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SYSTEM IDENTIFICATION 1: ARMA MODELS

Jakob Laigaard Jensen

Institute of Building Technology and Structural Engineering
University of Aalborg

Sohngaardsholmsvej 57, DK-9000 Aalborg

ABSTRACT

System identification by ARMA models has been investigated in theory and in prac-
tice. The theoretical relations between an ARMA model and the eigen frequencies
and damping ratios of a linear vibrating system have been recognized. The method
has been applied in practice to experimental data for a heavily damped SDOF
system and a lightly damped two-degrees-of- freedom system. Different ARMA
models have been estimated and the proper model order has been discussed. Two
procedures with and without bandpass filtering of a single eigen mode have been
applied. The results have shown that bandpass filtering is advantageous because it
significantly reduces the proper model order. Mean values and standard deviations
of eigen frequencies and damping ratios have been computed by simulation of the
sample space of the AR-parameters. This was a practicable task when the models
were models of low order such as ARMA(2,1) and ARMA(4,3) models.

1 INTRODUCTION: ARMA MODELS IN GENERAL

There is a need for system identification methods which provide reliable estimates
of eigen frequencies and damping ratios of vibrating structures in civil engineering.
The typical identification problem is that the measurement of a structure only
provides reliable information about the structural response while the forces due
to wind or waves are only indirectly known due to some theoretical model. In
such cases the general assumption is that the input forces excite each structural
resonance as if the input forces were white noise. This means that the response
spectra at resonance peaks represents the shape of the transfer function of the
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structure. Hence the eigen frequencies and the damping ratios can be estimated
due to this so called local or equivalent white noise assumption.

The identification problem is to obtain a reliable model (or transformation) of
the response, e.g. the response spectrum and extract information about the modal
parameters. In such cases the application of ARMA models exists as an alternative
to the conventional combination of FFT analysis and curve fitting algorithms.

The point of the aplication of ARMA models is that the FFT analysis only provides
a non-parametric spectrum while the ARMA model gives a parametric model given
by a model in the frequency domain or a model in the time domain. This gives the

ARMA model the following advantages :

1. The eigen frequencies and the damping ratios can be estimated directly from
the parameters in the ARMA model if the proper relations are known.

2. If the uncertainties of the ARMA parameters are given by a covariance ma-
trix then the confidence intervals can be computed for the eigen frequencies
and damping ratios.

3. The numerical inaccuracies of the FFT analysis due to insuffient frequency
resolution and leakage (windowing) are avoided by the application of ARMA
models. However to avoid aliasing the sampling frequency of course still has
to be greater than the Nyquist frequency.

The disadvantage of the ARMA model is that it requires some computer capacity
because the estimation of the ARMA parameters is a non-linear problem.

The basic properties of an ARMA model is presented in the present chapter, further
explanations are e.g. given in Box- Jenkins [1] and Pandit and Wu [2]. The esti-
mation procedure of ARMA models is briefly described in chapther 2. In chapter 3
the ARMA model for a vibrating system is derived. And finally in chapter 4 iden-
tification by ARMA models is illustrated by two experimental examples. Chapter
4 can be read without having read chapter 3.1 which contains some mathematics.

1.1 The ARMA Model

An ARMA model is a parametric statistical model of a time series of some random
data. Any stationary time series can be considered as the output of some time
invariant black box model with stationary normally distributed white noise as
input, see figure 1.1. Hence the black box model transforms the white noise into
some specific random noise time series.

The white noise, a(t) is defined by:
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E[a(t)] =0 (1.1)
Ela(t)a(t + s)] = 2wSoé(s) (1.2)

where Sy is a real constant and 6(s) is diracts delta function.

White noise a(t) Time series x(t)>
~ Linear system

Figure 1.1. Black box model.

The black box is assumed to be a linear time invariant system which means that
the measured time series is assumed to be normally distributed. Throughout the
text z(¢) is assumed to have a zero mean:

Elz(t)] = 0 (1.3)

The time series is assumed to be obtained with constant sampling of a continuous
signal:

z; = z(tA), t=1,2,3... (1.4)

The ARMA model of the time series now given by:

Ty = Z‘I’iwt—i +ay — Z O;a;_; (1.5)
=1 =1

—— —_———
AR—part MA—part

This is called an ARMA(n,m) model. The parameters in the ARMA model are
real numbers. It is seen that z; is expressed as a linear combination of the z;s and
ays of the past plus of course a contribution from the white noise at the time ¢. The
sum of the z;s of the past refers to the autoregressive part of the ARMA model
(the AR part) and the sum of the a;s of the past refers to the moving average part



4 J.L.Jensen

of the ARMA model (the MA part). Hence the AR parameters are the ®s and the
MA parameters are the Os.

The discrete white noise a; is defined by:

Elaja;11]) = 0,26, k>0 (1.7)

where 6 is the Kronecker delta.

1.2 Green’s Function

In (1.5) z; was expressed as a linear combination of the z;s and a;s of the past,
however z; can also be solely expressed as a linear combination of the a;s of the
past. This is done with the Green’s function, which is analoguous to the impulse
response function defined in the continuous time domain. The Green’s function is

defined by:

t
3y =Y Gyt (1.8)
j=0

GO = ] (190,)
G =g\ + 920 + ...+ gl (1.90)

The A; can be shown to be the root of:

A" — AT — @A~ 3, =0 (1.10)
and g; is defined by:
AT — 0 A ...~ 0,

T =) = 22) - (N = M) — Nigp1) - (i — An)
i=1,2,3...,n

(1.11)

(1.10) is a very important equation because if the ®s are known the As can be
estimated and from the A;s a relation can be establish to a differential equation
in the continuous time domain. This means that the dynamic parameters of a
vibration system such as eigen frequencies and damping ratios can be determined
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directly from the estimated ®s. This will be shown in chapter 3 for the multivariate
case.

