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We investigate the two-dimensional Kondo lattice, the minimal model of a heavy fermion compound. Despite
its apparent simplicity, its dynamics are both complex and controversial. In the moderate-to-strong coupling
regime, the bond fermion theory provides an approximate mapping to an easily solvable fermionic system.
This works surprisingly well from a qualitative standpoint, but there are some shortcomings as the method has
no precise mathematical foundation. We here try to address this and improve on the method by making an
explicit connection to wave function based variational methods and the Gutzwiller approximation. We apply
the improved method to both the previously studied Néel magnetic phases, as well as incommensurately and

ferromagnetically ordered phase.

I. THE KONDO LATTICE AND BOND FERMION THEORY

The notion of heavy fermion systems includes a large
class of compounds. While their features are similarly var-
ied, the common thread are the massive (in the Fermi liquid
sense) excitation bands they derive their names from. Gener-
ally speaking, they have shown to be remarkably malleable,
with phase transitions induced by tuning a number of distinct
external parameters like pressure, doping, or magnetic field
strength. An introduction can be found in Ref. [1], so we will
only briefly recapitulate a few of the main features of these
compounds, focusing on their magnetically ordered phases.

The typical arrangement in a heavy fermion system is the
combination of local magnetic moments provided by partially
filled ionic 4f or 5f shells, and one or more conducting
electron bands. The important component responsible for the
system’s interesting properties is the non-negligible interac-
tion between conduction electrons and local moments. As was
pointed out by Doniach [2], coupling results in two compet-
ing mechanisms. One of them is Kondo screening [3], the
appearance of bound states. Local moments “capture” con-
duction electrons to form localized states that have zero net
magnetic moment. The other mechanism is the indirect RKKY
interaction [4] between local moments, which is mediated by
conduction electrons and drives the system toward magnetic
order. Kondo screening impedes this, since only unscreened
moments can take part in the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction. Whether the system is ordered or disor-
dered thus depends on the interplay and relative strengths of
both effects.

The simplest models that include these features are the
periodic Anderson model (PAM) and its limiting case, the
Kondo lattice model [5]. In its most basic form, the PAM con-
sists of a single band of conduction (c) electrons on a lattice,
each site also holding an (f) orbital that models localized
(ionic) electron states. Physically, these localized states are

strongly correlated, which is modeled by a Hubbard repulsion
parameter U. Hybridization between ¢ and f states leads to
an effective magnetic interaction, characteristic of a heavy
fermion system.

The Kondo lattice arises through a Schrieffer-Wolf trans-
formation in the limit of large U [5]. The interaction fixes
the occupation of the f orbitals: Excited states with zero or
two f electrons are eliminated, resulting in localized spins
interacting with the ¢ electrons through a residual Heisenberg
exchange.

While many extensions to these models are possible, we
will investigate the basic Kondo lattice model on a two-
dimensional square lattice.

Even this quite minimal model remains strongly nontrivial
and has been the subject of many studies, which we roughly
divide into mean-field type [6—18] and other (numerical)
[19-38] approaches. Exact results are only available in special
cases: For example, in the half-filled case, the numerically
exact quantum Monte Carlo (QMC) results by Assaad [24]
show that a phase transition takes place between a Néel phase
at small interaction and a Kondo screened phase at large
interaction.

Bond fermion theory is an approximate strong-coupling
theory intended to describe the correlated states of the Kondo
lattice [39]. The insulating Kondo screened phase, formed
when the interaction is much larger than the hopping strength,
is taken as a “background” state. Excitations generated by the
hopping terms in the Hamiltonian are regarded as effective
(bond) particles. While one can formulate this mapping ex-
actly from an operator viewpoint [40,41], the resulting theory
is an interacting system of bosons and fermions subject to a
local constraint. Solving such a system is intractable without
further approximation. Alternatively, one can focus solely on
the fermionic degrees of freedom from the start. Previously,
some steps in the procedure were only intuitively (instead
of mathematically) justified. Nonetheless, this version of



the method has been applied to both paramagnetic [39],
antiferromagnetic [42], and geometrically frustrated systems
[43]. Especially in the first two cases, the results compare
reasonably well to numerical calculations, taking into account
the bond fermion method’s simplicity.

Here we develop the bond fermion method further by re-
examining its underlying mathematical formulation. At the
cost of increasing the complexity of the method somewhat,
its numerical accuracy is improved significantly. Some ap-
proximations are still uncontrolled, but they are now explicitly
and mathematically formulated. We apply this method to the
square lattice and its (planar) magnetic phases, both commen-
surate and incommensurate.

II. BOND FERMIONS AS A VARIATIONAL THEORY

The Kondo lattice Hamiltonian is
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CI{G creates a conduction electron of spin o at site R, while

S{; is the spin-1/2 operator of the local moment at R. Instead
of an explicit spin operator, we can equivalently introduce
electron operators flic that in turn create the local moments.
For this to yield the same dynamics as a bare spin, we
have to introduce the constraint that each site is occupied by
exactly one f electron. We do not include an explicit non-
local interaction between f electrons SﬁS{;, (the so-called
Kondo-Heisenberg model) for reasons we will discuss later.

With a Fourier transform, the kinetic energy Hamiltonian
yields the free band structure
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t and t' respectively denote the first- and second-nearest
neighbor hopping constants, with # = 0 the particle-hole
symmetric case. The Kk sum ranges over the usual square
lattice Brillouin zone. Where not stated explicitly, we use ¢
as our unit of energy.

The local Hilbert space of the Kondo lattice consists of
eight states. Two of these have zero conduction electrons, and
two others describe double occupations. Each of these two
sets of states forms a spin-1/2 doublet (the spin being carried
by the localized electron), which we will refer to as A, and B,,
respectively. The other four states describe states with a single
c electron, and can be further divided into a spin-0 singlet (S)
and a spin-1 triplet (T). Explicitly, the basis states of site R
are
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Here we used |0)g to denote the vacuum state of site R,
in which neither the localized nor the conduction electron
states are occupied. fg should be understood as ( f;{)T, ie.,
the column vector of creation operators. The T transform as a
spin-1 vector under spin rotations.

These basis vectors are eigenstates of the exchange term
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To construct our variational wave function, we form a linear
combination of these four states. While the singlet state |S)g

is favored at strong interaction, we will allow admixing of the
triplet states to describe magnetic ordering. We write

|Q2)r = srIS)R + tr|T)R, (14)
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The vector ty loosely corresponds to the ordered magnetic
moment. We will take sg and tg to be real and choose a spiral
form
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Q is the magnetic wave vector. Néel antiferromagnetism has
Q = (7, m), while pure ferromagnetic order has Q = (0, 0). s
and [t| are constant, so that there is no modulation of the spin
magnitude or of the charge density.

The ansatz (17) breaks both spin rotation and translation
invariance, as would any finite and nonconstant t,. However,
there is a remaining symmetry: The system is unchanged
when translating by R and simultaneously rotating the spins
by ¢r = —QR around the z axis. We therefore perform a
canonical transformation that will result in a translation-
invariant system. We introduce new electron operators ¢" and

fas
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their primed equivalents in (8)-(11) we get the new basis

states
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S and T; are unchanged while T, and T, are rotated into each
other, as to be expected from a spin-1 vector. A, and B,
transform as spin-1/2 states (like fg,). Under this definition,
(17) gives

tr|T)r = [t]|T])r- (23)

We now set
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which lets us recover |Q2)g as
|Q)r = sg|S)r + tg T )r. (26)

This has the exact same form as (14). However, in the primed
frame the magnetic moment is constant and parallel to é,.

