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Abstract: Crop growth and yield are affected by salinity, which causes oxidative damage to plant
cells. Plants respond to salinity by maintaining cellular osmotic balance, regulating ion transport,
and enhancing the expression of stress-responsive genes, thereby inducing tolerance. As a byprod-
uct of heme oxygenase (HO)-mediated degradation of heme, carbon monoxide (CO) regulates
plant responses to salinity. This study investigated a CO-mediated salt stress tolerance mechanism
in sorghum seedlings during germination. Sorghum seeds were germinated in the presence of
250 mM NaCl only, or in combination with a CO donor (1 and 1.5 µM hematin), HO inhibitor (5 and
10 µM zinc protoporphyrin IX; ZnPPIX), and hemoglobin (0.1 g/L Hb). Salt stress decreased the
germination index (47.73%) and root length (74.31%), while hydrogen peroxide (H2O2) (193.5%), and
proline (475%) contents increased. This increase correlated with induced HO (137.68%) activity and
transcripts of ion-exchanger and antioxidant genes. Salt stress modified vascular bundle structure,
increased metaxylem pit size (42.2%) and the Na+/K+ ratio (2.06) and altered primary and secondary
metabolites. However, exogenous CO (1 µM hematin) increased the germination index (63.01%) and
root length (150.59%), while H2O2 (21.94%) content decreased under salt stress. Carbon monoxide
further increased proline (147.62%), restored the vascular bundle structure, decreased the metaxylem
pit size (31.2%) and Na+/K+ ratio (1.46), and attenuated changes observed on primary and secondary
metabolites under salt stress. Carbon monoxide increased HO activity (30.49%), protein content,
and antioxidant gene transcripts. The alleviatory role of CO was abolished by Hb, whereas HO
activity was slightly inhibited by ZnPPIX under salt stress. These results suggest that CO elicited salt
stress tolerance by reducing oxidative damage through osmotic adjustment and by regulating the
expression of HO1 and the ion exchanger and antioxidant transcripts.

Keywords: antioxidant; carbon monoxide; epidermis; hematin; heme oxygenase; salinity; oxidative
stress; ROS; vascular bundles

1. Introduction

Sorghum (Sorghum bicolor L.) is the fifth most important cereal crop after rice, maize,
wheat, and barley [1–3]. It is used as a staple food for human consumption and livestock
feed in Africa, South Asia, and Central America, and as raw material in the production of
green fuels, including bioethanol and biogas [4]. Sorghum is a model C4 photosynthetic
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plant with high biomass, a diploid genome of 750 bp, and germplasm genetic diversity
to improve agronomic traits [5]. It is well-adapted to semi-arid and arid regions due to
its drought and salinity tolerance traits. It adapts by maintaining ion homeostasis, ac-
tivating antioxidant enzymes, osmotic regulatory systems, and cell detoxification [6–8].
The germination and early developmental stages are best used to evaluate the effects of
salinity [9], with differential effects of genotype and level of salinity stress applied [10].
Sorghum germination and development were significantly reduced under varying salt
stress levels [6,11–14]. Exposure to high salt concentrations can result in reduced agri-
cultural productivity [10,15] and lead to food insecurity, so understanding how Sorghum
tolerates salt stress is very important.

Salinity is the accumulation of salt in the soil above 40 mM NaCl and an osmotic
pressure of 0.2 MPa [16]. It is one of the main abiotic stresses affecting plant development
and productivity [17]. Salinity can be classified as the primary stress caused by natural
occurrences such as weathering and rain, or secondary salinity caused by activities such as
land clearing, deforestation, and irrigation [18]. It is estimated that 20% of all cultivated
land and 33% of irrigated land are already salinized, and more than 50% will be affected by
2050 [19]. Estimates have shown that over 50% of crop yield losses worldwide result from
abiotic stress, and severe stress leads to an increase in the annual loss of arable land [17–19].
The accumulation of high levels of salt (NaCl, NaSO4, Na2CO3, and NaHCO3) inhibits
seed germination by preventing water uptake because of the low osmotic potential and
specific ion toxicity (Na+ and Cl−) of seed embryos [20]. Salt stress reduces the germina-
tion percentage, germination speed, shoot and root length of canola [21], basil [22] and
sorghum [12]. High-salinity stress reduces physiological processes linked with decreased
stomatal conductance, which affects photosynthesis, chlorophyll content, and transpira-
tion [23,24]. Salinity induces osmotic and ionic imbalance-mediated oxidative damage,
which leads to lipid peroxidation triggered by overproduction of reactive oxygen species
(ROS) such as hydrogen peroxide (H2O2), superoxide radicals (O2

−), hydroxyl radicals
(OH), and singlet oxygen (1O2) [25,26]. Increased levels of ROS cause toxicity to the cell and
disturb redox homeostasis, which hinders cell division and plant growth [18,27]. Oxidative
stress caused by increased ROS also results in nutrient imbalance, membrane damage,
inhibition of enzymatic activities, and disruption of many physiological and biochemical
plant growth-promoting processes, eventually leading to plant death [28–30]. Plants adapt
to salinity by modulating osmotic adjustment and ion homeostasis, and by inducing antiox-
idant mechanisms that scavenge and detoxify ROS [15,31]. Osmolytes, including soluble
sugars, glycine betaine, and proline compounds, accumulate in some plants to maintain
water uptake and metabolic activity, thereby improving stress tolerance [16,32–35].

Improving the efficiency of ionic and osmotic homeostasis, and capacity of antioxi-
dant systems, is required to develop salt stress-tolerant crops [29]. Antioxidant enzymes
scavenge ROS under salinity stress [15,31] protecting plants against cellular damage
and lipid peroxidation. These enzymes include superoxide dismutase (SOD), catalase
(CAT), glutathione reductase (GR), guaiacol peroxidase (GPOX), and ascorbate peroxidase
(APX) [15,31]. Heme oxygenase (HO) is an antioxidant stress-responsive protein that cat-
alyzes the degradation of heme to form biliverdin-IXα (BV), carbon monoxide (CO), and
free iron (Fe2+) [36]. The heme oxygenase family consists of (i) the HO1 subfamily, which
contains the HO1, HO3, and HO4 proteins, and (ii) the single-member HO2 subfamily with
only the HO2 protein [36,37].

Carbon monoxide, as a by-product of heme degradation, plays an important bio-
logical role in both animals and plants. In animals, it modulates anti-proliferative, anti-
inflammatory, and cytoprotective signaling processes [38–40]. However, the full range of
CO functions in plants is only beginning to emerge. CO is a signaling molecule in major
physiological processes [41] and in plant growth and development [42]. Also, CO promotes
lateral root formation [43], stomatal closure [44], and delays gibberellin (GA)-induced
programmed cell death [45]. Heme oxygenase is the main enzymatic source of CO in
plants through enzymatic degradation of heme to biliverdin IXα (BV), which also releases
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iron (Fe2+). Exogenously applied low levels of CO alter plant responses to salt stress. CO
ameliorates the inhibitory effects of salinity on Cassia obtusifolia L. seed germination [46]
and oxidative stress in rice and wheat seedlings [47–50]. Several studies have reported
on the effective use of exogenously applied phyto-protectants such as chitosan [12], cal-
cium ion [6], methyl jasmonate [11], and molybdenum [13] in mitigating the effect of salt
stress in sorghum. The role of CO in ameliorating the effects of abiotic stress in sorghum
remains elusive.