1.3 The Inverse Function

Another important function is the inverse function which is analoguous to the
Greens function but with the important difference that the black box model in
figure 1.1 has now been changed to having an input signal z; and an output signal
a;. The inverse function I; is indirectly defined by:

i
ay = Z—I]xt_] (112)
Jj=0

I=-1 (1.13q)

Byl — i oot (1.13)

v™ — Q™ - 2...-0,=0 (1.14)
and ¢; i1s found from:
. yﬂ—(I)ly.n_l_...__Q)n
= L : 1.15
el ) i Pl term] -l —T) )
b= 15258 55+ 5 TR

The equations are seen to be very similarly to the equations of the Green’s function
due to the analogy.

1.4 Stability and Invertibility

With respect to the ARMA parameters of a real structure these are the same con-
ditions analoguous to the stability conditions of a system of differential eqautions
for a real structure. These are called stability and invertibility conditions.

From (1.8) and (1.12) it is seen that the following conditions have to be satisfied:

Ikl <1 (1.16)
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vkl < 1 (1.17)

(1.16) and (1.17) mean that a finite input will always be uniquely related to a finite
output and vice versa, i.e. x; or a; will not increase without bounds. (1.16) is called
the stability conditions and (1.17) is called the invertibility conditions. (1.16) and
(1.17) can be replaced by implicit expression of ®s and Os due to (1.10) and (1.14).
The conditions are important because they have to be satisfied when an ARMA
model is estimated. It should be mentioned that sometimes the stability conditions
are called stationary conditions (Box and Jenkins [1], NAG fortran library [3]).

1.5 The Auto Covariance

The autocovariance function of z; is perhaps the most important property of an
ARMA model. It is often demanded that the covariance function of an ARMA
model has the same form as the assumed time continuous theoretical model of
the time series. The appropriate form of the covariance function is obtained by a
proper choice of the order of the ARMA model given by the AR order, n and the
MA order, m. The covariance equivalence condition ensures that the statistical
moments up to the second order of the time series are reproduced in the ARMA
model in the most accurate way.

The auto covariance function of the ARMA(n,m) model is given by:

T =Y did} (1.18)
=1
where d; is given by:
9i9; .
di=02) —1_ = 1.
Uajzl]-_/\i)‘j i=1,2,3...,n (1.19)

gi is given by (1.10) and (1.11). As it will be shown in chapter 2 the ARMA models
are estimated by minimizing the variance of the assumed input, o2. This means
that the variance of the auto covariance function given by (1.19) is minimized.
Consequently the estimated auto covariance function should be a more reliable
estimate than the sampled auto covariance function given by:

’:}/k = — Z TtT¢—k (120)
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Thus, the importance of ARMA models is seen from the fact that the ARMA
model provides a more reliable time series analysis than the FFT analysis which is
based on the sampled auto covariance function.

2 ESTIMATION STRATEGY

The model order of the ARMA model is in general chosen as (2n,2n-1) because
an ARMA(2n,2n-1) model is covariance equivalence with a vibrating linear system
with n degrees of freedom. This is shown in chapter 3. It should also be noted
that an even AR order means that the roots of (1.10) will be complex in general,
corresponding to a underdamped vibrating system as shown in chapter 3.2. These
model considerations mean that generally the AR order should be chosen to be
even.

Finally it can be shown, see Pandit and Wu [2], that any time series can. be fitted
to an ARMA(2n,2n-1) model provided that the order 2n is chosen sufficiently high.
This certain type of model leads to a too high AR or MA order which can lead
to a distortion of the deterministic system characteristics hidden in the signal.
This is known as overfitting and means that the random noise characteristics are
incorporated in the model of the system which leads to a distorted model. The
proper choice of the model order is consequently an important pratical problem in
the application of ARMA models in the field of system identification.

2.1 Parameter Estimation

The parameters of the ARMA model have to be estimated from the time series z;
only. This is done by minimising the criterion function which in the present paper
is identical with the computed variance of the white noise input, a;:

N
1
2(%. Q. _ 2
0.(9:,0;,X;) = N t=§1 ay (2.1)

This is also sometimes called the residual sum of squares (RSS) or the loss func-
tion. The minimising can be done by a recursive or batch algorithm. According
to Lefkowitz [5], the most efficient methods of each type are the RPEM method
(Recursive Prediction Error Method), see Ljung [4], and the Box and Jenkins Max-
imum Likelihood algorithm, see Box and Jenkins [1]. In this paper both algorithms
have been used in the derivation of the ARMA models.

The subject of the least square problem is to minimise a function which is nonlinear
with respect to the ARMA parameters. The nonlinear nature of the problem is
seen from the rewriting of (1.6) where n is replaced by 2n:
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2n 2n—1
ay = Ty — Z@i.’l)t_i — Z @iat_i (22)
=1 i=1

where a; becomes a non-linear function of the ARMA parameters if a;—; is elimi-
nated from the expression by the equation itself. The non-linear least square prob-
lem is usually solved by Marquardts algorithm, which is related to the Steepest
Decent method and the Newton method, see Marquardt [6].

