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Ultrafast dynamics of cold Fermi gas after a local quench
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We consider nonequilibrium dynamics of two initially independent reservoirs A and B filled with a cold Fermi
gas coupled and decoupled by two quantum quenches following one another. We find that the von Neumann
entropy production induced by the quench is faster than thermal transport between the reservoirs and defines
the short-time dynamics of the system. We analyze the energy change in the system which adds up the heat
transferred between A and B and the work done by the quench to uncouple the reservoirs. In the case when A
and B interact for a short time, we notice an energy increase in both reservoirs upon decoupling. This energy
gain results from the quench’s work and does not depend on the initial temperature imbalance between the
reservoirs. We relate the quench’s work to the mutual correlations of A and B expressed through their von
Neumann entropies. Utilizing this relation, we show that once A and B become coupled, their entropies grow
(on a timescale of the Fermi time) faster than the heat flow within the system. This result may provide a track
of quantum correlations’ generation at finite temperatures which one may probe in ultracold atoms, where we
expect the characteristic timescale of correlations’ growth to be ∼0.1 ms.
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Introduction. Experimental techniques in ultracold quan-
tum gases have greatly advanced in recent years, providing a
vigorous control over transport phenomena [1–16]. In contrast
to their electronic counterparts, the reservoirs formed out of
trapped cold Fermi gas are well isolated from the outer en-
vironment and allow for highly tunable interaction strength
and disorder. This level of adjustment makes the ultracold
atomic systems particularly attractive to probe nonequilib-
rium dynamics of quantum many-body systems in transport
observables.

Due to the atomic nature of carriers, the characteristic
timescales of the tunneling phenomena differ by many orders
from the electron transport. The shortest timescale relevant for
transport in a Fermi system is the Fermi time τF ∼1/εF—the
time a particle travels a distance comparable to the Fermi
wavelength, where εF is the Fermi energy. In turn, the trans-
port measurements are performed on a timescale much longer
than the Fermi time [5]. Indeed, for a quantum point contact,
it takes ∼10 τF to form a steady flow pattern after inducing
the potential difference within a system [5,17]. Whereas in
an electronic setup this falls into the category of ultrafast
processes, being in the femtosecond range, in ultracold atoms
the Fermi time is on the order of 0.1 ms. The magnitude of the
timescale difference allows one to study the processes specific
to ultrafast physics in a moderate millisecond time frame [18].

A natural way to study the early-time evolution of a many-
body system is via quantum quench. A quantum quench drives
the system out of equilibrium by an explicit change of a
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system’s Hamiltonian parameters [19], e.g., turning on or off
the interaction between the subparts of a composite system.
Achievable in highly controlled cold atomic platforms, the
postquench dynamics provide significant insights into the key-
stone concepts of many-body physics such as entanglement,
ergodicity, and thermalization [19–26].

Conventionally, one considers the early-time dynamics of
a many-body system after the quantum quench in a nearly
adiabatic regime. In this case, the quench turns on slowly
compared to the characteristic timescale of the problem [19].
Instead, interested in a system’s dynamics on a timescale
comparable to the Fermi time, we focus on a local quench
that instantly changes the Hamiltonian of the system.

The evolution of a quantum system after the local quench
is known to pave the way towards measuring entanglement
entropy [20–24]. The entanglement entropy is a measure of
nonclassical correlations in composite quantum systems com-
monly defined as the von Neumann entropy of a subpart of
a total system, which in turn is described by a pure state
[27]. At zero temperature, the local quench connecting the
two subspaces of a bipartite system generates entanglement
entropy measurable in the particle density fluctuations in free
fermion and fractional quantum Hall systems [20,21]. The
generalization of Refs. [20,21] to finite temperature is not
straightforward since entanglement and thermal contributions
to the von Neumann entropy are nonadditive. However, if the
temperature is low enough, one expects an instant coupling
of two tanks of cold Fermi gas prepared at different temper-
atures to generate quantum correlations between them. Then,
a question arises: What is the characteristic timescale of cor-
relation generation initiated by the quench coupling, and how
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does this timescale compare to the one of the heat flow due to
the initial thermal imbalance?

