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Abstract 25 

Water quality assessment is paramount for environmental monitoring and resource 26 

management, particularly in regions experiencing rapid urbanization and industrialization. 27 

This study introduces Artificial Neural Networks (ANN) and its hybrid machine learning 28 

models, namely ANN-RF (Random Forest), ANN-SVM (Support Vector Machine), ANN-RSS 29 

(Random Subspace), ANN-M5P (M5 Pruned), and ANN-AR (Additive Regression) for water 30 

quality assessment in the rapidly urbanizing and industrializing Bagh River Basin, India. The 31 

Relief algorithm was employed to select the most influential water quality input parameters, 32 

including Nitrate (NO3
-), Magnesium (Mg2+), Sulphate (SO4

2-), Calcium (Ca2+), and Potassium 33 

(K+). The comparative analysis of developed ANN and its hybrid models was carried out using 34 

statistical indicators (i.e., Nash-Sutcliffe Efficiency (NSE), Pearson Correlation Coefficient 35 

(PCC), Coefficient of Determination (R2), Mean Absolute Error (MAE), Root Mean Square Error 36 

(RMSE), Relative Root Square Error (RRSE), Relative Absolute Error (RAE), and Mean Bias Error 37 

(MBE) and graphical representations (i.e., Taylor diagram). Results indicate that the 38 

integration of support vector machine (SVM) with ANN significantly improves performance, 39 

yielding impressive statistical indicators: NSE (0.879), R2 (0.904), MAE (22.349), and MBE 40 

(12.548). The methodology outlined in this study can serve as a template for enhancing the 41 

predictive capabilities of ANN models in various other environmental and ecological 42 

applications, contributing to sustainable development and safeguarding natural resources. 43 
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1. Introduction 46 

Assessing and forecasting water quality holds significant importance in the realm of 47 

integrated water resource management. This domain recognizes groundwater as vital for 48 

human well-being and future progress [1]. The fundamental problem of managing water 49 

resources in stressful areas, particularly in developing nations [2,3]. Due to the release of 50 

contamination and its impact on the value of water properties globally, river basin water 51 

quality is an issue. The key to implementing methods for managing water resources in river 52 

basins and addressing the issue of river water pollution is to reduce river basin pollution by 53 

identifying the drivers and water quality metrics [4,5]. Since the industrial revolution, one of 54 

humanity's significant pertinent trials is the river water quality, which has been at high risk 55 

and deteriorating [6]. Predictive models are useful for evaluating the influence of hydrological 56 

and anthropogenic water stress on water value variables [7]. The lack of a shared blueprint 57 

for water quality data is a problem for most hydrological flux concentration databases, which 58 

produce relatively high time resolution [8]. In arid and semi-arid areas, water supplies are 59 

scarce while industry demands, drinking water, and agriculture are rising, particularly in areas 60 

experiencing drought [9,10]. 61 

Machine Learning (ML) models are effective methods for minimizing source 62 

quantification mistakes that cannot be avoided [11]. Additionally, the poorly understood 63 

biogeochemical and physical processes that drive the transport and transformation of 64 

pollutants are subject to fewer parameterization limits in the ML models. Machine learning is 65 

created to identify nonlinear behavior [12]. Artificial intelligence (AI) approaches are used 66 

more often in various fields. It is employed in hydrological forecasting and produces highly 67 

accurate river flow predictions [13]. Artificial intelligence is a good alternative and 68 

complements conventional methods for investigation and prediction. Using physical 69 

characteristics in groundwater resources irrigation water quality indexes (IWQI) is expensive 70 

and time-consuming for farmers, especially in developing nations [14]. Machine learning 71 

models are highly effective in reducing source quantification errors that cannot be eliminated 72 

by any other means [15]. 73 
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To measure and assess the overall water quality index (WQI), Horton [16] suggested 74 

combining various factors into a single number. To estimate the suitability of groundwater for 75 

irrigation reasons using 13 physicochemical characteristics, Wagh et al. [17] utilized the 76 

artificial neural networks (ANN) model; the study revealed that ML models are quite accurate 77 

in predicting and examining water quality. Another study [18] in southeastern Nigeria 78 

leverages machine learning to enhance water quality analysis, a relatively unexplored area in 79 

the country. Employing integrated algorithms, the research accurately models groundwater 80 

quality, revealing 80% of the resources as potable. Cluster analyses pinpoint contamination 81 

sources and spatial variations. Notably, both multiple linear regression and neural networks 82 

yield precise water quality predictions, underscoring their potential for advancing sustainable 83 

water management practices. Using k-means clustering in the major European rivers, Massei 84 

et al. [19] evaluated the impact of pesticides and biocides in river water on hazardous risk. To 85 

enhance the performances of individual models for the salinity and chlorophyll in beach 86 

water, particularly for multi-step ahead modeling, Shamshirband et al. [20] used multiple 87 

wavelets-ANNs models. Another study by Di et al. [21] developed classification ML models for 88 

IWQ prediction in the Yangtze River. Similarly,  Ahmed et al.  [22]  provided a thorough review 89 

of different machine learning models used for water quality .  90 

Water quality research has made significant progress in recent times, the use of various 91 

modeling approaches that have been applied to tackle different aspects of the issue. Castrillo 92 

and García (2020) utilized random forest (RF) and linear models to tackle high-nutrient levels 93 

in the river Thames. Meanwhile, Bui et al.  [23] delved into WQI forecasting, exploring a 94 

combination of 4 conventional methods and 12 hybrid AI strategies. Their study showed that 95 

hybrid AI models outperformed conventional ones regarding predictive accuracy. Nafi et al. 96 

[24] introduced RF and random tree (RT) methods for classifying river water quality, 97 

considering parameters like thermal conductivity, temperature, total and fecal coliform 98 

concentrations, demand for biological oxygen, and nitrate. Agbasi and Egbueri [25] 99 

investigated water pollution in Umunya, Nigeria, using various indices like Human Health Risk 100 

(HHRISK), Modified heavy metal index (MHMI), Synthetic pollution index (SPI), and Entropy-101 

weighted water quality index (EWQI),. Results show that 60% of samples are safe for 102 

consumption, but 40% pose risks, especially to children. Carcinogenic risks are high, and 103 

ingestion poses a greater risk than dermal contact. Artificial neural networks and multiple 104 

linear regression models provided precise predictions of water quality indices, while 105 
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hierarchical dendrograms effectively categorized the water samples into different 106 

spatiotemporal water quality clusters. Jahin et al. [26] opted for multivariate analysis to study 107 

the IWQI for surface water in Egypt. Elbeltagi et al. [27] took a different approach by 108 

evaluating WQI at the Akot basin. They employed Support Vector Machine (SVM), random 109 

subspace (RSS), and additive regression (AR). Notably, the AR model was recommended due 110 

to its simplicity in terms of input parameters while maintaining reliability and accurate 111 

prediction. 112 

In another study, Kouadri et al. [28] used a machine learning model to predict the water 113 

quality index (WQI) in Illizi, Southeast Algeria, particularly focusing on irregular data. They 114 

identified total dissolved solids (TDS) and total hardness (TH) as the main factors influencing 115 

