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Stability Criteria for Time-Delay Systems
from an Insightful Perspective on the Characteristic Equation

Tessina H. Scholl and Lutz Gröll

Abstract— This note provides a delay-dependent and a neces-
sary and sufficient delay-independent stability criterion for linear
autonomous continuous-time systems with a discrete delay. We
take a simple perspective on the two-variable formulation of the
characteristic equation, which leads to the following advantageous
but not widespread delay-independent criterion: the sum of the
coefficient matrix of the delay-free term and the elementwise
unitarily rotated matrix of the delay term must remain Hurwitz
for all rotation angles. A graphical test for the latter is shown
to require no more than three lines of code. Concerning delay-
independent stability, our main contribution is to extend this suffi-
cient criterion to a necessary and sufficient one. Concerning delay-
dependent stability, the focus is on the critical delay that bounds
the initial delay interval of stability. We formulate a constrained
minimization problem that gives the exact value of this critical
delay. The taken perspective is especially insightful in terms of
how the coefficient matrices may look like, and, for scalar systems,
the delay-dependent stability chart becomes obvious at a first
glance. The presented criteria are complementary to the well-
known frequency-sweeping test, which results from another of
three possible perspectives on the two-variable criterion. Besides
of a unified treatment of these different perspectives, the note
also discusses corollaries of the one taken, which include Mori’s
famous criterion.

Index Terms— Asymptotic stability, delay margin, delay
systems, delay-independent stability, spectral abscissa

I. INTRODUCTION

Once measurements, network communication, data processing, or
actuator reactions are no longer assumed to take place instanta-
neously, a delayed term occurs in the system equations. As a con-
sequence, the well-known stability theory of differential equations is
no longer applicable. Fortunately, the principle of linearized stability
still holds for hyperbolic equilibria in nonlinear systems [1]. That is
why we focus on linear equations

ẋ(t) = A0x(t) +A1x(t− h) (1)

A0, A1 ∈ Rn×n, x(t) ∈ Rn, where h ≥ 0 describes the discrete
delay. The present note is concerned with exponential stability (ES)
(equivalently, asymptotic stability [2]) of the zero equilibrium in (1).
We are interested in delay-independent ES, i.e., exponential stability
for all delays h ≥ 0, and alternatively, in delay-dependent ES with
exponential stability for sufficiently small delays h ∈ [0, hc). For
each explicit value of the delay h, the characteristic equation

det(sIn −A0 − e−shA1) = 0 (2)

has generically an infinite number of roots s ∈ C. See, e.g., [3] for
numerical root finding. It is well known that the equilibrium of (1) is
exponentially stable (ES) for an explicitly given delay h if and only
if all these roots s have negative real parts [2]. Proving the latter for
all positive delays or for a delay interval is no trivial task.
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In the last decades, various analytical stability criteria have been
established, see, e.g., [4]–[8] and references therein. Some criteria
[9]–[16] are based on the characteristic quasipolynomial (2) or the
corresponding bivariate polynomial that is defined in the so-called
two-variable criterion [17]. However, due to the evaluation of the de-
terminant in (2), interpretability in terms of the given matrices A0 and
A1 is lost in general. Other criteria [18]–[20] are based on eigenvalues
of matrix pencils with block matrices containing Kronecker products
of A0 and A1. These are numerically appealing but also do not
make the influence of A0 and A1 visible. Frequency sweeping tests
involve matrix inverses or generalized eigenvalues [21], [22]. Criteria
based on LMIs that result from Lyapunov-Krasovskii functionals,
Lyapunov-Razumikhin functions, or robustness theory, are by no
means more descriptive [2], [7], [8], [23]. In contrast, Mori’s famous
criterion [24] provides some insights: A0 should be Hurwitz and A1,
in some sense, not too large, no matter which sign. However, Mori’s
criterion is a conservative result for delay-independent stability.
Similarly insightful but less conservative is

max
ϕ∈[0,π]

α(A0 + eiϕA1) < 0, (3)

where α(M)
def
= maxk∈{1,...,n}Reλk(M) denotes the spectral

abscissa of M ∈ Cn×n. Criterion (3), which seems to be little known
in this form, is a direct consequence of results by Datko [25, Thm.
1.3] and Kamen [26]. Firstly, it offers a descriptive interpretation:
the sum of A0 and the elementwise unitarily rotated matrix A1 must
remain Hurwitz. Secondly, a numerical test is simple: even for large
systems, the spectral abscissa of M(ϕ) := A0 + eiϕA1 can easily
be computed and plotted over the bounded interval ϕ ∈ [0, π]. If this
scalar continuous function ϕ 7→ α(M(ϕ)) remains smaller than zero,
delay-independent ES is proven. Still, although the gap to necessity is
small, (3) is only sufficient and not necessary for delay-independent
stability.

The present note aims to extend (3) to a necessary and sufficient
criterion and, if stability only holds for sufficiently small delays h ∈
[0, hc), to provide the bound hc. The focus is on the simplicity and
interpretability of the gained results.

Starting point of our considerations is a fundamental stability result
due to Hale et al. [27]. It refers to a two-variable formulation [17]
of the characteristic equation (2), which, conceived as a bivariate
polynomial, also gave rise to [9]–[16] mentioned above. In contrast
to the latter, we introduce a framework of three possible perspectives
(PS), (PZ), (PSZ) on the two-variable formulation in terms of clas-
sical eigenvalue problems. Inequality (3) exploits perspective (PS),
which is related to [18], [25], [28]–[30]. The well-known frequency-
sweeping approaches [25, Thm. 1.3], [21], [22], [31] can be rec-
ognized as a consequence of perspective (PZ) instead. Frequency-
sweeping is not only associated to a necessary and sufficient delay-
independent criterion but also to a formula for the critical delay hc.
Thus, the present note aims to describe a completely analogous theory
based on the simpler perspective (PS). The interrelations will be
pointed out clearly.

First, we formulate a constrained minimization problem for the
critical delay hc and provide some meaningful examples. Then we
give the necessary and sufficient criterion for delay-independent ES.
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We show that the required extension of (3) only has to incorporate
special cases of maxϕ∈[0,π] α(A0 + eiϕA1) = 0. To this end,
we have to prove the following non-trivial consequence of delay-
independent ES: eigenvalues of M(ϕ) := A0 + eiϕA1, as ϕ
increases, cannot move between the left and right complex half-plane
only by tunneling through the origin.

