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HIGHER ORDER ASYMPTOTICS FOR LARGE DEVIATIONS — PART II
KASUN FERNANDO, PRATIMA HEBBAR

ABSTRACT. We obtain asymptotic expansions for the large deviation principle (LDP) for
continuous time stochastic processes with weakly dependent increments. As a key example,
we show that additive functionals of solutions of stochastic differential equations (SDEs) sat-
isfying Hormander condition on a d-dimensional compact manifold admit these asymptotic
expansions of all orders.

1. INTRODUCTION

Suppose {X,,},>1 is a sequence of centred random variables and S, = > . ; X;. In the
case when {X,},>1 is a independent, identically distributed (iid) sequence of random vari-
ables with exponential moments, Cramér’s Large Deviation Principle states that the tail
probabilities of S—: decay exponentially fast. It is natural to ask if this could be made more
precise by finding the exact asymptotics.

The first rigorous treatment of exact large deviation asymptotics for .S,, in the case when
{X,}n>1 is an iid sequence of random variables, was done by Cramér in [!] assuming the
existence of an absolutely continuous component in the distribution of X;. In the a non-
iid setting, in [2], the pre-exponential factor is obtained under a decay condition on the
Fourier-Laplace transform of the distribution of X;. For a detailed overview of results in
this direction, we refer the reader to our earlier paper [3].

In [3], we show that under a set of natural conditions sums of weakly dependent random
variables admit asymptotic expansions for the LDP. In this paper, we extend the results in
[3] by obtaining asymptotic expansions for the LDP for continuous time stochastic processes.

Definition 1.1 (Strong Asymptotic Expansions for LDP). Let {S;}:>0 be a stochastic process
with asymptotic mean zero, i.e., lim;_ o ]E(tst) = 0. Suppose that, for some r € N, for each
a € (0, L), the asymptotic expansion for the distribution function of Sy is of the form:

[r/2]

Dy(a) 1
I(a)t __ k
(1.1) P(S; > at)e' V" = ,;:0 12 + 0r4q (—t%l) as t — 0o,

where, the I(a) denotes the rate function, and Dy(a) are constants. Then, we refer to (1.1)
as the strong expansion for LDP of order r in the range (0,L).

Definition 1.2 (Weak Asymptotic Expansions for LDP). Let {S;}+>0 be a stochastic process
with asymptotic mean zero. Let (F, || -||) be a normed space of functions defined on R. Then
Sy admits weak asymptotic expansion of order r for large deviations in the range (0, L) for
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f € F if there are functions D : (0, L) — R (depending on f) for 0 < k < 5 such that for
each a € (0, L),

v _ 3~ DA(@ 1
(12) E(f(St - at>>€ @ = th+1/2 + Cr,a”f“ "0 (tr42r1) )
k=0

where, the I(a) denotes the rate function.

In Section 3, by proving a key proposition (Proposition 2.1), we show that the proofs in
the discrete time can be adapted to obtain the strong expansions for LDPs for stochastic
processes with weakly dependent increments.

We then apply our continuous time results to study additive functionals of diffusion pro-
cesses satisfying Hormander’s condition on a d-dimensional compact manifold. In Section
4, we show that the additive functionals of such diffusion processes have weakly dependent
increments. That is, they satisfy the conditions detailed in Section 2 that guarantee the
existence of strong expansions for LDPs. The motivation for focusing on this example comes
form the work on branching diffusions in periodic media done (see [1]), and from the large
deviation problems for coupled stochastic differential equations studied in [5] and [6].

Now, we make a few remarks about the relationship between the setting in [/] and the
setting here. First observe that each coordinate of the location of a particle undergoing a
diffusion process in Z¢ periodic media, ;' (described in [4], setting the branching term equal
to zero) can be viewed as an additive functional of a diffusion process on a d—dimensional
torus. That is, suppose X; € T is the diffusion process generated by the following partial
differential operator on T¢,

d 52 d
2:: 5‘.%5‘.% z; Yi
Then, viewing X, € T? as taking values in [0,1)? C R?, we can write Y; € R? as
(1.3) dY}! =dX}, Y, =0,
for each 1 < i < d. Therefore, the analysis of diffusion processes in periodic media in the
large deviation domain, done in [!] to obtain the exact asymptotics for LDPs, is closely

related to the question we pose in this paper. In the setting detailed in Section 4 of this
paper, we assume that X; denotes the solution of a SDE (driven by a k—dimensional Wiener
process W;) that satisfies Hormander’s Hypoellipticity condition (as opposed to ellipticity
condition, satisfied in [1]) on a arbitrary d—dimensional smooth compact manifold, and we
assume that Y; € R is an additive functional of X, such that

(1.4) dY, = h(X,)dW, + ¢(X,)dt,

where the Wiener process W, is independent of W, h(x) is non-degenerate for each x € M,
and h, ¢ are Lipschitz continuous. The difference between (1.3) and (1.4) is that in (1.4) the
Wiener process W, is independent of W, while in (1.3) the process Y; and X; have the same
underlying d—dimensional Wiener process W; (in X, it is viewed as a Wiener process on the
d—dimensional torus while in Y; it is viewed as a Wiener process on RY). However, in this
paper, under this stronger requirement of independence of the Weiner processes, we obtain
higher order terms of the asymptotic expansion, as opposed to just the first term that was
obtained in [1].
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2. OVERVIEW AND MAIN RESULTS.