(2.2) is limited to the case where ¢ > 2n + 1 because z_;,z_3 etc. is unknown.
Therefore the initial values:

aj=0, j=0,1,2,3...,2n (2.3)

are applied. Some initial estimates of the ARMA parameters are also necessary
because a; has to be computed in (2.1) and (2.2). Different methods are available,
see Box and Jenkins [1] and Pandit and Wu [2], but it might be sufficient to chose

estimates equal to zero.

3 THE SYSTEM OF » DEGREES OF FREEDOM

In Pandit and Wu [2] it is shown that an ARMA(2,1) model is consistent with a
linearly vibrating one-degree-of-freedom system. Meaning that there is equivalence
with respect to the covariance between the system and the model. From this special
case it follows intuitively that a system with n degrees of freedom corresponds to
an ARMA(2n,2n-1) model. This is logical because a system of n degrees of freedom
consists of n eigen modes and each mode can be considered as a single-degree-of-
freedom system. Hence n degrees of freedom correspond to the ARMA(2n,2n-1)
model. This can also be shown and the mathematical relation can be established
between the parameters in the differential equations of the vibrating system and
the ARMA model. This will be the subject in this chapter, for further reference,
see Shinozuka et al. [7] and Kozin and Natke [8].

3.1 Derivation of The ARMA Model

In the continuous time domain a vibrating system is described by a system of
linear differential equations of second order with constant coefficient given by a

mass matrix M, a stifness matrix K, a damping matrix C, a force distribution
vector f and a white noise input a(t) :

M3 + C% + Kz = fa(t) (3.1)
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(3.1) can be rewritten in the state space form by the transformation z7 = (27, ?T):
#(t) = Az(t) + ba(?) (3.2)

where 4 is a (2n X 2n) matrix given by:

j = ( :O—l: =I—1=>
-M K —-M C
= 0
= —=1._
= (377
The measured response is given by:
y=Hz (3.3)

where H is the transformation matrix between the response of the measured degrees
of freedom and the number of degrees of freedom assumed to be represented by
eigen modes in the measured response y(t).

The solution of (3.2) can be shown to be:

— t —
Z(t) = exp (A(t — 5)) + / exp (A(t — 7))ba(r)dr (3.4)
where exp (jt) is defined by the expansion:

Gy | (@ (3.5)

exp (it) = ¥ < (jt) + 30

Now if the time is discretised, ¢t = (k 4+ 1)A, s = sA, z(kA) = z; the following

solution is obtained :
— (k+1)A — _
Trt+1 = exp (AA) T + / exp (A((k+1)A — 7)) ba(r)dr (3.6)
kA

The (2n X 2n) matrix, exp (jA) has the characteristic equation:

det(exp (EA) - /\7) =0 (3.7)

which is given by the equation:
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P" 4 Bon—1p®™ -+ Bip+ Bo = d(p) =0 (3.8)

(3.8) is used in the derivation of the expression of the ARMA model for an n
degrees of freedom system. (3.8) is seen to be analogous to (1.10).

The measured response vector, ¥ obtained by (3.2) can now be expressed by the
solution (3.5) for 2n sampling points corresponding to the number of equations in
(3.2):

7 = HTy
Yre1 = Hexp (AA)zy, + Huy,
Vppo = H exp (A2A)7y, + Huy exp (AA) + Uy
(3.9)
Ukion = H exp (A2nA)T; + Z Hupyiexp(A(2n —1—1)A)
=0
where Uy is given by:
(k+1+1)A _ ~
Uty = / exp (A((k + 1+ 1)A — 7))ba(r)dr (3.10)
(k+1)A

Upon multiplying each 7 ; by 8;, 7 =0,1...,(2n — 1) and having added all the
equations together the following is obtained :
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Ukton T B2n—1Ukt2n—1 + * + B1¥r41 + Bo¥y =
H(Bo + P exp (AA) + Bz exp (A2A) + - - - + exp (A2nA))T
+A Huy + BoH(Tp exp (AA) + Tppr) + -+ -+
+Bon—1 H (g exp (A(2n — 2)A) + Tgp1 exp (A(2n — 3)A) + -+ + Tpyans)

+H(up exp (A(2n — 1)A) + Tgp1 exp (A(2n — 2)A) ++ -+ Tppon_y)  (3.11)

According to the Cayley Hamilton theorem it follows that the characteristic poly-
nomial, ¢(p) satisfies the equation:

(exp (AA)) = 0 (3.12)

which leads to the reduction of (3.11):

Ukton T Boen—1Ykton—1 + -+ B1Urp1 + Bo¥y =
Q2p—1Uk4+2n—1 + Q2n—2Ukton—2 + -+ + QU (3.13)

Here the coeflicients az,—; are here the constants found by rewriting (3.11) in terms
of Ug42n—i. It is seen that (3.13) is a multi-dimensional ARMA(2n,2n- 1) model
if and only if u given by (3.10) is white noise. From the fact that a(t) is white
noise with zero mean it follows from the definition (3.10) that uw; is white noise
with zero mean and the variance:

_ 71 9 A = T =T
Elurui])=o exp (AT)bb exp (A T1)dr (3.14)
0

a

Thus (3.13) is an ARMA model. It is shown in appendix A that this ARMA(2n,2n-
1) model has exactly the same covariance properties as the response of the model
given by the system of differential equations, (3.1). The reproduction of the correct
statistical moments up to second order is a very important quality of this ARMA
model because it provides a complete statistical description of the time series, since
z(t) has been assumed to be normally distributed.
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The equivalence between the covariance function of the model in the continuous
and discrete time domain can be found from the solutions (3.4) and (3.6), see Kozin
and Natke [8].