WQI, with the mean absolute error (MAE) model proving to be the most accurate among the 116 

methods considered. Valentini et al. [29] developed a new WQI equation for Mirim Lagoon 117 

based on extensive data collected over three years at seven locations, with parameters 118 

including pH, dissolved oxygen, conductivity, turbidity, fecal coliform, and temperature. The 119 

study [30] in Pratapgarh, Southern Rajasthan, employs an artificial neural network (ANN) to 120 

predict groundwater sodium hazards for irrigation. Using MATLAB and ten years of data, the 121 

optimized ANN model effectively forecasts water quality indicators like sodium adsorption 122 

ratio (SAR), percent sodium (%Na) residual, Kelly’s ratio (KR), and residual sodium carbonate 123 

(RSC). Finally, Shukla et al. [31] conducted a comparative analysis, evaluating a feed-forward 124 

artificial neural network (ANN) model against other algorithms. Their findings suggested that 125 

a more complex architecture involving the integration of the ANN algorithm with wavelets or 126 

an adaptive neuro-fuzzy reasoning system yielded superior results, particularly in accurately 127 

predicting stream flow in an Indian river. 128 

Previous works indicated limited research focusing on developing hybrid machine learning 129 

models specifically tailored for predicting water quality, especially within the context of Indian 130 

conditions. In response to this gap, the present study delves into assessing the performance 131 

of various models, including Artificial Neural Networks (ANN) and its hybrid combinations, 132 

namely ANN-RF (Random Forest), ANN-SVM (Support Vector Machine), ANN-RSS (Random 133 

Subspace), ANN-M5P (M5 Pruned), and ANN-AR (Additive Regression). These models were 134 

applied to evaluate the Water Quality Index (WQI) in the Bagh River Basin, India. The primary 135 

objective of this study was not only to assess the performance of the ANN algorithms but also 136 

to enhance their predictive capabilities through hybridization with other machine learning 137 
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algorithms. By doing so, we aimed to identify the most effective and suitable AI-based model 138 

for WQI prediction within the specific environmental conditions of the Bagh River Basin. It's 139 

crucial to note that the volume and organization of available data play a pivotal role in 140 

determining the effectiveness of various machine learning algorithms. Therefore, the selected 141 

algorithm ANN and its hybrids were chosen based on their proven track record of delivering 142 

robust performance and their aptitude for capturing dynamic, nonlinear relationships within 143 

datasets. 144 

2. Methodology 145 

2.1. Study area and available datasets 146 

The Bagh River is a significant tributary of the Wainganga River [32]. The river basin lies 147 

between latitude 200 45’ 0” N to 210 45’ 0” N latitude and longitude 800 00’ 0” E to 800 45’ 0” 148 

E (Fig. 1). This river's axial and longitudinal extensions result in a total coverage area of 2876.9 149 

Km2. This 130 km long river begins in the Cheezgad hills of the Sahyadri mountain range. 150 

Given the topography of this river, BRB is situated between the Wainganga River valley to the 151 

north, the Gaikhori hills to the west, the valleys to the east, and the Chichgad hills to the 152 

south. This river bed has an average elevation between 208 and 728 meters. Two rivers, the 153 

Ghisari and Dev Rivers, on its right bank and the Pangoli river on its left, join this river. At 154 

Birsola in the Gondia District, the Bagh River merges with the Wainganga River. 155 

Because metamorphic and igneous rocks cover the whole river basin, this research 156 

region is unlike any other in Maharashtra. The Pre-Cambrian Archaean Dharwars crystalline 157 

rocks make up a large portion, the Amgaon Group, which is limited to the northeast and 158 

northwest corners of the area surrounding Amgaon and Bahela, is the representative 159 

formation of the Archeans [33]. It is made up of Augen gneisses, amphibolites, and 160 

migmatites. The Sakoli Group and Dongargarh Group of rocks, which together comprise the 161 

main stratigraphic block, is representative of the Lower Precambrian Dharwars, which come 162 

after the Amgaon group. The Sakoli Group is limited to the northern and western regions of 163 

Nagjhira and is made up of quartzites, schists, phyllites, metavolcanics, and BIF. Rhyolites, 164 

Andesites, and basic volcanics are found in the vicinity of Salekasa, Wadegaon, Murdoli, Deori, 165 

and Chinchgarh. These rocks correspond to the Dongargarh Group's Bijli, Pitepani, and 166 

Sitagota formations [33,34]. 167 
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 Groundwater samples were taken from 26 wells in the Bagh River basin during the pre-168 

monsoon season, and analyses were done for the different perimeters. Composite sampling 169 

is carried out when the liquid matrix is expected to be heterogeneous and varies from time 170 

to time or depth or at many sampling locations. This type of sampling provides a 171 

representative sampling for this type of matrix and is carried out by combining portions of 172 

multiple grab samples collected at regular intervals. If the flow is expected to be constant, 173 

then volume-based sampling can be carried out. If the flow varies, like sewerage line, then 174 

sampling can be done by flow-based composite, i.e., collecting sample that is proportional to 175 

the discharge. Time composite sampling represents a 24- hour period, with interval being 1-176 

3 hours. Use composite samples only for parameters that will remain unchanged under the 177 

sampling conditions, preservation and storage. The factors listed here consist of pH, Sodium 178 

(Na+), Sulfate (SO4
2-), Bicarbonate (HCO3-), Total dissolved solids (TDS), Total Hardness (TH), 179 

Magnesium (Mg2+), Chloride (Cl-), Calcium (Ca2+), Nitrate (NO3
-), and Fluoride (F-). Collection, 180 

preservation, transportation, storage, and weighted arithmetic index method analysis of the 181 

sample. 182 

2.2. Computation of the Water Quality Index (WQI)  183 

The evaluation of groundwater quality for irrigation purposes is based on the WQI, 184 

which is frequently used to evaluate water quality and its suitability for agricultural use [3,35]. 185 