We also have to express the kinetic terms and the in-
teraction using the primed operators. The interaction Hj is
isotropic, so its form is unchanged. Regarding the kinetic
energy, we see from (18) that
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€k is the effective kinetic energy matrix in spin space, in which
all dependence on Q is isolated. This is the main utility of
the transformation, as the system is now effectively translation
invariant again. In the original frame, the position dependence
of tg has to be carried through the whole calculation. This
is possible but inconvenient. Especially once we get to the
Gutzwiller renormalization matrices /Z and A later in the
calculation, working in a translation invariant environment is
much less effort.

The rest of the calculation will take place in the rotated
system, so we will drop the primes from now on. In addition to
the “base” states |Q2)gr, we will also include |A,)r and |B, )R
which respectively have zero or two conduction electrons. The
variational basis |i) consists of the product states
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From (8), we see that the excited (A, and By, ) states contain an
odd number of fermions, and are thus fermionic (anticommut-
ing) in nature, while €2 contains an even number of fermions.
Inspired by this, we can simplify calculations of expectation
values by introducing Hubbard-like [44] “bookkeeping” oper-
ators aLU and b;a defined through
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The notation on the right-hand sides means that the operator
acts on site R and leaves all other sites unaffected. These
operators are taken to anticommute at different sites, so that

they describe fermions. We collect them in two-component
vectors
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The utility of these fermion operators is that they allow for
a transparent notation. We define the “vacuum” as
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All states of the form (30) can be generated by successively
applying the creation operators a;; and b% to this vacuum
state. Note, however, that the product of any two creation op-
erators at the same site vanishes (aR ro = 0, for example),
so these fermions are actually subject to a hard-core condition
of no double occupancy. For this reason, a and b operators
may not be treated as ordinary fermions when acting on the
same site. For example,
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While it is tempting to identify the hard-core fermion system
with that of ordinary fermions (ones that allow multiple oc-
cupation) subject to an infinitely strong Hubbard repulsion,
this should be postponed until after one has expressed the
variational energy through hard-core fermions with their ap-
propriate commutation rules.

For a given variational state |W) [a superposition of the
basis states |i) in (30)], we can evaluate expectation values of
an (electron number conserving) single-site operator Or by
separately computing the contributions of each state:
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Simple angle brackets (-) denote expectation values with
respect to |W). wr is the probability that site R is in the
“vacuum” state. Some useful expectation values are

(cher) = @R + 2(bfbg)

=1 — (ahag) + (bibR), (42)

cQf 3 2 1 2
(SkSk) = wr _Z|SR| + Z|tR| , (43)
(S;) = wr <SRs§tR + %tl’; X tR>, (44)

(SR) = wr (—ms;tR + %tl’; x tR>

+ <a;§aR> <bT TbR> 45)



From (42) we can see that a and b have the expected effect
on the electron number, respectively decreasing or increasing
it by one. Equation (43) gives us the Heisenberg interaction,
which is now a simple quadratic function of the fermion
operators. Note that in our case the total spin (Sg +S{()
is nonzero only in the fermion-like states, as we have tg
real.

From (45), one can extrapolate that a Kondo-Heisenberg
term S{{S{{, would result in three kinds of bond fermion ex-
pectation values: a “background” term ~sgtrsg tg involving
zero bond fermion operators, quadratic terms correspond-
ing to the “field” felt by a bond fermion because of the
ground-state polarization of the surrounding sites, and a non-
local quartic term describing spin correlation between bond
fermions on neighboring sites. To include such a f-f inter-
action in the Hamiltonian, one would thus have to deal with
bond fermion interactions, possibly through mean-field theory
if the term is small. In the more interesting case where the
f-f interaction is comparable to the Kondo f-c interaction,
triplet fluctuations are strong and cannot be ignored as in our
calculation (see Ref. [45] for a bond particle treatment of a
pure-spin model).

To calculate the kinetic energy, we must also consider non-
local electron bilinears, i.e., expectation values with R £ R’.
These effectively factorize, where each electron is separately
transformed into a sum of bond fermions before taking the
expectation value [41]:
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The combined vector vg is indexed by Greek letters and con-
tains both creation and annihilation operators. Wryo isa2 x 4
matrix, with the index « ranging over the four components of
vr. The Wg are used to “translate” electron hopping expec-
tation values into bond fermion hopping expectation values.
Note that (CI{JCR,U/) contains not only terms corresponding
to bond fermion propagation (of the form (a;f{a ag.,+) and
(b;g bg,+)), but also bond fermion pair creation or annihila-
tion ((a};abTR,a,) and (ag, by, ). For later, it will be useful to
note that Wy is real, as #, = 0 in our specific case. To arrive
at the above expression, it is allowed to anticommute bond
fermion operators, as they act on different sites.

III. GUTZWILLER VARIATIONAL METHOD

In the previous section, we have rewritten all expectation
values required to evaluate the variational energy as terms
quadratic in a and b operators. While this takes care of the
Heisenberg interaction, we now have to deal with the hard-
core condition we imposed. As mentioned earlier, we do this
by replacing the hard-core fermions with normal fermions
subject to an infinite repulsion, as this cannot change the ob-
servables of the system. One should think of this as an entirely

different system that happens to give the same results, and
where expectation values take the same form as calculated in
the previous section (which fixes the true ordering of fermion
operators). However, now anticommutations as in (39) are
allowed: While an intermediate state may have two fermions
and thus infinite energy, it is still part of the new Hilbert space,
so the operator does not have to vanish. Naturally, we will use
the same symbols for a, b, etc., in the new system.

There has been some variety as to how previous calcula-
tion took the hard-core interaction into account. A different
formulation of the bond fermion method was used by Jurecka
and Brenig [40]. An equivalent of the hard-core condition
also appears in their calculation, which they solved on the
mean-field level. Alternatively, the most straightforward way
is to simply ignore the interaction [42,43]. One can expect
this to give reasonable results as long as the bond fermion
concentration is low, which is the case near half-filling and
strong coupling. Finally, a variety of approaches was tried in
Ref. [41].

Instead of these choices, we will use a Gutzwiller wave
function, a classic method first developed for the Hubbard
model [46]. We expect this to yield a quantitative im-
provement of the results (for example, a better estimate of
the critical interaction strength J. for the onset of mag-
netic order) when compared to disregarding the hard-core
interaction, while retaining the qualitatively good aspects
of that calculation. In the Gutzwiller approach, the ground
state is approximated by an uncorrelated (Slater determinant)
wave function |Wy), which is multiplied by a Guzwiller
operator P:

W) = P|Wo). (49)

In our case, the uncorrelated state |Wy) is a state containing
a and b fermions, so it is already nontrivial in this sense. In
general, this state does not fulfill the hard-core constraint, and
the role of P is to eliminate the forbidden multiple occupan-
cies of bond fermions. As the resulting state is still difficult to
work with, we use the well-known Gutzwiller approximation
to calculate expectation values.