In this Letter, we show that correlation generation induced
by a local quench is an ultrafast process. To track the corre-
lation generation, we consider two reservoirs A and B filled
with cold noninteracting Fermi gas sequentially coupled and
decoupled by the two local quenches. We evaluate the von
Neumann entropy production in the reservoirs by relating it
to the energy change of A and B after decoupling. Then, we
compare the resulting entropy dynamics to the heat current
within the system. We find that the entropy production occurs
on a timescale of τF, which is considerably faster than the
thermal transport.

Thermal state driven out of equilibrium. We begin with two
systems A and B, each initially prepared in a thermal state, that
are instantaneously coupled by an interaction term VAB. The
generic Hamiltonian is

H (t ) = HA + HB + g(t )VAB, (1)

where the function g(t ) = θ (t ) − θ (t − τ ) defines a quench
protocol that couples A to B at time t = 0 and disconnects
them at t = τ .

The initial state of the full system is given by the product
of two thermal density matrices

ρ0 =ρA ⊗ ρB, (2)

ρα =Z−1
α

∑
nα

e− Enα
Tα |nα〉〈nα| = e

Fα−Hα
Tα , (3)

where |nα〉 is an eigenstate of the Hamiltonian Hα with energy
Enα

, Tα is the initial temperature, Fα = −Tα ln Zα is the ther-
mal free energy, and Zα = Trαe−Hα/Tα is the partition function
for α = A, B [28].

Once the two systems are coupled they become correlated.
A natural measure to study the correlations between A and B
is the von Neumann entropy. The von Neumann entropy for
system A is

SvN(t ) = −TrA ρA(t ) ln ρA(t ), (4)

where ρA(t ) = TrB U (t )ρ0U †(t ) is reduced density matrix and
U (t ) = T̂ exp[−i

∫ t
0 dt ′H (t ′)] is the time-ordered evolution

operator.
Let us introduce the relative entropy, which is often used

in both quantum information processing [27] and quantum
thermodynamics [29] to distinguish between two quantum
states and as a measure of irreversibility of a thermodynamic
process [30]. For our purpose, we define the relative entropy
between the evolved state ρA(t ) of the system A from its initial
thermal state ρA:

S(ρA(t )||ρA) = TrA ρA(t )[ln ρA(t ) − ln ρA] � 0. (5)

Using that the initial state of A is a thermal state at
temperature TA, we relate the expectation value of the
Hamiltonian HA to the combination of the von Neumann
entropy (4) and the relative entropy (5) [31]: TrA ρA(t )HA =
FA − TATrA ρA(t ) ln ρA = FA + TA[SvN(t ) + S(ρA(t )||ρA)].
Subtracting the initial energy value TrA ρAHA = FA +
TASvN(0) from TrA ρA(t )HA, we get

�EA(t ) = TA[�SvN(t ) + S(ρA(t )||ρA)], (6)

where �EA(t ) = TrA ρA(t )HA − TrA ρAHA and �SvN(t ) =
SvN(t ) − SvN(0). The relation (6) is the first law of thermo-
dynamics for a subpart of a composite quantum system driven
from its initial thermal state [32]. A thermodynamic stand-
point on the evolution of a quantum system enables one to
characterize the irreversibility of a dynamical process [33] and
the emergence of decoherence [34] and to relate multipartite
quantum correlations to extractable work [35–37].

Equation (6) is most appropriately seen as a thermody-
namic statement. It establishes the energy-to-entropy balance
after the process is over, i.e., the two systems are decoupled.
Indeed, one cannot completely isolate the two systems from
each other when they are coupled and determine the actual
energy shift in A or B. As such, we shall understand �EA/B as
the energy change in the system after decoupling at t = τ .

At zero temperature, turning on the interaction between the
subparts of a composite quantum system may induce quan-
tum correlations that increase the von Neumann entropy of
each subpart [20,21]. At finite temperature, when A and B
are decoupled the energies of both systems will change by
�EA/B � TA/B�SvN, where we used that the relative entropy
is nonnegative [27]. So if the change of the von Neumann
entropy is positive, the energy change in the system is also
inevitably positive. In particular, such an energy increase
may be relevant for quantum technology applications, e.g.,
quantum digital cooling, where a quantum system is brought
to the low-energy state by a coupling/decoupling protocol
with a cool bath [38]. Utilizing the free fermions example,
we demonstrate that at low temperatures the von Neumann
entropy increases under the fast decoupling condition τ � τF.