The WQI is a comprehensive rating system that considers various water quality variables and 186 

condenses them into a single overall rating, representing the overall water quality. In this 187 

study, ten significant characteristics were considered to compute the WQI. The first phase 188 

necessitates giving unit weights to each physicochemical parameter using a "weighted 189 

arithmetic index" to normalize the parameters with different units and dimensions onto a 190 

comparable scale [36]. 191 

 192 

 193 

 194 
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Fig. 1. Case study river basin showing the location of water sample collected and river basin 195 

drainage networks. 196 

The proportional weights for each parameter were determined based on their unit 197 

weights. The quality rating was computed by comparing each parameter's observed 198 

concentration and norm concentration. The sub-index was then produced by multiplying the 199 

quality rating of each parameter by the appropriate relative weight. The WQI, which was the 200 

result of adding the sub-indices for each attribute, was then developed. More details about 201 

the assigned weights (Wi), relative weights (wi), and the WHO standard are provided in Table 202 

1 [37]. The assigned weights (Wi), is calculated using equations (1) given below: 203 

𝑊𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

                                                                (1) 204 

A quality rating scale (qi) is calculated for each parameter by using the equation (2) given as: 205 

𝑞𝑖 = (
𝐶𝑖

𝑆𝑖
⁄ ) × 100                                                  (2) 206 

Additionally, a subindex of the ith parameter is estimated based on equation (3) given as: 207 

𝑆𝐼𝑖 = 𝑞𝑖 × 𝑊𝑖                                                               (3) 208 

Lastly, the water quality index is calculated using the equation (4) given as: 209 

𝑊𝑄𝐼 = ∑ 𝑆𝐼𝑖                                                                 (4) 210 
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where 𝑊𝑖 = relative weight, 𝑤𝑖 = weight/parameter, 𝑛 = number of parameters, 𝐶𝑖 = 211 

chemical concentration per water sample (mg/L), 𝑆𝑖 = quality standard for drinking water as 212 

per WHO (mg/L), 𝑆𝐼𝑖 = subindex rating, 𝑞𝑖 = quality rating and 𝑊𝑖 = relative weight 213 

Table 1: Weight of parameters and their standard for WQI 214 

Chemical parameters 
Standards (BIS 2003; 

[37] 
Weight 

(wi) 
Relative 

weight (Wi) 

Sulphate (SO4
2-) 200 5 0.114 

Nitrate (NO3
-) 45 5 0.114 

Fluoride (F-) 1 5 0.114 
Chloride (Cl-) 250 5 0.114 
Total dissolved solids (TDS) 500 5 0.114 
Sodium (Na+) 50 5 0.114 
pH 8.5 3 0.068 
Calcium (Ca2+) 75 3 0.068 
Magnesium (Mg2+) 30 3 0.068 
Potassium (K+) 100 2 0.045 
Total hardness (TH) 300 2 0.045 
Bicarbonate (HCO3

-) 200 1 0.023 

  Ʃ wi = 44 Ʃ Wi =1 
Note:  All concentrations in given mg/L excluding pH  

 215 

2.3. Machine learning algorithms 216 

2.3.1. Artificial neural network (ANN) 217 

Artificial Neural Network (ANN) is a computational modeling tool containing 218 

interconnected adaptive dispensation rudiments, capable of executing massive parallel 219 

computations for complex data processing and knowledge representations [38–40]. In the 220 

past few decades, research into ANNs has shown explosive growth, covering various 221 

applications in various areas. ANN models follow an exact planning, which the biological 222 

nervous system enthuses. Like the human brain, the ANN model comprises neurons arranged 223 

in a complex nonlinear form in a layered fashion, and the neurons in adjacent layers are 224 

interconnected by weighted links [41]. Each input is multiplied by its appropriate weights after 225 

being received by the input layer of the ANN in the form of text, numeric, or picture vectors. 226 

These weights often reflect how strongly the ANN's neurons are connected. The middle, 227 

hidden layer(s) performs mathematical computations to extract patterns from the input data. 228 

The hidden layer’s meticulous computations enable the ANN to produce the desired result in 229 

the output layer. The architecture of ANN is shown in Fig. 2a. Ideally, ANNs are trained with 230 

large datasets to derive meaningful insights and patterns from the dataset [42].  231 
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a)  

 

b)  

 

Fig. 2. Schematic diagram of (a) ANN (b) Random subspace method. 232 

 233 

2.3.2. Random subspace (RSS) 234 

The random subspace algorithm is a machine learning ensemble method that enhances 235 

diversity among ensemble learners by limiting the models to operate on various random 236 

subsets of the entire feature space [43,44]. The general layout of RSS is presented in Fig. 2b. 237 

The issue of very large dimensionality is elegantly solved with RS ensembles. Smaller 238 

subspaces make it easier to train the predictors and significantly increase the feature-to-239 

instance ratio [45]. When there are few training items in proportion to the amount of data, 240 

RSS is extremely useful. Furthermore, random subspace offers stronger predictors when data 241 

contains many redundant features than the original feature space. The first phase entails 242 

predicting the initial space into subsets, and in the final stage,  the result obtained is 243 

aggregated through voting or averaging [46]. 244 

2.3.3. Support vector machine (SVM) 245 
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Supervised learning is a popular classification method, and regression and outlier 246 

detection is the support vector machine. The classification job serves as the greatest lens to 247 

comprehend the SVM algorithm. In an N-dimensional space, the SVM classifier creates a 248 

hyperplane that divides the data points into different classes [47–49]. The margin is used to 249 

choose the hyperplane. In other words, the hyperplane with the largest margin between the 250 

classes is picked. Support vectors-data points closer to the hyperplane are used to determine 251 

these margins. SVM can be well utilized as a regression approach, maintaining all the key 252 

topographies that describe the algorithm (maximal margin).  SVM is well suited for regression 253 

issues due to its sparse solution and stronger generalization ability (Fig. 3a). A new ε-254 

insensitive region, known as ε-tube generated around the function, helps approximate the 255 

continuous-valued function and reduces the prediction error. Like SVM classifiers, the support 256 

vectors are the most important factors affecting how the tube is shaped in SVR. SVR also 257 

counts on the independence and identical distribution of the training and testing sets of the 258 

data [50]. 259 

2.3.4. Random forest (RF) 260 

The popular and adaptable supervised machine learning technique Random Forest is 261 

effective for classification and regression issues. The core idea behind RF is to grow and 262 

combine multiple decision trees to form a “forest.” All choice tree in a random forest is trained 263 

on a subset of data, and the contribution of individual trees gives stability to the algorithm 264 

and reduces the variance [51,52]. The algorithm creates individual trees from different input 265 

data samples; further, at each bulge, dissimilar samples of topographies are designated for 266 

excruciating. The trees run in similar deprived of any interaction, and finally, the prediction 267 

from individual trees is averaged to produce the final result for the random forest regressor 268 

prediction. RF replicas have remained proven to be robust forecasters for both small datasets 269 

and higher dimensional data [53]. RF exhibits better generalization and tends to outpace most 270 

additional methods in footings of their performance, deprived of overfitting. Compared to 271 

decision trees, RF is more robust to noise in the dataset, and hyperparameter tuning is 272 

relatively easy [54]. The general layout of RF is presented in Fig. 3b. 273 
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 274 