In this study, we investigated the role of exogenously applied CO, in alleviating salt-
induced oxidative stress and improving the tolerance of sorghum by modifying its ion
homeostasis and antioxidant systems.

2. Results
2.1. Carbon Monoxide Improves Seed Germination and Root Growth of Sorghum under Salt Stress

Salt negatively affected sorghum germination and reduced the germination index
(GI) by 47.73% and root length by 74.31% (Figure 1A,C). However, cotreatment with CO
significantly attenuated the salt-induced decrease in GI, with no statistically significant
difference between the control GI and cotreatments of salt with the two levels of CO
(Figure 1A). While cotreatment with CO did not fully protect root growth from salt stress,
there was a significant partial rescue diminishing the reduction in root length from 74.31%
down to 35.6% (1 µM CO) and 52.98% (1.5 µM CO). However, when compared to the
sorghum seedlings treated with salt only, cotreatment increased root lengths by 150.59%
(1 µM CO) and 83.2% (1.5 µM CO), (Figure 1C). A CO scavenger (hemoglobin) and an HO1
inhibitor (ZnPPIX) [51] were exogenously applied to CO-treated sorghum seedlings under
salt stress to hinder the alleviatory role of CO. While exogenous application of hemoglobin
(0.1 g/L) did not significantly block the salt effects on the GI (Figure 1B), it significantly
reduced root length by 43.5% (Figure 1D) in seedlings treated with 1 µM CO. However,
ZnPPIX treatment had no significant effects on the growth of sorghum seedlings.
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induced oxidative stress (lighter brown color indistinguishable from that of the control 
samples). However, treatment with hemoglobin and ZnPPIX countered the alleviatory 
role of CO and oxidative damage was unimpeded, as reflected by the dark brown root 
staining (Figure 2A). 

Salt stress significantly increased seedling H2O2 (by 193.5%) compared to the control 
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of NaCl (salt), a 1 µM of CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2), 0.1 g/L of
hemoglobin (Hb), 5 µM of ZnPPIX (Zn1), and 10 of µM ZnPPIX (Zn2). The means ± SD (n = 3) were
calculated from three biological replicates, and significant differences (p ≤ 0.05) were determined
using ANOVA and the Tukey HSD post hoc test at a 95% confidence interval. Bars with the same
letter are not significantly different.

2.2. CO Reduces Salt-Induced Oxidative Damage in Sorghum Seedlings

The role of CO in the alleviation of salt-induced oxidative damage was investigated
based on the levels of ROS by monitoring H2O2 content (Figure 2). Production and
distribution of H2O2 induced by salt stress were assessed by DAB histochemical staining,
which produces a deep brown DAB and H2O2 reaction product (Figure 2A). Exogenous
application of 1 µM CO to 250 mM NaCl (salt)-treated sorghum seedlings alleviated the
salt-induced oxidative stress (lighter brown color indistinguishable from that of the control
samples). However, treatment with hemoglobin and ZnPPIX countered the alleviatory role
of CO and oxidative damage was unimpeded, as reflected by the dark brown root staining
(Figure 2A).
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was repressed by the CO scavenger, resulting in a 29.3% (0.1 g/L Hb) decrease. The HO1 
inhibitor also led to a decrease in proline content by 22.73% (5 μM ZnPPIX) and 18.56% 
(10 μM ZnPPIX) under salt stress (Figure 3B). Salt stress alone did not change the tran-
script level of sorghum P5CS1 (SbP5CS1), (Figure 3C). However, 1 μM and 1.5 μM CO 
slightly increased the transcript levels of SbP5CS1 under salt stress. Carbon monoxide was 
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Figure 2. Effect of CO on the oxidative stress markers in Sorghum under salt stress. Histochemical
detection of H2O2 (A), quantification of H2O2 (B) in sorghum seedlings. The red arrows on the
histogram highlight the deep brown color indicative of H2O2 formation. Treatments: 0 mM of NaCl
(control), 250 mM of NaCl (Salt), 1 µM of CO donor (Hematin; CO1), 0.1 g/L of hemoglobin (Hb),
5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). The mean (±SD) was calculated from three
biological replicates, and a significant difference (p ≤ 0.05) was determined using ANOVA and the Tukey
HSD post hoc test at a 95% confidence interval. Bars with the same letter are not significantly different.

Salt stress significantly increased seedling H2O2 (by 193.5%) compared to the control
seedlings (Figure 2B), indicating oxidative damage to the lipid membranes. Exogenous 1
µM CO reduced H2O2 accumulation in salt-stressed sorghum seedlings. Similarly, ZnPPIX
reduced the ameliorating role of CO, resulting in an increased H2O2 content by 29.23% (in
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5 µM ZnPPIX) and 38.78% (in 10 µM ZnPPIX) in the sorghum seedlings (Figure 2B) and
oxidative damage was apparent.

2.3. CO Increases Proline and Total Soluble Sugar Content in Sorghum under Salt Stress

The effects of CO on the osmoregulation of salt-stressed sorghum were assessed by
monitoring the accumulation of proline and changes in the transcript levels of Sorghum
bicolor PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 (SbP5CS1), a gene involved in the
proline biosynthesis pathway (Figure 3). Salt stress increased proline content by 475%,
(Figure 3A). Proline accumulation further increased in response to exogenous application
of CO by 1147.62% (1 µM CO) and 76.28% (1.5 µM CO), (Figure 3A,B). However, the
stimulatory effect of CO (1.5 µM CO) on proline content in salt-stressed sorghum seedlings
was repressed by the CO scavenger, resulting in a 29.3% (0.1 g/L Hb) decrease. The
HO1 inhibitor also led to a decrease in proline content by 22.73% (5 µM ZnPPIX) and
18.56% (10 µM ZnPPIX) under salt stress (Figure 3B). Salt stress alone did not change the
transcript level of sorghum P5CS1 (SbP5CS1), (Figure 3C). However, 1 µM and 1.5 µM CO
slightly increased the transcript levels of SbP5CS1 under salt stress. Carbon monoxide was
scavenged by 0.1 g/L Hb, whereas HO activity (the ability to produce CO) was inhibited
by 5 µM and 10 µM of ZnPPIX shown by a decrease in SbP5CS1 transcript under salt stress
(Figure 3C).
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pits, was analyzed using scanning electron microscopy (Figure 4). The control seedlings 
had smooth and round shaped xylem tissue (Figure 4A). Salt stress induced deformation 
of vascular bundle layers, causing stretched meta xylem and phloem (Figure 4B), and the 
pits enlarged by 42.2% (Figure 4F,I). Treatment with CO subdued these changes (Figure 
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Figure 3. Effect of CO on osmolyte accumulation in sorghum seedlings under salt stress. Proline
content (A,B), and SbP5CS1 transcript (C), of sorghum seedlings. Treatments: 0 mM of NaCl (control),
250 mM of NaCl (salt), 1 µM of CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2), 0.1 g/L
of hemoglobin (Hb), 5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). The mean (±SD) was
calculated from three biological replicates and a significant difference (p ≤ 0.05) was determined
using ANOVA and the Tukey HSD post hoc test at a 95% confidence interval. Bars with the same
letter are not significantly different. The 18s rRNA was used as a constitutive reference control.
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2.4. Morphology and Element Analysis
2.4.1. Co Improves the Morphology of Sorghum Anatomy