Structure. The note is organized as follows. Section II provides
the framework of possible perspectives on the two-variable criterion.
Section III and IV present the formula for the first delay interval
of ES and the criterion for delay-independent ES. Finally, we derive
some corollaries including Mori’s criterion.

Notation. Eigenvalues of M ∈ Cn×n are denoted by λk(M),
k ∈ {1, . . . , n}, with arbitrary ordering. Similarly, λk(M,E) ∈
σ(M,E) = {λ ∈ C : det(λE −M) = 0} for some E ∈ Cn×n
refers to eigenvalues of a matrix pencil (M,E). The spectral radius
of M ∈ Cn×n is ρ(M) = maxk |λk(M)| and the spectral abscissa
α(M) = maxk Reλk(M). If α(M) < 0, the matrix M is said to
be Hurwitz. C = C− ∪ C+ refers to the open left and closed right
complex half-plane. We write z and M for the complex conjugate of
z ∈ C,M ∈ Cn×n and MH = M

>
. The identity matrix in Cn×n

is In and the zero matrix 0n×n. The notation ‖ · ‖ν is a norm in
Cn 3 x, i.e., ‖x‖ν , or its induced matrix norm ‖M‖ν , M ∈ Cn×n.

II. POSSIBLE PERSPECTIVES

Subsequent considerations are based on a reformulation [17] of the
characteristic equation (2) with two variables s and z := e−sh

det(sIn −A0 − zA1) = 0. (4)

Before discussing possible perspectives on (4), we will introduce
various forbidden sets SC+ ,SiR,S0,Sstr for s and z to describe
some required preliminaries in a uniform manner.

Delay-independent ES holds if and only if for all h ≥ 0 no root
s of (2) occurs in C+, and thus if and only if 6 ∃(s, z) ∈ SC+ : (4),
with the forbidden set

SC+ := {(s, z) ∈ C2 : s ∈ C+, z = e−sh, h ∈ R≥0}. (5)

Assume for a given h ≥ 0 there is indeed no root s in C+. If h
is varied, then the occurrence of a root in C+ must be preceded
by a crossing of the imaginary axis, i.e., s = iω, ω ∈ R, at some
h = hc (continuous dependence of the real part of the rightmost root
on changes in h is proven in [32]). Hence, already a forbidden set

SiR := {(s, z) ∈ C2 : s = iω, z = e−iωhc , ω ∈ R, hc ∈ R≥0} (6)

is decisive: The equilibrium is delay-independently ES if and only if
6 ∃(s, z) ∈ SiR : (4), provided ES is proven for an arbitrary explicit
delay, e.g., for zero delay. For zero delay, (1) simplifies to

ẋ(t) = (A0 +A1)x(t) (7)

and thus A0 +A1 is required to be Hurwitz. Furthermore, the range
of ω considered in (6) can be restricted to ω ∈ R \ {0} since

a) s = iω = 0 with hc <∞ (and thus z = 1) would be a root for
all h ≥ 0 in (2) and contradicts A0 +A1 Hurwitz;

b) s → iω = 0 as h → ∞ is beyond the definition of delay-
independent ES which considers only finite delays.

That is why a new parameter ϕ ∈ R can be introduced that substitutes
the free parameter hc ≥ 0 by

hc = −ϕ
ω
, ω 6= 0, (8)

which will be decisive in Section III. Hence, the variable z in (6),

z = e−iωhc = eiϕ, ϕ ∈ R, (9)

becomes an arbitrary complex number with |z| = 1. This decoupling
of s and z leads to the following two-variable criterion.

Theorem 2.1 (Hale, Infante and Tsen [27, Thm. 2.4]): The equi-
librium of (1) is delay-independently ES if and only if A0 + A1

is Hurwitz and 6 ∃(s, z) ∈ S0 : (4) with

S0 := {(s, z) ∈ C2 : s = iω, |z| = 1, ω ∈ R \ {0}}. (10)
J

In contrast to the classical two-variable criterion by Kamen [17],
s = iω = 0 is not part of the forbidden set S0. Systems that fulfill
A0 +A1 Hurwitz and even 6 ∃(s, z) ∈ Sstr : (4) with

Sstr := {(s, z) ∈ C2 : s = iω, |z| = 1, ω ∈ R}, (11)

where s = iω = 0 is included, are referred to as strongly delay-
independently ES [33].

Example 2.1 (Non-strong delay-independent ES): The zero equi-
librium of ẋ(t) = −x(t) − x(t − h) is, despite of being delay-
independently ES, not strongly delay-independently ES. The decisive
element turns out to be (s0, z0) = (0,−1), which satisfies (4)
with s + 1 + z = 0. It hampers strong delay-independent ES by
(s0, z0) ∈ Sstr, while not belonging to the forbidden set S0 for
delay-independent ES. Indeed, although s0 = 0 is an element of the
imaginary axis and |z0| = 1, it holds (s0, z0) 6∈ SiR in (6) since
there is no finite hc such that e−iωhc = z0 when ω = 0. J

In order to determine whether any forbidden (s, z) ∈ S0 satisfies
(4), several perspectives on this two-variable formulation in terms of
classical eigenvalue problems are appropriate.
(PS) For any given z, the variable s in (4) can be seen as an

eigenvalue of the matrix A0+zA1, cf. [28]. In S0, or whenever
(9) is used, values z = eiϕ are of interest. Hence, we define

sk(ϕ) := λk(A0 + eiϕA1), (12)

ϕ ∈ R, k ∈ {1, . . . , n}.

Thm. 2.1 requires that no (sk(ϕ), eiϕ) belongs to S0, i.e.,
sk(ϕ) must satisfy

6 ∃(ϕ, k) : Re(sk(ϕ)) = 0 with Im(sk(ϕ)) 6= 0. (13)

(PZ) For any given s, the variable z in (4) can be seen as an
eigenvalue of the matrix pencil (sIn − A0, A1), cf. [22]. In
S0, values s = iω 6= 0 are of interest. Hence, we define1

zk(ω) := λk(iωIn −A0, A1), (14)

ω ∈ R \ {0}, k ∈ {1, . . . , n}.