Let {S;}+>0 be a stochastic process with asymptotic mean zero, i.e.,
o1
lim —E(S;) = 0.
t—oo ¢

Suppose that there exists a Banach space B, a family of bounded linear operators £(z,1) :
B — B, and vectors v € B, ¢ € B’ such that

E(e*t) = ¢(L(z, t)v), t > 0,

for z € C for which the conditions (D1) and (D2) and (D3) (which are detailed below) are
satisfied and the family of operators £(z,-) forms a C%—semigroup on the Banach space B.
That is
L(z,t1 +t3) = L(z,t1) o L(z,1s), for each t1,t5 >0, L(z,0) = Id,
and
11‘/1_1% L(z,t) = L(z,0) =1d,

where the above limit is with respect to the operator norm.

Condition (D1) The family of operators L£(z, 1 + n) satisfies the condition [B] (from [3]),
uniformly in 7 € [0, 1]. That is,
(1) There exists § > 0 such that the following conditions hold for all n € [0, 1]:
(B1) z +— L(z,1 4+ n) is continuous on the strip |Re(z)| < § and holomorphic on the
disc |z] < 9.
(B2) For each 6 € (—4,6), the operator £(#, 1+ n) has an isolated and simple eigen-
value A(#,1+n) > 0 and the rest of its spectrum is contained inside the disk of
radius smaller than A(6,1+ n) (spectral gap). In addition, A(0,1+7n) = 1.
(B3) For each 0 € (—¢,0), for all real numbers s # 0, the spectrum of the operator
L(6+1is,1+n), denoted by sp(L(0 +is,1+mn)), satisfies: sp(L(8+1is,1+n)) C
{zeC||z| <A0,1+n)}.
(2) For each 0 € (—4,6), there exist positive numbers 1, ry, K and Ny such that

A(0)!

Z

(2.1) | £(8 +is,t)| <

for all £ > Ny, for all K < [s| <.

Condition (D2) Suppose z € C is such that, for all n € [0,1], £(z,1+ 1) has an isolated

simple eigenvalue \(z, 14 7). Then the projection to the top eigenspace, I1(z, 1+ n), satisfies
[(z,14n) =1I(z1) for all n € [0, 1].

We denote 11(0, 1) by IIy. Using the above condition, along with the semigroup property,
we conclude that for each ¢ > 0, the top eigenvalue of the operator L£(z,t) (whenever it
exists) is equal to A(z, 1)’

Due to (D1), the operators £(6,1+ n) with 0 € (—4,9) and n € [1, 2] take the form

(2.2) L£(0,14n) = XO)"L(0,1+n) + A6,1+17),

where I1(6,1+n) is the eigenprojection corresponding to the eigenvalue A(6)*" of the oper-
ator L(0,14+n) and I1(0, 1 +n)A(0,1+n) = A(0,1+n)II(d,1+n) = 0. Due to (D1) we can
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use the perturbation theory of linear operators (see [7, Chapter 7]) to conclude that A(:),
II(-,1+n) and A(-,1 4 n) are analytic.

As a consequence of (2.2) and condition (D2), the family of operators A(f,t) defined as
L(6,t) — X(0)TIy also forms a semigroup, and the spectral radius of the operator A(6,1) is
less than A(0) for all 6 € (—0,0).

Condition (D3) For all § € (—6,0), {(Ilpv) > 0 and for all n € [0, 1],

2

0

Space of functions §:
In order to state our main results, we introduce the function space §}* (that are introduced
in [3]) given by

ro=1{f e C"(R)| G (f) < oo},
where CT*(f) = maxo<j<m || fU||11 +maxo< <k ||27 f]|11. We call a function f (left) exponen-
tial of order a if lim,, o [e™*" f(z)| = 0. Define the function space §}’, by

Sha =1f €Y' f™ is exponential of order a}.
It is clear that §}', C §7's if @ > 3. Finally, define, §7', = Moo She

The following proposition, which will be proved in 3, is the key idea in adapting the proofs
of discrete time results from [3] to continuous time.

Proposition 2.1. Suppose that the conditions (D1) and (D2) hold. Then, for a fived 6 €
(—0,9), there exists § > 0 such that, for each s € (—0,6), for each t > 1, the operator
L0+ is,t) has a simple top eigenvalue \(0 + is)" and

(2.3) L(0+is,t) = N0+ is) Tgpis + A0 + is, 1),

where Mgy ;s = 11(0 + is,t) is the eigenprojection corresponding to the eigenvalue \(6 + is)"
and T1(0 + is, t)A(0 +is,t) = A0 +is,t)I1(0 +is,t) = 0. In addition, the family of operators
{A(0 +is,t) }i>1 satisfies A(0 +is, tN) = A0 +is,t)Y for allt > 1, N € N and the spectral
radius of the operator A(0 + is, 1) is less than |A\(0 + is)|.

