x are always of the form∫ ∞

0
dx

xa

ex − 1 = Γ(a + 1)ζ(a + 1) , (A.20)∫ ∞

0
dx

x cos
(xy

2π

)
ex − 1 = 1

2π2
( 4

y2 − csch2
(

y

2

))
, (A.21)∫ ∞

0
dx

x2 sin
(xy

2π

)
ex − 1 = π3

( 8
y3 − 1

2 sinh(y)csch4
(

y

2

))
. (A.22)

For every fixed q, this allows to perform the integral over x. The integral over y can also
be performed, using19∫ ∞

0
dy

yacsch2 (y
2
)

ey − 1 = Γ(a + 1)(2ζ(a − 1)− 2ζ(a)) , (A.23)∫ ∞

0
dy

ya sinh(y)csch4 (y
2
)

ey − 1 = 4Γ(a + 1)
3 (2ζ(a − 2)− 3ζ(a − 1) + ζ(a)) . (A.24)

With these results we can compute the integrals for any given q and we can actually write
down the contributions analytically. We find a structure which resembles very much I

(0)
2 (λ).

More precisely we get

I
(0)
3 (λ)=−

∞∑
m=2

22m+1π2m− 5
2 λ

3
2 −mζ(3−2m)Γ

(
m− 5

2

)
Γ
(
m− 3

2

)
Γ
(

9
2 −m

)
Γ(m−2)Γ(2m−3)

−3
∞∑

m=2
κ1(m)

22m+2π2m− 5
2 λ

1
2 −mζ(3−2m)Γ

(
m− 3

2

)
Γ
(
m− 1

2

)
Γ
(

7
2 −m

)
Γ(m−1)Γ(2m−3)

(A.25)

−3
∞∑

m=2
κ2(m)

64(−1)mπ2m−3λ
1
2 −mΓ

(
m− 5

2

)
Γ
(
m− 3

2

)
ζ′(2−2m)

Γ(m−1)2

−3
∞∑

m,n=2
κ1(m)

4m+n+1π2m+2n− 9
2 ζ(3−2m)λ−m−n+ 3

2 Γ
(
m+n− 5

2

)
Γ
(
m+n− 3

2

)
ζ′(2−2n)

2Γ(2m−3)Γ(2n−2)Γ
(
−m−n+ 9

2

)
Γ(m+n−2)

,

19In practise, the simplest way to perform the integrals over y is to multiply by yϵ, use the expressions
below and then take ϵ → 0 at the end.

– 29 –



J
H
E
P
0
5
(
2
0
2
4
)
0
4
4

with

κ1(m) = 2δm,2 − 1 , κ2(m) = −(m − 3)(2m − 1)
3 , (A.26)

Note that we can combine the last two contributions into

I
(0)
2 (λ)+I

(0)
3 (λ)= 32

λ3/2 −
∞∑

m=2

64(−1)mm(7−2m)π2m−3λ
1
2−mΓ

(
m− 5

2

)
Γ
(
m− 3

2

)
ζ ′(2−2m)

Γ(m−1)2

+
∞∑

m=2

4m+2π2m− 1
2 λ−m− 1

2Γ
(
m− 1

2

)
Γ
(
m+ 1

2

)
ζ ′(2−2m)

Γ
(

5
2−m

)
Γ(m)Γ(2m−2)

. (A.27)

Finally, the derivative of Riemann zeta function can be simplified using the identity

ζ ′(−2m) = (−1)m(2m)!
2π2m

ζ(2m + 1) , (A.28)

valid for any m strictly positive integer. We can then put all ingredients together and compute
I(0)(λ) to any desired order. The lowest few orders match (2.16), while higher orders are
given in the Mathematica file included in the supplementary materia attached to this paper.

