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When an equiatomic multi-component alloy is quenched

from its molten state down to room temperature, either a

solid solution crystalline alloy or a metallic glass is formed.

The former is called a high-entropy alloy, whereas the

latter is referred as a high-entropy metallic glass (HE-MG).

In such multicomponent alloys, thermodynamic parame-

ters, e.g., the mixing entropy, the mixing enthalpy and

other parameters such as atomic size mismatch, determine

the resulting phases. In this work, we studied the phase

selection rule applied to the equiatomic multicomponent

Ti20Zr20Hf20Cu20Ni20 HE-MG from a structural perspec-

tive, by analyzing the short-to-medium-range orders. It was

found that the short-range order in this MG resembles a

body-centered cube structure, while the medium-range

order is comprised of different orders. The experimental

data suggest that different packing schemes, at the

medium-range scale, play a critical role in the phase

selection rule with regard to an amorphous phase or solid

solution.

In recent years, equiatomic multicomponent alloys,

particularly the high-entropy alloys (HEA), have attracted

tremendous research interests because of their remarkable

novel mechanical properties [1–10]. However, a limited

number of alloy systems form crystalline solid solutions,

whereas the rest forms either amorphous [11–17] or

intermetallic phases [18, 19]. In order to design alloys with

desirable structure and properties, it is important to have an

understanding of the phase selection rule, which ultimately

determines the phases that will be present. Guo and Liu

[20] pointed out that solid solution phases form when

atomic size mismatch, mixing enthalpy and mixing entropy

all meet specific requirements. Yang and Zhang [21] cal-

culated two parameters, X (the entropy of mixing times the

average melting temperature of the elements over the

enthalpy of mixing) and r (the mean square deviation of

the atomic size of elements), which can be employed to

predict the formation of solutions, amorphous or inter-

metallic phases. Despite the excellent prediction using the

above parameters, the underlying structural mechanism of

phase selection remains unsolved for equiatomic multi-

component alloys.

High-entropy metallic glass (HE-MG) is an appropriate

model system for studying the phase selection rule. In such

a system, the liquid structure is retained in the glassy state

as it freezes. This opens an opportunity for understanding

the complex atomic structure of the multicomponent mol-

ten state. In this work, high-energy X-ray diffraction was

used for analyzing the equiatomic multicomponent

Ti20Zr20Hf20Cu20Ni20 HE-MG. The short-to-medium-

range orders (S-MROs) of the HE-MG were analyzed and
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compared with those of conventional MGs and crystalline

HEAs. The short-range order (SRO) in this HE-MG

resembles closely to that of a bcc crystalline structure. The

medium-range order (MRO) in this HE-MG describes the

arrangements of the bcc SRO structural motifs in three

dimensions, is not of a single type and instead is observed

to consist of different structural arrangements. In the

crystallized state, the structural arrangement of the SRO

structural motifs becomes more similar to that of the bcc

crystalline structure. The role of the S-MRO in this phase

selection is discussed in this paper.

In this work, the pre-alloyed ingots were prepared by

melting Ti, Zr, Hf, Cu, Ni (purity C 99.95 at%) raw

material granules under a high-purity Ti-gettered argon

atmosphere. The ingots were melted five times and flipped

each time to improve the chemical homogeneity in a water-

cooled copper crucible. After that, the Ti20Zr20Hf20

Cu20Ni20 glassy ribbons were prepared by single-roller

melt-spinning. The thickness of the obtained ribbons is

about 45 lm, and the width is 3 mm. XRD (Bruker-AXS

D8 Advance) was used to check the amorphous states of

the ribbons. The incident wavelength of the XRD is

0.154 nm, and the range of diffraction angle (2h) is 20�–
70�. The atomic structures were characterized using a JEM-

F200 transmission electron microscope (TEM). From the

amorphous ribbon, TEM samples with a diameter of 3 mm

were punched and subsequently thinned by a twin-jet

electropolishing using the electrolyte made of 8 vol%

perchloric acid and 92 vol% methyl alcohol at a voltage of

25 V. The thermal properties were measured by differential

scanning calorimetry (DSC, METTLER TOLEDO) in a

high-purity N2 atmosphere at a heating rate of 20 K�min-1.