3.2 Estimation of The Dynamic Parameters

After the ARMA model of a linear vibrating system with n degrees of freedom has
been derived the last step is to determine the relationship between the parameters
in the ARMA model and the dynamic parameters of the vibrating system. The
dynamic parameters are here given by the eigen frequencies and the damping ratios.
It follows from the derivation of the ARMA model that the determination of the
dynamic parameters corresponds to the solution of the equations of motion for the
damped system.

The dynamic parameters are found from the 2n eigen values of A given by the
diagonal matrix ( u; ) in the state space formulation:

B2 = —wil; ﬂ:wi\/ Ci2 -1 ¢; > 1.0 (3.15a)
pyie = —wili Fwiy/1- G2 G < 1.0 (3.150)

Now the 2n eigen values of exp (EA), given by the diagonal matrix (A;) can be
found from the characteristic polynomial :

P+ Pan—1p™ T+ + Pip+ o = ¢(p) =0 (3.8)

In appendix B it is shown that the eigen values found by (3.8) are identical with
the values in the diagonal matrix (exp(u;A)):

(Ai) = (exp(pid)) (3.16)

This means that if the eigen values of (3.8) and the sampling interval A are known

the eigen values of A can be determined by:

teiyz = In(A@2)/A (3.17)

Here the index (12) refers here to the fact that the ;s are found as complex
conjugated pairs if the modes are underdamped. Finally due to (3.15) the values
of the corresponding eigen frequencies and damping ratios can be found. Hence the
relationship between the AR parameters and the eigen frequencies and damping
ratios has been established
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Since the coefficients of the characteristic equation (3.8) are real it follows that
the roots of (3.8) will occur as complex roots in conjugated pairs if the modes are
underdamped. Otherwise the roots will be real values.

The n pairs of roots will correspond to the roots of n polynomials of the second
order derived from the polynomial of order 2n given by (3.8). Consequently if only
underdamped modes are considered each polynomial of second order will represent
an eigen mode given by an eigen frequency and a damping ratio which can be found
from the two roots of the polynomial.

3.3 Statistic Distribution

If the AR-parameters are assumed to be jointly normally distributed and if knowl-
edge of the covariance matrix exists then confidence intervals of the dynamic pa-
rameters can be estimated. This is a very important feature of using ARMA models
although some problems exist in evaluating the confidence intervals.

First of all it is not possible to establish an explicit density function of the dynamic
parameters because they are determined implicitly from the AR-parameters due
to the polynomial relationship (3.8). This means that the distribution of dynamic
parameters can only be found by simulation of events in the sample space of the
AR- parameters.

A simulation program has been developed and the required number of simulated
events has been found from the convergence of the statistical estimates. Acceptable
convergence for the estimates of mean values and standard deviations were found
for about 10 sample points for each AR parameter in the model while convergence
of the correlation coeflicient between the eigen frequency and the damping ratio of
a given mode required at least 100-200 points.

It is to be noticed that the eigen frequencies and the damping ratio cannot be
expected to be normally or logarithmic normally distributed due to the non-linear
relation to the AR parameters. Thus any approximation to a given distribution
function has to be checked by e.g. a x? test.

Another problem exists because of the normal distribution assumption. Remem-
bering the stability conditions in chapter 1.3 the normal distribution does not work
if the sample space of the parameters contains a subspace where the stability con-
ditions are violated and the probability density is not insignificant. This problem
will exist for time series which are close to becoming instable and are characterised
by uncertain parameters. For a vibrating system this means e.g. lightly damped
systems or systems with eigen frequencies close to zero. For such systems the sam-
ple space of the AR- parameters must be limited by the stability conditions, and a
proper choice of a probability distribution of the dynamic parameters may be the
logarithmic normal distribution.
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4 EXPERIMENTAL EXAMPLES

Identification by ARMA models has been investigated with data obtained from
experiments. Real data are important because they give an understanding of the
individual methods and the degree of their interpretation in practice.

A heavily damped single-degree-of-freedom system and a lightly damped two-
degrees-of-freedom system have been considered. These two cases provide a good
insight in the basic nature of the identification method.

4.1 Heavily Damped SDOF System

From Stedudel [9] data of a mechanical system were provided. The data have been
further analysed by Pandit and Wu [2] and by the author of this paper. The sys-
tem was a mechanical system consisting of a mass (1.96 kg), a linear elastic spring
(851.46 N/m) and a viscous damper (dashpot) (37.46 kg/s). The mass of the sys-
tem was bombarded with random impulse shocks. These shocks were manually
produced by drumming on the mass in a manner that was intended to produce
an effect analogous to a random impulse function simular to white noise. The ex-
pected values of the eigen frequency and the damping ratio were:

f=3.3184Hz
¢ = 0.459

The response of the mass was measured by two strain gauges and sampled with
time intervals of 0.02 seconds, 130 times corresponding to a time series of 2.6 sec.
Different ARMA models have been estimated from the data and compared with
the results from Pandit and Wu [2]. The applied estimation algorithm was based
on Box-Jenkins ML-algorithm, NAG [3]. Pandit and Wu’s estimations were based
on a self designed least squares algorithm closely related to the method of Box-
Jenkins. ‘

The application of the NAG library was not without problems. Convergence of
the ARMA parameters was often a problem. This resulted in missing standard
deviations of the parameters and sometimes invalid estimates. The convergence
problems aroused when models of high order were considered. The explanation
may be that models of high order give rise to uncertain estimation because the
extra degrees of freedom are due to noise in the time series.
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The expected model of the time series obtained from the response of the system was
an ARMA(2,1) model. But estimation of models of higher order showed that the
model error, o2 given by (2.1) could be reduced further, see figure 4.1. The figure
shows the results of Pandit and Wu [2] and the results of the author. The reduction
in the variance is seen to decrease with the model order. The difference in the
development of the two curves is probably due to different criteria of convergence.
However, the estimated ARMA(2,1) and ARMA(4,3) models were almost identical
with the estimated models in Pandit and Wu.