Thm. 2.1 requires (iω, zk(ω)) 6∈ S0, i.e., zk(ω) must satisfy

6 ∃(ω, k) : |zk(ω)| = 1. (15)

Alternatively, 1
z is seen as an eigenvalue of the dual pencil

(A1, sIn − A0). If A0 is Hurwitz, sIn − A0 in the latter is
invertible for s = iω, and thus (14) also results from

1

zk(ω)
= λk

(
(iωIn −A0)−1A1

)
(16)

(provided k in (14) and (16) is chosen correspondingly).
(PSZ) Both s and z can be seen as eigenvalues, cf. [34]. To this end,

(sIn −A0 − zA1)v = 0n×1, s, z ∈ C, v ∈ Cn (17)

must be complemented by a second equation, incorporating
that s = iω = −s and z = e−iϕ = 1

z are characteristic
properties in S0, cf. [12], [14]. The conjugate complex of (17)

1Some of the n eigenvalues can be infinite. Since their number n∞
(algebraic multiplicity) equals the dimension of the nilpotent matrix N in
Weierstrass’ canonical form with rk(N) ≥ 0, it holds n∞ ≥ n− rk(A1).
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with w := v serves this purpose. A quadratic two-parameter
eigenvalue problem in s and z emerges [34]

(A0−sIn+zA1 )v = 0n×1 (18a)

(A1 +zA0+szIn)w = 0n×1 (18b)

with solution tuples (sk, zk), k ∈ {1, . . . , 2n2}. Thm. 2.1
requires that (sk, zk) 6∈ S0, i.e., sk and zk must satisfy

6 ∃k : Re(sk) = 0, Im(sk) 6= 0 and |zk| = 1. (19)

If elements (s, z) in the forbidden set S0 have been identified,
no matter by which perspective, stability is only delay-dependent.
Then, based on the corresponding values of ϕ in z = eiϕ and ω in
s = iω, critical delays at which roots on the imaginary axis occur
can be concluded from (8), cf. [14], [18], [22]. Provided ES holds
for the system with zero delay (7), the initial exponential stability
gets lost at the smallest of these critical delays, which thus bounds
the exponentially stable initial delay interval [0, hc).

III. DELAY-DEPENDENT STABILITY

The main result of this section, Thm. 3.2, gives a constrained
minimization problem based on (PS) for the first critical delay hc.
The result is complementary to the (PZ)-based frequency sweeping
approach [4, Thm. 2.2], which can be reformulated into a constrained
optimization form as follows. Note that (20) describes the mini-
mum2 positive value of (8) for (ω, k)-pairs in (PZ) that hamper (15).

Theorem 3.1 (Delay interval of ES by (PZ), cf. [4, Thm. 2.2]):
Based on (14) define

hc := inf
(ω,k)∈(0,∞)×{1,...,n}

(
−arg−zk(ω)

ω

)
subject to |zk(ω)| = 1

(20)

with arg−z := ϕ ∈ (−2π, 0] such that z = |z|eiϕ. If A0 + A1 is
Hurwitz and hc < ∞, then the equilibrium of (1) is exponentially
stable for h ∈ [0, hc) and not exponentially stable at h = hc. J

Similarly, we will describe the minimum positive value of (8) for
(ϕ, k)-pairs in (PS) that hamper (13).

A disadvantage of (20) is that zk(ω) is considered on an un-
bounded set ω ∈ (0,∞). In contrast, for perspective (PS), the
evaluation of eigenvalues sk(ϕ), (12), can be restricted to the
bounded set ϕ ∈ [0, π]. Values of sk(ϕ) on the whole domain
ϕ ∈ (−∞,∞) are still needed to gain all critical delays from (8),
but they can be reconstructed from those on [0, π] due to symmetry.

Note that the objective function in (22) below is nothing more than

h(ϕ, k) :=


− ϕ

Im sk(ϕ)
, if Im sk(ϕ) < 0

∞, if Im sk(ϕ) = 0
2π−ϕ

Im sk(ϕ)
, if Im sk(ϕ) > 0,

(21)

which we write for the sake of compactness with the modulo
operation, i.e., (±ϕ mod 2π) ∈ [0, 2π).

Theorem 3.2 (Delay interval of ES): Based on the eigenvalues
sk(ϕ) := λk(A0 + eiϕA1) define

hc := inf
(ϕ,k)∈(0,π]×{1,...,n}

sgn
(
− Im sk(ϕ)

)
ϕ mod 2π

| Im sk(ϕ)|
subject to Re sk(ϕ) = 0

(22)

with inf ∅ =∞ and sgn(0)ϕ mod 2π
0 :=∞.

If A0 + A1 is Hurwitz and hc < ∞, then the equilibrium of (1) is
exponentially stable for h ∈ [0, hc) and not exponentially stable at
h = hc. The equilibrium of (1) is delay-independently exponentially
stable if and only if A0 +A1 is Hurwitz and hc =∞. J

Re sk(ϕ)
h(ϕ, k)

ϕ

λ1 = 0.00000−0.25000i
λ2 = 0.00000−0.50000i
λ3 = −1.00000 − 1.41421i

λ1 = +0.35355 − 0.35355i
λ2 = +0.17678 − 0.17678i
λ3 = 0.00000−1.00000i

k
=

3

Fig. 1: Example 3.1. Zeros of Re sk(ϕ) = Reλk(A0 + eiϕA1),
k ∈ {1, 2, 3}, form the constraint set in Thm. 3.2 (circles). At these

(ϕ, k), the smallest h(ϕ, k) :=
sgn
(
−Im sk(ϕ)

)
ϕ mod 2π

| Im sk(ϕ)|
is hc =

h( 3π4 , 3) = 3
4π. Thus, stability holds for delays h ∈ [0, 34π).

Proof: Due to (7), A0 + A1 being Hurwitz is necessary. As
defined in (8), critical delays can be expressed by hc = −ϕω , where
ω = Im sk(ϕ) in perspective (PS). According to Section II, critical
delays occur for any (ϕ, k) ∈ R × {1, . . . , n} with Re sk(ϕ) = 0
and Im sk(ϕ) 6= 0. Hence, the minimum positive critical delay is

hc = inf h0(ϕ, k) with h0(ϕ, k) := − ϕ

Im sk(ϕ)

subject to Re sk(ϕ) = 0 and Im sk(ϕ) 6= 0

h0(ϕ, k) > 0

ϕ ∈ (−∞,∞) and k ∈ {1, . . . , n}.