High-energy X-ray diffraction measurements were per-

formed at the beamline 11-ID-C of the advanced photon

source (APS), Argonne National Laboratory. High-energy

X-rays with a beam size of 500 lm 9 500 lm and wave-

length of 0.01173 nm were used for data collection. The

structure factor S(q) versus q was determined using

PDFGETX2 [22], where q is the scattering vector. The

reduced pair distribution function (PDF), G(r), was

obtained by Fourier transformation of S(q), and the radial

distribution functions g(r) were calculated by (G(r))/

(4prq0) ? 1, where q0 is the average number density, and

r is the atomic distance.

Figure 1a shows the results of DSC for the as-prepared

Ti20Zr20Hf20Cu20Ni20 HE-MG ribbon, whereas the XRD

pattern in the inset demonstrates the amorphous state. The

onset temperatures of both the glass transition and the

crystallization are denoted as Tg and Tx, respectively.

Typically, in many metallic glasses, one or two prominent

exothermic peaks in DSC curves have been found [23–25].

In contrast, in the present HE-MG, multiple exothermic

peaks are found in the DSC curve at temperatures above Tg

[26], indicating a complex crystallization behavior. Fig-

ure 1b shows the high-resolution TEM image of the

Ti20Zr20Hf20Cu20Ni20 HE-MG in the as-spun state, again

confirming its amorphous structure. The DSC data suggest

that the complex atomic structure of the HE-MG may

induce a competition of different structural orders during

the crystallization processes.

Figure 2 shows the high-energy X-ray diffraction of the

Ti20Zr20Hf20Cu20Ni20 HE-MG melt-spun ribbon. The inset

in Fig. 2a is the structure factor (S(q)) derived from the

scattering data by subtracting the background and cor-

recting for absorption, multiple scattering, Compton scat-

tering, etc. The S(q) curve has a typical shape as other

metallic glasses, in particular, no crystalline peaks are

found. The G(r) curve, as presented in Fig. 2a, shows

multiple peaks representing the probability of finding the

respective atoms at a certain distance. The atomic structure

of the Ti20Zr20Hf20Cu20Ni20 HE-MG displays a great

topological and chemical complexity. In order to simplify

the analysis of G(r), the atomic species are divided into two

groups, based on their chemical property and atomic

radius. Table 1 summarizes the values of heat of mixing of

the Ti, Zr, Hf, Cu, Ni elements. The atomic radii of these

elements are found to be 0.147, 0.160, 0.159, 0.128,

0.124 nm, respectively. It shows that Ti, Zr, Hf have

similar atomic radius and strong negative heat of mixing

with Cu, Ni [27]. Thus, the elements Cu and Ni are treated

as Group A, whereas the elements Ti, Zr, Hf are treated as

Group B. Thus, the simplified A40B60 metallic glass (MG)

is similar to the prototype Cu40Zr60 MG, reported exten-

sively in the literature.

Compared to the published results for the G(r) of Cu-Zr

MGs [28], the G(r) for the Ti20Zr20Hf20Cu20Ni20 HE-MG

(refer to Fig. 2a) displays a stronger splitting of the first

peak, which is indicative of a stronger ordering. Figure 2b

shows the enlarged view of the first peak of G(r) in which

the simplified atomic pairs are marked by the dashed line.

It is observed that the A–A pairs, located at around

0.25 nm, make a negligible contribution to the first peak of

G(r). On the other hand, the A–B pairs, located between

0.27 and 0.285 nm, contribute to the first sub-peak (marked

by the red arrow at 0.27 nm) of the first peak of G(r). B–B

pairs, located at 0.295 to 0.32 nm, contribute to the second

sub-peak (marked by the red arrow at 0.313 nm) of the first

peak.

To better understand the structural orders in the short to

medium range, the radial distribution function, g(r), for the

HE-MG is plotted and shown in Fig. 3. Similar to the

method used in work by Wu et al. [29], the g(r) plot,

presented in Fig. 3a, is scaled by the first peak position r1.

The relative atomic positions, scaled by the first peak

positions of the face-centered cubic (fcc) and body-cen-

tered cubic (bcc) crystalline lattice structures, are also



the second peak of g(r/r1) of the HE-MG. However, the

peaks beyond the second atomic shell do not follow fcc or

bcc crystalline order, but constitute broader peak width.