Metzner and Vollhardt [47] first demonstrated that expecta-
tion values of the Gutzwiller wave function (when applied to
the Hubbard model) can be calculated exactly in the limit of
a very large number of spatial dimensions. When this expres-
sion is used for finite-dimensional lattices, it coincides with
the Gutzwiller approximation. Generally speaking, the same
approximations can be derived by a slave boson mean field
scheme originally put forward by Kotliar and Ruckenstein
[48]. The slave boson scheme is simpler in the sense that one
often arrives at the correct result more quickly, but we here
outline the infinite-dimensions version of the calculation as
we feel it is closer in spirit to our own wave function based
approach.

There is some care to be taken because of the presence of
pairing terms a;&db;,g, in the hopping term (46), as they will
also appear in the effective Hamiltonian. How to include such
anomalous terms is described by Fabrizio [49], there in the
context of superconductivity. We use this as a reference, but
our calculation is easier because of the very simple form of
the interaction.



The Gutzwiller operator is composed of a product of local
projection operators

P=]]Pe. (50)
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where Py is only nonvanishing when acting on states with 0
or 1 bond fermions. Further, Pg should conserve the electron
number, i.e., it should not mix a- and b-like states. We will
also take it to be self-adjoint. To evaluate the Gutzwiller
expectation values in infinite dimensions, some further con-
straints need to be enforced [49]:

(Wo|Pr Pr|Wo) = (Wo|Wo) =1, D
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where Cr can stand for any local fermion bilinear. Substituting
Cr — ag, by, (53)

we find that the left-hand side of (52) will necessarily vanish.
This is because a;ngRa, creates two fermions on the same
site, which is not allowed. However, the right-hand side is
in general nonzero: While the kinetic energy contains only
nonlocal pair creation terms, a |y) that minimizes this energy
may well also have nonvanishing expectation values for local
pair creation. To preclude this, we will restrict |\Wy) to states
with

(a-lrlab;a’>0 = (aRabRa’>0 =0. (54)

We use the notation (- ) for expectation values with respect
to |Wy), and (-) for ones with respect to |Wg). In practice,
we will use a set of Lagrange multipliers A’ , to enforce
(54), each corresponding to a particular choice of o and o’. A
topic related to this are the sum rules for electron expectation
values; a discussion can be found in Appendix A.

We can now calculate Pg. While this usually involves
minimizing the Gutzwiller variational energy, the hard-core
interaction and the constraints (51) and (52) together drasti-
cally simplify this procedure compared to the more general
problem in Ref. [49]. In fact, they already provide enough in-
formation to uniquely determine Pr. The calculation is easiest
in the eigenbasis of the local density matrix
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PRrp 1s defined similarly. We introduce a four-component
fermion vector &g as
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The former two components of & correspond to a, the latter
to b. Ny; is the number operator of component i. Ur, and Uy,
are two-dimensional spin-rotation matrices that respectively
rotate the spins of the a and b fermions to the z axis. In a
general setting, these rotations do not have to be the same, as
the spin directions can be different. In our specific case, they
both point in the x axis.

In this diagonal basis, the conditions (52) imply a similarly
diagonal form for Pg, meaning that it can be written solely in
terms of the number operators Ng;:

Pr = pro [ [Nri + ) _ priNgi [ [ Nr;- (60)
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The first term is a projector onto the empty state, while each
term in the sum projects onto a state with exactly one &
occupied. pro and the pg; are parameters that we need to
solve for. Using this ansatz, (52) is automatically fulfilled
for Cp — EILER ; with i # j as both sides vanish. For i = j
(Cr — NR)), a short calculation results in
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so that Pg is determined completely.

It does not matter whether we take the expectation values
on the right-hand side with respect to the Slater determinant
or the Gutzwiller wave function. To see this, note that we can
move Cg on the left-hand side of (52) in between the two
Gutzwiller operators, as Cr and Pr commute for all opera-
tors with nonvanishing expectation values. Thus, we generally
have

l

(Cr)o = (Cr). (64)

This will be used to evaluate the interaction energy.

Using the explicit form of Pr, we can evaluate hopping
expectation values using some of the formulas of Ref. [49].
For R # R’ the results are
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It is instructive to check some limiting values. For example,
the hopping renormalizes to zero when the bond fermion den-
sity (the sum in the numerator) becomes unity. On the other
hand, if only a single one of the (/Ng;) is finite, then numerator
and denominator cancel and the hopping is not renormalized
at all. This is also expected because alike fermions do not
interact. Note that the expression in (67) is the same as the
renormalization in Kotliar and Ruckenstein’s slave boson the-
ory when applied to a system with four fermion degrees of
freedom [48].



It is now time to reverse the unitary transformation. We
define the spin- and species-dependent renormalization matrix
VZg as

ﬁRa 0
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where /Cg is the matrix with the /Cg; on the diagonal.
\/ZR(,{ and \/ZRb are again two-dimensional matrices, as a
and b fermions are not mixed as long as the electron number
is conserved. This allows us to calculate intersite expectation
values of the bond fermions as

\/ZR = UR\/ERUI; = (
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Finally, we can write down the energy of the Gutzwiller
state. Since tg = |t|é, (in the canonically rotated system),
both the translation matrix W and the renormalization matrix
VZg are real symmetric and position independent. Com-
bining (42) and (43) with (69) and (70), this results in the
expectation value
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e is the energy needed to create a bond fermion. All terms in
this expression depend only on the uncorrelated wave func-
tion, i.e., given a specific |\Wy) we can calculate /Z and with
it the energy.

To optimize the variational wave function, we take a sim-
ilar route to Yao et al. [50]. The kinetic energy expectation
value (74) depends nonlinearly on the expectation values of
the bond fermions, as +/Z is itself a function of (local) ex-
pectation values. Optimization problems of this kind can be
reframed as nonlinear eigenvalue problems by taking deriva-
tives of the energy expectation value, which in turn yields an
effective Hamiltonian that is subject to some self-consistency
equation. The derivatives are collected in a matrix m. We also
need to include the chemical potential u to adjust the electron
number to its correct value and a matrix of Lagrange mul-
tipliers A to enforce the constraints (54). Putting everything
together, the effective Hamiltonian is

He = Z vilh + VZWTEW N Z]y, (75)
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The matrix m describes the effective energy needed to create a
bond fermion of specific type and spin: A bond fermion blocks
other hopping processes and affects the renormalization con-
stant ﬁ, so in the effective Hamiltonian creation processes
are punished. A holds the Lagrange multipliers Aga,

To investigate antiferromagnetic, ferromagnetic, and in-
commensurate order, we numerically minimize the variational
energy for fixed external parameters ¢’, J, and n.. The min-
imization is implemented through three nested loops, listed
from outermost to innermost:

(1) Optimization of the variational energy as a function of
the triplet background. We call this energy Ev, (||, Q), as all
other properties of the wave function can be calculated from
these two input values (along with the external parameters).
This is a low-dimensional nonlinear optimization problem,
which we solve using an algorithm from the free software
suite NLOPT.

(2) Calculation of Ey,(|t|, Q) for given input values. This
can be done in multiple ways, but our calculation follows Yao
[50]. We guess (mostly arbitrary) starting values for +/Z and
m, find the ground state of the resulting effective Hamiltonian
(76), and then calculate new values of /Z and m through
(69) and (79). We iterate this procedure a few times to find
an approximate solution, which we use as a starting value
for the MINPACK nonlinear equation solver. Ey,(|t|, Q) is then
calculated through (71).

(3) For fixed VZ and m, the effective Hamiltonian (76)
still depends on the Lagrange multiplier matrix A. Its ele-
ments have to be solved for to enforce (54), which we again
do using MINPACK.

