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We discuss the two-channel Kondo lattice model where a single localized spin per unit cell is coupled to two 
different conduction electron orbitals per unit cell. The calculation is done using the bond fermion formalism. 
For a Hamiltonian which is symmetric under exchange of the conduction channels we find a spontaneous 
breaking of this symmetry, i.e., the Kondo singlets are formed almost exclusively between the localized spin 
and only one of the two conduction orbitals. In addition to this channel-ferromagnetic phase we also find a 
channel-antiferromagnetic phase where the preferred conduction electron orbital alternates between sublattices. 
The parameter which determines the transition between these phases is the interchannel hybridization.

I. INTRODUCTION

Heavy fermion compounds are a much studied class of
strongly correlated electron systems. Amongst other phenom-
ena these compounds show a variety of phase transitions
which occur as a function of temperature and some other
experimental parameter, such as pressure, alloying, or mag-
netic field. Often the transition temperature approaches zero
as a function of the second parameter, resulting in quantum
critical points and superconducting domes [1], phenomena
which have attracted considerable interest.

A widely studied model to describe these compounds is
the Kondo lattice model (KLM), which is the strong coupling
version [2] of the more realistic periodic Anderson model.
It describes a single conduction band coupled to a periodic
array of localized spins, each with S = 1

2 , by a Heisenberg-
like exchange term. In actual heavy fermion compounds the
localized spins correspond to the electrons in the 4 f shell of
rare earths or the 5 f shells of actinides.

A single S = 1
2 spin coupled to a conduction band forms

a bound state with one conduction electron, resulting in a
singlet ground state—the well-known Kondo effect. Thereby
for weak coupling (J � t) the binding energy—the so-called
Kondo temperature—is kBTK ∝ We− 1

ρJ , with W and ρ the
bandwidth and density of states of the conduction band
[3–12]. A noteworthy exact result for the lattice system is
the fact that even for the KLM, where the f electrons are
strictly localized, they do contribute to the Fermi surface vol-
ume [13] provided the system is a Fermi liquid. Approximate
results for the lattice models have been obtained in mean-field
approximation [14–26]. The resulting band structure is con-
sistent with a simple hybridization picture: A dispersionless
effective f band close to the Fermi energy of the decoupled
conduction band hybridizes with the conduction electron band
via an effective hybridization matrix element ∝ kBTK at weak
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coupling. This results in a Fermi surface with a volume cor-
responding to itinerant f electrons and the weakly dispersive
“heavy” bands characteristic of heavy fermion compounds.

On the other hand, the single-band KLM is too simple to
describe actual heavy fermion compounds [27]. First, such
compounds usually have complicated band structures with
more than one “heavy” band. Moreover, the relevant spin
degree of freedom for the 4 f or 5 f shell is the total angular
momentum J and a mapping to an S = 1

2 spin is possible only
if the crystalline electric field results in a doubly degenerate
ground state. Accordingly, various variants of the KLM have
been suggested [27] and here we consider one of them, the
two-channel KLM [28,29].

More precisely, we consider a version with a single S =
1
2 f spin and two uncorrelated conduction band orbitals per
unit cell. We define f †

i,σ to denote the creation operator for

an f electron with z-spin σ in the unit cell i, and c†
i,α,σ to

be the creation operator for an electron with z-spin σ in the
conduction electron channel α ∈ {1, 2} in unit cell i. The
Hamiltonian then reads H = Ht + HJ whereby

Ht =
∑
i, j

∑
α,β

∑
σ

t(i,α),( j,β ) c†
i,α,σ cj,β,σ , (1)

HJ =
∑
i,α

Jα �Si · �σα,i. (2)

Here �σα,i = 1
2 c†

α,i,σ �τσσ ′ cα,i,σ ′ with �τ the vector of Pauli ma-

trices, whereas �Si denotes the spin operator of the f electrons.
By virtue of its derivation as a strong coupling limit, this
Hamiltonian operates in the subspace of the Hilbert space with
exactly one f electron per unit cell.

In writing down (2) we have neglected the possibility of
interband exchange scattering, which, however, is no loss of
generality. Namely dropping the site-index i from all operators
for brevity, the most general exchange term at site i could be
written as

HJ = 1

2

∑
σ,σ ′

�S · �τσσ ′
∑
ν,μ

a†
ν,σ J̃νμ aμ,σ ′ ,



where we have introduced the “original” fermion operators
a†

ν,σ . Hermiticity requires J̃νμ = J̃∗
μν and we call the eigenvec-

tors and eigenvalues of the 2 × 2 matrix of exchange constants
v and J , respectively:∑

μ

J̃νμ vμ,α = Jα vν,α.