To further determine the effects of salt stress and the alleviatory role of CO, the
morphology of the vascular bundles of sorghum, which is made up of xylem, phloem, and
pits, was analyzed using scanning electron microscopy (Figure 4). The control seedlings
had smooth and round shaped xylem tissue (Figure 4A). Salt stress induced deformation of
vascular bundle layers, causing stretched meta xylem and phloem (Figure 4B), and the pits
enlarged by 42.2% (Figure 4F,I). Treatment with CO subdued these changes (Figure 4C,D).
However, although 1 µM CO significantly decreased the pit size by 31.2% compared to the
salt-stressed seedlings, the higher 1.5 µM CO level caused a 17.4% additional increase in
pit size (Figure 4G–I).
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the xylem pits (E–H), the Xylem pit diameter of sorghum roots magnified at 2 µM (I). The 0 mM
NaCl only (A,E), salt (B,F), salt + CO1 (C,G), salt + CO2 (D,H). Treatments: 0 mM of NaCl (control),
250 mM of NaCl (Salt), 1 µM of CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2), 0.1 g/L
of hemoglobin (Hb), 5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). For clarity purposes a small
area showing the xylem walls in the SEM micrographs has been selected in red and enlarged/zoomed
(this area is shown by red arrows). The mean (±SD) was calculated from three biological replicate pit
diameter values measuring three pits per vascular bundle, and a significant difference (p ≤ 0.05) was
determined using ANOVA and the Tukey HSD post hoc test at a 95% confidence interval. Bars with
the same letter are not significantly different.

2.4.2. CO Reduces Na+ Toxicity and Improves K+ Content

The effect of salt stress on nutrient absorption by sorghum seedlings was analyzed
using scanning electron microscopy–energy dispersion X-ray spectroscopy (SEM-EDX)
(Figure 5A–D; Supplementary Table S1). Salt stress resulted in a significant increase in
Na+ content (1788.24%) and a decrease in K+ content (160%), showing a much larger
Na+/K+ ratio (2.06) increase of 635.7% (Figure 5B) than untreated seedlings (Na+/K+

of 0.28), (Figure 5A). Interestingly, CO decreased the level of Na+ absorption by 12.46%
(1 µM CO) and 17.45% (1.5 µM CO), whereas K+ absorption was significantly increased by
23.08% (1 µM CO) and 33.97% (1.5 µM CO). As a result, the Na+/K+ ratios were 29.13% and
38.35% in sorghum seedlings treated with salt and 1 µM or 1.5 µM of CO (Figure 5C,D).
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Figure 5. CO improved the Na+/K+ ratio and antiporter transcript levels of sorghum under salt
stress. (A) 0 mM of NaCl only, (B) salt, (C) salt + CO1, (D) salt + CO2, (E) transcript expression levels
of SbNHX4 and SbKT1 analyzed by semi-quantitative RT-PCR. Treatments: 0 mM of NaCl (control),
250 mM of NaCl (salt), 1 µM of CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2), 0.1 g/L
of hemoglobin (Hb), 5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). The 18s rRNA was used as
a constitutive reference control.

To further understand the role of CO in ion homeostasis in sorghum seedlings, the
transcript levels of Sorghum bicolor vacuolar Na+/H+ exchanger antiporter (SbNHX4) and
Sorghum bicolor potassium ion transporter (SbKT1) genes were measured (Figure 5E). These
genes were constitutively expressed with SbKT1 having the highest level of expression
under control conditions (Figure 5E). Salt stress increased the transcript levels of SbNHX4
and SbKT1, however, under the influence of 1 µM of CO in salt-stressed seedlings, their
transcript levels were downregulated. Conversely, 1.5 µM of CO increased the transcript
level of SbNHX4, whereas SbKT1 transcript level was decreased under salt stress. CO
scavenger (0.1 g/L Hb) and 10 µM of ZnPPIX decreased transcripts while 5 µM of ZnPPIX
treatment increased transcript levels of SbNH4 and SbKT1 in the presence of 1 µM of CO
under salt stress (Figure 5E).

2.4.3. CO Stabilizes the Nature and Structure of Biomolecules

Fourier-transform infrared (FTIR) spectroscopy was used to determine the biodegra-
dation of biomolecules through the visualization of chemical bonds found in the proteins,
lipids, and carbohydrates of sorghum seedlings under salt and hematin treatments. The
mid-IR spectrum of 4000–400 cm−1 was used for this analysis (Figure 6). The spectral
peak at 3304.7 cm−1 represents the polymeric –OH stretch vibrations under the frequency
range 3700–3200 cm−1 indicating the presence of phenols and alcohols. The peaks at
2923.48 cm−1 and 1449 cm−1 represent the C-H stretch vibration within the frequency
range of 3000–2850 cm−1 and 1485–1445 cm−1, respectively, an indication of the pres-
ence of saturated aliphatic alkanes in lipids. Peaks 2139.29 cm−1 and 1664.45 cm−1 rep-
resent the -C≡C, -C=C- stretch vibration within the frequencies 2140–2100 cm−1 and
1680–1620 cm−1, respectively, indicating the presence of olefinic alkynes and alkenes in
carbohydrates. Peaks 1233, 1150, and 1025 cm−1 represent the -C-N stretch vibration
within the frequency range of 1250–1020 cm−1 indicating the presence of primary, sec-
ondary, and tertiary amines (proteins) as well as silicate ions (1100–900 cm−1). Peak
852 cm−1 (890–820 cm−1) represents peroxide, while peaks 759, 701 (within frequencies
800–700 cm−1 and 715–570 cm−1) and 563.95 cm−1 (600–500 cm−1) represent the C-Cl/C-I
aliphatic choro/Iodo halogenated compounds, C-S thioesters, and S-S disulfides. The FTIR
spectra of salt-stressed sorghum seedlings showed peak shifts between 3300 and 2924 cm−1

(phenols and lipids), 1664.45 (carbohydrates), 1449 (lipids), 1150 (proteins), while peaks
at 759, 701, and 563.95 cm−1 indicate halogenated compounds. However, exogenously
applied hematin (CO1, blue spectra) under salt stress moved the spectral peak shifts to a
pattern more similar to the control (black spectra) more than the CO2 (green spectra).
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Figure 6. The effect of CO on FTIR spectra of sorghum biomolecules. Treatments: 0 mM of
NaCl (control = black spectra), 250 mM of NaCl (salt = red spectra), 1 µM of CO donor (Hematin;
CO1 = blue spectra), and 1.5 µM of CO donor (CO2 = green spectra).