The following theorems are the continuous time analogues of the discrete time results,
Theorem 2.1, Theorem 2.2 and Theorem 2.3 from [3], respectively. We do not repeat the
proofs of Theorems 2.2, 2.3 and 2.4 in our current continuous time setting, since the proofs
are completely analogous to those in [3]. The crucial point, however, is that the continuous
time results require the use of Proposition 2.3 which we prove in the next section.

Theorem 2.2. Let r € N. Suppose that conditions (D1),(D2) and (D3) hold. Then, for
all a € (O, W), there exist 6, € (0,0) and polynomials P} (x) of degree at most 2k, such
that for q > g—;ﬁll +1 and o > b, for all f € F}y 1,
[r/2] 1 1
BU/(S:— e = S i [ Bl (@) do + Ol () - on (t—) as t > oo,
k=0

where fo(z) = 5-e7% f(x) and I(a) = supye (g5 [ad — log \(0)] = af, — log A(6,).
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Theorem 2.3. Let r € N, r > 2. Suppose that conditions (D1),(D2) and (D3) hold with
ry > 1/2. Then, for each a € (O, log’\(‘s)), there ezist constants Dy(a) such that

)

; [r/2] Dk(@) 1
]P)(St > at)e (@)t — E + Or.q (ﬁ) as t — 00,
to

th+1/2
k=0

where, the rate functional I(a) is defined as

I(a) := sup [af —logA(0,1)] = ab, —log A(0,,1).
0€(0,0)

The following theorem shows that, under a set conditions weaker than those required
in the above two theorems (namely, without requiring the condition (D1) — (2)), the exact
asymptotics for the LDP can be obtained (that is, the first term of the asymptotic expansion,
including the pre-exponential factor).

Theorem 2.4. Suppose that (D1)— (1), (D2) and (D3) hold. Then, for each a € <0, W) ,

(I, v) /1" (a)
0,2t

3. PROOFS OF THE MAIN RESULTS

P(S, > at)e! @ = (1 + 0(1)) as t — oo.

Proof of Proposition 2.1. Let 6 € (—0,9) and ) € [0, 1] be fixed. Consider the two parameter
perturbation of the operator £(6,1+n) of the form £(0+is, 1+n-+¢). From condition (D1),
for a fixed n, z — L(z,1 + n) is holomorphic on the disc |z| < § and for each fixed z, the
family of operators £(z,t) forms a C%-semigroup. In addition, the two parameter operator
L(z,t) is uniformly bounded on the region {(z,t) : |z| < 4, € [1,2]}. From here, using
the Cauchy integral formula for analytic functions it is clear to see that this two parameter
perturbation is continuous. Hence, by perturbation theory, for each n € [0, 1], there exists
d, > 0 such that, on the set {(s,¢) : |s| < d,,e < d,},

LO+is,1+n+e)=AXO0+is,1+n+e)l(0+is,1+n+e)+A0+is,1+n+e),

where I1(6 + is,1 + 1 + ) is the projection on the top eigenfunction of the operator £(6 +
is,1+n+ ) corresponding to the simple top eigenvalue A(f + is,1 +n + ¢) and

MO +is,1+n+e)A@+is,1+n+e)=A0+is,1+n+e)ll(d+is,1+n+e)=0.
In addition, the spectral radius of A(f 4 is, 1 +n+ €) is less than |A\(0 + is,1 + 1+ ¢€)|.

Since the interval [0, 1] is compact, we can choose 71,7, -, such that the set {n :
|n —mi| < 6y, =1,2,---k} contains the interval [0,1]. Put § = '_IlrlQinkém. Thus, for all

n € [0,1] and s such that |s| < 0,
L0+ 1is,1+n)=X0O+is,1+ )0 +1is,1+n)+ A0 +is,1+7n),
and the spectral radius of A(f +is, 1+ n) is less than |A(6 + is, 1+ n)|.
Put Iy = I1(6 +1s, 1). From (D2) we know that II(6 +1is,1+4n) = Iy for all n € [0, 1]
and |s| < 0. This, along with the semigroup property of the operators £(6 + is, t), implies
that A(6 +is, 1+n) = A0 +1is)'™ for all for all n € [0, 1], |s| < . To see this, first note that

we do not assume that the top eigen-value for the operator £(0 + is,n) exists for n € [0, 1).
Now, if 5 is rational, we have n = p/q for some p,q € N,;q # 0. Let v(0 4+ is) € B be a
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non-zero vector be such that I1(6 + is, 1 + n)v(0 + is) = Ipsv(0 + is) = v(0 + is) for all
n € [1,2]. Then we have,
MO +is) T Pu(0 +is) = L(O +is, 1) Py(0 + is)
(0 +is,q+p)v(0+is)
(0 +is,14+p/q)"(0 + is)
(0 +is,14+p/q)" (0 + is).

Therefore, A\(0 + is)'*™" = A\(0 + is,1 +n) for all rational n € [0,1]. Since, the semigroup
L(6 +is,t) is continuous in ¢, we have that the top eigenvalue A(f + is, 1 + ) is continuous
in 77, and therefore, the relation A(6 + is)'™ = \(0 + is, 1 + 1) holds for all n € [0, 1].