Introducing new conduction orbitals by the unitary transfor-
mation,

aν,σ =
∑

α

vν,α cα,σ ⇒ cα,σ =
∑

ν

v∗
ν,α aν,σ ,

the exchange term takes the form (2). Since both spin direc-
tions are transformed identically and independently, the effect
on Ht is a unitary transformation of each of the 2 × 2 matrices
Ti, j with elements t(i,ν),( j,μ). The form (2) therefore implies no
loss of generality.

We will consider the above model for a two-dimensional
(2D) square lattice with periodic boundary conditions and
denote the number of lattice sites by N , the number of con-
duction electrons in channel α by Nc,α , whereas densities are
denoted by nc,α = Nc,α/N . We also introduce nc = nc,1 + nc,2

and the total number and density—including the f electrons—
by Ne and ne. Obviously ne = nc + 1.

By Fourier transform the kinetic term for the conduction
electrons becomes

Ht =
∑
k,α,σ

εk,α c†
k,α,σ ck,α,σ

+
∑
k,σ

(Vk c†
1,k,σ ci,2,k,σ + H.c.). (3)

In all that follows we will use

εk,α = −tα (cos kx + cos ky),

Vk = −V (cos kx + cos ky).

The two-channel KLM has attracted considerable attention
[30–39]. Here we study the lattice version of the model for
conduction electron densities nc close to unity by the bond
fermion method [40–45]. This is a mean-field-like approach
which cannot be expected to capture exotic physics such as
non-Fermi-liquid behavior [30]. On the other hand, for the
single-band KLM it has been found [43,44] that this technique
reproduces quite well the antiferromagnetic phase transitions
and the resulting phase diagram comprising the paramagnetic
and two antiferromagnetic phases with different Fermi surface
topology [46–51]. It therefore seems worthwhile to apply this
method also to the two-channel version of the KLM.

II. BOND FERMION FORMALISM

The bond fermion formalism ultimately is a strong cou-
pling approximation which should work best in the limit
J 	 t . However, various calculations have shown [43,44] that
it describes the single-band KLM quite well down to values
of J/t ∼ 1 where, for example, the magnetic phase transitions
take place in the single-band KLM [43,44].

We consider the limit J/t = ∞ and assume prescribed
values of nc,1 and nc,2 such that nc,1 + nc,2 = 1. Then, a

translationally invariant state of lowest energy is

|	0〉 =
∏

i

|i, 0〉,

|i, 0〉 = cos 
√
2

(c†
i,1,↑ f †

↓ − c†
i,1,↓ f †

↑ )|0〉

+ sin 
√
2

(c†
i,2,↑ f †

↓ − c†
i,2,↓ f †

↑ )|0〉, (4)

with nc,1(
) = cos2(
), nc,2(
) = sin2(
). This state has
a nonvanishing value of the channel-ferromagnetism order
parameter,

	 = 〈�Si · (�σ1,i − �σ2,i )〉,
introduced by Hoshino et al. [33]. Namely for the state (4)
	 = − 3

4 cos(2
). This order parameter measures different
degrees of singlet formation between the localized spin and
the two channels of conduction electrons.

Next, letting J/t → finite will result in charge fluctuations,
which means electrons are transferred between unit cells, re-
sulting (first) in cells occupied by three electrons or a single
electron. The basic idea of the bond fermion formalism is to
interpret these cells with three electrons or a single electron as
occupied by an electronlike or a holelike fermion and derive
a Hamiltonian for these. The angle 
 then is determined by
minimizing the energy. For later reference we note that the
expectation value of HJ in the state |i, 0〉 is

e0 = − 3
4 (J1 cos2(
) + J2 sin2(
)). (5)

We next discuss the single-cell states with three electrons and
define the following basis states with z spin 1

2 ,

|i, 3, 1,↑〉 = c†
i,1,↑c†

i,2,↑ f †
i,↓|0〉, (6)

|i, 3, 2,↑〉 = c†
i,1,↑c†

i,2,↓ f †
i,↑|0〉, (7)

|i, 3, 3,↑〉 = c†
i,1,↓c†

i,2,↑ f †
i,↑|0〉. (8)

We diagonalize HJ in the basis of these states, that means we
make the ansatz,

|i, 3, ν,↑〉 =
3∑

λ=1

γν,λ|i, 3, λ,↑〉,

where the energy Eν and coefficients γν,λ are obtained by
diagonalizing the matrix,

H3e =

⎛
⎜⎝

− J1+J2
4

J2
2

J1
2

J2
2

J1−J2
4 0

J1
2 0 J2−J1

4

⎞
⎟⎠.