A.2 O(N0) at large λ

Recall that there are two contributions to the 4-body term in (2.10): those that factorise in
ω1, ω2, and those that do not. The factorizable terms J fac

0 (ω1, ω2) can be computed at large
λ just like the 2-body terms by writing them in Mellin space using (2.13), performing the
ω1, ω2 integrals using (2.14), and closing each contour to the left. We obtain

I
(2)
fac (λ) = −13

√
λ

6 + 55
12 + 3

8
√

λ
− 13ζ(3) + 6

4λ
+ 273

64
ζ(3)
λ3/2 + O(λ−2) . (A.29)

For the non-factorizable terms J fac
0 (ω1, ω2), the first two lines in (2.10) take a similar form

as the O(N2) terms in the previous section, i.e. they have (ω2
2 − ω2

1) in the denominator, so
they can be evaluated using similar methods to get an “easy” contribution

I(2)
easy(λ) =

√
λ

6 + 17
12 +

(
−31

8 − π2

6

)
1√
λ
+ ζ(3) + 6

4λ
+
(
51ζ(3)
64 + 5π2

8

)
1

λ3/2 + O(λ−2) .

(A.30)

The other terms in J fac
0 (ω1, ω2) have (ω2

2 − ω2
1)2 in the denominator, so they require a

slightly more complicated approach. As with the other non-factorizable terms, we use the
identity (2.18) to write these “hard” terms as

I2
hard(λ) =

∮
ds

2πi

dt

2πi
p(s, t)c(s, t), c(s, t) =

∞∑
k=1
ℓ=0

ck,ℓ(s, t) (A.31)

with

p(s, t) = 3sin(πs) sin(πt)Γ(2s + 4)Γ(2s + 6)Γ(2t + 4)2ζ(2s + 5)ζ(2t + 3)λs+t+3

24s+4t+7π2(s+t+4) (A.32)
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and

ck,ℓ(s, t) = k(2ℓ + 1)Γ(k − ℓ − s − 2)Γ(k + ℓ − s − 1)Γ(k − ℓ − t − 2)Γ(k + ℓ − t − 1)
Γ(k − ℓ + s + 2)Γ(k + ℓ + s + 3)Γ(k − ℓ + t + 2)Γ(k + ℓ + t + 3) .

(A.33)
We can apply the method described above by changing variables, and writing c(s, t) =∑∞

p=1 cp(s, t) where each cp(s, t) is given by a finite sum

cp(s, t) =
p∑

q=1

q(2p − 2q + 1)Γ(p − s − 1)Γ(p − t − 1)Γ(−p + 2q − s − 2)Γ(−p + 2q − t − 2)
Γ(p + s + 3)Γ(p + t + 3)Γ(−p + 2q + s + 2)Γ(−p + 2q + t + 2) .

(A.34)
In this form it can be shown that cp(s, t) satisfies a second order homogeneous recursion relation

f0(p)cp(s, t) + f1(p)cp+1(s, t) + f2(p)cp+2(s, t) = 0 , (A.35)

with

f0(p)= (p+2)2(p−s−1)(p−s)2(p−t−1)(p−t)2 , (A.36)

f1(p)=−(p−s)(p+s+3)(p−t)(p+t+3) (A.37)

×
[(
2p2+6p+5

)
st+

(
5p2+15p+11

)
(s+t)+2p4+12p3+36p2+54p+29

]
,

f2(p)= (p+1)2(p+s+3)2(p+s+4)(p+t+3)2(p+t+4) . (A.38)

Supplemented with the leading order terms in the large p expansion, this recursion relation
allows us to compute arbitrarily high orders. The final answer takes the form

cp(s, t) = 1
(2s + 2t + 5)(2s + 2t + 7)

1
p4s+4t+13

(
1−

2s + 2t + 13
2

p
+ · · ·

)
(A.39)

+
π3/24s+t+2 csc(πs) csc(πt)Γ

(
s + t + 7

2

)
Γ(2s + 4)Γ(2t + 4)Γ(s + t + 4)

1
p2(3+s+t)

(
1− s + t + 3

p
+ · · ·

)
,

with two distinct type of terms. Summing over p term by term we obtain a representation
analogous to (A.2). The rest of the computation proceeds as above and yields

I2
hard(λ) =

(
4− 4π2

15

)
√

λ + 24ζ(3)− 83
10 + 21 + π2

6
√

λ
+ 3

16

(
12ζ(3) + π2)

λ3/2 + O(λ−2) .

(A.40)

We then sum (A.29), (A.30), and (A.40) along with the 2-body term (2.15) and the −12ζ(3)
in (2.3) to get the final answer in (2.23).