As there are multiple competing phases in the model, we
performed local optimizations with different starting values
for |t| and Q. For example, one set of starting parameters
corresponds to the “small Fermi surface” antiferromagnetic
phase (which has a larger |t|), while a different one corre-
sponds to the “large Fermi surface” antiferromagnetic phase
(which has a smaller |t|). Momentum integrals are taken as
sums over an equally spaced grid, with a fictional effective
temperature 7 = 0.001¢. Changing the grid size or decreasing
the temperature had no significant effect on our results.

WTekWﬁuk> . (79)

ao’ 0

IV. ANTIFERROMAGNETIC PHASE DIAGRAM

We first focus on the case of pure antiferromagnetic order-
ing with only nearest neighbor hopping, which corresponds
to fixing Q = (;r, w) and ¢’ = 0. This is the most symmetric
and most well-studied setting. While our method also allows
us to perform calculations in the more general case, it is reas-
suring to first show that we can reproduce the main features
of the model that have been established in previous inves-
tigations, with quantitative improvements over the previous
bond fermion theory [42]. Incommensurate and ferromagnetic
ordering will be discussed in a later section.
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FIG. 1. The phase diagram when taking into account only anti-
ferromagnetic and paramagnetic phases. The dashed line indicates
the (second-order) transition to the magnetic AFI phase, the full line
the (first-order) transition to the AFII phase. The thickness of the
full line schematically follows the size of the jump in the magnetic
parameter |t|. At half-filling n, = 2 (striped line), the transition be-
comes continuous. Furthermore, the system is gapped for all J at
half-filling.

When varying J and n., three different phases emerge
(Fig. 1). At large J, formation of magnetic moments is sup-
pressed by the interaction which favors singlets (t = 0). Two
antiferromagnetic phases (we will refer to them as AFI and
AFII) are found for moderate J: The symmetry of the mag-
netic ordering is the same in both cases, but away from
half-filling (n, # 1) there is a discontinuous drop in [t| across
the transition from AFII to AFI (Fig. 2). The difference be-
tween the phases lies in their band structures (Fig. 3), which as
usual we approximate through the eigenvalues of the effective
Hamiltonian [50]. The Fermi surfaces are shown in Fig. 4.
Note that the only k dependence in the effective Hamiltonian
is through €, ¢ in (28), which for 1" = 0 satisfies €, ¢ =
€95 SO there is only a single free parameter. The Fermi

surfaces must thus be lines of constant €x. As the Fermi
surfaces of a trivially solvable free-electron (J = 0) system
follow these same lines (with €x = Epermi, the Fermi energy),
the sheets of the interacting Fermi surface can be identified
with those of a free-electron system. However, this associated
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FIG. 2. The magnetic order parameter |t| at n. = 1 (black) and
n. = 0.9 (gray). The transition to the paramagnetic phase with [t| =0
shows a square-root behavior. At half-filling, |t| is continuous (the
critical point J,. , = 1.04¢ for the AFI-AFII transition is not distinct),
while away from half-filling there is a jump in |t| (dashed gray line).
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FIG. 3. The excitation band structure at half-filling for different
values of J. (a) Paramagnetic phase (black, J = 2¢), with the free
band structure for comparison (dashed). (b) AFI phase J = 1.6¢.
(c) AFII phase J = 0.7¢. (d) Near the critical point J = 1.04z.

noninteracting system does not necessarily need to have the
same electron density as the original Kondo lattice model.
The paramagnetic and AFI phases have heavy hole pockets
around (7, ) [and for AFI at the magnetically backfolded
(0,0)]. This is usually dubbed the “large” Fermi surface phase,
as the Fermi surface is that of a noninteracting tight-binding
system filled with n, = n. 4 1 itinerant electrons: The usual
interpretation is that the f electrons (despite being localized)
still contribute to the Fermi surface volume. Meanwhile, the
AFII (“small” Fermi surface) has the same Fermi surface as a
noninteracting system filled with #n, itinerant electrons (the f
electrons “drop out”), albeit with somewhat heavier bands and
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FIG. 4. The possible Fermi surfaces at n. = 0.8. The full red
line is the noninteracting system’s Fermi surface if it was filled
with n, = 1.8 electrons. It is also the Fermi surface of the large-J
paramagnetic phase, so the localized electrons can be interpreted as
contributing 1 electron. The AFI phase’s Fermi surface is identical
to the paramagnetic one, except for the antiferromagnetic folding
(red dashed). The full blue line corresponds to the noninteracting
system with n. = 0.8 electrons. This (together with the blue dashed
line) is also the Fermi surface for the AFII phase, showing that only
the actual conduction electrons contribute to the Fermi surface. An
explanation as to why the interacting Fermi surfaces coincide with
those of a noninteracting (free-electron) system can be found in the
main text.

antiferromagnetically folded. This behavior of the bands is
qualitatively very similar to the results of DCA and QMC [30].
While real-space DMFT predicts non-Néel ordered states,
there is a very similar transition in Fermi surface topology
there as well [33].

Approaching half-filling, all three phases develop band
gaps (Fig. 5). For large J, this gap is simply the energy re-
quired to break up two singlets and create two bond fermion
excitations, while at small J this corresponds to a magnetic
gap (with no clear transition between the two limits). A
limitation of our method (and the related one of Jurecka
and Brenig [40]) is that the J — O limit is not the expected
free-electron system (with the localized spins completely de-
coupled from the conduction band). From the start we have
excluded three of the four single-occupation states from our
variational ansatz, which is not a reasonable assumption for
J = 0. From this, we must expect a gap of order ¢ even at
J = 0, as a quasiparticle excitation blocks a site from partici-
pating in electron transport, and the kinetic energy per site is
of order . Speaking more quantitatively, the exact ground-
state energy of the J =0 system is Eexaer = —16/7%t =
—1.62¢. Our result compares poorly with the variational
energy E,, = —1.08t. With such a sizable discrepancy,
we cannot expect to make even qualitative predictions for
small J.

Luckily, the region of antiferromagnetic phase transitions
is found at moderate J, where our approximations are easier
to justify. At half-filling, the critical value for the transition
to magnetic order is J. = 1.85¢, which is a lot closer to the
QMC value of J. = 1.45¢ than the original bond fermion
result of J. = 2.3¢ [42]. To compare, the VMC of Watanabe
and Ogata gives a value of J. = 1.7¢ [27]. In our view, this

FIG. 5. The size of the gap A (defined as the minimum distance
between the two bands surrounding the gap) at half-filling. The gap
does not close in the noninteracting (J = 0) limit as excitations still
block each other. For J >> 1 (not shown), we get A — %J , the energy
needed to destroy two singlets. The kinks in A coincide respectively
with the AFII-AFI and AFI-paramagnetic phase transitions (dashed
lines).

represents something of a “gold standard” for calculations that
do not explicitly include long-range fluctuations (the wave
function of Watanabe and Ogata consists of an uncorrelated
state multiplied by a purely local projection operator). From
this standpoint, the accuracy of the bond fermion prediction
for J. appears adequate. We also note that DMFT gives J, =
2.2t [33], and DCA J. = 2.1z [31], while series expansion in
t/J results in J. = 1.48¢ [25,26].