500 -

450

400

350 |-
Pandit and Wu [31

300 1 1 1 1 1 | 1
0 1 2 3 4 5 6 7 82n [Model orderl

Figure 4.1. The reduction in the O‘g with respect to the order of the model ARMA(2n,2n — 1).

As a further investigation of the proper model order of the different models, they
have been compared in the spectral form as shown in figure 4.2. This has been
performed by transforming the ARMA models into the frequency domain. The
transformation can be obtained by z-transformation which leads to the parametric
expression of the autospectrum of an ARMA(n,m) model, see appendix C :

mifarA _ @ (m=1)if2wA _ .. _ @m|2

9

e
Sccz(f) = AZUZ . ;
y Ienzf21rA _ (ble(n—l)szﬂ'A - ... ¢n|2 (4]_)

1

0<f< 5
Even though there is only small deviations in the estimated parameter values of
the ARMA(4,3) models (about 5%) a disagreement is clearly seen in the spectral
form. The two estimated ARMA(6,5) models deviate substantially from the mod-
els of lower order, especially the model estimated in Pandit and Wu [2]. Those
disagreements can be explained by overfitting, see Ljung [4]. Overfitting means
that the model error, o2 has been minimised by adapting the model further to the
noise present in the time series. This gives rise to a violation of the parameter
estimates. The overfitted model is also recognized by a very small reduction in

o2, see figure 4.1. From figure 4.1 the correct order of the model can therefore be
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concluded to be an ARMA(4.3).

The eigen frequencies and the damping ratios have been computed directly from
the AR-parameters of the models, see table 4.1. The estimated eigen frequencies
and damping ratios are seen to agree within 6% and 11%, respectively. All the
estimated values are within the 95% confidence interval of the ARMA(2,1) model.

Sxx (f)
101

— ——— ARMA(2,1)VIB1. PANDIT
3,3184Hz ______ ARMA(43)VIB1. PANDIT
ARMA (4,3)VIB 1. NAGLIB
—..— ARMA (65)VIB1. PANDIT

100 3 —----— ARMA(6,5)VIB1. NAGLIB
I -
10-! .. .—/
E T ~.. 7
[ ~..
10_2 | 1 | ! |
0 2 4 6 8 10 f [Hz]

Figure 4.2 The autospectra of different ARMA models.

As shown in figure 4.2 the two estimation sessions of the ARMA(4,3) model give
different estimates. This is probably due to different convergence criteria. The
deviation of the results are about 1% for the eigen frequency and 13% for the
damping ratio, see table 4.1. The deviation of the damping ratio is not satisfacto-
rily. However, a proper choice could be the model estimated in Pandit and Wu [2]
since it gives the smallest model error, see figure 4.1. Thus it is shown that it is
necessary to be aware of the convergence criteria when ARMA models are being
estimated.

The eigen frequency and the damping ratio of this model are seen to deviate 11%
and 10% from the expected values, respectively. Those deviations may be due to the
possibility that the theoretical parameters or model give an insufficient description
of the real system.

The confidence intervals have been computed numerically for the ARMA(2,1) mod-
els assuming the eigen frequency and the damping ratio were normally distributed.
The normal distribution has been applied since the variation coefficients of both
parameters were found to be small. The simulated joint density function of the
eigen frequency and the damping ratio is shown in figure 4.3. About 1600 points
were more than sufficient to give reliable statistical estimates. However, in the
figure 40000 points have been used to get a smooth graph. The statistical analysis
showed that the eigen frequency and the damping ratio of the first eigen mode were
uncorrelated.
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fi Hz 1
Expected values 3.3184 0.459
ARMA(2,1) computed from
Pandit and Wu 3.8590  T13113 05328 + 0.2606
ARMA(4,3) computed from
Pandit and Wu 3.6410 *) 0.4777 *)
ARMA(4,3) computed from
estimates obtained by NAG 3.6871 *) 0.4140 *)

Table 4.1. Computed gi%en frequencies and damping ratios from the estimated ARMA parameters
with 95% confidence intervals. *) Confidence intervals have not been computed due to lack of
statistical information about the ARMA parameters.

Figure 4.3 Simulated joint density function of the eigen frequency and the damping ratio.

4.2 Lightly Damped 2DOF System

A lightly damped system with two degrees of freedom was investigated, see figure
4.4. The system was a monopile with two concentrated masses. The two degrees
of freedom assumption was justified by filtering the excitation and by appropriate
unidirectional excitation of the monopile. The experiment is described in detail in
Jensen [10].
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Figure 4.4. The monopile model and the excitation system.

The excitation was performed by a shaker table which was displacement controlled
by a hydraulic system. The base displacement was white noise filtered by a lowpass
filter with a cut-off frequency about 15 Hz and further filtered due to the effect
of the hydraulic excitation system. The excitation force on mass no. ¢ was given by:

Py (t) = —Miytis(t) (4.1)

where uy(t) was the acceleration of the base. This meant that a pure white noise
displacement gave the force spectrum for the force on mass no. ::

Soptiy(f) = 27 F)* My Suyuy () (4.2)

Clearly this was not a white noise spectrum. However, white noise was assumed
locally around each resonance peak of the transfer functions because the slope of
the input spectrum was assumed to be sufficiently flat compared with the sharpness
of the resonance peaks.