B Generalised Eisenstein series

A Generalised Eisenstein Series satisfies the inhomogeneous Laplace eigenvalue equation

(∆τ − s(s − 1)) E(s, s1, s2; τ) = E(s1; τ)E(s2; τ) . (B.1)

Whereas non-holomorphic Eisenstein series arise as the coefficients of the R4 and d4R4

interactions in the low-energy expansion of four-graviton amplitude in type IIB superstring
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theory, the coefficient of the d6R4 interaction is the generalised non-holomorphic Eisenstein
series E(4, 3

2 , 3
2 ; τ) [35]. More general examples with half-integral indices in the source term

arise in the low-energy expansion of two-loop eleven-dimensional supergravity amplitudes
compactified on a two-torus [34]. This is the prototype for this general type of modular
functions that arise in Hi

N (τ). For generic eigenvalue s, we define the generalised Eisenstein
series as the unique modular invariant solution to (B.1) satisfying the boundary condition
that the coefficient of the homogeneous solution τ s

2 vanishes.
Within string theory contexts, the eigenvalue spectrum of E(s, s1, s2; τ) is sensitive to

whether s1, s2 are integer or half-integer. It has been argued [48] that when s1, s2 ∈ N the
spectrum of s is restricted to s ∈ Spec(s1, s2) = {|s1 − s2| + 2, |s1 − s2| + 4, . . . , s1 + s2 −
4, s1 + s2 − 2}. However, for the generalised Eisenstein series with s1, s2 ∈ N+ 1

2 arising as
coefficients of the 1/N r terms in the large-N expansion of the integrated correlator HN [14],
the spectrum is found to be restricted to s = {s1 + s2 + 1, s1 + s2 + 3, . . . , 3r + 1}. This
is discussed further in the main text.

The generalised Eisenstein series E(s, s1, s2; τ) can be decomposed in Fourier modes
in the form

E(s, s1, s2; τ) =
∞∑

n,m=0
E(n,m)(s, s1, s2; τ2)qnq̄m , (B.2)

where q = e2πiτ and q̄ = e−2πiτ̄ . The non-zero modes represent the contributions of instantons
and anti-instantons, with instanton number k = n − m, where k > 0 for instantons and
k < 0 for anti-instantons. Terms with k = 0 get purely perturbative contributions from the
m = n = 0 term and instanton/anti-instanton contributions from terms with m = n > 0.

The Laurent polynomial of E(s, s1, s2; τ2) (i.e. the E(0,0) term) is given by

E(0,0)(s,s1,s2;τ2)=

4π−2s1−2s2ζ(2s1)ζ(2s2)
πs1+s2(s1+s2−s)(s1+s2+s−1)(πτ2)s1+s2+4π− 1

2−2s2Γ(s1− 1
2)ζ(2s1−1)ζ(2s2)

(s2−s1+s)(s2−s1−s+1)Γ(s1)
(πτ2)1−s1+s2

+4π− 1
2−2s1Γ(s2− 1

2)ζ(2s2−1)ζ(2s1)
(s1−s2+s)(s1−s2−s+1)Γ(s2)

(πτ2)1−s2+s1 (B.3)

+ 4Γ(s1− 1
2)Γ(s2− 1

2)ζ(2s1−1)ζ(2s2−1)
π(s1+s2−s−1)(s1+s2+s−2)Γ(s1)Γ(s2)

(πτ2)2−s1−s2+β(s,s1,s2)(πτ2)1−s ,

where the first four terms can be obtained by matching powers of τ2 on the left-hand and
right-hand sides of (B.1) and the last term satisfies the homogeneous equation and its
coefficient is given by [35, 37]20

β(s,s1,s2)=
4πs−1

Γ(s1)Γ(s2)
ζ∗(s−s1−s2+1)ζ∗(s+s1−s2)ζ∗(s−s1+s2)ζ∗(s+s1+s2−1)

(1−2s)ζ∗(2s) ,

(B.4)
with ζ∗(s) = ζ(s)Γ(s/2)/πs/2.