2.5. Effect of CO on the Activity and Expression of Heme Oxygenase in Sorghum under Salt Stress

To determine the effects of salt and the alleviatory role of CO on antioxidant systems,
the activity of heme oxygenase (HO) was assayed together with establishing the response
at the transcription and translation levels (Figure 7). Salt stress induced HO activity by
137.68% (Figure 7A), with combined treatment using salt and 1 µM of CO further increasing
HO activity by 30.49% (Figure 7A). However, cotreatments with 0.1 g/L of Hb or 10 µM
of ZnPPIX significantly inhibited the alleviatory role of CO on enzyme activity under salt
stress (Figure 7A).

Western blot analysis detected a 34 kDa HO1 protein in sorghum seedlings exposed to
salt stress, CO, Hb, and ZnPPIX (Figure 7B). The HO1 protein band was stronger in 1 µM of
CO (Lane 3) and in 1.5 µM of CO treatments (Lane 4) under salt stress than in the salt-only
treatment (Lane 2). The expression level of the HO1 protein in sorghum seedlings treated
with the ZnPPIX (Lane 5) and Hb (Lane 6) treatments was less than in seedlings treated
with CO and salt stress (Figure 7C). For the positive control, the anti-HSP70 monoclonal
antibody was used to detect the 70 kDa HSP70 protein (Figure S3).

The transcript level of Sorghum bicolor heme oxygenase 1 (SbHO1) was constitutively
expressed under control conditions (Figure 7C). Salt stress decreased SbHO1 transcription
levels compared to the control. Treatment with 1 µM and 1.5 µM of CO further decreased
SbHO1 transcription under salt stress. In the presence of 1 µM of CO, the SbHO1 transcrip-
tion level was further scavenged by 0.1 g/L of Hb and the HO inhibitor, ZnPPIX (5 µM and
10 µM of ZnPPIX) under salt stress (Figure 7C).
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The transcript levels of Sorghum bicolor Iron Superoxide dismutase (SbFeSOD), Sorghum 
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Figure 7. Effect of CO on enzyme activity, protein content and gene expression levels of HO in
sorghum under salt stress. (A) Heme oxygenase activity; (B) Western blot analysis of the HO1 protein;
lane 1: control; lane 2: salt; lane 3: salt + CO1, lane 4: salt + CO2; lane 5: salt + CO1 + Zn2; lane 6: salt
+ CO1 + Hb; (C) transcript expression level of the SbHO1 gene analyzed by semi-quantitative RT-PCR.
Treatments: 0 mM of NaCl (control), 250 mM of NaCl (salt), 1 µM of CO donor (Hematin; CO1), and
1.5 µM of CO donor (CO2), 0.1 g/L of hemoglobin (Hb), 5 µM of ZnPPIX (Zn1) and 10 µM of ZnPPIX
(Zn2). The mean (±SD) was calculated from three biological replicates, and a significant difference
(p = 0.000) was determined using ANOVA and the Tukey HSD post hoc test at a 95% confidence
interval. Bars with the same letter are not significantly different. The 18s rRNA was used as a
constitutive reference control.

2.6. Influence of CO on the Transcript Level of Antioxidant Genes in Sorghum Seedlings under
Salt Stress

The transcript levels of Sorghum bicolor Iron Superoxide dismutase (SbFeSOD), Sorghum
bicolor Manganese Superoxide dismutase (SbMnSOD), and Sorghum bicolor Catalase (SbCAT)
were analyzed using semi-quantitative reverse transcription–PCR (RT-PCR). All the genes
were constitutively expressed (Figure 8). Salt stress increased the SbFeSOD transcript level
but decreased the SbMnSOD and SbCAT transcript levels. The transcript levels of SbFeSOD
and SbMnSOD, were upregulated by 1 µM of CO, whereas the SbCAT transcript level was
downregulated under salt stress. Additionally, a high CO concentration (1.5 µM of CO)
increased the SbFeSOD and SbMnSOD transcript levels; however, the SbCAT transcript
level decreased. The CO scavenger (0.1 g/L of Hb) and the CO inhibitors (5 µM and
10 µM of ZnPPIX), decreased the SbFeSOD, SbMnSOD, and SbCAT transcripts levels in the
presence of 1 µM of CO and salt stress (Figure 8).
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found to be strongly correlated with the germination index (r = 0.9). Oxidative marker 
H2O2 was strongly correlated with proline (r = 0.6), pit diameter (r = 0.83), Na+/K+ (r = 0.8), 
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Figure 8. The effect of CO on the transcript levels of the SbFeSOD, SbMnSOD, and SbCAT genes
in sorghum under salt stress analyzed by semi quantitative RT-PCR. Treatments: 0 mM of NaCl
(control), 250 mM of NaCl (salt), 1 µM of CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2),
0.1 g/L of hemoglobin (Hb), 5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). The 18s rRNA was
used as the constitutive reference control.

2.7. Pearson’s Traits Correlations

The relationship between different traits studied was analyzed using Pearson’s corre-
lation (Figure 9). In this study, the result showed that proline, pit diameter, Na+/K+, were
strongly correlated with a correlation value r closer to 1 SbHO1 enzyme activity, were also
positively correlated with a correlation value of r closer to 1. Seedlings root length was
found to be strongly correlated with the germination index (r = 0.9). Oxidative marker
H2O2 was strongly correlated with proline (r = 0.6), pit diameter (r = 0.83), Na+/K+ (r = 0.8),
and HO1 enzyme activity (r = 0.5). H2O2 exhibited negative correlations with germination
index and root length with a correlation value r closer to −1. Furthermore, proline was
positively correlated to Na+/K+ (r = 0.5), and SbHO1 enzyme activity (r = 0.70).
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enzyme activity. The color of the squares and the coefficient values indicates the strength and
significance of the correlation: 0.75–1 = strongly correlated; 0.5–0.75 = highly correlated; 0.25–0.50 =
moderately correlated; and 0–0.25 = weekly correlated. Under 0 = negatively correlated.

3. Discussion

Sorghum is a moderately salt- and drought-tolerant crop, and its adaptation is as-
sociated with maintaining ion homeostasis, activating antioxidant enzymes, deploying
osmotic regulatory metabolites, and engaging cell detoxification processes [6–8]. However,
extended exposure to abiotic stresses, such as water deficit and high soil salt concentrations,
result in reduced agricultural productivity [10,15]. Soil salinity induces osmotic stress due
to dissolved salt in the soil solution, which limits plant water uptake and induces ion
toxicity, thereby adversely affecting seed germination and growth [52], and, in this study,
salt stress (250 mM of NaCl) impaired growth and negatively decreased root tissue length
in sorghum seedlings. Carbon monoxide alleviated the negative effects of salt stress on
sorghum root seedlings (Figure 1B), with an optimal concentration of 1 µM of CO. This
effect might be related to the role of CO in regulating cell division and tissue prolifera-
tion [53]. Growth improvement mediated by CO has been reported in other plant species,
including Oryza sativa [43], Cassia obtusifolia L. [33], and Brassica nigra [51], under salt and
nano-silver stress.