There are two additional states with three electrons which do
not couple to the ones introduced so far:

|i, 3, 4,↑〉 = c†
i,1,↑c†

i,1,↓ f †
i,↑|0〉,

|i, 3, 5,↑〉 = c†
i,2,↑c†

i,2,↓ f †
i,↑|0〉, (9)

both of which have energy Eν = 0. Basis states with z spin
− 1

2 are constructed in an analogous way.



As already stated, in the bond fermion formalism a single
cell i in one of the states |i, 3, ν, σ 〉, ν ∈ 1, 2, . . . 5 is consid-
ered as occupied by an electronlike fermion, created by b†

i,ν,σ .
The possible states of a cell with a single electron—which
necessarily is the f electron due to the constraint that ap-
plies to states of the KLM—are |i, 1, σ 〉 = f †

i,σ |0〉. These are
eigenstates of HJ with eigenvalue E = 0. In the bond fermion
formalism, if cell i is in the state |i, 1, σ 〉 we consider it as
occupied by a holelike fermion, created by a†

i,σ .
Denoting the set of cells occupied by a single electron

(three electrons) by Sa (Sb) and defining Ss as the comple-
ment of Sa ∪ Sb the correspondence between the bond fermion
states and those of the true KLM is( ∏

i∈Sa

a†
i,σi

)( ∏
j∈Sb

b†
j,ν j ,σ j

)
|0〉

→
(∏

i∈Sa

|i, 1, σi〉
)(∏

j∈Sb

| j, 3, ν j, σ j〉
)(∏

n∈Ss

|n, 0〉
)

. (10)

In other words, the cells unoccupied by fermions are consid-
ered to be “filled up” by singlets with two electrons. Operators
for the bond fermions are now derived by demanding that their
matrix elements between the states on the left-hand side of
(10) are equal to those of the true KLM Hamiltonian between
the corresponding states on the right-hand side of (10). Due
to the product nature of the latter, these matrix elements are
usually easy to calculate. For example, the operator for the
total number of electrons (including the f electrons) becomes

N̂e =
∑
i,σ

(
5∑

ν=1

b†
i,ν,σ bi,ν,σ − a†

i,σ ai,σ

)
+ 2N (11)

=
∑
k,σ

(
5∑

ν=1

b†
k,ν,σ

bk,ν,σ + a−k,σ̄ a†
−k,σ̄

)
, (12)

whereas the number of c electrons in channel α becomes

N̂c,α =
∑
i,σ

(
5∑

ν=1

(nα,ν − nc,α (
))b†
i,ν,σ bi,ν,σ

− nc,α (
) a†
i,σ ai,σ

)
+ Nnc,α (
), (13)

with n1,ν = (1, 1, 1, 2, 0), n2,ν = (1, 1, 1, 0, 2). It is easily
verified that N̂c,1 + N̂c,2 = N̂e − N as it has to be.

The exchange term (2) becomes

HJ =
∑
i,σ

(
5∑

ν=1

(Eν − e0) b†
i,ν,σ bi,ν,σ − e0 a†

i,σ ai,σ

)
+ Ne0

=
∑
k,σ

(
5∑

ν=1

(Eν − e0) b†
k,ν,σ

bk,ν,σ + e0 a−k,σ̄ a†
−k,σ̄

)

− Ne0. (14)

To transcribe c†
i,α,σ we introduce the column vector of fermion

operators b†
σ = (b†

1,σ , b†
2,σ , b†

3,σ , b†
4,σ , b†

5,σ
, aσ̄ )T (the site

index i has been omitted for brevity) when

c†
i,α,σ = 1√

2
vα,σ · b†

i,σ . (15)

The elements of vα,σ are 〈i, 3, ν, σ |c†
i,α,σ |i, 0〉 for the first five

entries and 〈i, 0|c†
i,α,σ |i, 1, σ̄ 〉 for the sixth. They are given by

v1,↑ = (sin 
(γν,1 − γν,2),− cos 
, 0, cos 
),

v2,↑ = (cos 
(γν,3 − γν,1), 0,− sin 
, sin 
),

v1,↓ = (sin 
(γν,1 − γν,2),− cos 
, 0, cos 
),

v2,↓ = (cos 
(γν,3 − γν,1), 0,− sin 
, sin 
). (16)