The requirement Im sk(ϕ) 6= 0 can be dropped since the correspond-
ing objective function value, which is ∞ by definition, can only be
optimal if there is no other element in the constraint set, while an
empty constraint set yields the same result hc = inf ∅ =∞. We have
to show that only ϕ ∈ (0, π] instead of ϕ ∈ (−∞,∞) is relevant.
Only ϕ ≥ 0 must be considered because

sk(−ϕ) = λk

(
A0 + eiϕA1

)
= λk̃(A0 + eiϕA1) = sk̃(ϕ) (23)

holds for some k̃ ∈ {1, . . . , n}, and thus h0(−ϕ, k) = h0(ϕ, k̃).
Furthermore, only ϕ ∈ [0, 2π) can lead to an optimum since
sk(ϕ + 2lπ) = sk(ϕ), l ∈ Z, implies h0(ϕ + 2lπ, k) > h0(ϕ, k).
Additionally, ϕ 6= 0 since A0 + A1 Hurwitz implies Re sk(0) 6= 0.
Hence, in a first step, only ϕ ∈ (0, 2π) is relevant. Positivity
h0(ϕ, k) > 0 is achieved iff Im sk(ϕ) < 0, which gives the first case
in (21) and allows to drop h0(ϕ, k) > 0 from the constraints. In a
second step, the domain can be restricted to (0, π] by considering for
any ϕ ∈ [π, 2π) the corresponding ϕ̃ ∈ (0, π] with ϕ = 2π−ϕ̃. Since
sk(ϕ) = sk̃(ϕ̃), it holds h0(ϕ, k) = − ϕ

Im sk(ϕ)
= − 2π−ϕ̃

(− Im s
k̃
(ϕ̃))

,
which gives the third case in (21) for Im sk̃(ϕ̃) > 0.

The constraint set in (22)

C := {(ϕ, k) : Re(sk(ϕ)) = 0} (24)

contains zeros of the real parts from all n eigenvalue functions
ϕ 7→ Re sk(ϕ), k ∈ {1 . . . , n}. The next example demonstrates
that a restriction to zeros of the spectral abscissa function ϕ 7→
maxk Re sk(ϕ) is indeed not possible. Moreover, Fig. 1 provides
a simple graphical evaluation of Thm. 3.2.

2In (20) and (22), the infimum is only required to cope with an empty
constraint set and can otherwise be replaced by a minimum operator.
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Example 3.1 (Relevance of all eigenvalues in Thm. 3.2):
Consider

ẋ(t) =

 0 0 0

0 0 0

1 1 −1

x(t) +

[
− 1

4 0 0

0 − 1
2 0

0 0 −
√
2

]
x(t− h).

The eigenvalues required in Thm. 3.2 are s1(ϕ) = − 1
4eiϕ, s2(ϕ) =

− 1
2eiϕ, s3(ϕ) = −1−

√
2eiϕ. Fig. 1 visualizes that the constraint set

consists of three elements C = {(π2 , 1), (π2 , 2), ( 3π4 , 3)}. At these
(ϕ, k)-pairs, the objective function of (22), cf. color bar, takes the
values {2π, π, 34π} =: H . Hence, hc = minH = 3

4π. J
Remark 3.1 (Numerical determination of ϕ): The graphical eval-

uation of the optimization problem already provides a rough result
for the critical delay with little effort. To evaluate the optimum (22)
precisely, the values of ϕ in (24) can, e.g., be determined as minima
of ϕ 7→ mink∈{1,...,n} |Re sk(ϕ)|. To this end, local minima from a
pointwise evaluation can be refined by fmindnd in MATLAB with
tightened tolerances. Alternatively, the values of ϕ or 2π − ϕ are
derived by perspective (PSZ) as arguments of z = eiϕ if a routine
like quad twopareig [35], [36] is available to compute (sk, zk).
The proof of [18, Thm. 3.1] reveals that another way is to search
for valid values of z in the spectrum of a 2n2-dimensional ma-

trix pencil σ
([

0
n2×n2 I

n2

−In⊗A>1 −A0⊕A>0

]
,

[
I
n2

0
n2×n2

0
n2×n2 A1⊗In

])
, where

⊗,⊕ denote Kronecker product and sum. J
The system in the following example is a frequently used bench-

mark in the context of LMI-based criteria [37], [38].
Example 3.2 (Analytically determined hc): The equilibrium of

ẋ(t) =

[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h)

is ES for h < hc :=
arccos(−0.9)√

1−0.92
≈ 6.17258 and not ES at h = hc.

Reasoning: A0 + A1 is Hurwitz as required in Thm. 3.2. The
eigenvalues sk(ϕ) := λk(M(ϕ)) of the triangular matrix M(ϕ) :=
A0 + eiϕA1 are obvious. Since Re s2(ϕ) = −2 − cosϕ 6= 0
and Re s1(ϕ) = −0.9 − cosϕ, the constraint set (24) consists of
the single point (ϕc, kc) := (arccos(−0.9), 1) with skc(ϕc) =
−i sinϕc = −i

√
1− 0.92. Since Im(skc(ϕc)) < 0, Thm. 3.2 yields

hc = ϕc
| Im skc (ϕc)|

=
arccos(−0.9)√

1−0.92
. J

In fact, the triangular structure of Example 3.2 allows the stability
analysis to be reduced to an analysis of scalar systems (so-called
Hayes equations [39]). The following example shows that perspective
(PS) is particularly insightful in this case. The results are well known
[2, p. 135 / Fig. 5.1], but the usual derivations are quite laborious.