Fig. 3. Schematic diagram of (a) SVM, (b) Random Forest, and (c) Additive Regression 275 

models. 276 

2.3.5. Additive regression (AR) 277 

The additive regression model performs stage-wise addition, and new learners are 278 

extra one at a period by freezing the existing learners. i.e., the previous learners are left 279 

unchanged. A collaborative of feeble regression prediction models, often decision trees, is 280 

produced by additive regression as a prediction model. The additive regression trees are very 281 

similar to the gradient boosting trees, wherein contributions of sequential weak learners are 282 

strengthened at each iteration. In every iteration, it fits a model to the residuals of the 283 

previous iteration. The model's residuals are used for training, which gives the incorrectly 284 

predicted data more weight. Additionally, each weak learner's contribution to the final 285 

prediction is based on a gradient optimization technique to lower the overall error of the 286 

strong learner. 287 

The overfitting is prevented by reducing the learning rate parameter and providing a 288 

smoothing effect [55]. With vast and complex datasets, these additive regression stands out 289 

for their accurate prediction capabilities [56]. The architecture of AR is shown in Fig. 3c. 290 
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2.3.6. M5 Pruned (M5P) 291 

The M5 tree algorithm, introduced by Quinlan [57] is a choice tree with linear 292 

regression at the leaf nodes, that can help predict incessant arithmetical qualities. The M5P 293 

algorithm is simple to apply and gives more comprehensible linear mathematical equations 294 

among the contribution and yield variables when likened to additional machine learning 295 

algorithms. The model efficiently predicts continuous values and can handle data with higher 296 

dimensionality. The computation of error at each node provides the basis for determining the 297 

excruciating standard for the M5P model tree. The error is analyzed based on the standard 298 

deviation of the standards at a particular node. The data in child nodes are purer and have a 299 

lower standard deviation than that of the parent node due to the splitting process. The model 300 

evaluates each alternative split, choosing the one that minimizes errors while maximizing 301 

error reduction [58]. This approach often creates a huge tree-like structure that could lead to 302 

overfitting. The overgrown trees are pruned to tackle this overfitting by relieving the sub-303 

trees with linear regression functions [59]. 304 

 305 

2.3.7. Selection of best input combination for model development 306 

The best performance of the selected models depends on carefully selecting the water 307 

quality input parameters during the water quality modeling process. Numerous combinations 308 

of these parameters were utilized to find the ideal input combination. Then, using the Relief 309 

method, a certain combination was found to be the best [60]. The relief algorithm has 310 

emerged as a widely adopted technique for feature selection. Its primary objective is to assess 311 

the significance of individual features within a dataset by gauging their capacity to 312 

differentiate between distinct classes. The operational principle of this algorithm revolves 313 

around attributing weights to each feature, predicated on their effectiveness in distinguishing 314 

between neighboring instances within the feature space [61]. The algorithm's functionality 315 

can be summarized as follows: It assigns weight values to features based on their aptitude for 316 

discriminating among closely situated data points within the feature space. These weight 317 

values subsequently undergo a prioritization process, leading to the ranking of features based 318 

on their perceived importance. Features that attain higher ranks are deemed more pertinent 319 

in contributing to the differentiation of classes. Utilizing the relief algorithm confers multiple 320 

advantages, notably in scenarios where the novel dataset includes many structures. By 321 
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electing to retain the most pertinent features according to the algorithm's ranking, it becomes 322 

possible to enhance the correctness and efficacy of machine learning models. This is 323 

predominantly beneficial in situations where the volume of features might otherwise 324 

introduce complexity and resource-intensive computations [3,62]. Among 12 independent 325 

input variables, i.e., pH, HCO3
-, Cl-, NO3, TDS, TH, Ca2+, Mg2+, Na+, K+, SO4

2- and F-), the five 326 

most influencing variables were selected for model development. These include NO3
-, SO4

2-, 327 

Ca2+, Mg2+, and K+.  Fig. 4 presents the ranks of the selected variables for predicting the WQI. 328 

2.3.8. Fusion of meta-heuristic algorithms through stacked generalization 329 

Stacked hybridization, also known as stacked ensemble learning, is a machine learning 330 

technique that combines multiple diverse machine learning models to improve predictive 331 

performance [63]. This approach leverages the strengths of individual models and mitigates 332 

their weaknesses by training a meta-model, or a "stacked" model, on the predictions made 333 

by these base models. The stacked model learns how to weigh the predictions from each base 334 

model to make a final prediction, often resulting in improved accuracy, robustness, and 335 

generalization. Research findings indicate that using stacked hybrid algorithms can enhance 336 

the predictive capabilities of these algorithms [64,65]. Stacked hybridization allows you to 337 

take advantage of the diverse strengths of different models, potentially leading to improved 338 

predictive performance compared to using any single model in isolation. However, it's 339 

essential to perform careful model selection, tuning, and validation to ensure the success of 340 

a stacked ensemble. The steps involved in the stacked hybridization of an Artificial Neural 341 

Network (ANN) with another machine learning algorithm, such SVM, are outlined below: 342 

Step 1: Begin by selecting two base models: base model 1, which is the ANN, and base model 343 

2, which is the SVM. 344 

Step 2: Split the training data into two sets: training the ANN and SVM (the first-level training 345 

data) and training the stacked model (the second-level training data). 346 

Step 3: Train the ANN using the first-level training data while adjusting the neural network's 347 

architecture and parameters. Simultaneously, train the SVM using the first-level training data 348 

while optimizing the kernel and hyperparameters. 349 

Step 4: Employ the trained ANN and SVM to make predictions on a validation or holdout 350 

dataset. 351 
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Step 5: Train a meta-model, such as logistic regression or a decision tree, utilizing the 352 

predictions generated by the ANN and SVM on the validation dataset. This meta-model is 353 

designed to learn how to effectively combine these predictions. 354 

Step 6: For making predictions on new data, apply both the ANN and SVM to generate 355 

predictions. Then, employ the trained meta-model to combine these predictions, resulting in 356 

the final prediction. 357 

2.4. Evaluation of the statistical performance of hybrid model developments 358 

The evaluation of the performance of the computed Water Quality Index (WQI) and 359 

predicted WQI using hybrid models involved the utilization of commonly recognized statistical 360 

metrics. These metrics encompass the Nash-Sutcliffe efficiency (NSE), Pearson correlation 361 

coefficient (PCC), Coefficient of determination (R2), Mean absolute error (MAE), Root mean 362 

square error (RMSE), Relative root square error (RRSE), Relative absolute error (RAE), and 363 