The first entry (involving the γν,λ) actually represents the
first three entries, all of which have the same form but with
ν ∈ {1, 2, 3}. Switching to the Fourier transform c†

k,α,σ means

introducing b†
k,ν,σ and a−k,σ̄ and the kinetic energy becomes

Ht = 1

2

∑
k,σ

b†
k,μ,σ Tμ,ν (k, σ ) bk,ν,σ ,

Tμ,ν (k, σ ) =
∑

α

εk,α vμ,α,σ vν,α,σ

+Vk (vμ,1,σ vν,2,σ + vμ,2,σ vν,1,σ ). (17)

Adding (14) and (17) we obtain the complete bond fermion
Hamiltonian H (k, σ ). This is then diagonalized by making
the ansatz for the quasiparticle operators,

β
†
k,λ,σ =

∑
ν

γk,λ,ν,σ b†
k,ν,σ , (18)

and demanding [H (k, σ ), β†
k,λ,σ

] = Ek,λβ
†
k,λ,σ

. By virtue of
the unitarity of (18) and the form of the operator vector b†

σ

(see above) it follows that the operator of electron number (12)
becomes

N̂e =
∑
k,λ,σ

β
†
k,λ,σ βk,λ,σ .

This means that the quasiparticle bands have to be filled as
if the localized f electrons would contribute to the Fermi
surface volume, which is in agreement with both experiments
on heavy fermion compounds and the exact result in Ref. [13].

We can now determine the chemical potential μ for given
Ne and determine the angle 
 in (4) by minimizing the energy.
To avoid numerical problems with a steplike Fermi function at
T = 0 we rather work at a small finite temperature βt = 0.001
and compute the Helmholtz free energy F = 〈H〉 − T S.

However, there is a complication regarding the number of
c electrons. By a well-known sum rule the number of c elec-
trons of channel α = 1, 2 equals the spectral weight integrated
up to the chemical potential. Using the resolution of the c
operators (15) and the ansatz (18) this becomes (see the Ap-
pendix)

Sc,α = 1

2

∑
k,λ,σ

f (Ek,λ)

∣∣∣∣∣
∑

ν

γ ∗
k,λ,ν,σ vα,ν,σ

∣∣∣∣∣
2

, (19)

where f (E ) is the Fermi function. Numerical evaluation
shows, however, that this is in general not equal to the
c-electron numbers obtained by taking the expectation values



of (13). In other words, we obtain different numbers of c elec-
trons depending on whether we count them in real space and
or if we integrate the spectral weight. As discussed in detail
in Ref. [40] this is a consequence of the small quasiparticle
weight of the “heavy” parts of the quasiparticle bands, which
in turn is a consequence of the correlated nature of the model.
However, this problem can be fixed [40] by enforcing the
equality of real space count (13) and spectral-weight count
(19) for the c electrons by means of suitable Lagrange multi-
pliers. This is possible because the spectral weight (19) can be
represented as expectation value of the operator,

Ŝc,α = 1

2

∑
k,σ

b†
k,μ,σ Nμ,ν (k, σ ) bk,ν,σ ,

Nμ,ν (k, σ ) = vμ,α,σ vν,α,σ . (20)

As discussed in Refs. [40,43] this has the additional appealing
feature that it keeps the “heavy” bands near the chemical
potential of the unhybridized conduction band, which is in
agreement with the hybridization picture. In the present case
we define N̂c,± = N̂c,1 ± N̂c,2 and analogously for the “spec-
tral weight operator” Ŝ and replace

H → H − μ(N̂e − Ne) − λ(Ŝc,+ − N̂e + 1) − λ1(N̂c,− − Ŝc,−).

The Lagrange multipliers λ and λ1 are adjusted to minimize
the Helmholtz free energy.

We conclude this section by a discussion of the strong
points and demerits of the bond fermion formalism. As has
become obvious from its derivation, it is by nature a strong-
coupling approach which should work best for large J/t . It
is therefore clear that the bond fermion formalism can never
reproduce the energy scale of the Kondo temperature kBTK ∝
exp(−ρJ ), believed to be important in the limit J/t → 0. On
the other hand, previous studies for the single-channel KLM
have shown [43,44] that it is reasonably reliable down to
J/t ∼ 1, in that the bond fermion formalism reproduces quite
well [43] the rather intricate phase diagram of the 2D KLM in
the J − ne plane [46–51]. One reason may be the following:
Inspection shows that all basis states on the right-hand side
of (10) comply with the requirement to have exactly one f
electron per cell. On the other hand, it is clear from (10)
that states where two bond fermions occupy the same cell are
meaningless, which means the bond fermions have to obey the
constraint that no two of them occupy the same cell. Treat-
ing them as free fermions—as is done above—this hard-core
constraint is simply relaxed. On the other hand, for large J/t
and conduction electron densities nc,1 + nc,2 close to 1 the
densities of bond fermions are small. Accordingly, the proba-
bility that two of them occupy the same site and thus violate
the hard-core constraint is small as well, so that relaxing the
constraint may be reasonably justified. Put another way, the
bond fermion formalism trades the KLM-inherent constraint
for the dense system of f electrons for the constraint on the
dilute system of bond fermions, so that relaxing the constraint
is probably a less severe approximation.