Example 3.3 (The scalar case): Consider (1) with n = 1, i.e.,
ẋ(t) = a0x(t) + a1x(t− h), a0, a1 ∈ R. The Hurwitz condition3

a0 + a1 < 0 (25)

forms the non-red open region in Fig. 2. Thm. 3.2 only depends on
s1(ϕ) = a0+eiϕa1 for ϕ ∈ [0, π]. In the complex plane the latter can
be visualized as a 180◦ rotation around a0 from a0+a1 to a0−a1, cf.
the grey semicircle in Fig. 2 with (a0, a1) = (−3, 0.5). Depending
on the end point a0 − a1, three cases have to be distinguished:
a) For (25) combined with a0 − a1 < 0, i.e., a0 + |a1| < 0, the
constraint set in (22) is empty, and thus hc =∞ (dark-green triangle
in the stability chart, strong delay-independent ES).
b) For (25) combined with a0 − a1 = 0, i.e., a0 = a1 < 0,
the denominator of the objective function in (22) is zero, and thus

3 ES cannot be gained by increasing the delay in the scalar system [40].
Hence, a0 + a1 < 0, which ensures that ES holds for h = 0, is not only
necessary for ES ∀h ≥ 0 or ES ∀h ∈ [0, hc), but even necessary for ES at
some h ∈ R≥0.

a0

a
1 unstable ∀h ≥ 0a) ES ∀h ≥ 0, strongly

b)
ES
∀h
≥
0,

no
t str

on
gly

c) ES if 0 ≤ h <
ϕc

|ω(ϕc)|

a0 + eiϕa1

Re

Im

-3 -2.5 1

a0a0 + a1

ω(ϕc)

ϕc

Fig. 2: Example 3.3. Stability chart for scalar systems. The white box
above gives for highlighted points an evaluation of ϕ 7→ a0 + eiϕa1
in the complex plane. The grey point (a0, a1) = (−3, 0.5) provides
delay-independent ES, whereas (−0.75,−1) in blue gives ES for
h < 3.66 and (1,−1.05) in ochre gives ES for h < 0.97.

hc = ∞ (white dashed line in the stability chart, non-strong delay-
independent ES).
c) For (25) combined with a0 − a1 > 0, consider in Fig. 2 the blue
and ochre arcs. Thm. 3.2 yields hc = ϕc

|ω(ϕc)| as the quotient of the
rotation angle ϕc ∈ (0, π) at which the imaginary axis is met and
the corresponding section of the imaginary axis |ω(ϕc)|. That is

hc =
ϕc

|a1| sinϕc
with ϕc = arccos(−a0a1 ) (26)

=
arccos(−a0a1 )√

a21 − a20
.

*) If (25) is satisfied, ES holds at least for sufficiently small delays
(differently shaded green areas in Fig. 2). Given a fixed delay h > 0,
the exponentially stable region in the (a0, a1)-parameter plane is
derived by solving h < hc in (26) for |a1| = −a1 < ϕc

h sinϕc

and a0 = −a1 cos(ϕc) <
ϕc
h cot(ϕc). Its boundary {[a0, a1]> =

ϕc
h sinϕc

[cosϕc,−1]> : ϕc ∈ (0, π)} for h = hc ∈ {0.5, 1, 2, 4} is
shown as boundary of the (h < hc) regions in Fig. 2.
**) Provided a0 < 0, the critical delay is always larger than the
critical delay with a0 = 0 since the blue arc reveals that a larger
angle ϕc > π

2 is combined with a smaller |ω(ϕc)| < |a1|. Hence,
hc >

π
2|a1|

if a0 < 0 and a1 < 0. J

IV. DELAY-INDEPENDENT STABILITY

The main result in this section, stated in Thm. 4.2, provides a
necessary and sufficient delay-independent stability criterion based
on (PS). It aims to be complementary to the following well-known
(PZ)-based criterion, where (27) ensures that zk(ω) in (16) satisfies
(15).
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Theorem 4.1 (Frequency sweeping [4, Thm. 2.1]): Delay-
independent ES holds iff A0 and A0 +A1 are Hurwitz and

∀ω > 0 : ρ
(
(iωIn −A0)−1A1

)
< 1. (27)

J
A graphical evaluation of the spectral radius (27) over ω ∈

(0,∞) is proposed in [4], [21]. Similarly, we are concerned with
an evaluation of the spectral abscissa

α(A0 + eiϕA1) = max
k∈{1,...,n}

Re sk(ϕ) (28)

over ϕ ∈ [0, π] to ensure that sk(ϕ) in (12) satisfies (13).
According to Thm. 3.2, there are two scenarios that lead to delay-

independent ES:
(i) A0 +A1 is Hurwitz and the constraint set of (22) is empty, i.e.,
for all ϕ ∈ [0, π] no eigenvalue sk(ϕ) occurs on the imaginary axis;
(ii) A0 + A1 is Hurwitz and there is no other denominator in (22)
than zero, i.e., eigenvalues on the imaginary axis occur for some
(ϕ, k), but these are exclusively located at the origin.

Case (i) describes strong delay-independent ES (11). It will be
addressed by α(A0+eiϕA1) < 0 for all ϕ ∈ [0, π], cf. (3). Case (ii)
is the special case of non-strong delay-independent ES. Obviously,
it can occur with maxϕ∈[0,π] α(A0 + eiϕA1) = 0, which becomes
visible in Example 3.3 b). Whether case (ii) can also be accompanied
by maxϕ∈[0,π] α(A0 + eiϕA1) > 0 is not that obvious. Starting in
C− for ϕ = 0, the n eigenvalues sk(ϕ), k ∈ {1, . . . , n}, move
continuously in the complex plane as ϕ increases. Case (i) bans
eigenvalues from the imaginary axis, and thus they cannot reach the
right half-plane. However, case (ii) describes a gap in the imaginary
axis: the occurrence of eigenvalues at the origin does not hamper
delay-independent ES. Thus, the question arises whether eigenvalues
can move from the left half-plane to the right half-plane only by
tunneling through the origin. This question is motivated further in
the following remark.