The g(r) curve beyond the first atomic shell represents

the atomic packing scheme at the medium range. The

present results show that the atomic packing starts to

deviate from bcc order at the second shell. Consequently,

the second shell of g(r) is fitted by four Gaussian peaks in

Fig. 3b, with each peak representing 1-atom, 2-atom,

Fig. 1 a DSC curve of Ti20Zr20Hf20Cu20Ni20 HE-MG melt-spun ribbon and (inset) XRD pattern; b high-resolution TEM image of
Ti20Zr20Hf20Cu20Ni20 HE-MG melt-spun ribbon

Fig. 2 a High-energy XRD results of as-spun Ti20Zr20Hf20Cu20Ni20 HE-MG and (inset) G(r) and S(q) for HE-MG; b enlarged view of
the first peak of G(r) together with positions of atomic pairs, where A represents Ni and Cu and B represents Ti, Zr, Hf

Table 1 Values of heat of mixing (DH, kJ�mol 1) between elements [27]

Elements Ti Zr Hf Cu Ni

Ni - 35 - 49 - 42 - 9 –

Cu - 9 - 23 - 17 – - 9

Hf 0 0 – - 17 - 42

Zr 0 – 0 - 23 - 49

Ti – 0 0 - 9 - 35

included in Fig. 3a. From the figure, it can be observed that 
for the first atomic shell, the SRO of the HE-MG closely 
resembles the bcc crystalline structure. By combining the 
results presented in Fig. 2 with those shown in Fig. 3, it  
can be seen that the Cu/Ni lies at the center of the bcc 
structure, whereas Ti/Zr/Hf lies at the vertex of the bcc 
structure. The second atomic shell also retains, to some 
degree, the bcc crystalline order, as three blue, dashed lines 
(representing the atomic positions of bcc lattice) lie around



3-atom and 4-atom sharing mode of the SRO clusters,

respectively [30–33]. The proportion of each sharing

scheme is summarized in Table 2. The connecting

scheme of the SRO clusters in ideal bcc crystalline lattice

and their proportions are also summarized in Table 2 for

comparison. The sharing modes of the SRO clusters in the

ideal bcc crystalline lattice include eight 1-atom sharing

modes (vertex-shared), twelve 2-atom sharing modes

(edge-shared), six 3-atom sharing modes (face-shared) and

no 4-atom sharing modes (intercross-shared) [34], which

produce three atom pairs in the second atomic shell marked

by the dashed blue line (from 1.5 to 2 in r/r1) in Fig. 3a.

From Table 2, it can be observed that the connection of

SRO clusters of the HE-MG has more 1-atom sharing

Fig. 3 a Scaled pair distribution function g(r/r1) of as-spun Ti20Zr20Hf20Cu20Ni20 ribbon; b Gaussian fitting results of the second
coordination shell in pair distribution functions g(r)

Table 2 Summary of proportion of different sharing modes of Ti20Zr20Hf20Cu20Ni20 HE-MG and ideal bcc crystalline structure

Sharing mode Proportion

Ti20Zr20Hf20Cu20Ni20 HE-MG Ideal bcc crystalline structure

1-atom 0.41 0.31

2-atom 0.28 0.46

3-atom 0.23 0.23

4-atom 0.08 0

Fig. 4 a Pair distribution functions, g(r), of sample before and after crystallization and (inset) S(q) curve of crystallized sample;
b percentage of four modes of cluster connectivity



Cu-Zr MG. However, the data presented both in Fig. 2 and

Fig. 3 point out that the SRO of Ti20Zr20Hf20Cu20Ni20 HE-

MG resembles that of the bcc crystalline structure. This is

not comparable to the reported icosahedron-like order in

Cu-Zr MG, but coincides with the local order of the crys-

talline Ti-Zr-Hf HEA alloys [38].

Chen et al. [39] studied the atomic transport mechanism

in an alloy of a similar composition, Ti20Zr20Hf20Cu20Fe20,

by quasielastic neutron scattering. Even in the liquid state,

well above the melting temperature, the authors reported

that groups of atoms having a length scale of about 2.1 nm

diffused collectively. This would indicate a strong ten-

dency to form MROs of the SRO cluster in the liquid state.