However, there is a problem specific to the present version
of the KLM, namely we did not include states with four or
five electrons in a unit cell, which clearly belong to the Hilbert
space of the Hamiltonian. A reason why such states probably
have small weight in the ground state is that they have higher
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FIG. 1. Free energy versus 
, J = 2, V = 0.6, Ne/N = ne = 1.9.

energy in the limit of large J/t . Suppose we start from the
product state (4) where all cells are occupied by two electrons.
Then, switching on nonvanishing t produces first states with
three and one electron in a cell. For large J/t their density will
be small. Then, in order to create a cell with four electrons,
a further electron from a cell with two electrons would have
to hop into a cell with three electrons. This means, in order
to create a single cell with four electrons we must create two
cells with a single electron, each of which costs the energy e0.
For this reason, we expect the omitted states to have smaller
weight in the ground-state wave function.

Regarding the violation of the hard-core constraint on the
bond fermions, the relevance of this can be seen by calculating
a posteriori the probability for its violation. Let nν be the den-
sities of the different types (including spin) of bond fermions
in the ground state. Since the bond fermions are treated as
noninteracting particles the probability for violation of the
hard-core constraint in the ground state is

pv = 1 −
∏
ν

(1 − nν ) −
∑

ν

nν

∏
μ �=ν

(1 − nμ). (21)

The subtracted terms are the probabilities for a given site to
be empty or occupied by a single fermion. This can be easily
evaluated and will be discussed below.

III. RESULTS

A. Channel-ferromagnetic phase

To begin with, we set t1 = t2 = t , as well as J1 = J2 =
J , and use t > 0 as the unit of energy. The unhybridized
conduction bands then are ε1,k = −(t + V )(cos kx + cos ky)
and ε1,k = −(t − V )(cos kx + cos ky). Figure 1 shows the
Helmholtz free energy F as a function of 
. One can distin-
guish two regimes where the two singlets in (4) are in phase
and out of phase, whereby it is obviously energetically favor-
able for them to be in phase. Despite the complete symmetry
of the Hamiltonian under exchange of the c orbitals α = 1, 2,
the minimum of F does not occur for 
 = π

4 , where the two
conduction bands are populated equally, but for two values
symmetrically displaced with respect to π

4 . In other words, the
symmetry between the two c orbitals is spontaneously broken
and the system prefers a stronger occupation of one of the
two, the channel-ferromagnetic phase. This has been observed
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FIG. 2. Quasiparticle band structure at 
min marked by the circle
in Fig. 1.

previously by several authors [32–34,39]. However, the orbital
polarization is not complete.

Figure 2 shows the band structure Ek,λ − μ for the pa-
rameter values in Fig. 1 at the optimal angle 
min. The six
quasiparticle bands span an energy of ≈7.4 t , somewhat more
than the width of the unhybridized conduction band ε1,k,
which is 4(t + V ) = 6.4 t . The wave functions for the two
lowest bands in the range −2.3 < Ek,λ − μ < 1.3 have pre-
dominantly b†

k,1,σ
/a−k,σ̄ character, whereas the two dispersive

bands at higher energy, 1.6 < Ek,λ − μ < 5.2, are predomi-
nantly a mixture of b†

k,2,σ and b†
k,4,σ . The flat band at E ≈ 2

has almost pure b†
k,5,σ

character (≈0.95). For the small value
of 
 the α = 2 conduction electrons have negligible weight
in the vacuum state |	0〉—see Eq. (4)—so that it is practically
impossible to create the b†

k,5,σ
fermion by charge fluctuations;

see the definition (9). The b†
k,5,σ

fermion therefore is largely
decoupled and forms an isolated and essentially dispersionless
band. For the 
min close to π

2 in Fig. 1 the band structure
is identical but the roles of b†

k,4,σ and b†
k,5,σ

in the wave
functions are interchanged. Finally, the dispersionless band at
E − μ = 3.14 has exclusive b†

k,3,σ character. The correspond-
ing eigenstate of a cell with three electrons has S = 3

2 and does
not couple to any of the other fermions.