A mean-field description gives the critical value as J, =
0.4W = 3.2t (W = 8t is the free bandwidth) [17]. The mean-
field ground-state energy will be close to the true value for
J K t,butfor J > t the energy per site is only — %J instead of

—%J (the Kondo singlet is a correlated state), which matches
that J, comes out larger by a factor of roughly two compared
to other calculations. Mean-field theory is thus accurate in the
opposite limit as bond fermion theory, with a crossover in the
ground-state energy somewhere in between. Zhang and Yu
performed a similar calculation for a generalized anisotropic
version of the Kondo lattice [11]: When specialized to the
isotropic case, they give a value J. = 1.16¢, but calculated
under the assumption of a flat density of states.

The bond fermion theory of Jurecka and Brenig [40] de-
serves special consideration; we elaborate on their results in
Appendix B.

An interesting property of the phase diagram is that the
AFI-AFII-transition in a sense exists even at half-filling.
There are no Fermi surfaces due to the gap, but the change
in the band structure can still be detected. A “peak” in the
valence band at the ex = 0 line [which contains (7 /2, 7/2)
for example] flips and turns into a “trough.”” Away from
half-filling, this is accompanied by the aforementioned dis-
continuous change in Fermi surface (Lifshitz transition).
While there is no Lifshitz transition at half-filling, the change
in band structure still occurs. In this sense, half-filling is
“smoothly connected” to the doped case, as on each side of the
AFI-AFII-transition the chemical potential simply wanders
into the gap when approaching half-filling.
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FIG.6. D =E,(0,0) — Ey(7 /2,7 /2) for n. =1 (black) and
n. = 0.9 (gray). Here, E, (k) is the quasiparticle energy in the second
lowest (valence) band, so that |D| is the width of the valence band.
Compare Figs. 3(b)-3(d): D changes sign at the transition between
AFI and AFII. The density of states v (and the effective mass) behave
as v o« 1/|D|. This means that there is a divergence in the half-filled
case, while in a doped system there is a jump. The kink near J = 1.9¢
(J = 1.3¢) corresponds to the transition to the paramagnetic phase.

A further consequence of the gap is that the AFI-AFII
transition itself is also smooth at half-filling: In the doped
regime, there is a jump in |t| because of the Lifshitz transition.
With a gap, the flipping of the band structure can happen
continuously, without a jump in |t|. Even more dramatically,
at the critical point J., = 1.04¢# (when the maximum turns
into a minimum), the whole band is perfectly flat [Fig. 3(d)].
Intuitively, we can imagine moving an infinitesimal distance
away from half-filling. On either side of the transition the
Fermi surface is locked to either the red or the blue lines in
Fig. 4, so for a continuous phase transition the surface must
be ill defined at J. ,. Exactly this happens at the flat band. A
rigorous mathematical treatment is found in Appendix C.

This should not be confused with a decoupling of the ¢
and f electrons (as appears, for example, in Hartree-Fock
calculations at small J [17]). In our ansatz, localized and
delocalized electrons are coupled no matter the phase. Rather,
the flat band arises at the critical point between two phases,
one of which is dominated by c electrons (AFII) and the other
by f electrons (AFT).

It is to be emphasized that this leads to a divergent density
of states and band mass at the transition point. While the
square lattice is pathological in the sense that even in the free
system the DOS diverges at zero energy, this is “only” loga-
rithmic [a consequence of the saddle point of €, for k = (0, )
and similar points], while in our case the two bands around
the gap are each compressed into zero-width slivers. In fact,
the symmetries that lead to the flat band (most significantly
that € 9 = —€,_9;see Appendix C) are also present in the

nonpathological three-dimensional cubic lattice, so we expect
a similar situation to occur there also.

At finite doping, the band becomes narrower close to the
transition, but a perfectly flat band is not realized. Instead, the
DOS increases when approaching the transition from either
side, but does not diverge (Fig. 6). Around the critical point
there is a coexistence region with two separate local minima
in the energy, corresponding to each of the antiferromagnetic
phases. One of these minima is only metastable, and the
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FIG. 7. Same as Fig. 1, but for ¢’ = 0.4z.

transition is the point where their energies cross. As shown
in the figure, the valence band becomes very narrow for both
phases in their respective metastable regions, but the transition
occurs before a flat band is realized. We speculate that even at
finite doping, inclusion of long-range fluctuations may move
the phase transition closer toward these regions, as a large
DOS would enhance them. As discussed in Sec. VI, some
heavy fermion magnetic transitions show a significant (likely
divergent) mass enhancement near the phase transition.

We will now also briefly discuss the #’ # 0 case. The phase
diagram is qualitatively similar, although the antiferromag-
netic regions become smaller (Fig. 7). In particular, the size
of the AFII phase is reduced, which can be interpreted as a
consequence of the decreased nesting in the free band struc-
ture. The two magnetic phases can again be recognized by
their qualitatively differing Fermi surfaces (Figs. 8 and 9).
However, since the lattice is no longer bipartite and particle-
hole symmetry is broken, one can no longer directly identify
the Fermi surfaces with those of a free system. €, 4o are

essentially independent quantities and act as two different
k-dependent parameters in the effective Hamiltonian, so the
hole pockets do not have to follow lines of constant €. The
AFII Fermi is no longer ring-like, surrounding the center of
the Brillouin zone, but instead consists of disconnected hole
pockets at (7 /2,7 /2) and symmetrically equivalent posi-
tions. Still, the AFI-AFII transition is similar to before, as the
maximum near ( /2,  /2) flips around at the transition. One
must note that due to the reduced symmetry, the conduction
band no longer becomes globally flat at the critical point, but
there remains a line of almost dispersionless excitations along
the diagonal of the Brillouin zone [Fig. 8(d)]. The density
of states will thus still drastically increase near the transition
point.

V. FERROMAGNETIC AND INCOMMENSURATE PHASES

We now turn our attention to the more general case of
arbitrary Q. This includes the already discussed antiferromag-
netic phases, but also ferromagnetism [Q = (0, 0)] and more
general spiral order. It turns out that all phases except AFI are
unstable against such non-Néel ordering. The resulting phase
diagram is pictured in Fig. 10. Notably, the paramagnetic
phase is replaced by ferromagnetism (FM). The other major
change is in the area previously occupied by the small Fermi
surface AFII phase, which is replaced by a sequence of phases
with nontrivial Q:
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FIG. 8. Analogous to Fig. 3, but for #' = 0.4¢. (a) Paramagnetic
phase (black, J = 1.62¢), with the free band structure for comparison
(dashed). (b) AFI phase J = 1.3¢. (c) AFII phase J = 0.5¢. (d) Close
to the critical point J = 0.82z.

(1) ID: incommensurate phase with a wave vector lying
along a diagonal of the Brillouin zone, Q = (g, ).

(2) IE: incommensurate phase with a wave vector lying
along an edge of the Brillouin zone, Q = (g, ).

(3) S: commensurate phase with stripe magnetic order
along a coordinate axis, Q = (0, 7).

Pure antiferromagnetism remains only at half-filling, and
in the AFI phase. More generally, the situation at half-filling is
completely unchanged, and the two critical interaction values
have the same values as before.

We will now discuss possible explanations for the appear-
ance of each of these phases, beginning with the FM phase.

(, )

(0,0)

FIG. 9. The Fermi surfaces for ¢’ = 0.4t and n, = 0.9 Unlike the
t' = 0 case (Fig. 4), the lines do not follow any equipotential lines,
so they cannot be directly matched to free band structures. Pictured
are AFI in red (J/ = 0.5¢) and the AFII in blue (J/ = 0.62¢).