Mean Bias Error (MBE). These metrics have been effectively employed to assess model 364 

performance in previous studies [66–69]. The RMSE is employed to quantify the disparity 365 

between expected and observed values within a time series. RRSE, as the square root of 366 

relative squared error, minimizes errors in dimensions that match the predicted quantity. 367 

MAE describes the mean absolute deviation of anticipated time series values from observed 368 

values. RAE assesses the absolute error's magnitude relative to the measurement's size and 369 

displays the ratio of absolute error to the actual measurement. Nash-Sutcliffe efficiency is a 370 

widely used statistic for evaluating model performance, ranging from 1, indicating an ideal fit, 371 

to -1. A value of 0 implies accuracy equivalent to the mean value.  372 

On the other hand, the coefficient of determination (R2) quantifies the linear relationship 373 

between dependent and independent variables. In the context of WQI modeling, models with 374 

higher R2 values (closer to 1), higher RRSE values, and lower values of MBE, RMSE, MAE, and 375 

RAE are considered superior. In the equations (5-11), the 𝑊𝑄𝐼𝐶  and 𝑊𝑄𝐼𝑃 represent the 376 

computed/observed and predicted or simulated values for the ith dataset, while 𝑊𝑄𝐼𝑐𝑎𝑣𝑔 and 377 

𝑊𝑄𝐼𝑝𝑎𝑣𝑔 denote the average or mean magnitude of observed and predicted or simulated 378 

values. N signifies the number of observations. 379 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑊𝑄𝐼𝑃 − 𝑊𝑄𝐼𝐶)

𝑁

𝑖=1
                                                          (5) 380 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃)2𝑁

𝑖=1
                                                              (6) 381 
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𝑅𝑅𝑆𝐸 =
√

∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃)2𝑁
𝑖=1

∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑐𝑎𝑣𝑔)
2𝑁

𝑖=1

                                                               (7) 382 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃|

𝑁

𝑖=1

                                                                            (8) 383 

𝑅𝐴𝐸 =  
∑ |𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃|𝑁

𝑖=1

∑ |𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑐𝑎𝑣𝑔|
𝑁

𝑖=1

                                                                    (9)  384 

𝑅2 = 1 −
∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃)2𝑁

𝑖=1

∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑐𝑎𝑣𝑔)
2𝑁

𝑖=1

                                                             (10) 385 

𝑁𝑆𝐸 = 1 − [
∑ 𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑃)2𝑁

𝑖=1

∑ (𝑊𝑄𝐼𝐶 − 𝑊𝑄𝐼𝑐𝑎𝑣𝑔)
2𝑁

𝑖=1

]                                                           (11) 386 

3. Results  387 

3.1. Dominance analysis and relative importance of water quality parameters 388 

The dominance analysis of water quality input parameters uses the Relief algorithm 389 

[60]. Fig. 4 presents the ranks of the selected variables (i.e., NO3, Mg2+, SO4
2-, Ca2+, and K+) 390 

from 12 water quality parameters (i.e., pH, HCO3
-, Cl-, NO3, TDS, TH, Ca2+, Mg2+, Na+, K+, SO4

2- 391 

and F-) for predicting the WQI. The detailed analysis of the chemical composition of water 392 

quality is summarized in Table 2. The values of pH ranged from 6.60 to 8.92 with an average 393 

of 7.73±0.52; TDS varies from 241 to 2100 with an average of 678±469.94 and 30.0 to 681.0 394 

with an average of 246.54±176.98 for TH. Among cations, their concentration ranged from 395 

7.80 to 680.0 with an average of 293.65±193.43 for Na+; 0.20 to 411.0 with an average of 396 

57.58±106.76 for K+; 1.20 to 241.0 (100.16±74.46) for Ca+, and 1.22 to 161.24 with an average 397 

of 51.70±47.82 for Mg+. However, their anion attentiveness alternated from 14.0 to 3014.80 398 

with an average of 472.67±615.08 for Cl-; 128.0 to 652.0 with a normal of 293.65±123.01 for 399 

HCO3
- and 6.0 to 481.0 with an average of 75.07±127.95 for SO42-. In footings of anions, 400 

Chloride is the maximum predominant, shadowed by Bicarbonate and Chlorine. The 401 

weightage of selected water quality parameters for WQI prediction has been shown in Fig. 4.  402 

 403 
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 404 

Fig. 4. Weightage of selected variables for model development. 405 
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Table 2: Statistical summary of water quality parameters  407 

Parameters Mean SD Skewness Kurtosis Minimum Maximum Range 
WHO (1997) BIS (2003) (IS 10500) 

Maximum 
desirable 

Highest 
permissible 

Maximum 
desirable 

Highest 
permissible 

pH 7.73 0.52 -0.12 0.60 6.60 8.92 2.32 7.0-8.5 6.5-9.2 6.5-8.5 8.5-9.2 
TDS 678.00 469.94 1.98 4.39 241.00 2100.00 1859.00 500 1500 500 2000 
TH 246.54 176.98 1.09 0.91 30.00 681.00 651.00 100 500 300 600 

Ca+2 100.16 74.46 0.54 -0.82 1.20 241.00 239.80 75 200 75 200 
Mg+2 51.70 47.82 1.05 0.28 1.22 161.24 160.02 30 150 30 100 
Na+ 293.65 193.43 0.43 -0.72 7.80 680.00 672.20 50 200 - - 
K+ 57.58 106.76 3.09 8.85 0.20 411.00 410.80 100 200 - - 

HCo3- 293.65 123.01 1.72 4.51 128.00 652.00 524.00 200 600 200 600 
Cl- 472.67 615.08 3.02 11.65 14.00 3014.80 3000.80 250 600 250 1000 

No3
- 61.38 197.66 4.13 18.28 0.11 957.80 957.69 - 50 45 100 

SO4-2 75.07 127.95 2.70 6.96 6.00 481.00 475.00 200 600 200 400 
F- 0.97 0.70 0.04 -1.36 0.06 2.10 2.04 0.6-1.5 1.5 1.0 1.5 

Note: All concentrations in mg/L, excluding pH 
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3.2. Prediction of water quality index (WQI)  409 

The primary objective of this study is to create innovative hybrid machine learning 410 

algorithms/models and assess their predictive capabilities for the Water Quality Index (WQI) 411 

in the Bagh River Basin (BRB). This section presents the outcomes of modeling WQI using data-412 

driven hybrid machine-learning algorithms. We evaluated the performance of the Artificial 413 

Neural Network (ANN) and its hybridization with five other machine learning algorithms: 414 

ANN-RF, ANN-SVM, ANN-RSS, ANN-AR, and ANN-M5P, for WQI prediction. 415 

3.2.1 Development of models and their training 416 

We investigated the enhancement of artificial neural networks (ANN) through stacked 417 

hybridization with other machine learning algorithms to improve water quality prediction. 418 