For the electron density slightly less than 2 the Fermi
energy cuts into the lowest band and forms an electron pocket
around (0,0) and a hole pocket around (π, π ), whereby the
effective mass around the band minimum/maximum is con-
siderably larger than for the noninteracting band. The heavy
bands known in the single-channel model thus are present also
in the two-channel version.

Figure 3 shows F as a function of 
 for different values of
V and J . Depending on the value of V the value of 
min—the
angle where the minimum of F occurs—changes discontin-
uously, i.e., there is a first-order phase transition within the
channel-ferromagnetic phase. For the small value V = 0.4,
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 for different J and ne = 1.9.


min changes smoothly with J and approaches 
min = π
4 for

large J , i.e., a second-order phase transition to the channel-
paramagnetic phase. For V = 0.6 and J around J = 2.15 on
the other hand, the curve of F versus 
 has two minima
whose energies cross, resulting in a jump of 
min from 
min ≈
0.12π for larger J to 
min ≈ 0.025π for smaller J . This
jump is even more obvious for V = 0.8. For the large value
V = 1.2 on the other hand, there is only a single minimum at

min ≈ 0.025 with very little dependence on J .

To clarify the nature of the transition between the two min-
ima, Fig. 4 shows the band structure at the respective 
min for
V = 0.8 and different J = 2.0 and J = 2.1. This demonstrates
that the transition between the first-order phase transition in
between these values of J corresponds to a Lifshitz transition
where the second lowest band changes from completely unoc-
cupied to a small hole pocket around k = (0, 0).

Finally we consider more unsymmetric parameter sets.
Figure 5 shows the free energy versus 
 for t1 �= t2 and
J1 �= J2. As expected, asymmetry of the parameters lifts the
degeneracy of the two states 
min = π

4 ± φ and selects a
unique minimum. Interestingly, however, a relatively large
asymmetry of the band parameters t1 and t2 has a considerably
smaller impact on the energy than a small asymmetry of the
exchange constants. This shows that when searching for a
realization of the two-channel Kondo model and its phase
transitions the closeness of the exchange constants for the two
channels is most important.
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FIG. 4. The lowest two bands which form the Fermi surface for
V = 0.8 and values of J on both sides of the transition between the
two minima in Fig. 3.

B. Channel-antiferromagnetic phase

The results obtained so far suggest that the two-band
Kondo model has a tendency to choose a ground state that
breaks the symmetry between the two conduction bands, even
in a situation where there is perfect symmetry in the Hamil-
tonian. One might therefore be tempted to think of a spatially
inhomogeneous way to break the symmetry and the simplest
way would be an “antiferromagnetic” symmetry breaking as
found previously in Refs. [32,34,39]. In other words, we as-
sume that the angle 
 in (4) varies with the site j according
to 
 j = π

4 + eiQ·R j α, where Q = (π, π ), i.e., the channel-
antiferromagnetic phase. We have two sublattices with angle

 j = π

4 + eiQ·R j . Accordingly, (15) has to be replaced by

c†
j,α,σ = 1√

2
(v(+)

α,σ + eiQ·R j v(−)
α,σ ) b†

i,σ ,

where the two vectors v(±)
α,σ are symmetric and antisymmetric

combinations of the respective vectors (16) for the two sublat-
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FIG. 5. Ground-state energy F as a function of 
 for different
“asymmetric” parameter sets: J1 = J2 = 1.8, V = 0.6 (a), J1 = J2 =
1.8, V = 0.6, t1 = 1, t2 = 1.4 (b), J1 = 1.85, J2 = 1.75, V = 0.6,
t1 = t2 = 1 (c). Throughout ne = 1.9.
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FIG. 6. Ground-state energy F versus angle 
 for the channel-
ferromagnetic and channel-antiferromagnetic phases for different
V . For 
 � π

4 the figure shows F versus 
 for the channel-
ferromagnetic phase as in Fig. 3. 
 = π

4 means no singlet
polarization. In the range 
 � π

4 the 
 given is the one on the A
sublattice of the channel-antiferromagnetic phase. The other param-
eter values are J1 = J2 = 2.0, ne = 1.9.

tices. Upon Fourier transformation this becomes

c†
k,α,σ

= 1√
2

(v(+)
α,σ b†

k,σ
+ v(−)

α,σ b†
k+Q,σ

).