Close to half-filling, the band structure is qualitatively iden-
tical to the paramagnetic phase, except for a splitting of the
bands (Fig. 11). In fact, the splitting is always strong enough
to completely polarize the Fermi surface, resulting in one con-
ducting and one insulating band. This type of “spin-selective”
Kondo insulator has previously been proposed by Peters et al.
in both infinite dimensions [35] and in one dimension [36]
(in the latter case, perturbatory expansion in ¢/J leads to a
rigorous proof of ferromagnetism in the J — oo limit [51]).
The tell-tale sign of this phase is the identity (if we assume |
to be the minority carrier) n| = n{ Intuitively, each minority
¢ electron is bound to an f electron of opposite spin. This
condition is fulfilled here as well. The same phase was also
found in two dimensions [17,34].

The results of these studies differ from ours in that
ferromagnetism is only present at low conduction electron
concentration n, < 0.5, whereas in our calculation polariza-
tion is present at arbitrarily small doping. From a purely
mathematical standpoint, it seems that the FM phase is caused
by a Stoner-like mechanism aided by the large density of
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FIG. 10. Phase diagram with incommensurate and ferromagnetic
phases. The dashed line indicates a second-order transition; all other
transitions are discontinuous. Explanations of each phase can be
found in the main text.
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FIG. 11. The band structure in the ferromagnetic (FM) phase
with n. = 0.9 and J = 2.02¢. The majority (minority) spins are in
black (gray).

states of the very heavy conduction band. A small ferro-
magnetic admixture to the triplet background is only weakly
punished by the Heisenberg interaction, but increases hopping
processes for the polarized bond fermions. Furthermore, the
number of hard-core collisions is reduced by a polarization
of the conduction bands. Only at quite large J ~ 8t does
the Heisenberg interaction win out and the system becomes
paramagnetic. This seems to be a consistent feature of the
bond fermion theory as similar behavior was found for the
triangular lattice [43].

While this ferromagnetic phase at small doping seems
unphysical to us, we can very roughly judge how “far off”
we are from the more likely paramagnetic solution. For this,
we turn to previous DCA [32] and Gutzwiller approximation
[38] studies, where the model was investigated with an ap-
plied magnetic field. In both cases, the magnetization profile
was qualitatively similar: With increasing B field the mag-
netization quickly saturated, with a metamagnetic transition
at larger field strength. The fully polarized ferromagnetic
phase we have found corresponds to the saturated region.
While quantitative comparisons are difficult, the figures in
the references indicate that the magnetic field needed for
saturation is quite small: In the DCA calculation at n, = 0.9,
J = 1.3¢t, and a ratio of Landé factors gr/g. = 4, the magne-
tization saturates at B &~ 0.002¢. In the Gutzwiller calculation
at n. = 0.88, J = 0.45D (where D is the half-bandwidth, in
our case 4t), and Landé factors g = g., B = 0.01D is already
in the saturated region. We take these small values of the
magnetic field needed for full polarization as a sign that even
at low doping the Kondo lattice is energetically quite close
to the fully polarized ferromagnetic state. The likely reason
for the appearance of ferromagnetism in bond fermion theory
is that our calculation does not take triplet fluctuations into
account.

We now turn to the incommensurate phases. Doping away
from half-filling with J < J, >, Q smoothly moves away from
the Néel vector (7, ), toward the origin along the diagonal
of the Brillouin zone (Fig. 12). This forms the ID phase. For
J 2 0.6¢, further doping leads directly to a phase transition
to FM. In the case of small J, one instead first finds another
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FIG. 12. The evolution of Q for fixed J = 0.5¢ at varying doping.
The black (gray) shows the optimal ¢ when Q is restricted to the
diagonal (edge) of the Brillouin zone, where g is respectively defined
through Q = (¢, ¢) and Q = (g, w). The vertical line signifies the
phase transition: to the right, the diagonal (ID) phase has lower
energy; to the left, the edge (IE) phase. For ¢ = 0 or ¢ = 7, we have
commensurate magnetic order.

incommensurate phase of different symmetry, where Q jumps
toward the edge of the Brillouin zone (IE). From there, the
system transitions smoothly to a commensurate phase of the
form Q = (0, 7 ): The magnetic moments are laid out in alter-
nating stripes with inequivalent x and y axes (S).

‘We can compare these results to the mean-field calculations
of Costa et al. [17] and Pankratova et al. [18], which should
be reasonably accurate for small J. While Costa et al. allow
for c-f hybridization, this is only relevant in phases featuring
Kondo screening. In our region of interest, their calculation
is equivalent to that of Pankratova et al., except that the latter
allow for phase separation. As we have not investigated phase
separation ourselves, we will focus on the results of Costa
etal.

The bond fermion and mean-field phase diagrams are sim-
ilar to a point, as the mean-field theory also predicts two
different kinds of antiferromagnetism and stripe magnetism.
However, there are significant quantitative differences. For
example, as Fig. 12 shows, when fixing J = 0.5¢ the crossover
between the ID and IE phases occurs near n, = 0.76 in our
calculation. For Costa et al., the transition always occurs for
n. > 0.9 even at larger J = 0.3W = 2.4z.

Effectively, the bond fermion method heavily amplifies the
effect of the local moments for smaller J. Similar to how the
system is still gapped for n. = 1 and J = 0, the choice of Q
still influences the strength of the hopping even for a small or
vanishing J. From this standpoint, it may actually be a positive
surprise that, even in the region where the bond fermion wave
function is not an appropriate ansatz, our phase diagram is
still comparable to the mean-field result. However, we must
assume that the ID phase is in truth confined to a much smaller
region that in our phase diagram, the IE phase growing larger
in turn. For another opinion, one can consult the DMFT results
of Peters and Kawakami [34]. While they did not investigate
incommensurate order, they also support the existence of a
striped magnetic phase near n. = 0.5.



VI. DISCUSSION AND SUMMARY

The bond fermion method is a strong-coupling approx-
imation; i.e., it is initially justified in the limit of infinite
interaction. Instead of focusing on ¢ and f electrons, we
try and guess at the significant excitation modes (the bond
fermions) to then extend the calculation to finite interaction. In
this way, we see it as an ansatz complementary to mean-field
theory, which is more natural at small interaction. The draw
of the bond fermions is that it allows us to work solely with
physical states, meaning that the condition of single occu-
pancy on the f electrons is fulfilled simply by the nature of the
ansatz. We believe this to be significant because this condition
is “dense,” as for a generic wave function of ¢ and f electrons
around half of all lattice sites will not actually fulfill it. One
will need to introduce a different (necessarily approximate)
method to alleviate this problem.

Of course, this has to be evaluated relative to the simplifica-
tions we in turn had to impose in order to solve the system. For
one, we still had to use a Gutzwiller approximation of our own
to implement the hard-core interaction of the bond fermions.
However, we think this aspect is not as significant a drawback
as it may seem at first glance. The condition is “dilute,” in
the sense that (unless far from half-filling) the bond fermion
concentration pgp is typically around 0.1 to 0.2 per site in
our calculation, and the probability of a double occupancy
scales with pZ.. A more pressing issue is disregarding triplet
(bosonic) fluctuations. Some attempts to accommodate them
have been made in the paramagnetic phase [41], but it is
so far unclear to us how to include them in our variational
framework. For small J (where our method is currently inap-
plicable), introducing bond operators for triplets would lead
to a very strongly correlated, computationally intractable sys-
tem. However, we guess that deficiencies at moderate to large
J, like the ferromagnetic phase close to half-filling, may be
cured with the right approach.