It can be noticed that the force input and consequently the measured response
was still normally distributed random signals as far as the system was linear and
the input was normally distributed. This meant that the covariance equivalence
property of the ARMA model still gave a sufficient statistical characterisation of
the response.

Other contributions to the distortion of the time series applied to the ARMA
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modelling were the failure of the accelerometers at frequencies less than 0.9 Hz
and the double integration of the accelerations to displacement signals. These
contributions distorted the measured output and consequently also the estimated
ARMA models. However the most important source to model error and uncertainty
was without doubt the non-white force excitation.

Two procedures of ARMA modelling were performed. The purpose of the first
procedure was to fit an ARMA model to the measured time series containing two
excited eigen modes. The second procedure contained a bandpass filtering of the
time series which meant that in principle only one of the eigen modes were present
when the ARMA models was estimated. The second procedure resulted in ARMA
models corresponding to each eigen mode.

The first procedure was performed applying the NAG library [3]. The time series
were the measured displacements of the two masses of the monopile. For mass no.1
at the top and mass no.2 at the middle the sampling rates were 40 Hz and 60 Hz,
respectively. The cut-off frequency was about 12 Hz and the sampling time was
120 seconds.

The satisfactory model order was determined from the reduction in the model
error, 02, When the model error had obtained a minimum, the model order was
considered as being satisfactory. Furthermore convergence of the eigen frequencies
and the damping ratios were considered as a measure of the applicability of the
model. Finally the agreement between the results of the two measured time series
also gave some indication of the appropriate model order.

As an example figure 4.5 shows the convergence of the eigen frequencies and damp-
ing ratios compared with the development of the model error as a function of the
model order. The expected order of the model was an ARMA(4,3) model but
both figures show that a considerably higher order is necessary before some kind
of convergence has been obtained. In fact it seems as if an ARMA(14,13) model is
satisfactory corresponding to a system with 7 degrees of freedom. Any higher order
of the models is seen to give no reduction in the model error and the parameters
have also somewhat converged. Hence the ARMA(14,13) is chosen as the correct
model.

A plausible explanation of this high model order is the shape of the force spectrum.
Due to the violated white noise assumption the first eigen mode has not been very
strongly represented in the time series. In fact the ratio between the force spectral
density at the two eigen frequencies was about a factor 1835. This explains why it
has been impossible to identify the first mode in the ARMA models of lower order,
see figure 4.5. The mode has simply been hidden in noise.
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Figure 4.5. The convergence of the eigen frequencies, damping ratios and 02 as functions of the

model order. Factor on UZ : 1073, Time series: The displacement response of mass no 2.

The convergence of the eigen frequencies and the damping ratios can be compared
in figure 4.5. It is seen that the eigen frequencies converge much more quickly than
the damping ratios. This shows the basic fact that the estimation of the damping
ratio of a ligthly damped system is more uncertain than the estimation of the eigen
frequencies.
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The estimated eigen frequencies and damping ratios are shown in table 4.2. From
the table it is seen that the estimated eigen frequencies of the two models agree
very well. On the other hand it is seen that the agreement between the damp-
ing ratios based on the response of the two different masses does not seem to be
satisfactory. However, since the statistical uncertainty is not known this might be
a wrong conclusion. The statistical uncertainty has not been computed because
the NAG-routine failed to give information about the covariance matrix of the
ARMA parameters. The different sampling rates may also have had influence on
the results.

fi G f2 Gz
Hz Hz
ARMA(14,13) for the dis-
placement of mass 1. 1.1054 0.00127 7.1921 0.00065
ARMA(14,13) for the dis-
placement of mass 2. 1.1070 0.00256 7.1900 0.00045

tTable 4.2. Computed eigen frequencies and damping ratios from the estimated ARMA parame-
ers.

The second procedure of the ARMA modelling was to filter the time series before
an ARMA model was estimated. This procedure ensured that only one mode was
present in the time series. The purpose was to obtain a stronger representation of
the first eigen mode and to reduce the proper order of the ARMA models.

The filtering was done by a Yulewalker filter of order 10, available in the software
package MATLAB [11]. The sampling frequency of the time series was 50 Hz
and the cut-off frequency about 12 Hz. The sampling time was 120 seconds. The
expected model was an ARMA(2,1) model because only one mode was supposed to
be present in the signals. However, it was found that an ARMA(4,3) model might
also be appropriate while all the models of higher order did not provide reasonable
results or any substantial reduction in the model error o2, see figure 4.6. Thus
these models of higher order were considered as overfitted models.
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Figure 4.6. The model error expressed by ¢ g. a) First eigen mode b) Second eigen mode. Time

series: Displacement response of mass no 2.

In fact the development of o2 as a function of the order of the model showed that
when the time series was filtered to obtain only the second mode the reduction of o2
of the ARMA(2,1) and ARMA(4,3) model was about. When the first eigen mode
was considered this ratio was about 3000 to 4500 in magnitude. This indicates
that the correct model of the time series of the first eigen mode is an ARMA(4,3)
model while the second eigen mode may be modelled by an ARMA(2,1) model.