For t > 1, define the new family of operators A(6 + is,t) = L(0 +is,t) — A0 + is) Ty ss.
It is clear to see from this definition that A(0 +is,tN) = A(6 +is,t)" for all t > 1, N € N.
Then, using the fact that ﬁ € [1,2], we have

L
L
A

£0+is,t) = £(0+ s, %) 0 (MO + is) Tl i + A (04 s, %»m

= X0 +is)' Mgy + A(0 + is, 1).
Here, the spectral radius of the operator A(f + is, 1) is less than |[A(§ + is)|. This concludes
the proof of Proposition 2.1. O

Remark 3.1. Our equation (2.3) is the continuous time analogue of equation (2.2) from [3].
This, along with assumption (D3), allows us to obtain proofs of Theorems 2.2, 2.3 and 2.}
by replacing the discrete time steps n by t € RT and replacing ZZ by

—iast

AO)

in the proofs of the corresponding discrete time results from [3].

L(s,t) =

L0, +is,1)

4. SDES SATISFYING HORMANDER HYPOELLIPTICITY CONDITION

Let M be a compact d— dimensional smooth manifold and {Vj, ..., Vi} be a collection of
smooth vector fields of M such that D = {Vj,...V}} satisfies the Hormander Hypoellipticity
condition, i.e., the Lie algebra generated by D evaluated at x spans the tangent space T, M
at each z € M.

Let W; be the k—dimensional Wiener process with components W} for 1 < < k. Let X;
be the process on M, and Y; be the process on R satisfying the coupled SDEs,

k
(4.1) dX; =) Vi(Xy) o dWi + Vo(X,) dt, Xo =z,

i=1

(4.2) dY, = o(X,) o dW, + b(X,) dt, Yo =y,

where the real valued function b : M — R and the real valued function ¢ : M — R
are smooth and W; is a 1—dimensional Wiener process independent of the k—dimensional
Wiener process W, and o is non-degenerate, i.e, 0(x) > 0 for each x € M.. The right hand
sides of (4.1) and (4.2) are interpreted in the Stratonovich sense. Observe that, in (4.2), it
is equivalent to consider the It6 or the Stratonovich sense, since the coefficient o(X;) of the
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Wiener process /V[Z is independent of Y;. Note that the distribution of X; for each ¢t > 0 is
absolutely continuous by Hormander’s theorem.

Theorem 4.1. Under the above assumptions, for all v € NU {0},

(a) Y admits the weak expansion of order r in the range (0,00) for f € §l,, , withq>1
and suitable o depending on a and
(b) Y; admits the strong expansion of order r in the range (0,00).

Proof. The infinitesimal generator of the joint Markov process (X3, Y;) is a partial differential
operator M acting on functions u defined on M x R given by

(43)  Mu= SVL(V(@V (@) Var] + 50 (@)Ayu + Vo(a) Y + () Yy,

where V(x) is the d x k matrix formed by the vectors {Vi, ...V} as columns.
Let p(x) be the invariant density of the process X; on M, that is, p(x) is the density of a
measure defined on M, satisfying
M*p =0, / p=1.
M

| b dpta) -

The above condition guarantees that the asymptotic mean of the random process Y; is zero,
since

We assume that

— 1 1 ¢
Y = lim -E(Y;) = lim —E(/ b(XS)ds) :/ b(z) dp(x)
t—oo ¢ t—oo ¢ 0 M
We also observe that, from the Kolmogorov Forward Equation, the transition density for the
Markov process (X, Y;)i>0 is given by p(t, (zo, yo), (z,y)), and it satisfies the PDE
Op = M?;p,y)p

p(07 (x07 y0>7(x7 y)) = 5($o,yo)(x7 y)'

Let B be the Banach space of complex valued continuous functions defined on M equipped

with the supremum norm. Define, for each z € C, t > 0, the bounded linear operator
L(z,t): B— B given by

(4.4)

L(z,0)f(2) = By (f(X)e ),
where the right hand side clearly does not depend on y. That is, for the constant function

v =1 € B, and the measure ¢ = §, € B’ (the space of bounded linear functionals on B) we
have

(45) Bl () = HL(, 1),
The family of operators {£(z,t)}{>0y forms a semigroup since
L(z,t) 0 L(2,8)f(x) = B y) ((L(2, 8) f)(Xe)e Z(Yt—y))
= E(r ) (B(x, v (f (X )eo719)e2Mi70))
= B (Egx vy (f(Xo)e? )
(

= E(u) (f (Xopa) " 70)
= L(z,t+s)f(z).
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Now we will verify conditions (D1), (D2) and (D3) from Section 2 for the family of operators
L(z,t). To verify condition (D1), we will show that (B1) — (B3) hold uniformly on ¢ € [1, 2]
and show that (2.1) holds.