While the Kondo lattice is generally seen as providing a
good description of basic heavy-fermion physics, it is clear
that such simple model cannot adequately describe phase
transitions in real materials. Rather, the model appears to
have a variety of phases which differ only very little in their
energy, so that small additional terms will determine which
phase is realized. In the following, we thus want to give a
few examples where actual heavy fermion compounds show
a behavior which is reminiscent of results obtained above.
One example is CeRh;_,Co,Ins, which has the quasilayered
HoCoGas structure [52] and thus may approximately be de-
scribed by the two-dimensional Kondo lattice model. In fact,
this material shows similarities to the phase diagram obtained
above [53]. Ignoring its superconducting phase, the compound
shows commensurate Néel order within the a-b planes, but
incommensurate order along the ¢ axis at x = 0. Doping
first leads to a transition to another antiferromagnetic phase
with three-dimensional Néel order and a reconstructed Fermi
surface, and then to a paramagnetic phase. Fermi surface
imaging suggests that the f electrons are localized in the
incommensurate phase, while after the reconstruction they
should be included in the Fermi surface volume. Superficially,
this mirrors some aspects of our phase diagram, as we can find
analogues of these phases in our calculations. The incommen-

surate phase would correspond to either IE or ID (which both
have a small Fermi surface) and the commensurate one to the
AFI phase (large Fermi surface). If we start out in IE/ID and
assume codoping to be equivalent to increasing J/¢, we have a
similar sequence of phase transitions to the experiment. At the
first transition, the Fermi surface is reconstructed to include
the f electrons, and the ordering vector becomes commen-
surate. Magnetic order as a whole vanishes later, at a second
transition.

However, the analogy is imperfect. Instead of in-plane
spiral order as in our two-dimensional description, the in-
commensurability is in the out-of-plane direction with a wave
vector Q = (7t /a, 7w /a, q/c). Further, unlike our calculation,
no sign of a significant narrowing of the bands was found near
the transition.

If one instead takes pure CeRhlns and applies pressure,
one gets a direct transition from incommensurate antifer-
romagnetism to paramagnetism [54], with no intermediate
commensurate state. According to our calculation, this is also
possible in the Kondo lattice, albeit only at lower electron
densities. What is particularly interesting here is that while
the De Haas—Van Alphen frequencies of each band seem to be
almost constant on each side of the transition (indicating that
the Fermi surface does not change much), some of the effec-
tive masses seem to diverge. This is unlike the doping-induced
transition, and fits with our observation that the Fermi surface
reconstruction is associated with a significant flattening of the
valence band near the transition. A similar pressure-induced
transition was observed in CeRh,Si, as well [55], also featur-
ing the mass enhancement.

A different, much-studied example for incommensurate
magnetic order is given by the system CeCu;(Si;_,Ge, )
[56-59]. This compound has the layered ThCr,Si, structure
and the Fermi surface takes the form of warped cylinders [56]
so that a description by a planar model may be reasonable.
This system shows incommensurate magnetic order with an
ordering vector close to Q = (v /2a, 7 /2a, 7 /c), whereby the
ordered moment forms a spiral in the plane perpendicular to
Q [57]. It has to be noted, however, that in CeCu,Si, the
ordering vector has been shown [56] to correspond to a nesting
vector of the heavy quasiparticle Fermi surface obtained for
the paramagnetic phase by the renormalized band structure
method. In this picture, the antiferromagnetic phase would
correspond to a spin-density-like instability of the “large”
Fermi surface, that is the AFI phase in the present theory.
This interpretation would therefore not be consistent with the
present theory, where the incommensurate phase replaces the
AFII phase.

In summary, we have improved the bond fermion method
for the Kondo lattice by combining it with a Gutzwiller
approximation step. When restricted to Néel ordering, this
qualitatively reproduces previous phase diagrams, featuring
two antiferromagnetic phases distinguished through a recon-
struction of the Fermi surface. The critical value for the onset
of magnetic order at half-filling was calculated to be J. =
1.85¢, a significant improvement over the previous method.
When allowing for more general planar ordering, one of the
antiferromagnetic phases is replaced by a series of states
with incommensurate ordering vectors, similar to mean-field
results [17].
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APPENDIX A: SUM RULES AND PHYSICALITY
OF EXPECTATION VALUES

As in other interaction systems, sum rules for electron
expectation values are a useful tool to evaluate the validity
of approximations. Clearly, we should try to preserve these
rules as much as possible, as violations would point to in-
consistencies in approximations. More specifically, previous
presentations of bond fermion methods used some ad hoc
measures to ensure the equality between local electron den-
sity and k-integrated electron number [39,42]. We will here
explain how these details are handled in the present paper.

For simplicity, it is enough to consider the paramagnetic
case (i.e., s =1, t =0). Let us try to evaluate how elec-
trons are distributed over k-modes. For this, we introduce the
Green’s function

Goo (R, R') = (ch, Crio) (A1)
=GR — R)S,, (A2)
GR—-R) = <cImcR,T>. (A3)

This gives the local electron density for R = R’. From Sec. 11,
we find that G is given through two different expressions
depending on R and R’. For R # R’, (46) should be used.
The result is

GR —R) = 3 (b, bry) + 3 (ag af,)
—5(bjpaf,) — 3lag bry) (A4
=GR -R). (AS)
We introduced the “nonlocal” Green’s function G’ in the final
line, which we understand to be defined through the same
expression even for R = R'. It will give the k dependence of

the electron occupation numbers. Meanwhile, for the “true”
Green’s function we have [using (42)]

G(R —R)) { GR—K) RER a6)
- <a;TaRT> + U’I{Tbm) R=R"

One can see that in general, G # G’ for R = R’. As explained
in the main text, expectation values of pairing terms like
(bLTaI{, ;) must vanish due to the hard-core constraint, with
which (A4) gives

G(0) = G'(0) — 5(ag,ags) + 5 (by,bgy)-

We get the k-space occupation numbers by Fourier trans-
forming G:

(A7)

(chrexp) = G(K)
= Z *RG(R).
R

We can split this sum into a local and a nonlocal part, resulting
in

(A8)

(A9)

Gk) =) "™ G'R)+ GR =0) (A10)
R0
=Gk -GR=0)+GR=0). (All)

The number of electrons in the k mode is thus given by G’ (k),
with the second and third term giving a constant offset.

Upon averaging (A1) over k, the first two terms cancel
and the third remains unchanged. Thus, the k sum rule for the
total electron density is fulfilled.

A subtle point about (A11) is that we need to be careful
about how to enforce the hard-core condition on the bond
fermions. G(Kk) gives the number of electrons in a momentum
state K, so clearly

0<Gk) < 1. (A12)

This physicality rule is automatically enforced as long as all
bond fermion expectation values are evaluated on an admis-
sible state, i.e., one that obeys the hard-core constraint. For a
generic state, however, (A11) can lead to violations of (A12)
and result in negative or too-large occupation numbers, which
is clearly undesirable. This should be kept in mind when
solving the system approximately.

We have checked for a variety of parameters whether the
Gutzwiller approximation of the main text fulfills the physi-
cality rule, and we have found no violations. While we have
been unable to prove this in general, from the limit of in-
finite dimensions we consider this to be sensible. Since the
Gutzwiller approximation is exact in infinite dimensions, it is
sure to produce a state fulfilling (A12). As the dimensionality
enters the approximation only indirectly through the density
of states, we expect the physicality rule to hold also in finite
dimensions.