Water quality parameters, notably K+, Ca2+, SO4, Mg2+, and NO3
-, were identified as the most 419 

influential input factors for WQI prediction. To assess the performance of the hybridized 420 

models relative to the conventional ANN, we employed eight statistical indicators to evaluate 421 

each model's effectiveness. The results obtained during the training phase are summarized in 422 

Table 3. 423 

Table 3. Statistical indices of the proposed hybrid models during the training 424 

Statistical 

indices 

ANN ANN-RF ANN-

SVM 

ANN-RSS ANN-AR ANN-

M5P 

PCC 0.996 0.984 0.956 0.996 0.977 0.996 

R2 0.991 0.968 0.913 0.992 0.954 0.992 

MAE 9.435 15.777 29.431 20.889 18.558 13.029 

MBE 3.289 -0.850 0.000 -15.223 -4.556 -11.608 

RMSE 11.695 20.229 40.961 29.332 25.583 17.351 

RAE (%) 10.185 17.032 31.772 22.551 20.034 14.065 

RRSR (%) 10.302 17.821 36.083 25.839 22.536 15.285 

NSE 0.989 0.968 0.870 0.933 0.949 0.977 

 425 

Table 3 illustrates that the ANN model did remarkably well to predict training results 426 

during the prediction phase, as the Pearson’s correlation coefficient (PCC) for ANN was 0.996. 427 

The performance indicators showed the smallest values with an MAE = 9.435, MBE = 3.289, 428 

RMSE = 11.695, RAE (%) = 10.185 and RRSR (%) = 10.302, and the highest value of NSE for 429 

ANN was 0.989. It was trailed straight by the ANN-M5P model which had a Pearson’s 430 

correlation coefficient of PCC = 0.996, smallest values of MAE = 13.029, MBE = -11.608, RMSE 431 
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= 17.351, RAE (%) = 14.065 and RRSR (%) = 15.285. The highest value of NSE for ANN-M5P was 432 

0.977, while the nethermost accomplishment model in the exercise stage was the ANN-SVM 433 

model with Pearson’s correlation coefficient (PCC) = 0.956, and smallest values of MAE = 434 

29.431, MBE = 0.000, RMSE = 40.961, RAE (%) = 31.772 and RRSR (%) = 36.083, and the highest 435 

value of NSE for ANN-SVM was 0.870. Grounded on the numerical presentation indicators 436 

acquired throughout the exercise phase of all seven models, it was obvious that they 437 

performed well.  438 

This further demonstrated that in the training data sets, the ANN model outperformed 439 

the ANN-M5P, ANN-RF, ANN-AR, ANN-RSS, and ANN-SVM models in predicting WQI. During 440 

the training phase, the ANN-SVM model performs noticeably poorer at predicting the WQI. 441 

The top four models, ANN, ANN-M5P, ANN-RF, and ANN-AR, were chosen to forecast WQI 442 

because of their excellent precision and accuracy. 443 

 444 
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Fig. 5. Line diagram of computed and predicted WQI for training data sets for (a) ANN 445 

stand-alone, (b) ANN-RF, (c) ANN-SVM (d) ANN-RSS, (e) ANN-AR, and (f) ANN-M5P446 
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In the training phase, the contrast between observed and predicted WQIs was 447 

presented using time series and scatter plots to illustrate the comparison between observed 448 

and predicted WQI based on the selected models (Fig. 5 and 6). In Fig. 5, the simulations by 449 

ML models (continuous red line with circle symbol) are compared with the calculated WQI 450 

(continuous black line with circle symbol). The period sequence in this study was constructed 451 

from the time series generated by all sampling sites based on the training data set. Statistical 452 

parameters (i.e., MBE), line diagram (Fig. 5), and scatter plot (Fig. 6) show that the ANN was 453 

slightly over-predictive than the others.  454 

When all the model's values are evenly spaced along or on either side of the 1:1 line, 455 

suggesting errors in the data, that model is shown to be accurate. In contrast to the values 456 

predicted by the ANN-RF, ANN-SVM, ANN-RSS, ANN-AR, and ANN-M5P models, which are all 457 

dispersed under the 1:1 line, the values predicted by the ANN model (R2 = 0.991) are more 458 

equally distributed over the 1:1 line. ANN-SVM and ANN-RSS are shown to be more under-459 

predictive than others.  460 
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Fig. 6. Scatter plot of computed and predicted WQI for training data sets (a) ANN stand-462 

alone, (b) ANN-RF, (c) ANN-SVM (d) ANN-RSS, (e) ANN-AR, and (f) ANN-M5P 463 

Our analysis of the performance values of the indicators showed that the eight 464 

models, on the whole, perform at an acceptable level. Yaseen et al. [13] and Markuna et al. 465 

[70] found that the RMSE is one of the most significant quantitative indicators of model 466 

performance during any analysis of data-mining models and time series data forecasting since 467 

it is one of the most predictive indicators.  468 

3.2.2 Validation of applied ML algorithms 469 

Table 4 provides a summary of the results obtained during the validation phase. 470 

Among the models tested, the ANN model displayed the highest correlation and the lowest 471 

error during the training phase. However, its performance with the test datasets was 472 

suboptimal. On the other hand, the proposed hybrid ANN-SVM model exhibited the lowest 473 

error indicators and the highest Pearson's correlation coefficient (PCC = 0.951) during the 474 

validation phase. Notably, it achieved high values for NSE (0.879), PCC (0.951), and R2 while 475 

demonstrating low values for MAE (22.349), MBE (12.548), RMSE (27.974), RAE (30.039%), 476 

and RRSR (34.227%). These results indicate that the ANN-SVM model effectively recognized 477 

the WQI pattern and provided accurate predictions. 478 

The ANN model closely follows the top-performing analytical model, ANN-SVM. The 479 

ANN model achieved high values for NSE (0.842), PCC (0.923), and R2 (0.852) and displayed 480 

low values for MAE (18.362), MBE (-7.944), RMSE (31.923), RAE (24.680%), and RRSR 481 

(39.059%). Additionally, the ANN-M5P model exhibited strong performance with high NSE 482 

(0.782), PCC (0.927), R2 (0.859), and low MAE (22.261), MBE (-20.579), RMSE (37.499), RAE 483 

(29.920%), and RRSR (45.881%). In contrast, the ANN-RF model showed less favorable test 484 
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results with PCC = 0.880, R2 = 0.774, MAE = 33.855, MBE = -29.733, RMSE = 49.224, RAE (%) = 485 

45.502, and RRSR (%) = 60.228, along with an NSE of 0.625. These results clearly indicate that 486 

the ANN-SVM model outperformed the ANN, ANN-M5P, ANN-RSS, ANN-AR, and ANN-RF 487 

models in predicting WQI for the test datasets. The noticeably poorer performance of the 488 