20In these references, this coefficient is determined by projecting the Laplace equation (1.10) on E(s; τ).
Alternatively, it may be obtained from a Poincaré series representation as in [48].
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In addition to the Laurent expansion, the k = 0 sector contains contributions from
instanton/anti-instanton pairs, (n, n) with n > 0, which have the form

E(n,n)(s,s1,s2;τ2)=
ns1+s2−2σ1−2s1(n)σ1−2s2(n)

Γ(s1)Γ(s2)
Φs,s1,s2(4πnτ2) . (B.5)

When s1, s2 ∈ N the expression Φs,s1,s2(4πnτ2) is a polynomial in inverse powers of τ2 of
degree s2 + s1 − 2. The first two perturbative orders in the (n, n) sector do not depend
on the eigenvalue s and have the form

Φs,s1,s2(4πnτ2) =
8

(4πnτ2)2 + 8[s1(s1 − 1) + s2(s2 − 1)− 4]
(4πnτ2)3 + O(τ−4

2 ) . (B.6)

Higher-order coefficients do depend on s and can be computed from the differential equa-
tion (B.1) as performed in [14, 47] or via resurgence analysis methods [62, 63]. The contribution
of the general (n, m) sector with n, m ̸= 0 is given by

E(n,m)(s, s1, s2; τ2) =
ns1−1ms2−1σ1−2s1(n)σ1−2s2(m)

Γ(s1)Γ(s2)

( 1
4nm (πτ2)2 + O(τ−3

2 )
)
+ (n ↔ m) .

(B.7)
These terms correspond to non-perturbative contributions in the topological sector with
instanton number n − m.

For the purely instantonic sector, i.e. the (n, 0) term, and purely anti-instantonic sector,
i.e. the (0, m) term, we need to be more careful since in these sectors we now have the
freedom of adding homogeneous solutions to the differential equation (B.1). An algorithm
for constructing a particular solution, Ep(s, s1, s2; τ), to (B.1) was proposed in [14], and later
generalised in [47]. As discussed in the main text, whenever the eigenvalue s is such that the
vector space, S2s, of holomorphic cusp forms with weight 2s is non-trivial, this particular
solution Ep(s, s1, s2; τ) does not correspond to a modular invariant solution to (B.1), i.e. the
particular solution does not correspond to the generalised Eisenstein series.

To construct the generalised Eisenstein series E(s, s1, s2; τ), a certain homogeneous
solution has to be added to the particular solution, so that the complete solution is a modular
function. Since we have fixed the boundary condition in the perturbative, i.e. the (0, 0) sector,
this is only relevant for the instantonic (and anti-instantoic) pieces, namely we can only add
an homogeneous solution to E(n,0)

p (s, s1, s2; τ2) (and E(0,m)
p (s, s1, s2; τ2)).

Based on [38, 48], we can use the novel results [39] to show that even in the case of
present interest the homogeneous solution that must be added is given by

λ∆(s, s1, s2) · H∆(τ) , (B.8)

where the coefficient λ∆(s, s1, s2) is presented in (4.7). The function H∆(τ) takes the form,

H∆(τ) ≡
∞∑

n=1

a∆(n)
ns

√
nτ2Ks− 1

2
(2πnτ2)

(
e2πinτ1 + e−2πinτ1

)
, (B.9)

and satisfies the homogeneous equation

(∆τ − s(s − 1))H∆(τ) = 0 . (B.10)
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Note the important fact that H∆(τ) alone is not modular invariant. However, the addition of
a suitable multiple of H∆(τ) to the particular solution Ep(s, s1, s2; τ) is crucial for obtaining
a modular invariant solution to (B.1), i.e. for constructing the generalised Eisenstein series

E(s, s1, s2; τ) = Ep(s, s1, s2; τ) +
∑

∆∈S2s

λ∆(s, s1, s2)H∆(τ) . (B.11)

C Properties of lattice sums

In general there is no known lattice integral representation for an individual generalised
Eisenstein series. However, we shall now describe the construction of a lattice representation
of the special linear combinations of generalised Eisenstein series which are relevant for
the integrated correlator under discussion (see [34, 35, 37, 44, 64] for further details). This
gives a four-dimensional lattice representation that generalises the two-dimensional lattice
representation of a non-holomorphic Eisenstein series.