While the hard-core condition was disregarded in some
previous works [39,42,43], the physicality rule was in fact
obeyed. One can check from (A5) that the rule holds for G/
by itself even on inadmissible states, i.e., 0 < G'(k) < 1 no
matter whether the hard-core condition is enforced. One way
to enforce physicality is thus to require

GR =0) = G (R = 0) = G(Kk) = G'(k), (A13)

for which a Lagrange multiplier A was introduced [39].

APPENDIX B: THE TECHNIQUE OF
JURECKA AND BRENIG

A different bond fermion method was introduced by Ju-
recka and Brenig [40,41]. Here, the translation between
electrons and bond particles happens entirely on the operator
level. Instead of choosing a particular “ground state” €2, the
bond particle operators act on a vacuum state that does not
correspond to any state in the original Hilbert space. All local
states of the Kondo lattice are treated on a similar footing by
introducing bond bosons s; and t; to generate the singlet S
and the triplet T (bosonic commutation rules are natural as
these are states with an even number of electrons). The result
is an exact (but interacting) mapping of the Kondo lattice
model, provided the physicality condition

| = afag + bibg + spsg + thtr (B1)

is enforced (each site must be in exactly one physical state).
For actual calculations, the bosons were considered to be
condensed, with (B1) fulfilled on average. The condensation
amplitudes (sg) and (tg) correspond to our parameters sg
and g from Sec. II. However, unlike our description, these
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FIG. 13. The band structure at half-filling and J = 1.1¢ (the an-
tiferromagnetic phase), calculated using the method of Jurecka and
Brenig. Note the band crossing at (7 /2, 7 /2).

amplitudes are not normalized to unity. Instead of (15), the
condition (B1) results in

[(sp) 1 + [{tg) > = 1 — (apag) + (bRbg).  (B2)

The kinetic energy contribution is quadratic in (sg) and (tg);
see (48). The smaller values of these amplitudes thus result
in an automatic renormalization of the band structure. For an
equivalent calculation in the language of the present paper,
we normalize the parameters to unity as in the main text, but
define

VZ = /1= (a'a) + (b'b), (B3)

with no matrix structure in spin or bond fermion space. This
result can alternatively be derived from our own formulation
by treating the hard-core constraint using Barnes’ original
slave boson mean field theory [60] instead of the Gutzwiller
approximation.

While the result for the critical interaction strength is
impressive (J. = 1.5¢ at n. = 1 close to the QMC result of
1.45¢), there are issues. It is not clear what is to be done
about expectation values of the pair creation terms (aI{G b;a,).
Nonzero expectation values were implicitly accepted in the
Jurecka-Brenig calculation; as an alternative, one can use a
Lagrange multiplier matrix A (as in the main text) to set them
to zero.

We have performed some calculations using the Jurecka-
Brenig theory using both of these options. In either case,
the only antiferromagnetic phase we could find was the large
Fermi surface state (AFI), both at half-filling and for the doped
system. Let us first discuss the calculation without A (or
equivalently, fixing A = 0).

In fact, the underlying reason for the lack of a phase tran-
sition was already mentioned by Jurecka and Brenig [40].
Looking at the band structure in the antiferromagnetic phase
(Fig. 13), one notices that the lower (upper) bands touch each
other at (;r /2, w /2). This should be compared with Fig. 3(b)
in the main text, where a gap between the bands is visible.
The discrepancy exists because in the Jurecka-Brenig method
the antiferromagnetic scattering in the effective Hamiltonian
is also proportional to k. For (/2,7 /2), we have ¢x =0,
so the bands do not repel. Accordingly, the mechanism of the

band minimum at (;r /2, 7r /2) turning into a maximum is also
impossible, and the AFII phase cannot be obtained.

In the language of the present paper (where the magnetic
vector points in the x direction), these scattering terms are
precisely the spin-flip terms in the effective Hamiltonian. In
(76), such terms appear as the off-diagonal terms of m and
in A, which result in a band coupling (and thus repulsion)
independent of k. Of these, m is numerically much more
important, as it corresponds to scattering between touching
bands, while A scatters between bands separated by the en-
ergy gap. The Jurecka-Brenig theory in contrast has a diagonal
m, owing to the complete symmetry of (B1).

Choosing the second option (meaning, adding A) results
only in a very small correction to the band structure. This
is too little to induce the Lifshitz transition. It also changes
the position of the critical point to J. = 1.3¢, less accurate the
previous result.

APPENDIX C: MATHEMATICAL DETAILS
CONCERNING THE FLAT BAND

At half-filling and ¢’ = 0, one can exploit a variety of sym-
metries. For example, we have Q = (7, ) and thus €, 9=
—€Q in (28). From (76), one gets the 4 x 4 band structure
Hamiltonian

Hg=h+e¢ 0K, (C1)

K= —JZWT((l) _Ol)W\/Z (C2)

The matrices 4 and K are functions of the Gutzwiller param-
eters /Z and m obtained from solving the self-consistency
equation, and the value of |t| from the minimization. As such,
they are implicitly functions of J. Note that they do not depend
on K, and the only momentum dependence is in €, 49

The band energies are the eigenvalues of Hy. At Jen =
1.04¢, one finds that one pair of eigenvalues is constant,
meaning independent of €, Q. However, an explicit numerical
calculation shows that 2 and K neither commute nor anti-
commute (in fact, 2K 4 Kh both have full rank). From this,
one can infer that there is no k-independent transformation
to (block-)diagonalize Hy. This illustrates why the flat band
does not correspond to a physical symmetry: The symmetry
operation involves both a translation in k space as well as a
rotation in the abstract bond fermion space.

To give some mathematical insight into the circumstances
required for the flat band, we calculate the eigenvalues E* as
the roots of the characteristic polynomial p(E). We can infer
the form (abbreviating €, 1o as €)

p(E) = det(E — Hy) (C3)

= det(E — h — €K) (C4)

— Z cij(h, K)E'e/. (C5)
0<i+j<4

Since the characteristic polynomial of a N x N matrix is a
polynomial in its entries (of total degree N), we can write
p(E) as a degree four polynomial in E and €. It is clear that
for a generic polynomial, the roots of p(E) (as a function of



E) will surely depend on €, and there will be no flat bands.
The question is now how many degrees of freedom actually
remain in the coefficients ¢;;. As we only have J left as an
external parameter, we will need to show that the existence of
the flat band is equivalent to tuning J to the root of a single
(complicated) function f(J).

The particle-hole symmetry implies that the roots E* of
p(E) are symmetric about zero, which implies that only terms
even in E appear. Further, from the derivation in Sec. II,
one can see that flipping the sign of € (or rather exchanging
k + % <~ k— %) is the same as flipping spin up and spin
down, which should not have any effect as the magnetic mo-
ments are located in the x-y plane. As a result, p(E) must
also be even in €. Thus ¢;; #0 only if i and j are both
even.

To proceed further, we consider the limits € =0 and
€ — 00. They respectively yield

> ciolh. K)E' = det(E — h), (C6)
0<i<4
coa(h, K) = det(K) = 0. (C7)

The second equality in (C7) follows from (C2): K isa 4 x 4
matrix, but its definition also includes the 2 x 4 matrix W.
If we take a (four-dimensional) vector v so that VZv is
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