ANN-RF model during the testing phase suggests that the inconsistent quality of the test 489 

dataset may have contributed to its subpar results. 490 

Table 4. Statistical indices of the proposed model in the testing datasets. 491 

Statistical 

indices 
ANN ANN-RF 

ANN-

SVM 
ANN-RSS ANN-AR 

ANN-

M5P 

PCC 0.923 0.880 0.951 0.927 0.910 0.927 

R2 0.852 0.774 0.904 0.859 0.828 0.859 

MAE 18.362 33.855 22.349 24.552 34.247 22.261 

MBE -7.944 -29.733 12.548 -20.809 -34.247 -20.579 

RMSE 31.923 49.224 27.974 40.804 48.405 37.499 

RAE (%) 24.680 45.502 30.039 32.999 46.029 29.920 

RRSR (%) 39.059 60.228 34.227 49.925 59.226 45.881 

NSE 0.842 0.625 0.879 0.742 0.637 0.782 

 492 

To visualize the disparities between observed and predicted WQI based on the 493 

selected models, we compared them using time series and scatter plots during the validation 494 

phase (Fig. 7 and 8). In Fig. 7, the simulations by ML models (represented by the continuous 495 

red line with circle symbols) were contrasted with the computed WQI (shown as the 496 

continuous black line with circle symbols). The time series used in this study was constructed 497 

from data generated by all sampling sites based on the testing dataset. 498 
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Fig. 7. Line diagram of computed and predicted WQI for testing data sets for (a) ANN stand-499 

alone, (b) ANN-RF, (c) ANN-SVM (d) ANN-RSS, (e) ANN-AR, and (f) ANN-M5P 500 

Statistical parameters, such as MBE, along with the line diagram (Fig. 7) and scatter 501 

plot (Fig. 8), indicated that the ANN-SVM model exhibited a slightly higher level of over-502 

prediction than the other models. An accurate model typically exhibits an even distribution 503 

of values on or around the 1:1 line, signifying a balanced representation of errors. However, 504 

the values predicted by the ANN-SVM model (R2 = 0.904) were notably more evenly 505 

distributed along the 1:1 line compared to the predictions of the ANN, ANN-RF, ANN-RSS, 506 

ANN-AR, and ANN-M5P models, which all showed a dispersion below the 1:1 line, as evident 507 

in Fig. 8. Except for ANN-SVM model, all other models tended to under-predict the observed 508 

values. 509 
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Fig. 8. Scatter plot of computed and predicted WQI for testing data sets for (a) ANN stand-alone, 511 

(b) ANN-RF, (c) ANN-SVM (d) ANN-RSS, (e) ANN-AR, and (f) ANN-M5P 512 

In addition, a Taylor diagram was employed to assess the model's performance, as 513 

introduced by [71]. Fig. 9 illustrates that the ANN-SVM and ANN-RF models stood out among 514 

the other hybrid models as they were positioned farthest from the computed or reference 515 

WQI values during the training and validation phases, respectively. The ANN standalone and 516 

ANN-SVM models were found closest to the reference point during the training and validation 517 

phases, respectively. Taylor diagram considers factors such as standard deviation (SD), 518 

correlation (PCC), and root mean square error (RMSE) of the model. It is worth noting that 519 

the most effective model is the one that excels in predicting the test dataset, as demonstrated 520 

in previous studies [31,66,68,72]. Furthermore, this reaffirms that SVM algorithms enhance 521 

the performance of ANN through hybrid models and prove to be superior to all other hybrid 522 

and standalone ANN models for predicting WQI in the Bagh River Basin, India. 523 
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 524 

Fig. 9. Taylor diagram showing comparative performance of developed hybrid models 525 

4. Discussion  526 

As detailed above, Sections 3.1 and 3.2 describe the WQI prediction results and the 527 

key factors that significantly influence the water quality that we have selected for the present 528 

study. These factors play a crucial role in shaping the overall water quality in the Bagh River 529 

Basin. One important aspect to consider is the computation of the Water Quality Index (WQI), 530 

a comprehensive indicator of water quality. Calculating the WQI can be a complex and time-531 

consuming due to the numerous parameters and variables involved. Notably, the values of 532 

WQI can vary depending on the specific combination of input parameters used in the 533 

calculation. This variability in results is an essential consideration when interpreting WQI 534 

values, as highlighted in the work of [73].  535 

To improve the accuracy of WQI assessments, it's often beneficial to include a wide 536 

range of input parameters in the analysis, as indicated by research findings by Tiwari et al. 537 

[74]. A more comprehensive set of input parameters provides a more holistic view of water 538 

quality, leading to a more realistic representation of the WQI. In contrast, it required more 539 

lab analysis to compute all the water quality parameters, which is time-consuming and costly. 540 

The present study developed and evaluated a new hybrid model (ANN-SVM) to improve the 541 

performance of the ANN model. The results of this investigation have demonstrated that 542 
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Support Vector Machines (SVM) prove to be a highly effective method for addressing a range 543 

of environmental issues, as proven in various studies [75–77]. 544 

The present study investigated the ANN stand alone and its hybrid five ML models 545 

were suitable for predicting WQI (i.e., ANN-RF, ANN-SVM, ANN-RSS, ANN-AR, and ANN-M5P). 546 

Based on the Nash-Sutcliffe efficiency (NSE) and root mean squared error (RMSE) in the 547 

testing data sets, the order of models’ performance for WQI during the testing period was 548 

found as ANN-SVM (0.879, 27.974) > ANN (0.842, 31.923) > ANN-M5P (0.782, 37.499) > ANN-549 

RSS (0.742, 40.804) > ANN-AR (0.637, 48.405) > ANN-RF (0.625, 49.224). The results from the 550 

machine learning models show that the ANN-SVM model greatly reduces the overall residual 551 

errors resulting from the model's accuracy in predicting the future, as shown in the Table 4. 552 

The residuals of other machine learning models are larger than those of the ANN-SVM and 553 

ANN models, which implies that these other machine learning models are ineffective in 554 

accurately estimating the field data due to their larger residuals.  555 

The findings of our study align with Nafsin and Li [78] implied the use of a variety of 556 

individual machine learning models, including the random forest (RF), artificial neural 557 

network (ANN), gradient boosting machine (GBM), support vector machine (SVM), and 558 

ensemble-hybrid models such as GBM-SVM, RF-SVM, RF-ANN, ANN-SVM, and RF-GBM for 559 

predicting total organic carbon (TOC) and E. coli in the Milwaukee River system. The outcome 560 

shows that the ensemble-hybrid model ANN-GBM performed better in forecasting for TOC 561 

and E. coli than other models. The effectiveness of six novel hybrid algorithms, including RF-562 

