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Enabled by data management and
digitalization adoption in chemistry,
machine learning (ML) is accelerat­
ing chemistry through automated
data analysis, materials embed-
dings, property prediction, and
active learning. Beyond existing
demonstrations of ML in chemistry,
there is a critical need for chemi­
cally driven benchmarks to make
ML models fail in a constructive
manner. 
 

 

Through the proliferation of data man­
agement and digitalization, data science 
methods are attracting serious attention in 
chemistry and materials research. Whilst 

early demonstrations in the field showed 
the general applicability of data science 

in the field of chemistry, benchmarking 
[1–3] is becoming a key driving force to­
wards autonomous materials discovery 
and upscaling [4]. 

Deployment of ML models has been very 

successful in performance-driven fields 
such as electrocatalysis, photovoltaics, 
and batteries, where demonstrations mostly 

revolved about finding models capable of 
predicting materials properties upon which 
materials embeddings, automatic data 
analysis, active learning, and explainable 
ML in chemistry emerged. 

Data-driven chemistry requires ways to 
‘teach’ a model  ‘ what’ a material is, to
model the underlying physicochemical 
relationships. Arguably the simplest way 
to express a material is by describing/ 
counting its constituents or structural frag­
ments. This is necessary as data-driven 
models typically require some tensor-like 
input, which is mapped onto an output(s). 
Most data science practitioners, including 
myself, will likely have encountered that 
generating a giant one-hot representation, 
or ‘embedding’ [5], in which the composi­
tion is represented by a long vector that 
entails some statistics about what elements 
are in a material, will lead to somewhat 
performant models, but the sparsity (and 
curse of dimensionality) of the data inevitably 
lead to overall low performing models. 
Especially when extrapolation towards 
higher performance or new composition 
spaces, or high interpretability, is needed. 

User-friendly implementations of ML models 
for accelerated chemistry [1–3] enable test­
ing virtually any model on any materials 
science dataset. This allows practitioners 
in the design or testing phase to make 
their models break, help understand 
why models break, to eventually make 
them ‘unbreakable’ [6]. Even for a seem­
ingly facile task like regression, one can 
define simple but hard to beat bench­
marks, like k-fold cross forward validation 
by Xiong and colleagues [7] (i.e., sorting  
by the to-be-predicted performance to 
perform a ‘sorted’ k-fold cross-validation 
through splitting by percentile). They evalu­
ate the predictive power of ML models, 
thus separating the interpolation from the 
extrapolation performance. Many models 
will exhibit low errors, depending on their 
complexity, as shown schematically in 
Figure 1A, but the key metric to seek is 
the true  predictive power  in  extreme
cases, as discussed in Figure 1B. There, 
the sorted k-fold cross-validation is 
schematically  shown in comparison to
a random holdout. What one typically 
finds is that upon interpolation, most 
models perform very well; but when 
tasked with extrapolating towards high 
or low performance, they tend to perform 
poorly. In my opinion, this or a similar 
applicable test should become a standard 
test for any ML study dealing with property 
prediction. 

Accompanying a thorough assessment of 
a model’s performance on extrapolation 
and testing its limits should be an unbi­
ased assessment whether the model, 
data, or data representation is at fault. 
Naturally, most data science practitioners 
consider the models to be the faulty link 
in the data science pipeline, leading to 
great advancements in adapting the un­
derlying regressors and classifiers for 
chemistry and physics by incorporating 
physically meaningful constraints. 

An extreme example of needing to predict 
well into high-performing or unseen com­
position or parameter spaces is found in 
active learning [3]. Here, a model is trained 
on a few data points and is then tasked 
with suggesting the next optimal experi­
ment that is poised to either perform better 
or reduce the model’s uncertainty. For this 
task, different benchmarking frameworks 
and metrics exist, in which researchers 
can pit different optimizers against each 
other. Through the availability of bench­
marks for active learning, the field is lifted 
to a new level of productivity where new 
creative uses of pooling and integration 
of accelerated instruments yield creative 
ways of accelerating chemistry. Active 
learning will penalize those models that 
cannot operate out of distribution in 
Figure 1C as any model that is over- or 
underfit, or has other issues will not accel­
erate the optimization task. 

Even with state-of-the-art regression and 
classification models, there exist materials 
and challenges that are poorly described 
by simple embedding methods counting 
elements or structural fragments. These 
include inverse materials design for mole­
cules and solid-state materials as well as 
explainable ML models for chemistry. 