Although there is no clear understanding of how plant cells eliminate CO, it is believed
that the strong binding of CO to iron in hemoglobin is the primary inactivation method [54].
In salt stressed sorghum seedlings, Hb scavenged CO decreasing the germination index
and root length (Figure 1B,D) but ZnPPIX had no effect (Figure 1B,D).

Salt stress disturbs the equilibrium balance between ROS production and scavenging,
resulting in increased ROS levels [55]. The increased accumulation of ROS (H2O2) during
stress is an indicator of oxidative damage to proteins, membrane lipids, and nucleic acids
in plants [56,57]. Salt stress increased H2O2 content in sorghum seedlings whereas CO
decreased the accumulation of H2O2 level preventing ROS-induced damage (Figure 2B).
The CO scavenger (Hb) and HO inhibitor (ZnPPIX) led to increases in the H2O2 content by
blocking the ameliorating effect of CO on membrane damage under salt stress (Figure 2B).
These results suggest the involvement of CO in reducing ROS-induced membrane lipid
peroxidation under salt stress, resulting in increased salt tolerance. The positive role of
CO has been shown to reduce oxidative damage in mustard [51], cucumber [58], and
wheat [45].

Similar trends of increased proline content have been observed in sorghum [6,12,14,59],
Lepidium draba from the Brassicaceae family [60], and transgenic Arabidopsis plants [61]
under salt stress. Proline accumulation also acts as a low-molecular-weight antioxidant that
scavenges ROS, maintains membrane integrity, and stabilizes enzymes [62,63]. A further
increase in proline content was observed in the presence of CO (1 and 1.5 µM of CO) under
salt stress compared to seedlings treated with salt only (Figure 3B). Pretreatment with
hemin under salt stress conditions has been reported to enhance proline accumulation in
wild-type Arabidopsis leaves [61]. The increase in proline content induced by exogenous
application of CO is linked to the activation of pyrroline-5-carboxylate synthase (P5CS)
and a decrease in proline dehydrogenase (ProDH) activity, thereby alleviating salt-induced
damage [64]. The exogenous application of the CO scavenger (Hb) and HO inhibitor
(ZnPPIX) significantly inhibited and scavenged CO, decreasing proline accumulation. Salt
stress upregulated the SbP5CS1 transcript, which correlated with increased proline content
compared to control levels in sorghum seedlings (Figure 3). These results indicate that CO
plays a significant role in osmoregulation under salt stress conditions.

Vascular bundles (xylem and phloem) facilitate the transportation of water, miner-
als, and nutrients from roots to other plant parts [65]. The SEM micrographs revealed
morphological shrinkage, and deformities of the xylem and phloem, and enlarged porous
pit sizes in salt-stressed sorghum roots (Figure 4). A high salt concentration alters the
porosity and hydraulic conductivity, which leads to a low water potential and eventually
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leads to physiological water deficit conditions, destabilization of the cell membrane, and
protein degradation owing to the toxic effects of accumulated salt ions (mainly Na+) [66].
The shrinkage, deformities, and porosity of the vascular bundle and pit caused by the
increased salt stress were reversed by CO (Figure 4). The hydrogen bonds between the
water molecules generate surface tension and cause water to adhere to the hydrophilic cell
wall. This, in turn, guarantees uninterrupted water transport in the xylem tissue. The effect
of salt stress on xylem function is an area of active research, and understanding the role of
pits in this process could provide valuable insights for developing strategies to mitigate the
effects of salt stress in plants [67].

High salt concentrations cause ionic imbalance due to increased amounts of Na+ and
Cl− in the intracellular compartments, which prevents other nutrient ions from being
absorbed and leads to a decrease or deficiency of essential ions, such as K+, Ca+, and
Mg2+ [30,68]. In this study, salt stress caused increased accumulation of Na+ which affected
the absorption of K+ by disrupting the Na+ and K+ balance shown by high Na+/K+ ratios
of 2.06 (Figure 5A–D). CO treatment decreased Na+ content while K+ content increased,
resulting in a low Na+/K+ ratio of 1.46 (1 µM of CO) and 1.27 (1.5 µM of CO) under salt
stress (Figure 5C,D). This decrease in Na+ content might be associated with CO-induced
upregulation of antiporter and transporter genes involved in potassium uptake [69]. The
increase in K+ is key since it is the most abundant cation in plants and is important for
plant processes such as protein synthesis, enzyme activation, cation–anion balance in the
cytosol, and vacuoles for salt tolerance [70,71].

The transcript levels of SbNHX4 vacuolar antiporters and the SbKT1 transporter
genes responsible for ion balance [72,73] were constitutively expressed and upregulated
under salt stress (Figure 5E). Antiporter NHXs play a role in Na+ exclusion and vacuolar
compartmentalization, and HKT also transports excess Na+ from the xylem to parenchyma
cells to reduce salt in the shoot and maintain K+ balance in plants [27,74]. The SbNHX4 and
SbKT1 transporters appear to play significant roles in Na+ and K+ homeostasis in sorghum
seedlings under salt stress by enhancing the activity of internal HO. The upregulation
of transporter genes under salt stress has been reported in pepper [75], barley [76], and
cotton [77]. The decrease in the SbNHX4 and SbKT1 transcript levels in 1 µM of CO
treated sorghum seedlings may be because the CO was able to facilitate the exclusion,
transportation, or distribution of Na+ and K+ from sorghum seedling tissues [78,79]. The
decrease coincided with element distribution in the vascular bundle indicating that CO
facilitated the exclusion of Na+ and absorption of K+, returning ionic homeostasis to the
sorghum seedlings under salt stress (Figure 5E).

The exposure of plants to salt results in the accumulation, changes, or damage of
biomolecules including proteins, carbohydrates, lipids, and nucleic acids [80]. The FTIR
spectra (Figure 6) demonstrated that salt stress caused biomolecule damage and that
hematin had a protective effect, reducing salt stress.

Under stress, plants develop adaptive antioxidant mechanisms to counteract the
oxidative damage caused by salt stress in the form of enzymes, such as APX, GPOX, CAT,
SOD, and HO, which scavenge ROS and protect the cell [36,41,72]. This study showed
that HO activity was induced under salt stress (Figure 7). The HO enzyme activity results
were consistent with those of previous studies on Amaranthus tricolor under salt stress [73]
and Triticum aestivum under different abiotic stresses [81]. HO1 antioxidant activity was
further increased in the presence of 1 µM of CO, whereas Hemoglobin and ZnPPIX reversed
this increase in sorghum seedlings. Thus, CO appears to have a cytoprotective role by
increasing antioxidant activity (Figure 7A). The protective role of CO under salt stress
is due to the increased level of HO1 expression, which is known to protect plants from
stress-induced damage [36,82]. A downregulation was observed in the transcript level of
SbHO1 under salt stress in the presence of Hemoglobin, and the HO inhibitor (ZnPPIX),
which might be due to internal CO conferring cytoprotection to sorghum seedlings [41].