C.1 A family of lattice sum integrals

Following [35], we here consider a class of lattice sum integrals constructed from the special
non-holomorphic functions Ai,j(ρ), called modular local polynomials, introduced in section 4.2
and whose precise definition and properties will be reviewed in appendix C.2. We will
consider the lattice sum integral in the form21

Ew
i,j(τ) =

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

∫ ∞

0
d3t [V (t)]w−3 Ai,j(ρ(t)) exp

(
− π

τ2

3∑
i=1

ti|pi|2
)

, (C.1)

where the parameters ρ(t) and V (t) are defined in (4.18). The pi are discrete loop momenta
of a two-loop Feynman diagram on a two-torus of complex structure τ and are defined by

pi = mi + niτ , (C.2)

with mi, ni ∈ Z.
The analysis of the inhomogeneous Laplace equation satisfied by Ew

i,j(τ) will demonstrate
that the parameter w ∈ R+ corresponds to the total transcendental weight of the sources, i.e.
the sum of the indices of the bilinears in Eisenstein series which appear as source terms.

In [35] a slightly different lattice sum was considered which gave rise to ultraviolet
divergences arising at the boundary of the integration region from particular SL(2,Z) orbits
of the lattice sums variables. With the present constraints on the lattice sum, the integral (C.1)
is completely well-defined since it is exponentially convergent at all boundaries of the domain
of integration.

21In earlier lieterature, such as [35] the variables t1, t2 t3 corresponded to ‘inverse Schwinger parameters’
ti = t̂i/(t̂1 t̂2 + t̂1t̂3 + t̂2t̂3), where t̂i (i = 1, 2, 3) are the Schwinger parameters for a two-loop vacuum diagram.
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C.2 Modular local polynomials: definition and properties

We now present the definition and clarify the most important properties of the non-holomorphic
functions Ai,j(ρ), which feature prominently in the formula (C.1) for the modular invariant
functions under consideration.

The function A1,0(ρ) arose in the construction of the d6R4 coefficient E(4; 3
2 , 3

2 ; τ) in [35],
and a more general discussion in [37] presented the general procedure for constructing
particular combinations of E(s, s1, s2; τ) once the Ai,j(ρ) are known. The following general
construction of Ai,j(ρ) was given by Don Zagier (in unpublished notes that are reproduced
in [44] with more details).

The result of this analysis will be that Ai,j(ρ) are Laurent polynomials in ρ2 with
coefficients which are polynomial in ρ1, and inside the domain ρ ∈ H\Γ0(2) they satisfy
the homogeneous Laplace equation (4.20),

[∆ρ − s(s − 1)] Ai,j(ρ) = 0 , (C.3)

where the eigenvalue s = 3i + j + 1 (for example, s = 4 for A1,0).
The first step in constructing these Laurent series is to define the complex combinations

u = ρ2(1− ρ)2 , v = ρ2 − ρ + 1 . (C.4)

The functions Ai,j(ρ) are given by

Ai,j(ρ) = D
(n)
−2n(uivj) , n = s − 1 = 3i + j with i, j ≥ 0 . (C.5)

The polynomials uivj , holomorphic in ρ, can be understood precisely as the modular local
polynomials of modular weight −2n discussed in [50]. Here D

(n)
−2n is the iterated derivative

operator
D

(n)
−2n = (−2i)nn!

(2n)! D−2 ◦ D−4 ◦ · · · ◦ D−2n+2 ◦ D−2n , (C.6)

where the differential operator Dk = ∂ρ + k/(ρ − ρ̄) satisfies ∆k+2 · Dk − Dk∆k = −kDk,
where ∆k = 4Dk−2 ρ2

2∂ρ̄ is the laplacian acting on weight k modular forms. Explicitly, the
operator D

(n)
−2n can be written as

D
(n)
−2n = (−2i)nn!