Condition (B1) We first observe that the map z — L(z,t) is infinitely differentiable
in z for all z € C. Indeed, for each f € B, a € Z,, and z € C, D(L(z,t)f)(x0) =
B0 (Y f(Xt)e*¥). We know that Y; is a stochastic process on R with bounded diffusion
and drift coefficients, which implies that Y; has all exponential moments. Hence, DYL(z, 1)
is a well defined bounded linear operator on B for all « € Z, and z € C.

Note that £(0,%) is a compact operator on B since, if we define

dou(0,7) = / plt, (20,0), (. 9))dy,

then, for any f € B, £(0,t)f =[,f M x)qo.+(xo, )dx, where o is positive and continuous
in (:co, x) e M x M. We note that 1is the top eigenvalue of £(0,t) with constant functions
forming the eigenspace. All the other eigenvalues of £(0,¢) have absolute values less than 1,
by the Perron—Frobenius theorem.

We note that if § € R, then gy (o, z) = [ e%p(t, (x0,0), (x,y))dy > 0 for all zg,z € M.
This kernel is continuous in (zg,x) € M x M. That is, £(0,t) is a positive, compact operator
for all # € R. Thus Condition (B1) is satisfied uniformly on ¢ € [1, 2].

Condition (D2): We observe that the coefficients of the operator M are independent of
the time variable ¢, and therefore the Markov process (X, Y;) is time homogeneous. Thus,
the top eigenspace of the operators £(6,t) is the same for all t > 0. Thus, I1(6,t) = I1(6, 1)
for all ¢ > 0, in particular, Condition (D2) is satisfied.

Condition (B2) Using (D2) and the semigroup property, condition (B2) is satisfied since
there exists a A\(6) > 0 for all 6, the top eigenvalue A(A)" of the operator L£(6,t) exists, and
other eigenvalues of £(6,t) have absolute values less than \(6)".

Condition (B3) We need to show that we have sp(L(0 + is,t)) C {|]z| < A(0)'}. We
first note that

(0 +is,6) ()] = By (FX)EPHIO)| < By (| F(X)el 000

= Euy) (IF (X0)[e"M ) = L(6,1)|f| ().
Thus sp(L(0 +is,t)) C {|z| < A(#)'}. To prove that there is inclusion with strict inequality,
using the fact that the top eigenvalue of the operator £(6,t) is A(f)', it is enough to show
that sp(L£(0 + is,1)) C {|z] < A(0)}. We suppose, on the contrary, that there exists an
eigenfunction f € B of the operator £(0+1is, 1), with || f|| = 1 corresponding to the eigenvalue
A(0 + is) such that |A(6 +is)| = A(#). That is, for all x € M,

(4.6) E(.0) (f(X1)e M) = M0 +is) f ().

We know A(#) is the top eigenvalue of the operator £(6,1). Thus, there exists an eigen-
function g € B of £(0,1), corresponding to the eigenvalue A(#), which implies that for all
reM,

(4.7) Er,0)(9(X1)e™) = A(0)g(2).
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Note that we can assume that, for all z € M, g(z) > 0, and that |f(z)| < g(x). In addition,
we can assume that there exists a point xo € M such that |f(zo)| = g(zo). Now,
[Eag.0) (f(X0)e M) = [A(O) f (20)] = MO)9(x0) = Eo,00(9(X1)e"™).

Thus, .
E(ro0) (| [ (X1)e TN )) > By ) (9(X1)e™).
This implies that '
E(wo,0)(¢" (| f(X1)e™ | = g(X1))) > 0,
and therefore,
Ewo.0) (€ (| F(X1)| = 9(X1))) = L(8, 1)(|f| = 9) (o) > 0.
We have from our assumption that |f| < g, and we know that £(f, 1) is a positive operator.
We conclude that,

L0, )(If] = 9)(w0) = Equo0) (™ (| f(X2)] = 9(X1))) = 0.

Now,
Ewo 0y (” (| (X1)] — 9(X0)) = /M (£ (@) = 9(2))go. (o, 2)d.

From the definition of gp1, we know that, for a fixed =g € M, gp1(xo,x) > 0, v € M.
Therefore, for all x € M, |f(x)| = g(z). Thus, there exists a continuous function ¢ defined
on M such that f(z) = @g(x) for all x € M. Substituting this in (4.6), we get

Es,0) (€7 g(X1)eH M) = A(0 + is)e™Pg(2)

il A+ is)
=€ i )E(x,O) (g(Xl)69Y1) )\(9) ’
where the last equality follows from equation (4.7). In addition, since |\(6 + is)| = A(0),
there exists a constant ¢ such that )‘(f(zgs) = ¢’°. Therefore,

E (.0 (€' 16(@) Y1 gie (X)) (e NHid(XD—id@)—ic _ 1)) = (.
This implies that whenever p(1, (z,0), (Z,7)) > 0,
sy + ¢(Z) — ¢(x) —ic = 0 (mod 27).
This is impossible since the Brownian motion W (in the definition of Y7) is independent

of W (in the definition of X;). Thus, sp(L£(€ + is,1)) € {|z| < A(#)}, which implies
sp(L(6 +is,t)) C {|z| < A(0)'}.