The expression levels of SbMnSOD and SbCAT transcripts in the sorghum seedlings
were downregulated perhaps as a result of suppression of antioxidant defense gene ex-
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pression caused by increased salt levels, as reported in strawberry plants [83]. However,
this study showed that 1 and 1.5 µM of CO induced the upregulation of the SbFeSOD
and SbMnSOD transcripts, thereby suggesting a cytoprotective role in scavenging ROS
accumulation. Under stress, SOD plays an important role in the conversion of superoxide
anions to H2O2 [84] which are then scavenged by CAT into water, which might explain the
observed downregulation by SbCAT.

These findings show the effect of salt stress, which resulted in oxidative damage
causing reduced growth to sorghum seedlings. The application of CO-induced salt stress
tolerance to sorghum seedlings through the synthesis of osmoprotectants, the activation
of the SbHO1 enzyme, and protein expression (Figure 10). CO improved salt tolerance by
regulating ion homeostasis and antioxidant gene expressions. Treatment with the inhibitor
(ZnPPIX) and scavenger (Hb) hindered the protective role of CO (Figure 10). A positive
correlation was observed for all traits studied including growth parameters (germination
index and root length), oxidative stress marker, H2O2, proline and SbP5CS1 transcript,
antiporter genes (SbKT1 and SbNHX4), and antioxidant genes (SbFeSOD and SbMnSOD). A
negative correlation was observed between growth attributes (the germination index and
root length) and biochemical traits (H2O2 and proline). Proline displays positive correla-
tions with oxidative markers and other parameters like TSS and pit diameter, indicating
their potential role in mitigating oxidative stress and influencing anatomical changes.
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Figure 10. Schematic diagram of the mechanism of the role of CO in conferring salt tolerance to
sorghum seedlings.

4. Materials and Methods
4.1. Seed Preparation and Growth Conditions

Sorghum seedlings (AgFlash/NIAGARA III: (Sorghum × Sudan) and red seeds)
were obtained from Agricol, Brackenfell, Cape Town, South Africa, and germinated as
previously described [6]. The seeds were disinfected by incubating in 70% ethanol for
1 min with shaking at 600 rpm and rinsed three times with autoclaved distilled water. The
seeds were further decontaminated by soaking in 5% sodium hypochlorite solution for
1 h with shaking at 600 rpm, followed by extensive rinsing with autoclaved distilled water.
Following disinfection, the seeds were imbibed overnight in autoclaved distilled water
and incubated at 25 ◦C with shaking at 600 rpm. The seeds were dried under laminar flow
air, and uniform seeds showing radicle emergence were selected and germinated in sterile
Petri dishes layered with filter paper containing 4 mL of various treatment solutions.
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4.2. Chemicals and Treatments

Hematin (Ht) (cat # H3281, Sigma-Aldrich, Saint Louis, MO, USA) was used as the CO
donor (10 mM dissolved in 1 M of NaOH), zinc protoporphyrin IX (ZnPPIX) (cat # 282820
Sigma-Aldrich, Saint Louis, MO, USA) was used as a HO1 inhibitor [40 mM dissolved in
25 mg/mL dimethyl sulfoxide (DMSO)], and hemoglobin (Hb) (cat # H4131 Sigma-Aldrich,
Saint Louis, MO, USA) was used as a CO scavenger 2 g/L; dissolved in distilled water [50].
The seeds were germinated in Petri dishes containing different salt concentrations of 200
mM of NaCl (Supplementary Data) and 250 mM of NaCl in the absence and presence of
CO (1 µM and 1.5 of Hematin), ZnPPIX (5 µM and 10 µM), and Hb (0.1 g/L). Only the
250 mM NaCl stress data are presented in the main article based on the elicited salt stress
response. Each Petri dish contained five sorghum seeds and triplicate dishes were tested in
each treatment. The seeds were allowed to germinate at 25 ◦C for 7 days in the dark and
were monitored daily for growth. The root lengths of all seedlings were measured on day 7.
The whole seedlings were then harvested (day 7), rinsed with distilled water to remove
traces of the treatment solutions, and either used immediately or stored at −80 ◦C until
further analysis.

4.3. Growth Analysis
4.3.1. Germination Index

The germination index (GI) was estimated using Equation (1), which is the number
of germinated seeds on the first, second, and subsequent days until the 7th day; 6, 5 . . .,
and 1 are the weights assigned to the number of germinated seeds on the first, second, and
subsequent days, respectively [85].

GI = Σ(7 × n1) + (6 × n2) +. . .+ (1 × n7) where n1, n2, . . . n7 (1)

4.3.2. Root Length

Root length was measured to the nearest mm using a ruler seven days after germination.

4.4. Histochemical Staining

The localization of H2O2 was detected as previously described [86] with minor modi-
fications. Untreated and treated root samples of the sorghum seedlings were incubated in
1 mg/mL of 3′3′-diaminobenzidine (DAB) prepared in HCl acidified water (pH 3.8) at
25 ◦C. After 12 h of incubation, the roots were boiled in 90% ethanol for 15 min to reveal
the reddish-brown color produced by the reaction between H2O2 and DAB.

4.5. Hydrogen Peroxide Content

The hydrogen peroxide (H2O2) content was measured to determine the oxidative
damage caused to the sorghum seedlings using a colorimetric technique [87] with minor
modifications. About 0.1 g of ground whole plant material was homogenized in 1 mL of
reaction solution [0.25 mL of 0.1% (w/v) trichloroacetic acid (TCA), 0.5 mL of 1 M potassium
iodide (KI), and 0.25 mL and 10 mM of potassium phosphate buffer (pH 6.8)] for 10 min at
4 ◦C. The homogenized samples were vortexed and centrifuged at 12,000× g for 15 min at
4 ◦C. Approximately 200 µL of supernatant from each sample was transferred to a 96 well
microtiter plate and incubated for 1 h at room temperature. The absorbance was measured
at 390 nm using a FLUOstar Omega microtiter plate reader (BMG LABTECH, Ortenberg,
Germany). A standard curve was generated using the H2O2 solution and used to calculate
the H2O2 content.

4.6. Proline Content

The proline content was estimated based on a previously described method [88], with
a few modifications. About 0.1 g of ground whole plant material was homogenized in
500 µL of 3% (w/v) sulfosalicylic acid and centrifuged at 13,000× g for 20 min at 4 ◦C.
The supernatant (300 µL) was transferred to a clean tube containing 600 µL of the reaction
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mixture [1% (w/v) ninhydrin dissolved in 60% (v/v) glacial acetic acid and 20% (v/v)
ethanol] and incubated in a water bath at 95 ◦C for 20 min. The samples were allowed to
cool on ice for 10 min and centrifuged at 13,000× g for 5 min. The absorbance was read at
520 nm using a FLUOstar® Omega microtiter plate reader (BMG LABTECH, Ortenberg,
Germany). The proline content was determined from a standard curve using pure proline
as the standard.