The explanation of the different models is the force spectrum which primarily led to
an excitation of the second eigen mode while the first eigen mode was only weakly
excited and consequently uncertain to any interpretation. Furthermore, the applied
filter was not able to completely eliminate the influence of the second mode in the
time series where only the first mode was intended to be present. The mean values
and the standard deviations of the eigen frequencies and the damping ratios have
been computed by simulation of the sample space of the ARMA parameters, see
table 4.3. The ARMA parameters were assumed to be normally distributed with
some limitations. The limitations appeared because negative values of the eigen
frequencies and the damping ratios were not allowed. The eigen frequencies were
assumed to be normally distributed and the damping ratios were assumed to follow
a logarithmic normally distribution. This was justified by a x?-test. The statistical
analysis showed that the eigen frequency and damping ratio of a given mode were
uncorrelated.
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Time ARMA f C

series Model Hz

Mode 1

Displ. (2,1) 1.1116  #£0.0019 0.00109  =0.00065
Mass 1 (4,3) 1.1069  =£0.0001 0.00189  =0.00101
Mode 1

Displ. (2,1) 1.1129  £0.0020 0.00294  70.00154
Mass 2 (4,3) 1.0964  40.0001 0.00118  =0.00083
Mode 2

Displ. (2,1) 7.1935  £0.0008 0.00005  =0.00003
Mass 1 (4,3) 7.1906  30.0000 0.00066  =-0.00000
Mode 2

Displ. (2,1) 7.1938  =£0.0008 0.00007  =-0.00004
Mass 2 (4,3) 7.1813  =0.0301 0.00274  40.00115

Table 4.3. Computed eigen frequencies and damping ratios from the estimated ARMA parameters
with standard deviations.

It is seen that the ARMA models of the two analysed time series can now be
compared by the sample values of the mean values and standard deviations of the
eigen frequencies and damping ratios given in table 4.3.

If the ARMA(4,3) model is chosen as the proper model of the time series con-
taining the first eigen mode a deviation between the estimated mean values of the
parameters are found depending on whether the response was measured at mass
1 or 2. The deviation between the eigen frequencies is about 1% while the devi-
ation between the damping ratios is about 60%. However, the latter is covered
by the standard deviation corresponding to a coefficient of variation about 50-70%
of the damping ratio. The deviation between the eigen frequencies cannot be di-
rectly explained by the uncertainty of the parameter. A possible explanation may
be insufficient covergence criteria of the estimations of the ARMA models. The
bandpass filtering may also have had some influence.

It is seen that if the ARMA(2,1) model is chosen as the correct model of the
time series containing the second eigen mode, the estimated values of the eigen
frequency and damping ratio are almost independent of whether the time series
has been chosen as the response of mass 1 or 2. This means that the second eigen
frequency and damping ratio have been uniquely determined for this model. With
respect to the ARMA(4,3) model of the two time series it is seen from table 4.3
that neither the eigen frequencies nor the damping ratios agree. Nevertheless for
the time series of the displacement of mass 1 a comparison shows that the results
of the ARMA(4,3) model agree very well for the second mode. Consequently, the
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ARMA(4,3) model cannot be rejected. The disagreement of the results of the two
ARMA(4,3) models might be due to insufficient convergence.

Having discussed the proper models of the two procedures it is now possibly to
compare the results and discuss the advantages and disadvantages of the two pro-
cedures.

A comparison of the estimates of the eigen frequencies shows that they deviate
about 1% with a coefficient of variation of approximately 0.0% of the ARMA(2,1)
or ARMA(4,3) models. This is quite acceptable since the deviations are likely to
be covered by the uncertainties of the ARMA(14,13) models which the applied
ARMA algorithm was not able to compute.

From the second procedure it was found that the damping ratios of the first mode
had a variation coefficient of about 50%. The deviations between the damping
ratios of the two procedures were about 54% or up to 116% depending on the choice
of reference value. Due to the high uncertainty this deviation does not indicate
any significant error between the two procedures especially because the deviations
are ambiguous. However, with respect to the second mode this is not the case. A
comparison of the two procedures shows that the first procedure gave estimates of
the second damping ratio which exceeded the estimates of ARMA(2,1) model of
the second procedure by a factor 10. On the other hand, if the ARMA(4,3) model
was chosen as the proper model of the second procedure the damping estimates
deviate less than 2% for the results of the time series of the displacement of mass
1 while the estimates from the time series of the displacement of mass 2 disagree
completely. Hence some confusion exists with respect to the proper model order
and the determination of the second damping ratio. The explanation might be
an insufficient convergence criterion. This should have been studied further if any
final conclusion were to be made.

The damping estimate of the first eigen mode has also been compared with the
results of a free decay, see Jensen [10]. Here the damping ratio was found to
¢1 = 0.00108 % 0.00002 which lies within the uncertainty of the estimates of the
ARMA models provided by the second procedure.

The comparison -of the two procedures has shown that both procedures can be
applied since the parameter estimates computed by the two procedure agree quite
well with the exception of the second damping ratio. However, the second proce-
dure seems to be the most advantageous because of the considerably smaller order
of the most appropriate model. The small model order means that the estimation
requires considerably less computer time and it means that the ARMA estimation
algorithm almost always succeeds in computing the uncertainty of the ARMA pa-
rameters. Finally, due to the low model order it is a practicable task to compute
the statistics of the eigen frequencies and the damping ratios by simulation of the
sample space of the AR parameters.
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5 CONCLUSION

From the theoretically derived expressions it has been possible to compute reliable
statistical estimates of the eigen frequencies and the damping ratio of a lightly and
heavily damped vibrating system.