This means that we have to combine b†
k,σ

and b†
k+Q,σ

into
a vector of length 12 and diagonalize a 12 × 12 Hamilton
matrix. Setting up this matrix is entirely analogous to the
channel-ferromagnetic case so we do not give the lengthy
explicit expressions but immediately proceed to a discus-
sion of the results. Figure 6 compares the energy F (
)
of the channel-ferromagnetic phase to that of the channel-
antiferromagnetic phase. This shows that the variations of
F with 
 are of comparable magnitude and that there is
a level crossing from the channel-ferromagnetic phase for
V > 1 to the channel-antiferromagnetic phase for V < 1.
This first-order phase transition between the two phases can
be seen for all dopings studied at V ≈ 1. Figure 7 shows
the phase boundary between the channel-ferromagnetic and
channel-antiferromagnetic phases. The transition always oc-
curs around V ≈ 1, with the channel-antiferromagnetic phase
realized for smaller V , and the channel-ferromagnetic phase
for larger V . The slight bend in the phase boundary which
becomes more pronounced with decreasing nc is due to
the Lifshitz transition (see Fig. 3) which occurs within the
channel-ferromagnetic phase also for V ≈ 1. Also shown is
the critical value of the interband hybridization Vc as a func-
tion of hole concentration for different J .

Lastly, we briefly discuss the probability for a violation
of the constraint. This is plotted in Fig. 8 for the channel-
ferromagnetic phase with nc = 1.9 as a function of of J =
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J1 = J2 at 
min. As expected it decreases with J , because
larger J makes charge fluctuations more costly [see (14)]. It
decreases with decreasing V due to the overall decrease of
the kinetic energy, which prefers stronger charge fluctuations.
In any way, pv is rather small so that the approximation to
relax the hard-core constraint—as was done above—seems
reasonably justified.
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FIG. 8. Probability for violation of the constraint pv [see
Eq. (21)] for the channel-ferromagnetic phase at ne = 1.9.

IV. SUMMARY AND DISCUSSION

In summary we have discussed two possible channel-
ordered phases of a two-band Kondo lattice model, where a
single spin- 1

2 object per unit cell is exchange coupled to two
conduction bands. We have found that in a situation where
the Hamiltonian is symmetric under the exchange of the two
conduction bands, the ground state can break this symme-
try in that the localized spin forms a singlet predominantly
with one of the two conduction bands. We have studied two
possibilities for this symmetry breaking, namely the channel-
ferromagnetic phase where one conduction band is preferred
throughout the lattice, and the channel-antiferromagnetic
phase where the preferred conduction channel alternates be-
tween sublattices. It turns out that the parameter which
controls the transition between the two phases is mainly the
interchannel hopping integral V . For small values of V the
channel-antiferromagnetic phase is stable. We did not inves-
tigate the possibility of magnetic ordering, but at the large
values of J/t this is not likely to play a role.

A number of previous works have studied the two-channel
KLM and some of them have also studied the issue of channel
order and obtained similar results. In Ref. [30] non-Fermi
liquid behavior in the two-channel KLM was found by dy-
namical mean-field theory (DMFT). No spontaneous breaking
of the symmetry between channels was considered in this
study, which means the channel-paramagnetic phase was stud-
ied which appears to be unstable in the range of parameters
considered in the present study. On the other hand, channel-
ferromagnetic and channel-antiferromagnetic phases have
been observed by several authors since then. In another DMFT
study Hoshino et al. [33] found a channel-ferromagnetic
phase. However, this was for conduction electron densities
around nc = 2. In this case, one of the two channels formed
what could be called a single-band Kondo insulator, whereas
the other channel formed a Fermi surface expected for un-
coupled conduction electrons. A calculation around nc = 2
which could be compared to this DMFT study is not pos-
sible within the bond fermion formalism, because—as was
discussed above—the ground state of a single cell with three
electrons (two conduction electrons and one f spin) is twofold
degenerate so that it is not possible to write down a unique
“vacuum state” for the charge fluctuations corresponding to
(4) for nc = 1.

Schauerte et al. [32] studied a one-dimensional two-
channel KLM by the density matrix renormalization group
method. At nc = 1 and for J/t � 2 they found a spin-
paramagnetic channel-antiferromagnetic phase, separated by
a quantum-critical point from a spin-antiferromagnetic phase
at smaller J/t . It is clear that magnetic phases will be sup-
pressed by large values of J/t—as is also well established for
the single-channel KLM [46–51]—so disregarding magnetic
phases for the large values of J/t in the present study is
probably justified.