4.7. Scanning Electron Microscopy Analysis

The anatomic structure and element distribution analyses were conducted to deter-
mine the effect of salt (250 mM of NaCl) and carbon monoxide treatment (1 µM and 1.5 µM
of Ht) on sorghum roots. The analysis was conducted using a Scanning electron microscopy–
energy dispersive X-ray spectroscopy (SEM-EDX) at the Physics Department, University
of the Western Cape. About 0.1 g of samples of dried ground root whole plant material
was placed on aluminum stubs coated with conductive carbon tape and coated with a thin
layer of carbon using an EMITECH-K950x carbon coater. All EDX spectra were collected
using an Oxford X-Max (Oxford Link-ISIS 300, Concord, MA, USA) silicon solid-state drift
detector at an accelerating voltage of 20 kV for 60 s to ensure accurate X-ray detection.
All spectra were analyzed using the Oxford Aztec software suite (Oxford Instruments plc,
Abingdon, UK). The samples were then imaged, and images were collected using a Zeiss
Auriga field-emission gun scanning electron microscope (Zeiss Auriga HR-SEM; Carl Zeiss
Microscopy GmbH, Jena, Germany) operated at an accelerating voltage of 5 kV using an
in-lens secondary electron detector [6,11].

4.8. FTIR Spectroscopic Analysis

Fourier-transform infrared spectroscopy (FTIR) analysis was performed to identify
the types of chemical bonds (functional groups) present in the untreated and treated NaCl-
stressed seedlings. Approximately 10 mg of ground and dried whole plant material was
encapsulated in 100 mg of KBr pellets to prepare translucent sample discs. The powdered
sample of each plant material was analyzed using a PerkinElmer Spectrum 100-FTIR
spectrophotometer (PerkinElmer (Pty) Ltd., Midrand, South Africa) with a scan range from
400 to 4000 cm−1 and a resolution of 4 cm−1 [89].

4.9. Heme Oxygenase Activity Assay

The plant material (0.1 g) was homogenized in 3 mL of 50 mM potassium phos-
phate buffer (pH 7.8 containing 0.5 mM ethylenediamine tetra-acetic acid (EDTA)). The
homogenate was centrifuged at 15,000× g for 20 min at 4 ◦C. Heme oxygenase activity
in the supernatant was measured as previously described [90], with slight modifications.
About 0.1 g of ground sorghum seedlings was homogenized in 1.2 mL of ice-cold re-
action solution [prepared to contain 0.25 M sucrose solution containing 1 mM phenyl-
methylsulfonyl fluoride (PMSF), 0.2 mM EDTA, and 50 mM potassium phosphate buffer
(pH 7.4)]. Homogenates were centrifuged at 15,000× g for 25 min and supernatant fractions
were used as the enzyme extract for measuring the HO1 activity. The reaction mixture,
in a final volume of 1 mL, contained 250 µL of enzyme extract, 200 mM hemin (cat #
H9039 Sigma-Aldrich, USA), and 10 mM of potassium phosphate buffer (pH 7.4). The
reaction was initiated by adding 60 nmol of NADPH, followed by incubation at 37 ◦C
for 60 min. The concentration of biliverdin (BV) was estimated using a molar absorption
coefficient at 650 nm of 6.25 mM−1 cm−1 in 0.1 M HEPES–NaOH buffer pH 7.2. One unit
of HO was defined as the amount of enzyme that formed 1 nmol BV per 30 min under the
assay conditions.

4.10. Protein Extraction and Quantification

Protein was extracted from 7 days old sorghum seedlings untreated (control) and
treated (salt stressed) using the trichloroacetic acid/acetone precipitation method, as previ-
ously described [91]. About 0.2 g of ground plant material (whole seedlings) was washed
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with 10% TCA/acetone by vortex-mixing and centrifuging at 16,000× g for 3 min at 4 ◦C.
The supernatant was decanted, and the pellet was treated with 80% methanol containing
0.1 M ammonium acetate. The mixture was then centrifuged at 16,000× g for 3 min at
4 ◦C and the supernatant was discarded. The pellet was washed with 80% acetone by
vortex-mixing until fully dispersed, followed by centrifugation at 16,000× g for 3 min at
4 ◦C. The supernatant was discarded, and the pellet was air-dried at room temperature to
remove any residual acetone. About 1.6 mL/0.2 g starting material of 1:1 phenol (pH 8.0,
Sigma-Aldrich, Saint Louis, MO, USA)/SDS buffer [30% sucrose, 2% SDS, 0.1 M Tris-HCl
pH 8, 5% mercaptoethanol] was added, mixed thoroughly, and incubated for 5 min. Fol-
lowing incubation, the mixture was centrifuged at 16,000× g for 3 min at 4 ◦C. The upper
phenol phase was transferred to a clean tube filled with 80% methanol containing 0.1 M of
ammonium acetate and stored overnight at 4 ◦C to precipitate the protein. The phenol phase
incubated overnight was centrifuged at 16,000× g for 5 min at 4 ◦C, and the supernatant
was discarded. The pellet was washed with 100% methanol and 80% acetone, vortexed,
centrifuged, and the supernatant discarded. The extracted protein pellets were air-dried
and resuspended in urea buffer [7 M urea, 2 M thiourea, and 4% 3, 3-chlolamidopropyl
dimethylammonio-1-propanesulfomate (CHAPS)] with vigorous vortex-mixing at room
temperature. The extracted protein was quantified using the Bradford assay, BSA as a
standard [92].

4.11. Western Blot Analysis for Heme Oxygenase

Protein extracts from Section 4.11 were analyzed by Western blotting as previously
described [93], with a few modifications. Approximately 40 µg of the protein extract from
the sorghum seedlings was analyzed by 14% sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis. The separated proteins were transferred to a polyvinylidene difluoride
(PVDF) membrane (GE Healthcare, Bio-Sciences AB, Uppsala, Sweden) using a Trans-Blot®

Turbo Transfer system (Serial number 690BR3410, Bio-Rad, Hercules, CA, USA) for 20 min.
After protein transfer, the membrane was rinsed once in 1X phosphate-buffered saline
containing 0.1% Tween 20 (PBS-T) and incubated in blocking solution (1% w/v) casein
from bovine milk dissolved in 1X PBS-T buffer for 1 h. The membrane was rinsed twice
with PBS-T buffer and incubated overnight with primary antibody [rabbit monoclonal
(EPR1390Y) to heme oxygenase 1 (Abcam, ab68477, Cambridge, UK) diluted 1:1000 in 1X
PBS-T buffer. The membrane was then washed thrice with PBS-T buffer for 10 min per
wash. Following this, the membrane was incubated for 1 h with the secondary antibody
[goat anti-rabbit IgG StarBright™ 520 (cat # 12005870 Bio-Rad, Hercules, CA, USA)] diluted
to 1:1000 with 1X PBS-T buffer. The membrane was washed thrice with PBS-T for 10 min
each. The heme oxygenase-1 proteins were visualized using a ChemiDoc MP imaging system
(Bio-Rad). A HSP70 monoclonal antibody as a positive control was included in the study
[mouse monoclonal to HSP70 (Abcam, ab2787; Cambridge, UK)] and a secondary antibody
[goat anti-mouse IgG StarBright™ blue 520 cat # 12005867 Bio-Rad, Hercules, CA, USA].