(2n)!

n∑
m=0

(
n

m

)
(−n − m)m

(ρ − ρ̄)m

∂n−m

∂ρn−m
, (C.7)

where (x)m is the Pochhammer symbol.
The functions Ai,j(ρ) constructed in this manner satisfy the Laplace equation (C.3) in

the interior of the fundamental domain H\Γ0(2). Furthermore they are Laurent expansions
that have the following form,

Ai,j(ρ) =
2i+j∑
k=0

A
(k)
i,j (ρ1) ρi+j−2k

2 , (C.8)

where A
(k)
i,j (ρ1) is a polynomial of degree k in ρ1(1−ρ1). Since it is invariant under ρ1 7→ 1−ρ1,

it may be expressed as a linear combination of Bernoulli polynomials B2k(ρ1) of even index.
It is often clarifying to re-express ρ1, ρ2 in terms of t1, t2, t3. The function Ai,j is then by
construction a homogenous function of the ti’s, invariant under permutations.
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Examples of Ai,j. From (C.5), it is easy to generate expressions for Ai,j with very high
eigenvalues s = 3i+ j +1. Here we display the Ai,j that appear in the main body of the paper
– in particular in (4.29)–(4.31). For convenience, we express Ai,j in terms of the t-variables
using (4.18). Since Ai,j(ρ(t)) is a symmetric function of ti we shall make use of a basis
(σ1, σ2, σ3) of symmetric polynomials defined by

σ1 ≡ t1 + t2 + t3 , σ2 ≡ Y (t) = t1t2 + t1t3 + t2t3 , σ3 ≡ t1t2t3 . (C.9)

Below we list examples of Ai,j that are relevant for Hi
N (τ) up to order 1/N3,

s = 4 : σ
3
2
2 A1,0 = 1

5σ1σ2 − σ3 (C.10)

s = 5 : σ2
2A1,1 = 1

7σ2
1σ2 +

2
35σ2

2 − σ1σ3 , (C.11)

s = 6 : σ
5
2
2 A1,2 = 1

9σ3
1σ2 +

1
21σ1σ2

2 − σ2
1σ3 +

1
3σ2σ3 , (C.12)

σ
5
2
2 A0,5 = σ5

1 − 10
3 σ3

1σ2 +
15
7 σ1σ2

2 , (C.13)

s = 7 : σ3
2A2,0 = 1

33σ2
1σ2

2 + 6
11σ1σ2σ3 +

16
231σ3

2 + σ2
3 , (C.14)

s = 8 : σ
7
2
2 A2,1 = 3

143σ3
1σ2

2 + 28
429σ1σ3

2 − 6
13σ2

1σ2σ3 + σ1σ2
3 − 4

143σ2
2σ3 , (C.15)

σ
7
2
2 A1,4 = 1

13σ5
1σ2−σ4

1σ3+
2

143σ3
1σ2

2+
18
13σ2

1σ2σ3−
43
429σ1σ3

2−
27
143σ2

2σ3 , (C.16)

s = 10 : σ
9
2
2 A3,0 = 1

221σ3
1σ3

2 − 3
17σ2

1σ2
2σ3 +

72
2431σ1σ4

2 + 15
17σ1σ2σ2

3

− 24
221σ3

2σ3 − σ3
3 , (C.17)

σ
9
2
2 A2,3 = 1

85σ5
1σ2

2 − 6
17σ4

1σ2σ3 +
11
221σ3

1σ3
2 + σ3

1σ2
3 + 2

17σ2
1σ2

2σ3

− 4
143σ1σ4

2 − 9
17σ1σ2σ2

3 + 4
221σ3

2σ3 . (C.18)

D From lattice sums to generalised Eisenstein series

In order to determine the properties of the modular invariant functions which can be
represented via the lattice sum integrals just discussed, it is very useful to apply the laplacian
∆τ to (C.1) which gives

∆τEw
i,j(τ) =

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

∫ ∞

0
d3t [V (t)]w−3 Ai,j(ρ(t))∆t exp

(
− π

τ2

3∑
i=1

ti|pi|2
)

, (D.1)

where ∆ρ = ρ2
2(∂2

ρ1 + ∂2
ρ2), and we have used (4.23). We now integrate by parts and note

the property

∆t[V (t)αF (t)] = V (t)α∆t[F (t)] , (D.2)
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for all α. We will also define

Bw
i,j(t) ≡ [V (t)]w−3Ai,j(ρ(t)) , (D.3)

and note that (C.3) and (D.2) imply

∆t

[
Bw

i,j(t)
]
= [V (t)]w−3

[
∆ρAi,j(ρ)

]
ρ=ρ(t)

= s(s − 1)Bw
i,j(t) , (D.4)

with s = 3i + j + 1. It follows that

∆τEw
i,j(τ) =

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

∫ ∞

0
d3t Bw

i,j(t)∆t

[
exp

(
− π

τ2

3∑
i=1

ti|pi|2
)]

=
∑

p1,p2,p3 ̸=0
p1+p2+p3=0

∫ ∞

0
d3t∆t

[
Bw

i,j(t)
]
exp

(
− π

τ2

3∑
i=1

ti|pi|2
)
+ b.t.