Remark 4.1 (Crossing of the origin): In contrast to the roots4 of
(2), the eigenvalues sk(ϕ) in (12) can move from C− through the
origin to C+ as ϕ increases. Such an example is provided in Fig.
3a, which shows for A0 =

[
−1 1
−1 −1

]
, A1 =

√
2
[
0 −1
1 0

]
the union

of eigenvalue paths5 {sk(ϕ) : ϕ ∈ R, k ∈ {1, 2}}. However, since
the movement back to C− in this example is not through the origin,
hc =∞ does not result as a minimum in Thm. 3.2. In Fig. 3b there is
indeed no other crossing point of the imaginary axis than the origin.
Thus, Thm. 3.2 would lead to the conclusion of delay-independent
ES, provided A0 +A1 was Hurwitz. Fig. 3b can, e.g., be realized by
A0 =

[−1 1
0 1

]
, A1 =

[
0 0
1 0

]
or by A0 =

[−1 1
0 1

]
, A1 =

[
0 0
−1 0

]
, but

both are not fulfilling A0 +A1 Hurwitz, although the latter example
with α(A0 +A1) = 0 is very close. J

The proof of Thm. 4.2 will show that case (ii) indeed cannot be
accompanied by zero crossings in the manner of Fig. 3b. Thus, if
there is a ϕ ∈ [0, π] with α(A0+eiϕA1) > 0, non-delay-independent
ES is proven immediately. To this end, we need the following lemma.

Lemma 4.1 ( [27, Corollary 2.7]): If Thm. 2.1 holds, then A0 is
Hurwitz. J

4Because of case a) in Section II, roots s of the characteristic quasi-
polynomial (2) cannot move through the origin in the complex plane as
h increases. Note that the only relation between M(ϕ) = A0 + eiϕA1

and the delay equation (1) is that non-zero purely imaginary eigenvalues
sk(ϕ) = iω 6= 0 of M(ϕ) at some ϕ coincide with non-zero purely
imaginary roots s of (2) at some h.

5An evaluation of the union of eigenvalue paths is proposed in [29], where,
however, zero crossings in the manner of Fig. 3b are not taken into account.

Re

Im

(a)

Re

Im

(b)

Fig. 3: Remark 4.1. Eigenvalues sk(ϕ) can cross the origin.

Theorem 4.2 (Delay-independent ES): The zero equilibrium of (1)
is delay-independently exponentially stable if and only if either

(i) max
ϕ∈[0,π]

α(A0 + eiϕA1) < 0 (29)

or (ii) α(A0 +A1) < 0, max
ϕ∈(0,π]

α(A0 + eiϕA1) = 0,

and 6 ∃(ϕc, k) : Re sk(ϕc) = 0, Im sk(ϕc) 6= 0,

where ϕc ∈ argmax
ϕ∈[0,π]

α(A0+eiϕA1) and sk(ϕ) := λk(A0+eiϕA1),

k ∈ {1, . . . , n}. It is strongly delay-independently ES, cf. (11), if and
only if (i) holds. J

Proof: According to Thm. 3.2, hc =∞ occurs iff either

(i′) A0 +A1 is Hurwitz and 6 ∃(ϕ, k) : Re sk(ϕ) = 0 or

(ii′) A0 +A1 is Hurwitz, ∃(ϕ, k) : sk(ϕ) = 0,

and 6 ∃(ϕ, k) : sk(ϕ) = iω, ω ∈ R \ {0}.

In the following, we will infer sufficiency and necessity of (i) and
(ii) in Thm. 4.2 for (i′) and (ii′). Unless otherwise stated, consider
ϕ ∈ [0, π], k ∈ {1, . . . , n}, s ∈ C, ω ∈ R, M(ϕ) := A0 + eiϕA1.
(i) ⇒ (i′): For ϕ = 0, (i) yields α(M(0)) = α(A0 + A1) < 0,
i.e., A0 + A1 must be Hurwitz. Furthermore, since (i) requires
maxϕ∈[0,π] α(M(ϕ)) = maxϕ∈[0,π] maxk∈{1,...,n}Re sk(ϕ) <
0, it holds that 6 ∃(ϕ, k) : Re sk(ϕ) = 0.
(i′) ⇒ (i): Continuity of ϕ 7→ α(M(ϕ)) and α(A0 + A1) =
α(M(0)) < 0, while 6 ∃ϕ : α(M(ϕ)) = 0, implies α(M(ϕ)) <
0, ∀ϕ.
(ii)⇔ (ii′): Both, (ii) and (ii′) consist of three requirements. For
the first one (A0+A1 Hurwitz) as well as the third one (nonexistence
of non-zero purely imaginary roots) equivalence between (ii) and
(ii′) is obvious. The second combined with the third one in (ii)
implies ∃(ϕ, k) : sk(ϕ) = 0 in (ii′). It remains to show that (ii′)
implies maxϕ∈(0,π] α(A0+eiϕA1) = 0 by proving that (ii′) implies

6 ∃(ϕ, k) : sk(ϕ) ∈ C+, (30)

cf. the discussion above. To this end, define s 7→ z̃k(s) with k ∈
{1, . . . , n} as a mapping of s ∈ C to a corresponding z in (4), i.e.,

det(sIn −A0 − z̃k(s)A1) = 0. (31)

As in (16), and because of Lemma 4.1, z̃k(s) can be determined by

1

z̃k(s)
= λk

(
(sIn −A0)−1A1

)
for s ∈ C+. (32)

Consider at each s the largest absolute value of (32)

1

min
k∈{1,...,n}

|z̃k(s)| = ρ
(
(sIn −A0)−1A1

)
. (33)

Due to Lemma 4.1, s 7→ Ñ(s) := (sIn − A0)−1A1 is holo-
morphic on C+. For holomorphic Ñ(s) the spectral radius s 7→
ρ(Ñ(s)) = maxk∈{1,...,n} |λk(Ñ(s))| is a subharmonic function
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α(A0 + eiϕA1)

ϕ

Fig. 4: Example 4.1. Since α(A0+eiϕA1) takes only negative values
on ϕ ∈ [0, π], strong delay-independent ES holds.