4.12. Total RNA Extraction and Reverse Transcription

Total RNA was extracted from 7-day-old sorghum seedlings using the Favorgen
Plant Mini-RNA Extraction Kit (FAPRK 001-1 Favorgen Biotech Corp., Ping-Tung, Tai-
wan) according to the manufacturer’s instructions. To remove the genomic DNA, the
extracted RNA was treated with an RNase-free DNase set (New England Biolabs, MA,
USA) and analyzed on a 1% agarose gel. Approximately 1 µg of the total extracted RNA
was used for the synthesis of first-strand cDNA using the SuperScript™ III First-Strand
synthesis kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
The synthesized cDNA was diluted 10-fold and stored at −20 ◦C for semi-quantitative
PCR analysis.
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4.13. Semi-Quantitative RT-PCR

Semi-quantitative RT-PCR was used to analyze gene expression levels in sorghum
under salt stress, as previously described [94] with a few modifications. Following cDNA
synthesis, the PCR reaction mix contained 1 µL of a 10-fold diluted template cDNA, 12.5 µL
2X Red ampliqon Master mix (Cat # A180301, Ampliqon, Denmark), 0.2 µM of forward and
reverse primer (10 µM) and distilled H2O added to a final volume of 25 µL. The reactions
were performed at 95 ◦C for 3 min, 95 ◦C for 30 s, 30 cycles at 55 ◦C (SbMnSOD, SbKT1,
SbCAT, SbNHX4, 18S, and UBQ), 50 ◦C (SbFeSOD), and 58 ◦C (SbHO1), and 35 cycles at
60 ◦C (SbP5CS1) for 40 s, 72 ◦C for 30 s, and 72 ◦C for 5 min. Primer data for the target genes
and the reference genes 18S ribosomal RNA (18S rRNA) used for PCR are shown in Table 1.
The transcript levels of the genes were analyzed on a 1% agarose gel and normalized to the
reference genes using the ImageJ data analysis software.

Table 1. Gene names and accession numbers used to design primers for semi-quantitative RT-PCR
analysis.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′) Accession Number

SbP5CS1 CCTCTTCCCAGCTTCTTGTG TAGCCAGAAGACCGGCTAAA XM_021447400.1
SbHO1 TTCCAGACGCTCGAAGACAT CCTGGGGATCCTTCTCAGAC XM_002438597.2

SbNHX4 CATGCCACCATCATCACCAG CTCCAAGACAATACCGCTGC XM_021448959.1
SbKT1 TCCCAAAGATCAGCTGCTCA ACGCCACTCACACAGACTTA XM_002446325.1

SbFeSOD TACGGTCTCACAACTCCACC CAGACCTGTGCTGCATTGTT XM_002436411.2
SbMnSOD CCTTTCCCCTCCTCCATCTC GAAGTCGTAGGAGAGGTCGG XM_002439497.2

SbCAT GGTTCGCCGTCAAGTTCTAC AAGAAGGTGTGGAGGCTCTC XM_021460018.1
18S rRNA GCCAAGATTCAGGATAAG TTGTAATCAGCCAATGTG XM_002452660

4.14. Statistical Analysis

All experiments were repeated at least four times, and the data were statistically
analyzed by a one-way ANOVA using Minitab® Statistical Software (http://www.minitab.
com/en-us/support/downloads/, accessed on 22 November 2022). The data in the figures
and tables represent the mean ± standard deviation. Statistical significance between
the control and treated plants was determined using the Tukey HSD post hoc test at a
95% confidence interval and represented as p ≤ 0.05. Means that do not share a letter
are statistically significant. Gally and “my norm” from R software (R-4.3.3) was used
for Pearson’s correlation (r) matrix analysis. Supplementary Data for all analyses has
been supplied: Effect of CO on the germination index and root length of sorghum under
200 mM salt stress (Figure S1); Effect of CO on oxidative damage to biomolecules in
sorghum under 200 mM salt stress (Figure S2); Element distribution of sorghum seedlings
treated with CO under salt stress (Table S1); SbHSP70 protein expression (Figure S3).

5. Conclusions

Salt-induced oxidative damage of sorghum seedlings was alleviated by hematin,
a CO donor, enabling the maintenance of ion homeostasis and preventing damage to
biomolecules. Additional studies on the endogenous production and role of CO in plant
stress tolerance in field studies are needed to fully elucidate the role of hematin in improving
salt stress tolerance in sorghum seedlings. This may lead to improved stand establishment
in field settings and may persist in the alleviation of as the crop develops.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13060782/s1. Figure S1: Effect of CO on the germination
index and root length of sorghum under 200 mM salt stress. Germination index (A), root length
(B) of sorghum seedlings treated with 0 mM of NaCl (control), 200 mM of NaCl (salt), a 1 µM of
CO donor (Hematin; CO1), and 1.5 µM of CO donor (CO2), 0.1 g/L of hemoglobin (Hb), 5 µM of
ZnPPIX (Zn1), and 10 of µM ZnPPIX (Zn2). The means ± SD (n = 3) were calculated from three
biological replicates, and significant differences (p ≤ 0.05) were determined using ANOVA and the

http://www.minitab.com/en-us/support/downloads/
http://www.minitab.com/en-us/support/downloads/
https://www.mdpi.com/article/10.3390/plants13060782/s1
https://www.mdpi.com/article/10.3390/plants13060782/s1
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Tukey HSD post hoc test at a 95% confidence interval. Bars with the same letter are not significantly
different.; Figure S2: Effect of CO on oxidative damage to biomolecules in sorghum under 200 mM
salt stress. Quantification of H2O2 (A) and FTIR spectra of sorghum seedlings. Treatments: 0 mM of
NaCl (control), 200 mM of NaCl (Salt), 1 µM of CO donor (Hematin; CO1), 0.1 g/L of hemoglobin
(Hb), 5 µM of ZnPPIX (Zn1), and 10 µM of ZnPPIX (Zn2). The mean (±SD) was calculated from
three biological replicates, and a significant difference (p ≤ 0.05) was determined using ANOVA
and the Tukey HSD post hoc test at a 95% confidence interval. Bars with the same letter are not
significantly different; Table S1: Element distribution of sorghum seedlings treated with CO under
salt stress; Figure S3: Effect of CO protein content in sorghum under 250 mM salt stress. (A) Western
blot analysis of Hsp70 protein; lane 1: control; lane 2: salt; lane 3: salt + CO1, lane 4: salt + CO2;
lane 5: Salt + CO1 + Zn2; lane 6: Salt + CO1 + Hb; 0 mM NaCl = Control, 250 mM NaCl = Salt,
Ht = CO1 (1 µM) and CO2 (1.5 µM), Hb (0.1 g/L), ZnPPIX = Zn 1 (5 µM) and Zn 2 (10 µM). Hematin
(Ht), hemoglobin (Hb), and zinc protoporphyrin IX (ZnPPIX).
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