Hoshino et al. [34] also studied the two-channel KLM by
DMFT over a wider range of nc. They considered a semi-
circular conduction band density of states of width D. For
J/t = 0.8 D the resulting phase diagram shows (at T = 0)
a channel-antiferromagnetic phase in the range 0.75 < nc <

1.25. With our conduction electron bandwith D = 4t the



value J/t ≈ 3, roughly the range where we also found the
channel-antiferromagnetic phase. No channel-ferromagnetic
phase close to nc = 1 was found in this study, but the Hamil-
tonian did not contain a mixing term for the conduction
channels, i.e., V = 0, whereas we obtained the channel-
ferromagnetic phase only for V � 1. The two-channel KLM
was also shown to have odd-frequency pairing superconduc-
tivity [35,36] but the bond fermion method, which is very
much mean-field-like, is probably too much oversimplified to
address this question. Finally, both channel-ferromagnetic and
channel-antiferromagnetic phases were also found in large-N
approximation by Wugalter et al. [39]. All in all the two-
channel KLM seems to have a clear tendency to spontaneous
breaking of the symmetry between channels.

The two-channel KLM may have different physical real-
izations [29]. The first of these is the so-called quadrupolar
Kondo effect [52]. Rare earth and uranium ions in the f 2 con-
figuration, such as Pr3+ or U4+, in cubic symmetry can have
a nonmagnetic but twofold degenerate ground state, whereby
the two members of the ground-state doublet differ in their
electric quadrupole moment. This degree of freedom may be
described by a pseudospin of 1

2 and interaction with the corre-
sponding conduction bands may be described by a Kondo-like
coupling to this pseudospin. The true spin of the conduction
electrons then plays the role of the channel index α. Channel
order in this realization of the two-channel KLM therefore
corresponds to some kind of physical spin order. However,
since this order really corresponds to preferred orbital Kondo-
singlet formation for one spin direction, it really takes the
form of a “magnetic multipole cloud” centered around each
f site which resides in the conduction electrons and hence is
very extended [34].

In the second possible realization of the two-channel KLM
a rare earth ion with f 1 configuration such as Ce3+ may
undergo charge fluctuations to both an f 0 and an f 2 configu-
ration [29]. This can also lead to a two-channel Kondo system,
whereby now the localized spin indeed corresponds to the
magnetic moment of the f 1 configuration. Preferred singlet
formation with one of the two conduction bands might only
be detected indirectly by coupling to the lattice.

APPENDIX

In this Appendix we sketch the derivation of the single-
particle spectral function and expectation values of oper-
ators in the bond fermion formalism. The bond fermion

Hamiltonian H (k, σ ) has the form,

H (k, σ ) =
6∑

μ,ν=1

b†
k,μ,σ hμ,ν (k, σ ) bk,ν,σ ,

where the Hermitian matrix h(k, σ ) can be read off from (14)
and (17). This was to be diagonalized by the ansatz (18) for
the quasiparticle operators β

†
k,λ,σ :

β
†
k,λ,σ =

∑
ν

γk,λ,ν,σ b†
k,ν,σ ,

and the requirement [H (k, σ ), β†
k,λ,σ ] = Ek,λβ

†
k,λ,σ .

It follows that the column vector of coefficients
(γk,λ,1,σ , γk,λ,2,σ , . . . , γk,λ,6,σ )T must be the eigenvector
of h(k, σ ) belonging to the eigenvalue Ek,λ. Therefore, (18)
may be reverted as follows:

b†
k,ν,σ =

∑
λ

γ ∗
k,λ,ν,σ β

†
k,λ,σ ,

and—using (15)—the physical electron operators for momen-
tum k, band index α, and spin σ can be expressed in terms of
the quasiparticle operators as

c†
k,α,σ = 1√

2

∑
ν,λ

vν,α,σ γ ∗
k,λ,ν,σ β

†
k,λ,σ

= 1√
2

∑
λ

mα,λ β
†
k,λ,σ , (A1)

where the last line is the definition of the photoemission
matrix element mα,λ. This form is used in Eq. (19).

Similarly, any quadratic form in the original b†
i,σ operators

can be rewritten as∑
μ,ν

b†
k,μ,σ

oμ,ν bk,ν,σ =
∑
λλ′

β
†
k,λ,σ

õλλ′ βk,λ′,σ

õλλ′ =
∑
μ,ν

γ ∗
k,λ,μ,σ oμ,νγk,λ′,ν,σ ,

so that the thermal expectation value becomes〈∑
μ,ν

b†
k,μ,σ oμ,ν bk,ν,σ

〉
=

∑
λ

õλλ f (Ek,λ),

which is used in Eq. (20).
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