[41]. Since the domain C+ is unbounded, the maximum prin-
ciple for subharmonic functions only applies if the function is
bounded above [42, Thm. A.2.28], which, however, is true because
lims→∞ ρ(Ñ(s)) = 0. Thus, for s ∈ C+ the maximum of (33)
is attained on the imaginary axis ∂C+ = iR, and, consequently,
the minimum of s 7→ mink∈{1,...,n} |z̃k(s)| as well. Hence, unless
s 7→ mink∈{1,...,n} |z̃k(s)| is constant on C+, the strict inequality

∀(s, k) with s ∈ C+ : |z̃k(s)| > min
ω∈R

min
k∈{1,...,n}

|z̃k(iω)| (34)

holds. Consider the right hand side of (34). On the one hand, because
of (33) with ρ(Ñ(iω))→ 0 as ω → ±∞, it holds

min
k∈{1,...,n}

|z̃k(iω)| → ∞ as ω → ±∞. (35)

On the other hand, the second requirement in (ii′) yields

∃(ϕ, k) : sk(ϕ) = 0

(12)⇔ ∃ϕ : det(−A0 − eiϕA1) = 0

(31)⇔ ∃k : |z̃k(0)| = 1 (36)

for the point ω = 0. Consequently, by continuity, s 7→
mink∈{1,...,n} |z̃k(s)| is indeed non-constant and (34) applies. Fur-
thermore, the third requirement in (ii′) gives

6 ∃(ϕ, k) : sk(ϕ) = iω, ω 6= 0

(12)⇔ 6 ∃ϕ : det(iωIn −A0 − eiϕA1) = 0, ω 6= 0

(31)⇔ 6 ∃k : |z̃k(iω)| = 1 for all ω 6= 0. (37)

Continuity of ω 7→ z̃k(iω) combined with the results for ω = 0,
ω ∈ R \ {0}, and ω → ±∞, which are obtained in (36), (37), and
(35), leads (similar to [27, Lemma 2.5]) to

min
ω∈R

min
k∈{1,...,n}

|z̃k(iω)| = 1

for the right hand side in (34). Thus, (34) implies

6 ∃(s, k) : |z̃k(s)| = 1 with s ∈ C+

(31)⇔ 6 ∃s ∈ C+ : det(sIn −A0 − eiϕA1) = 0, ϕ ∈ (−π, π]

(12),(23)⇔ 6 ∃(ϕ, k) : sk(ϕ) ∈ C+,

which completes the proof of (30).
A main advantage of Thm. 4.2 (i) is its simple implementation.

Example 4.1 (Numerical evaluation of Thm. 4.2 (i)):
Thm. 4.2(i) only requires an evaluation of the function
ϕ 7→ α(A0 + eiϕA1) over ϕ ∈ [0, π]. In MATLAB or GNU
Octave, the following lines serve this purpose for an exemplary step
size of ϕ, provided the system matrices have been assigned to A0
and A1.
P=0:1e-3:pi;
ALPHA=arrayfun(@(x) ...

max(real(eig(A0+exp(1i*x)*A1))), P);
plot(P,ALPHA);
Exclusively negative values indicate strong delay-independent ES.

For A0 =

[
−1 2 1
−1 −2 0
−1 0 −2

]
and A1 =

[
−1 1 1
0 0 −2
1 2 2

]
the result is shown

in Fig. 4. Thus, the equilibrium of ẋ(t) = A0x(t) + A1x(t− h) is
exponentially stable for any delay h ≥ 0. J

In the following Examples 4.2a and 4.2b, the maximum of the
spectral abscissa function ϕ 7→ α(A0 + eiϕA1) is zero. Hence,
part (ii) of Thm. 4.2 must be considered and the eigenvalues
sk(ϕc), k ∈ {1, . . . , n}, at the maximizers ϕc become decisive.
Examples 4.2a and 4.2b lead to identical spectral abscissa functions
ϕ 7→ α(A0 + eiϕA1), shown as a black line in Fig. 5. Nevertheless,
Example 4.2a is delay-independently ES, whereas 4.2b, with values
of sk(ϕc) explicitly listed in Fig. 5, is only delay-dependently ES.

Example 4.2 ( Zero as maximum of ϕ 7→ α(A0 + eiϕA1) ):
Consider (1) with x(t) ∈ R2p, p ∈ N>0, where the coefficients are
given by the block diagonal matrices

A0 = blkdiag
( [
−1 −β
β −1

]
,−I2, . . . ,−I2

)
A1 = blkdiag

(
Q(ϑ1), . . . , Q(ϑp)

)
,

with Q(ϑ) :=
[

cosϑ sinϑ
− sinϑ cosϑ

]
and ϑj ∈ (−π, π] \ {0}, j ∈

{1, . . . , p}.
a) With β = 0, i.e., A0 = −I2p, delay-independent ES holds.
b) With β = 1, the zero equilibrium is ES for h < hc and not ES
for h = hc,

hc :=

{
−ϑ1, if ϑ1 < 0
2π − ϑ1, if ϑ1 > 0.

Reasoning: The 2p eigenvalues of M(ϕ) = A0 + eiϕA1 are

s1,2(ϕ) = −1± i(−β) + ei(ϕ±ϑ1)

= −1 + cos(ϕ1 ± ϑ1) + i
(
∓ β + sin(ϕ± ϑ1)

)
sk(ϕ) = −1 + ei(ϕ±ϑj),

k := 2j − 1
2 (1± 1), j ∈ {2, . . . , p}, and their largest real part is

α(A0 + eiϕA1) = −1 + max
j∈{1,...,p}

cos(ϕ± ϑj)

with maxϕ∈[0,π] α(A0 + eiϕA1) = 0. This maximum on [0, π] is
attained at

ϕc ∈ Φ := {|ϑ1|, . . . , |ϑp|}.

a) If β = 0, then at any ϕc ∈ Φ no non-zero purely imaginary
eigenvalues exist since Im(sk(ϕc)) = sin(ϕc ± ϑj) = 0 when
cos(ϕc ± ϑj) = 1. Hence, case (ii) in Thm. 4.2 applies.
b) In contrast, if β = 1, there is a non-zero purely imaginary
eigenvalue at ϕc = |ϑ1|, namely s1(−ϑ1) = −i if ϑ1 < 0, cf.
Fig. 5, or s2(ϑ1) = i if ϑ1 > 0. Hence, Thm. 4.2 (ii) does not
hold. Instead, Thm. 3.2 provides the delay interval of ES. Since
Im s1(|ϑ1|) = −1 < 0 for ϑ1 < 0, the modulo operation in (22) is
without effect for ϑ1 < 0, while for ϑ1 > 0 the numerator of hc
becomes 2π − ϕ = 2π − |ϑ1|. J
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α(A0 + eiϕA1) = max
k∈{1,...,8}

Re sk(ϕ)