The statistical estimates were found by simulation of the sample space of the AR
parameters. This can be done with moderate computer costs for ARMA models of
low order. The statistical analysis showed that the estimates of the eigen frequency
and the damping ratio of a given mode were uncorrelated. The eigen frequencies
of the lightly damped system were estimated with variation coefficients about 0%
whereas the variation coefficient was found to be about 17% for the heavily damped
system. In both cases the damping ratio showed a variation coefficient about 50%.
Here it can be noticed that estimates of the damping ratio can be found with a
variation coefficient as small as 1% from a free decay, see Jensen [10]. It should
be further studied whether this significant difference in uncertainty is due the to
random nature of the vibration or is caused by the modelling of the damping
mechanisms in the structure.

The appropiate model orders of the ARMA models were found from from the
development in the model error of the ARMA model as a function of the model
order. Initial estimates of the model order was found from theoretical models and
FFT analysis. The convergence of the eigen frequencies and the damping ratios
were also applied as an indicator of the appropriate model order. The comparison
of the estimates of different time series of the same structure also gave valuable
information. The development of a objective choice of the model order may be
subject to further research.

More knowledge about the convergence demands in the estimation of the ARMA
parameters should also be studied since it is of significant importance for the final
estimates of the eigen frequencies and the damping ratios.

The application of ARMA models has shown that the most advantageous procedure
to estimate the eigen frequencies and the damping ratios is to ensure that only one
mode is present in the time series. This have been done with succes when one of
two modes was very weakly excited. However, if two eigen modes are coupled close
together this may not be possible. Thus the application of ARMA models in these
cases may be subject to further study.
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Appendix A

The equivalent covariance properties can be derived directly from the state space
formulation in the continous time domain (3.2) and the discrete time domain (3.6).

In the continuous time domain it follows from (3.2) that:

— T (s) = AT(1)2"(s) + Ba(t) 2" (s) (41)

dz(t)
t
Ela(t)z(s)] =0, s<t (A2)

From the relation between the cross correlation matrix of z(¢) and #(t) and the
auto covariance matrix of z(¢):

=  dC,,(7)
Caslr)= 7 (A3)
it follows that:
%Em(t —8)=AC,,(t—s) (A4)
which has the solution:
6ZZ(T) = exp (ZT)@II(O) (45)

= exp (ESA)EM(O), 7 =8

In the same way it is possible to obtain an expression for the covariance function
in the discrete time domain:

BT, = exp (AA)TRTL_, + WL, (46)
E[ﬂkfk_s] =0, k>k-s (A7)

Caals +1) = exp (AA)E[7:7L_,]

— A8
= exp (AA)C o (s) (48)

This leads to the solution:
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Cou(s) = exp (AsA)C,5(0), s=1,2... (A9)

Now, if (A9) is compared with (Ab) it is seen that the two covariance functions are
equivalent. This means that the ARMA(2n,2n-1) model should be chosen when
an n degrees of freedom system is considered.

Appendix B

Lemma: Assume that 4 has the eigen values given by the diagonal matrix ();)
then exp (AA) will have the eigen values given by the diagonal matrix (exp (A;A)).

Proof: If A has the eigen values (A;) then the matrix (j)n will have the eigen
values (A;"). This means that if:

(exp (AA) — Texp (AMA)T = 0 | (B1)

is expanded into a Taylor expansion:

= = 1 = .2 1= 2 = = 1 = 2 1 = n__
T+A0+5(AD) +-+- —(AA)" T -TAr = Z:(TAN) == —(TAN )z =0
(B2)

it is seen that the Lemma is satisfied.

Appendix C

The expression of the auto spectrum of z; can be derived from the ARMA model
of the time series:

rr— D124 - — ‘I'znfc(t—zn) =as — ela(t—l) T @(2n—1)a(t—2n+1) (Cl)
If the ztransformed defined by:
+ oo
Y(z)= Z yiz " (C2)
t=—o0

if used in (C1) the following transfer function is obtained:
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1-— @12_1 G 18 ®2n_1z_(2”_1)
1-— ‘1)12:_1 88— (I)gnZ_Qn

H(z) = (C3)
Now if z is replaced by exp (iw) one obtains the transfer function given in the
frequency domain:

exp (iw)(1 — Orexp((2n — 1)iw) -+ — Ogp_1)

exp (2niw) — ®; exp ((2n — 1)iw) — Po, (C4)

H(w) =

If (C4) is multiplied with the conjugated of (C4) the squared magnitude of H(w)
is determined to be:

2n —1)iw) — © on —2)iw) — -+ — Ogp_1]?
||H(w)||2 — “ €Xp (( n .)zw) 1 €Xp (( n ')Zw) 62 2 1 “ (05)
|| exp (2niw) — 1 exp ((2n — 1)iw) — - - - — Boy |
Now the response spectrum S, can be determined by
Sze = ”H(w)HQSM (C6)

with Sy, = 0,%/(27). However, the above relations only apply to the double-sided
discrete frequency domain and the aim is a one-sided continuously auto-spectrum.
This is obtained due to:

¥{exp (iwhs)) = %f’(w) )

where ¥ and Y are the discrete and the continuous FFT-transformed respectively.
This leads to the expression of the continuous one-sided auto-spectrum of ay:

1

Saalf) =22m)A80e 0SF< (C8)

If (C8) is applied in (C'6) with (C'5) the final expression for the one-sided continuous
auto-spectrum is found as:

o llexp ((2n — 1)iAf2r) — ©1 exp ((2n — 2)iAf27) — -+ Ogp_y||?
|| exp (2niAf27) — ;1 exp ((2n — 1)iAf2r) — -+ — By

Seal ) = 2Aa;,

1
Oﬁfﬁﬁ (C9)
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