SVM, ANN-SVM, GBM-SVM, RF-ANN, and GBM-ANN, for predicting the BOD of the Buriganga 563 

river system in Bangladesh was also examined in a different study. These algorithms included 564 

RF-SVM, ANN-SVM, GBM-SVM, RF-ANN, and RF-GBM. One of the study's main findings was 565 

the development of a novel hybrid model, the RF-SVM, which has the greatest R2 value (0.908) 566 

and led to higher prediction success. Another study, Singh et al. [79] highlighted the ANN's 567 

potential in predicting WQI. Chou et al. [80] compared four ML algorithms for water quality 568 

assessment in Taiwanese reservoirs, finding the ANN model to outperform others. Song et al. 569 

[81] showed RF's superior prediction accuracy for pressure ulcer modeling compared to SVM, 570 

DT, and ANN. Similarly, Castrillo and García [8] favored the RF model over linear regression 571 

for nutrient concentration prediction. Lastly, Nafi et al. [24] found RF more accurate than RT 572 

for water quality based on precision, accuracy, and recall metrics. The results from the current 573 

investigation also found that the ANN and its hybrid model ANN-SVM have a greater 574 
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predictive capability for water quality indices in the study area. The new hybrid machine 575 

learning model that developed can be particularly useful, especially in developing countries, 576 

for efficient and methodical data supervision, water pollution control, prediction of 577 

hydrological events, and hydro-chemical parameters forecasting and prevention of hazards. 578 

However, hybrid AI models have not always been successful in improving the prediction 579 

power of standalone models, and in some cases, they were unable to do so either [23]. The 580 

present study has not only identified the key drivers of water quality but has also emphasized 581 

the importance of considering a broad spectrum of input parameters when calculating the 582 

WQI. Adopting modern soft computing techniques also underscores the potential for more 583 

efficient and accurate water quality assessments in the Bagh River Basin and similar regions.  584 

The suitability of the Bagh River Basin (BRB), a major tributary of the Wainganga River, 585 

for irrigation purposes was assessed in this study. We employed the Water Quality Index 586 

(WQI) technique to evaluate the quality of irrigation water in the river. The spatial distribution 587 

of the WQI map for the Bagh River, generated using GIS, is depicted in Fig. 10. The WQI was 588 

categorized into five levels for irrigation purposes: excellent water, good water, poor water, 589 

extremely poor water, and unsuitable water. At the Gotobodi and Domatola sampling sites 590 

along the Bagh River, a few locations were found to have high WQI levels falling into the 591 

"Unsuitable water" category (Fig. 10). It is not advisable to use this water for irrigation. 592 

Gotobodi and Domatola recorded the highest WQI values of 376.64 and 369.87, respectively. 593 

Generally, as water quality deteriorates, WQI levels increase. The upper reaches of the Bagh 594 

River, including areas such as Sukhapur, Ghoti, Mohali, Salegaon, Sakharitola, Gore, Nawatola, 595 

Nimba, Zaliya, Paldongri, Bhosa, and Dhudwa, were found to have excellent quality irrigation 596 

water. WQI values below 100 indicate that the water is suitable for irrigation in these areas. 597 

Good quality irrigation water was observed in the midstream of the Bagh River, particularly 598 

in locations like Suryatola, Purgaon, Awa, Kumbhartoli, Pandhari, Kachargarh, Khampura, and 599 

Hardoi. However, the water quality was very poor in some areas like Birsi, Thana, Borkanhar, 600 

and Murdami villages, as indicated in Fig.10. 601 
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 602 

Fig. 10. Spatial distribution of WQI in the study river basin. 603 

The ML algorithms require large datasets for training and testing, but often water 604 

quality data are scarce and expensive to obtain. In addition, water quality is affected by 605 

various natural and anthropogenic factors, which can make it challenging to collect and 606 

interpret data. Therefore, it is important to ensure that the data used to train ML models are 607 

accurate, reliable, and representative of the actual water quality conditions. The ML-based 608 

WQI prediction has the potential to provide valuable insights into water quality, particularly 609 

in areas where traditional monitoring methods are not feasible or cost-intensive. Moreover, 610 

ML models can be used to identify the specific factors that are driving water quality 611 

degradation, which can help inform targeted and effective management strategies. 612 

Therefore, further research is needed to address the practical and technical challenges 613 
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associated with ML-based WQI prediction and to develop reliable and interpretable models 614 

that can be used for decision-making purposes. 615 

5. Conclusions 616 

The present study proposed a new hybrid model (ANN-SVM) using stacked hybridization 617 

to improve the performance of Artificial Neural Networks (ANN) in predicting water quality 618 

index (WQI) in the Bagh River Basin, India. The approach developed in the present study uses 619 

stacking hybridization to combine various machine learning algorithms. The successful 620 

integration of the support vector machine (SVM) with ANN and the use of the Relief algorithm 621 

to choose the water quality input parameters that have the greatest influence show improved 622 

predictive capabilities with high values of Nash-Sutcliffe efficiency (NSE), Pearson correlation 623 

coefficient (PCC), and Coefficient of determination (R2), and low values of Mean absolute 624 

error (MAE), Root mean square error (RMSE), Relative root square error (RRSE), Relative 625 

absolute error (RAE), and Mean squared Error (MSE). The results obtained were further 626 

analyzed and compared using graphical representations to facilitate comprehension. It was 627 

observed that, with the exception of SVM, none of the other algorithms demonstrated an 628 

enhancement in the performance of ANN. During the validation phase, the model 629 

performances were ranked as follows: ANN-SVM (NSE = 0.879) > ANN (NSE = 0.842) > ANN-630 

M5P (NSE = 0.782) > ANN-RSS (NSE = 0.742) > ANN-AR (NSE = 0.637) > ANN-RF (NSE = 0.625). 631 

These findings offer significant promise for bolstering informed decision-making in water 632 

resource management, pollution control, and environmental conservation efforts. 633 

Moreover, the methodology outlined in this study can serve as a valuable framework 634 

for refining ANN models across diverse environmental applications, thereby contributing to 635 

sustainable development and resource preservation. The present study solely relies on water 636 

samples collected within the boundaries of the river basin. Therefore, future research efforts 637 

will focus on applying the enhanced AI model across various basins and under diverse climatic 638 

conditions to obtain more generalized conclusions. 639 
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Highlights 

 

• A comparative study of ANN and its hybrid models (i.e., ANN-RF, ANN-SVM, ANN-RSS, 
ANN-AR, and ANN-M5P) was conducted for water quality assessment. 

 

• Integrating SVM with ANN significantly improved the model performance. 
 

• The new model can serve as a template for various environmental applications. 
 

• This advancement holds promising decisions in water resource management. 
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