I currently identify three research tracks for 
embedding materials that can be loosely 
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Figure 1. Challenges and prospects in deploying data-driven chemistry. (A) While more complex 

models [linear (LE) polynomial ensembles (PE), Gaussian processes (GP), random forests (RF), and neural nets 
(NN)] will allow for generally lower prediction errors, they come at the cost of being harder to interpret and tend 
to mostly perform subpar in benchmarks testing the extrapolation capabilities. This is shown in (B), where a 
hypothetical dataset is sorted by the performance and the top and bottom percentile regions are used as test 
and validation datasets. This loosely corresponds to a decoupling of the interpolation and extrapolation 
performance in a sorted k-fold cross-validation scheme and allows for a fair model assessment. (C) Different 
cases of issues when training machine learning models in chemistry are shown, with the general cautionary 
advice being that any overly well-performing model should be examined with great care. (D) Examples of 
adjacent ternary composition spaces of the elements A-B-C-D-E to visualize that even though these 
composition spaces should offer some similarities, the learning of the physicochemical interactions is complex. 
categorized into either: (i) compositional/ 
structural-fragment, (ii) partial or full-
structural [6], or (iii) mixed-mode com­
positional-embeddings [8,9]. The moti­
vation behind these is to be able to 
predict into new and unseen composition 
spaces or generate new molecules from 
knowledge, designed for a specific func­
tion. In this field, another seemingly simple 
but hard to beat benchmark was devel­
oped by Kong and colleagues [8]. Here, 
a model is tasked with predicting into an 
unseen composition space or into new 
composition spaces, including previ­
ously unseen elements. This is exemplarily 
shown in Figure 1D. Consider a materials 
property f to be predicted in a new compo­
sition space. When taught with a subset 
of possible other ternary A-B-C-D-E com­
positions, or even only with higher order 
combinations, the prediction into unseen 
composition spaces would certainly make 
most models falter [9]. This interesting 
formulation of a reasonably simple to for­
mulate but hard to beat baseline inspired 
Kong and colleagues [8] to develop density 
of states-based elemental embeddings 
that allow models to perform significantly 
better than before. Inverse design is, 
however, not easily possible on composi­
tions, such that other models that yield 
synthesizable structures are necessary. 

To this end, great advancements in 
organic chemistry were demonstrated by 
several groups. Gómez-Bombarelli and 
colleagues [5] demonstrated the first con­
tinuous, differentiable, and invertible em-
beddings of molecular structures. These 
were then extended towards 3D crystal 
structures [10], allowing the inverse design 
of both molecules and extended solid-
state crystals. For molecules there is now 
even the possibility to generate molecular 
embeddings with perfect invertibility [6], 
without, however, the possibility of exact 
3D reconstruction. Underlying these ad­
vancements is again a simple benchmark 
that measures whether a structure is a 
valid, hypothetically possible, molecule 
(or SMILES representation thereof). 

Implied with all the utilizations of bench­
marking and the resulting advancements
is the availability of data. Considering the 
aforementioned examples, most demon-
strations originate from theoretical chem­
istry. This is likely due to the only recent 
deployments of large public experimental 
datasets in materials science and publicly 
searchable databases. More importantly, 
data from experiments needs to be ana­
lyzed, a task mostly performed manually. 
With the goal of ‘closing the loop’ of mate­
rials discovery to upscaling, I see a critical 
need to automate data analysis in the 
experimental sciences. There are still a 
great number of unsolved challenges in 
the preprocessing and analysis of experi­
mental data. Emblematic for the necessity 
of preprocessing spectra is the statisti­
cal learning of background signals [11]. 
Spectroscopy is, however, only the tip 
of the iceberg, as common techniques in 
electrochemistry such as electrochemical 
impedance spectroscopy, Fourier-trans­
form infrared spectroscopy (FTIR), and X-
ray photoelectron spectroscopy (XPS) are 
still analyzed manually and exhibit similari­
ties with many complex problems in 
computer science. 

Concluding, I see great advancements to 
come to the field of data-driven materials 
science and chemistry though a broader 
adoption of chemically inspired bench­
marks that allow a physically meaningful 
assessment of the quality of data quality, 
data representation, data visualization, 
and model quality. There is, however, a 
critical need to measure and assess the 
discovered explanations of ML models in 
the emergent field of explainable artificial 
intelligence in chemistry, tools to visualize 
high-dimensional chemical datasets to 
extract new fundamental knowledge faster, 
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and machine and human interpretable lan
guages [12] to describe experiments. 
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