Condition (D2)-2 Let 6 € R be fixed. Let gg(x) be such that ||gs|| = 1 and L£(0,1)ge(z) =

A(0)ge(z) for all z € M. Then we also have L£(6,t)gs(x) = A(0)'ge(x) for all z € M, since
condition (D2) holds. In addition, since £(#,1) is a positive operator, the eigenfunction
go is positive. We observe that gy satisfies the PDE e~ % M (e%gy(z)) = () ge(x) for all
v € M,y € R, where u(f) = log A\(f). Since the coefficients of the operator e=% M(e?) are
differentiable in 6, the function gy is differentiable in 6.

We first consider a new family of operators L£(z,t) : B — B defined by

F(z 1) f (o) = /M F(@)ion (20, ) da,
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where gz,t(x07 .CL’) = f[[g ezyPG(tv (Io, 0)7 (LU, y)) dy and

o €€yge(1’)p(t, (IO’ 0)7 (l’, y))
pe(t, (x(b O)v (I, y)) = A(e)tge(l’o) .

Let 1 denote the function that takes the value 1 for all o € M. Note that

[:(O,t)l(Io) = /M 1 Got(xo,x)de

- / / palt, (20, 0), (,y)) dy da
// ;zz;ii =ty

99 o) / /6 go(x)p(t, (x0,0), (z,y)) dy dx
L(0,t)go(zo) = 1.

N A(9)tge(fﬁo)

Hence, 1 is an eigenfunction fog the operator £~(O, t) corresponding to the top eigenvalue 1.
Observe that the operators £ and L satisfy, for all f € B,

£(zt)f (o) = mcw T 0)(Fg0) (o).

It is easy to see that the new family of operators {£(z,t)}o also forms a Cj semigroup.
Thus, in order to prove (2.1), we need to show that there exist positive numbers 71,79, K
and Ny such that

~ 1
I1£Gs, 1)l < -

for all t > Ny, for all K < |s| < ™. In fact, it will be enough to show that there exists an
€ € (0,1) such that, for all ¢ € [1,2] and for all |s| > K,

(4.8) |L(is, 1) <1 —e,

since the above relation would imply that, for all £ > 2,

126is, 0 = |£io )| < (s )

showing exponential decay.
We observe that for any f € B, and z, € M,

Z(is,t)f(:co):/Mf(x)q}s,t(xo,x) dx

where,

N e0F9) go (2)p(t, (20, 0), (,
Qis,t($0ax) :/ ge( >pE ( : ) ( y)) dya
R A(6) go (o)
ans therefore, it is enough to show that there exists an € € (0,1) and K > 0 such that for
all |s| > K, and for all t € [1, 2],

(4.9) |Gis ¢ (20, )| <1 —€.
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Let F; denote the sigma algebra generated by the process {W, },c(04. Note that the following
equality holds,

- . 9o() 0+is)Y: _
Gis,t (0, ) = WE(%,O) (e( ) ‘Xt = 1)

go(x) (IE (0+9) (i o (Xu) AW+ £ b(Xo) du)

=—" T,
NOIC

We know that {efg((’““")”(xu)dwu—% o (0+is)202 (Xy) du

)pr =)

.7-}} forms a martingale for all ¢ > 0.

Therefore,
E(e(9+z‘sm |-7:t) _ E(e(fg(9+is)2gz (Xu) dut(0+is) [ b(Xu) du) |-7:t)

) ( (0% [y 02 (Xu) du—s? [§ 0(Xu) du+2is0 [y 0%(X,) du-t(O+is) 5 b(X.) du)

).

Let € € (0,1). Since o(x), b(z) are smooth on the compact manifold M, and o(z) > 0 for
all z € M, for a fixed 6 > 0, we can choose K > 0 such that for all ¢t € [1,2], |s| > K,

}E(exp ((92 /0 t o(X,) du — s° /0 tUQ(Xu) du+

+ 2is0 /Ot o(X,) du + (0 + is) /Ot b(X,) du)) | Ft)
1ol sup{A(0)'|¢ € [1, 2]}
inf{ge(z)|r € M}

Note that the quantities sup{A(#)" | t € [1,2]} and inf{gs(x) | x € M} are strictly positive
and finite due to condition (B2) and the fact that eigenfunction gy is strictly positive on M.
Therefore,

<(l—¢)

’E(xo 0 (e X, = 2)| = ‘E(xo 0 (6(9+is)(f0t o(Xu) dWat [ b(X.) du)

P-)

< E@o,0 (‘ (E(e(9+"8)(fo o (Xu) dWu+ [ b(Xu) du)

llgo|| sup{ A (0)|t € [1,2]}
inf{ge(x)|z € M}

As aresult |Gy (o, 2)| < (1—€). This implies that for all t € [1,2], |s| > K, ||£(is, )| < 1—e,
which concludes the proof of condition (D1).