= s(s − 1)Ew
i,j(τ) + b.t. , (D.5)

where ‘b.t.’ represents boundary terms.
The boundary terms in (D.5) are easily collected by integrating ∆t by parts using the

definition (4.22). We start by noting that since all the momenta p1, p2, p3 = −p1 − p2 are
non-vanishing we only need to worry about boundary contributions coming from ti → 0 since
the integral is exponentially suppressed along any direction as ti → ∞. Using the fact that
the integrand is invariant under permutations of (t1, t2, t3) we arrive at the expression

b.t. =
∑

p1,p2,p3 ̸=0
p1+p2+p3=0

3
∫ ∞

0
d2t

[
t1t2(∂3 − ∂1 − ∂2)Bw

i,j(t1, t2, t3)
]

t3=0
exp

(
−πt1|p1|2

τ2
− πt2|p2|2

τ2

)

+
∑
p ̸=0

6π|p|2

τ2

∫ ∞

0
d2t

[
t1t2Bw

i,j(t1, t2, t3)
]

t3=0
exp

(
−π|p|2(t1 + t2)

τ2

)
, (D.6)

where we have defined p = m + nτ with (m, n) ∈ Z2/{(0, 0)}. It is easy to check with the
definition of Ai,j given above that the first term produces terms bilinear in Eisenstein series,
while the second term will produce terms linear in Eisenstein series.

Although we do not have a closed formula for the boundary term associated with a
specific Bw

i,j , we can make some general observations. It follows from (C.8) that when Ai,j(ρ)
is rewritten in terms of ti and expressed in terms of the symmetric variables σ1, σ2, σ3 defined
in (C.9), it takes the general form

Ai,j(ρ(t)) =
s−1∑
α=0

s−1
2∑

β= s mod 2
2

⌊ s−1
3 ⌋∑

γ=0
c(α, β, γ)σα

1 σ−β
2 σγ

3 , (D.7)

where the coefficients c(α, β, γ) ∈ Q implicitly depend on i, j (and s = 3i + j + 1).
We note that when s is even β ∈ N while for s odd β ∈ N+ 1

2 . Furthermore the Ai,j are
homogeneous functions of ti since ρ1 and ρ2 (defined in (4.18)) are, and hence it follows that

α − 2β + 3γ = 0 . (D.8)
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From (4.18) we also deduce that the transformation ρ → ρ̄ is equivalent to ti → −ti, or
equivalently

σ1 → −σ1 , σ2 → σ2 , σ3 → −σ3 . (D.9)

Hence, using (C.8), we see that

Ai,j(ρ̄) = (−1)i+jAi,j(ρ) = (−1)s−1Ai,j(ρ)
=⇒ Ai,j(ρ(−t)) = Ai,j(ρ̄(t)) = (−1)s−1Ai,j(ρ(t)) , (D.10)

which from the expansion (D.7) implies

c(α, β, γ) = 0 , for α + γ ̸≡ (s − 1) mod 2 . (D.11)

We can then focus on the integrand (D.3) and expand it as

Bw
i,j(t1, t2, t3) =

s−1∑
α=0

s−1
2∑

β= s mod 2
2

⌊ s−1
3 ⌋∑

γ=0
c(α, β, γ)σα

1 σ
w−3

2 −β
2 σγ

3 , (D.12)

from which it is rather easy to compute the boundary contribution (D.6) where only the
terms with γ = 0 and γ = 1 contribute. The boundary terms are given by

b.t. = −
s−1∑

α=(s−1) mod 2

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

3αc(α, α
2 , 0)

∫ ∞

0
d2t (t1t2)

w−1−α
2 (t1 + t2)α−1e

−πt1|p1|
2

τ2
−πt2|p2|

2
τ2

+
s−2∑

α=s mod 2

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

3c(α, α+3
2 , 1)