ϕ

λ1 = 0.00000− 1.00000i
λ2 = −0.50000 + 1.86603i
λ3 = −0.50000 − 0.86603i
λ4 = −0.50000 − 0.86603i
λ5 = −1.25882 − 0.96593i
λ6 = −1.50000 + 0.86603i
λ7 = −1.50000 + 0.86603i
λ8 = −1.96593 + 0.25882i

λ1 = 0.00000 + 0.00000i
λ2 = 0.00000 + 0.00000i
λ3 = −0.29289 − 0.70711i
λ4 = −0.50000 − 0.13397i
λ5 = −1.50000 + 1.86603i
λ6 = −1.70711 − 0.70711i
λ7 = −2.00000 + 0.00000i
λ8 = −2.00000 + 0.00000i

λ1 = 0.00000 + 0.00000i
λ2 = −0.29289 + 0.70711i
λ3 = −0.29289 + 0.70711i
λ4 = −1.00000 − 1.00000i
λ5 = −1.25882 − 0.03407i
λ6 = −1.70711 − 0.70711i
λ7 = −1.70711 − 0.70711i
λ8 = −1.96593 + 1.25882i

Fig. 5: Example 4.2b with x(t) ∈ R8 and ϑ1 = −π/6, ϑ2 = ϑ3 =
π/2, ϑ4 = 3/4π. Since a non-zero purely imaginary eigenvalue
sk(ϕ) = iω 6= 0 occurs (red), Thm. 4.2 (ii) does not apply. Instead,
Thm. 3.2 yields hc = π/6.

V. COROLLARIES

Considerations so far are based on the spectral abscissa. The
logarithmic norm is related to the spectral abscissa, but it exhibits
advantageous properties allowing further simplifications. Based on
these, some known stability criteria can be inferred directly from
Thm. 4.2 without elaborate proofs.

The spectral abscissa α(M) of a matrix M ∈ Cn×n can be
approached as close as desired by a logarithmic norm of M

µν(M)
def
= lim

h→0+

‖In + hM‖ν − 1

h
, (38)

provided the involved matrix norm ‖ · ‖ν is chosen in an optimal
way depending on M . To be more precise, α(M) = infν µν(M)
[43]. Thus, Thm. 4.2(i) can equivalently be expressed in this manner.
Usually, however, a matrix norm is chosen a priori. For common
norms, (38) simplifies to well-known formulas [44, p. 33], e.g., the
logarithmic norm w.r.t. the spectral norm ‖ · ‖2 equals the maximum
eigenvalue of the Hermitian part of M

µ2(M) = λmax
(
1
2 (M +MH)

)
. (39)

In any case, inequality (40a) holds.
Lemma 5.1 (Properties of µν(·) [44]): Let M,N ∈ Cn×n. Then

α(M) ≤ µν(M), (40a)

µν(M +N) ≤ µν(M) + µν(N), (40b)

µν(M) ≤ ‖M‖ν . (40c)

µν(M) = µν(M), (40d)

µν(M) = sup
‖x‖ν=1

Re[Mx, x]ν [45, Lem. 12], (40e)

where [·, ·]ν is a semi-inner product with [x, x]ν = ‖x‖2ν . J
Consider the following expressions and obvious relations

max
ϕ∈[0,π]

α(A0 + eiϕA1)
(40a)
≤ max

ϕ∈[0,π]
µν(A0 + eiϕA1) =: Bµ

(40b)
≤ µν(A0) + max

ϕ∈[0,π]
µν(eiϕA1) =: B̃r

(40c)
≤ µν(A0) + ‖A1‖ν =: BM , (41)

as well as

µν(A0) + rnum,ν(A1) =: Br,

with the numerical radius rnum,ν(A) = sup‖x‖ν=1 |[Ax, x]ν |.
Lemma 5.2: The equality B̃r = Br holds. J

Proof:

max
ϕ∈[0,π]

µν(eiϕA1)
(40d,e)

= max
ϕ∈(−π,π]

sup
‖x‖ν=1

Re(eiϕ[A1x, x]ν)

= sup
‖x‖ν=1

∣∣[A1x, x]ν
∣∣ def= rnum,ν(A1).

Based on the relations of BM ,Bµ, and B̃r = Br in (41), we can
summarize three immediate corollaries of Thm. 4.2.

Corollary 5.1: If for some norm ‖ · ‖ν one of the following
inequalities holds, which are ordered by decreasing conservativity,

(I) BM < 0, (Mori’s criterion [24, Thm. 1]),

(II) Br < 0, (cf. [46, Thm. 2.2]),

(III) Bµ < 0, (cf. [47, Thm. 1]),

then the equilibrium of (1) is strongly delay-independently ES. J

VI. CONCLUSION

The note introduces a framework of three possible perspectives
on the two-variable formulation of the characteristic equation. Based
on this framework, we formulate consequent analogues to the well-
known delay-dependent and delay-independent frequency-sweeping
criteria. The derived criteria focus on eigenvalues of the matrix
M(ϕ) = A0+eiϕA1. Contrary to the frequency sweeping approach,
no generalized eigenvalues or matrix inverses are needed and eigen-
values of M(ϕ) must only be evaluated on the bounded domain
ϕ ∈ [0, π].

Exclusively negative values of the spectral abscissa function ϕ 7→
α(A0 + eiϕA1) indicate delay-independent stability – a test that is
shown to require no more than three lines of code. The present note
proves that, if positive values of the function occur, delay-independent
exponential stability can be excluded immediately. Moreover, the
ambiguous case of a zero maximum is discussed in a meaningful
example.

If stability is only delay-dependent, the occurring zeros of the
spectral abscissa function become part of a constraint set in a
proposed minimization problem for the first critical delay. Although
these zeros will be decisive in most cases, a counterexample shows
that zeros of the remaining eigenvalue real parts cannot be ignored in
the constraint set. A rough graphical evaluation of the optimization
problem requires only few lines of code more. Furthermore, we
demonstrate that, in simple cases, even analytical results for the
first critical delay can be achieved. In fact, the delay-dependent
stability chart for scalar systems becomes obvious at a first glance.
Additionally, the formulation as a constrained optimization problem is
particularly insightful when generalized to multiple incommensurate
delays, multiple commensurate delays, and perturbations thereof,
which, however, is beyond the scope of the present note.
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