)| o)

<(l—¢

Condition (D3): First, observe that ((Ilyv) = 6,(I;,1) = go(z) [,, 9o > 0. Now, that the
top eigenvalue of operators £(z,1+ ) is A(9)!™. Thus, it is enough to show that log A(6)
is twice continuously differentiable and the second derivative is positive for all § € R. Let

11(0) = log A(0).
Let 6 > 0 be fixed. We know that the function gy is such that

(4.10) L(6,t)gy = e g,

Let 15 be a linear functional in B’ satisfying (g, £(0,1)f) = O (¢)y, f) for all f € B, and
(19, 99) = 1. Let us define a new operator £'(6,t), which is the derivative of the operator
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L(0,t) with respect to 6. Thus,

(£0.)f ) (20) = Bao (f(X0)ie™).

We differentiate equation (4.10) on both sides with respect to € to obtain

L'(0.t)go(x0) + L(0,1)g5(w0) = Eay,0)(90(Xe)Yee™) + L(0,£)gp(x0)
(4.11) = 11/ (0)e™® go(z0) + O gl ().
Therefore, applying the linear functional 1y on both sides, we obtain,

(0, B0y (90(X0)Yee™)) + (g, L8, 1)g5) = tu'(0)e™ ) (g, go) + €O 1y, g5),

which simplifies to

(Y0, Er0) (90(X0) Yee™)) + O (g, gy) = tp'(0)e™ @ + O {4y, gp).
Thus, we obtain the following formula for p/(0).

(o, E(z,0)(90(X1)Yie?™))
et (®) '

(4.12) 1(0) =

Differentiating the equation (4.11) again with respect to # and taking the action of the linear
functional 1y on both sides, we obtain,

(0, Ee.0) (90(Xe) Y2E™)) 4 2(000, Ee ) (95(Xe) Yie™ ) + € (4, g5)
= 1 (B) O 4 2 (6)2 ) 1 244 (B)) (. i)+ ¢ (1. ).
Thus, rearranging the terms, we obtain the following formula for p”(6):

(o, Bray (90X YPE7) = (4 (0) 2
tetﬂ(e)

(Y, Ew,0) (g5(Xe)Yee™)) — tur'(0)e™® (1), gp)
tetﬂ(e)

u'(0) =

+2

Using the formula for p/(#) in the above expression we obtain

(4.13) u”(@) _ (%,E(m,o)(Qe(Xt)Y?een—w(a)» _ (<¢€’E($’O) (gg(Xt)Y}eeyt_t”(e)»)?
| t

N 2<¢0,E(x,o) (9o(X) Y™ =10y — (1), B y.0)(go(Xe) Yee? =) (g, g))
. .

Let B be the Banach space of bounded continuous functions defined on M x R equipped with
the supremum norm. We define a new family of bounded linear operators N(6,t) : B — B,
t >0 by

(4.14) N (O, (20, 90) = By gy (£ (X, i) 00000 M)
9o (o)
for each f € B. Note that the family {N(6,t)};>o forms a C° semigroup.
We first observe that the operators {N(0,t)};>¢ are positive, and N(0,t)1 = 1, where 1
denotes the constant function taking the value 1 on M x R.
The operator N(6,t) is also an operator on B because, for f € B,

o t—yo)—t ge(Xt)
N(6,8)7(0) = B (£ (X000 F20)
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e~ t1(0)
0 o < 5

Now, corresponding to this family of operators, we have a new Markov process (Xt, f@)on

M x R, such that, N(0,t)f(xo,v) = E(xo,yo)(f()zt,)}t))- In addition, we observe that
<’¢9Q9,N§V9,t)f> = (1ggy, f) for all f € B. That is, 1sge is the invariant measure for the

process X; on the manifold M for all t > 0.
Let us define the function h € B by h(z,y) = y for all (z,y) € M x R. Now, we re-write

the formula (4.13) for p"(9) as

(6) = = ({wn(a), N (O, ) (), 0)go())e — (o), N6, (B, 0)go().)°)

+ 2w V6.0 (ML) (2,015 ).

— (Yo(@), N (0, 1) () (,0)g0 (@) (o 2), G5 )]

=~ (g, NG, 0)(2) — (4o, N(68,1)(1)))?)

+ 2 ({090, 516, 6)(“22)) ~ Ggn, N6, O () Ve, 2)).
Therefore, we have,

1'(6) = 7 (oo Eeery (V) — ((ogo By (7))

2 Zgé()?t) v 9o
+ t((%Qe,E(gg,O)( (%) )) (Y090, E@,0)(Y:)) (Vags, g9>>'
Denoting (1yg, E(w,o)(f()?t, Y,))) by E%gg(f()?t, Y;)), the above formula can be written as

1'(0) = % (Ewege (Y7) = By (m)z) -

2 Yig,(X ~ :
(4.15) 5 (B (M)~ o (T 21)

Now, in order to prove that p”(¢) > 0, we first show that the first term in (4.15) is the
effective diffusivity of the process Y;, which is strictly positive. Then we prove that that
the second term in (4.15) goes to zero as t goes to infinity, since the processes X, and Y,
de-correlate as as t goes to infinity.