The present g(r) results also reveal the existence of MROs

in the Ti20Zr20Hf20Cu20Ni20 HE-MG. Additionally, the

packing mode of MROs varies in the as-spun state and

tends to the bcc crystalline structure at the onset of crys-

tallization. In view of these observations, it is proposed that

the packing and connection modes in the MRO regime

determine the phase formation in the Ti20Zr20Hf20Cu20Ni20

HE-MG. During quenching from the high-temperature

molten state, the bcc-like SRO clusters lead to the forma-

tion of MRO with different connection modes. The packing

schemes of the MRO gradually deviate from those of the

bcc crystalline structure, as demonstrated by the G(r) data.

Finally, although the SRO is similar to bcc crystalline

structure, a glass is formed because of the competition of

different connection modes of the MROs, which introduces

randomness in the structure, leading to an overall amor-

phous structure. On the contrary, in HEA systems forming

crystalline structures, the bcc-like SRO transfers over lar-

ger distances, leading to more extended MRO, and con-

sequently, to the formation of a crystalline solid solution.

Similar results have been reported for a Pd-Ni-P bulk

metallic glass [40], where the packing schemes of MROs

determine the formation of either an amorphous structure

or a crystalline cubic phase.

In summary, the present results show that in the

Ti20Zr20Hf20Cu20Ni20 HE-MG, the SRO inherits the bcc

crystalline order of the crystalline Ti-Zr-Hf HEA series,

while the MRO varies. On the other hand, after crystal-

lization, the packing of MRO evolves to that of the bcc

crystalline structure, with more edge-shared modes and less

vertex-shared modes developed. It is suggested that the

packing and connection of MROs frustrate the liquid

structure and thus determine the evolution of either an

amorphous structure or a crystalline solid solution. The

present study helps to provide new physical insights

regarding phase evolution and selection rules for the for-

mation of HEAs and HE-MGs.
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g(r) curves, as shown in Fig. 4a, were also analyzed for 
samples heated both to a temperature just below the first 
crystallization temperature Tx and above Tx. The inset in 
Fig. 4a is the S(q) curve of the sample heated above Tx, 
showing indications of initial crystallization. It is observed 
that after crystallization, the shoulder peaks at the nearest 
neighbor change their relative intensities, indicating an 
increase in B–B pairs accompanied by a decrease in A–B 
pairs. This most likely is the consequence of the local 
atomic rearrangements that requires detailed analysis 
including the use of molecular dynamics (MD) simulations, 
which will be performed in the future. Despite the changes 
in the shape of the first peak of g(r), its peak positions 
remain unchanged, thus keeping the similarity to the bcc 
crystalline structure. Differences of the g(r) curves at dis-

tances beyond the SRO were also found. This indicates that 
the MROs play an important role during the crystallization 
processes. The connecting schemes of the SRO clusters for 
samples before and after crystallization are obtained by 
fitting the second shell of the g(r) curves, with the pro-

portion of each mode being summarized in Fig. 4b. These 
results clearly show that after crystallization, the 1-atom 
sharing mode decreases abruptly and the 2-atom sharing 
mode increases abruptly, both converging to the value of 
bcc crystalline structure. On the other hand, the 3-atom 
sharing mode and 4-atom sharing mode remain nearly 
unchanged.

From the presented experimental results, it can be con-

cluded that the Ti20Zr20Hf20Cu20Ni20 HE-MG retains, to a 
certain degree, structural ordering at both the short- and 
medium-range scales. The S-MRO identified in the as-

prepared HE-MG determines the evolution of the phases 
toward the crystalline structure. Here, it is recalled that the 
Ti20Zr20Hf20Cu20Ni20 HE-MG is derived from a prototype 
metallic glass Cu40Zr60, and consequently, the SRO of the 
HE-MG is compared with that of the binary Cu-Zr MG. 
Antonowiczsupa et al. [35] found the dominant SRO in 
Cu35Zr65 was Cu-centered icosahedron by X-ray absorp-

tion fine structure method and molecular dynamics. Wang 
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the local structures of Cu35Zr65 MG showed a large variety 
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reverse Monte-Carlo method, high-energy X-ray and neu-

tron diffraction. Peng et al. [37] showed that the SRO was 
composition-dependent, and the increase in Cu-content 
would result in an increase in icosahedron-like SRO in the
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