∫ ∞

0
d2t (t1t2)

w−2−α
2 (t1 + t2)αe

−πt1|p1|
2

τ2
−πt2|p2|

2
τ2

+
s−1∑

α=(s−1) mod 2

∑
p ̸=0

6π|p|2

τ2
c(α, α

2 , 0)
∫ ∞

0
d2t (t1t2)

w−1−α
2 (t1 + t2)αe

−π|p|2(t1+t2)
τ2 . (D.13)

Note that the sum truncates at α = s − 2 in the second line since (D.11) implies that
c(s − 1, β, 1) = 0 for α = s − 1.

Since α ∈ N we can use the binomial expansion on (t1 + t2)α and integrate term by term,
arriving at the sum of three boundary contributions,

b.t. =

− 3
s−1∑

α=(s−1) mod 2

α−1
2∑

δ= 1−α
2

α

(
α−1

α−1
2 +δ

)
c(α, α

2 , 0)Γ
(

w
2 +δ

)
Γ
(

w
2 −δ

)[
E(w

2 +δ; τ)E(w
2 −δ; τ)−E(w; τ)

]

+ 3
s−2∑

α=s mod 2

α
2∑

δ=−α
2

(
α

α
2+δ

)
c(α, α+3

2 , 1)Γ
(

w
2 +δ

)
Γ
(

w
2 −δ

)[
E(w

2 +δ; τ)E(w
2 −δ; τ)−E(w; τ)

]

+ 6
s−1∑

α=(s−1) mod 2

α+1
2∑

δ= 1−α
2

(
α − 1

α−1
2 + δ

)
c(α, α

2 , 0)Γ
(

w
2 + δ

)
Γ
(

w
2 + 1− δ

)
E(w; τ) , (D.14)
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where we have used the identity

∑
p1,p2,p3 ̸=0

p1+p2+p3=0

(τ2/π)s1+s2

|p1|2s1 |p2|2s2
=

∑
p1,p2 ̸=0

(τ2/π)s1+s2

|p1|2s1 |p2|2s2
−
∑
p∈Λ′

(τ2/π)s1+s2

|p|2(s1+s2)

= E(s1; τ)E(s2; τ)− E(s1 + s2; τ) . (D.15)

Note that if the eigenvalue s in (D.14) is even then the sum in the first line is over odd
values of α since otherwise c(α, β, 0) vanishes from (D.11), so δ must be an integer. Similarly,
if s is even the α sum in the second line is over even values since otherwise c(α, β, 1) vanishes
again from (D.11), and once more δ is an integer. Conversely for s odd in the first line the
sum over α is over even integers, so δ is half-integer. For s odd in the second line the α

sum is over odd values and the δ sum is again over half-integers. We conclude that for even
eigenvalue s the bilinears terms in both sums are of the form E(w

2 + δ; τ)E(w
2 − δ; τ) with

integer δ. The third line gives terms proportional to non-holomorphic Eisenstein series with
integer indices. Thus we have reproduce the claim (4.25) stated in the main text.

Comparison with modular graph functions. In the case of modular graph functions
even eigenvalue s is accompanied by an even trascendental weight w ≥ 4 such that 2 ≤ s ≤
w−2, hence in this case the sources are always of the form E(s1; τ)E(s2; τ) with s1, s2 ∈ N≥2.
Conversely, for the generalised Eisenstein of present interest even eigenvalue s is accompanied
by an odd trascendental weight w such that s ≥ w + 1. In this case the bilinear sources are
always of the form E(s1; τ)E(s2; τ) with s1, s2 ∈ Z + 1

2 such that s1 + s2 = w.
Mutatis mutandis, modular graph functions with odd eigenvalue s must have odd

trascendental weight w ≥ 5 such that 3 ≤ s ≤ w − 2, hence again the sources are always of
the form E(s1; τ)E(s2; τ) with s1, s2 ∈ N≥2. While again the generalised Eisenstein series’ of
present interest and odd eigenvalue s are accompanied by an even weight w and again the
bilinear sources are of the form E(s1; τ)E(s2; τ) with s1, s2 ∈ Z+ 1

2 such that s1 + s2 = w.
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