In order to analyze the process ()?t, 372), we first study the transition kernel of the associated
Markov Operator N(6,t). For f € B,

N (9, 6) (0, o) //fy (20 0), (,9)) dy da,

where

e go()

k(t’ (an y0)> (Ia y)) = 6_tu(9) 69y099($0)p(t’ (IOa y0)> (Ia y))
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From (4.4), we see that k(t, (xo,yo), (z,y)) solves the PDE

Bk = go(x)e® M (g (k

(z,y) 9 z) ey

) — u(0)k = M*k,

]{5(0, (an yO)? ([L’, y)) = 5($07y0)(x> y)>

where, we have a new differential operator M acting on functions v : M x R — R given by

) — p(0)u.

u

go(x)ety

M= go(w)e" My,

Observe that

Mk = Mk — V;ge (V(2)VT(2))V,k — 00%(2)V, k
0
Vo(@)Vage() 15 5+ Va((V(@)VT(2))Vage(z))
+ —ge(l') + 59 o*(x) 200(7)
(vm99)2

V@)V @) + b)) - ul0) k.

From the choice of gs, we know that e=% M (e%gy(x)) = 1u(0)ge(x). That is,
1 1
ivx[(V(x)VT(z))ngg] + VoV.go + b(x)0gs + 5(02(:B))92g9 = 11(0)ge.
Therefore, the above expression simplifies to

VxQG
go

N ((ng«a)?(v(x)VT(:c)) 3 VA(‘/(:U)VT(:c))nge]) i
93 9o '

Mk = M*k — (V(@)VT(2)Vak — 002 (2)V k

Thus, the operator M simplifies to

Vmge
ge

Mk = Mk + (V(2)VT(2))Vok + 00°(2)V k.

From the above expression of the generator of the new process ()Z}, 372), we conclude that
the process (X;,Y;) differ from the process (X;,Y;) only by the additional drift terms in z
and y. The Effective Diffusivity of the process Y; is given by

< -\ 2
. Eygo ((Y;f - Ewegen) )
= lim .

t—o0 t

(1]

We now show that the effective diffusivity of the process Y, is also strictly positive. Let
cp € R be given by,

C@I/ (b+¢902)¢gg9.
M

Choose a function f : M — R such that va +b+02%0 = cg on M. The existence of such
a function f is guaranteed because fM(b + 00* — cp)ege = 0. The process Y; + f(X;) — cot
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forms a martingale, and therefore,
t t N
i ()~ cat = T~ f(50) = [ VRIS (R aWat [ (%) i
0 0

+ /t('/f\;l/f()?u) + b()?u) + 90’2(5(:“) - C@) du

t . . t .
~ [VEITAR) W+ [ o(Z,)dil,
0 0
Thus,
~ ~\2
Ewege (Y; - Ewegeyi)

t

:E%ge(/otv(iu)vxf()h) quJr/O o(X,) dW, - (f()?'ﬁ—Ewage(f“(fft)>))2

1

=B (5 [ VRIS DV VT (R )

# B (5 [ 70 ) + B (10  Ba (S5

- 2840, (FE) ([ VEITA R Wt [ oK) ails)
Also, note that

B () (o VRV (R W+ fo(K) dT)
t—00 t o

Therefore, using the fact that gy is the invariant measure of the process X, on M , we have,

=5 [ V@V @V @) + 020 o

[1]

2

+ lim Ew‘)g"(f()?t)z) — E%ge(f()zt))Q.

t—o0 t

Since o > 0 for all z € M, we have = > 0. O

Thus we have shown that, the first term in (4.15) is positive. Now it remains to show
that the limit of the second term in (4.15) is zero as t approaches infinity. In other words,
the processes X; and Y, de-correlate as as t goes to infinity. Thus, we need to show

Yigp(Xe) o g
tlim Ewege( 99?)@) ) - Ifwego (Y;)<¢090a £> _0
00

First, we observe that

.1 >
(416) lim ZETZJQHG (Y;g) — Cop =

t—o00
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] 1 — . . t . . t . .
= Jim 1y, (Vo4 F(50) = () + [ VR)TAEZ) W+ [ o)) <o

Therefore,

E oo (V) (096, 2 /
lim voan (14 ! ==Ce<¢@ge,gg>
t—o0 t Jo
Thus, we only need to show that
1 Yigh(X /
lim _]Edlgge <_tg€(~ t)) - C@<¢999a %%
t—oo t ge(Xt) o
that is, to show that N N
1 Y, — cot) g, (X
lim IE%%(( L de( t)) =0
t—oo t g9 (Xt)
Since 0 < = < 00, there exists a constant K > 0 such that
(Y, — cot)?
Eyggo——F— < K

Using Cauchy- Schwartz inequality, and the upper bound on Ewggg((Y cot)?), stated above,

we have
- /2
~ 12 (g5(X)2\'
) < Edfege ((Y;f - Cet)z) Ed’ege (;7:

< VRvisip |6

xeM gg(llf)

(‘ (¥i — cot)gp(Xe)
e 90(X1)

Therefore, we have,
1 Y, — cot)gp(X.
hm — By <‘( : Cthge( 0
o ¢ 90(X1)
We have shown that the conditions (D1), (D2) and (D3) hold With T arbltrarlly large. As

a result, for all r, Y; admits the weak and strong expansion for LDP of order r in the range
(0, 00).

)<hm \/7\/1_fsup (gg ‘—O

t—oo t zeM

O
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