The case study: free fermions. In free fermion systems,
quantum correlations in the Fermi sea are well studied
[39–41], including the generation of quantum correlations
after a local quench where the entanglement entropy is related
to the particle number fluctuations [20]. At the same time,
free-particle motion defines transport properties in ultracold
Fermi gas [5]. Hence, we proceed with a free fermions model
to compare the characteristic timescales for thermal transport
and the entropy production induced by a local quench.

Consider for systems A and B two two-dimensional
reservoirs with spinless free fermions. The Hamiltonian (1)
reads

HA =
∑

p

ξpa†
pap, HB =

∑
p

ξpb†
pbp, (7)

VAB =λa†(r = 0)b(r = 0) + H.c., (8)

where A and B are coupled locally in space at r = 0. Here
a, a† and b, b† are the fermionic operators in reservoirs A and
B, p is the momentum, ξp is the corresponding dispersion, and
λ is the coupling constant. The size of each reservoir is V .
Both reservoirs are at equal chemical potential μ � εF. Note
that [Hα,VAB] �= 0.

We begin our analysis with the energy transfer in the
system. To determine the overall energy shift in reservoir
A, we compute the energy flux d〈HA〉

dt = ig(t )〈[VAB, HA]〉 =
−ig(t )V −1 ∑

pp′ ξp(λ〈a†
pbp′ 〉 − H.c.) within time-dependent

perturbation theory in λ [42]. Consequently, in the lowest
order, we obtain the Fermi golden rule formula for the energy
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shift

�EA = − T
(2π )2

∫ εF

−εF

dωdω′ ω
sin2(δωτ/2)

(δω/2)2

× [
n(0)

A (ω) − n(0)
B (ω′)

]
, (9)

where T = (2π )2νAνB|λ|2 is the transmission coefficient [43],
δω = ω − ω′, and n(0)

α (ω) = (eω/Tα + 1)−1 are the initial oc-
cupation numbers. In the above, we introduced the density
of states να = V −1 ∑

p δ(ω − ξp) = p2
F/(4πεF) and replaced

sums over momenta with integrals over energy [44]. Here εF is
the Fermi energy in the reservoir that we use as the UV cutoff
for the energy integrals and pF is the Fermi momentum.

Let us consider A and B at zero temperature. Turning on the
coupling entangles the states in the reservoirs and thus gener-
ates entanglement entropy between previously disconnected
systems [20]. Alongside, energy measurements are known to
exhibit entanglement properties in a quantum system [45].
Hence, we investigate whether the energy of the reservoirs
remains unchanged after decoupling.

At zero temperature the distribution function is n(0)
α (ω) =

θ (−ω) for both reservoirs. Substituting the unit-step distribu-
tion functions into Eq. (9) and evaluating the energy integrals,
we derive the energy shift in reservoir A:

�E q
A = T

2π
εF

∫ εFτ

0

dζ

π
sin ζ

sin2 (ζ/2)

(ζ/2)2 . (10)

The second reservoir acquires equal energy increment �E q
B =

�E q
A . As shown in Fig. 1 (top) (solid blue curve), the energy

of the reservoir increases in the absence of temperature or
particle imbalances. For times τ 	 1/εF, the energy grows
quadratic in time: �E q

A � T /(2π )2ε3
Fτ

2. The superscript “q”
punctuates a quantum origin of the effect obtained within
zero-temperature quantum-mechanical perturbation theory.

Now suppose that reservoirs A and B are prepared at
low temperatures (TA, TB 	 εF) and consider a cooling pro-
tocol for reservoir A: TA > TB. The temperature imbalance
between the reservoirs inevitably leads to heat transport.
The heat current across the tunneling contact is IT =
− d

dt
1
2

∑
p ξp(〈a†

pap〉 − 〈b†
pbp〉). We evaluate the overall heat

transmitted from A to B by the moment of decoupling as
�Q = ∫

dt IT , leading to

�Q = 1
2 (�EB − �EA), (11)

and focus on a short-time limit τ ∼1/εF 	1/max(TA, TB).
The heat transfer in Eq. (11) accounts for the relative en-
ergy flux between the reservoirs to exclude the external
contribution due to the explicit time dependence of the Hamil-
tonian (1).

We plot �Q computed from Eqs. (11) and (9) in
Fig. 1 (bottom) (dotted black curve). Comparing the
heat to the energy curves in Fig. 1 (bottom), one notices
that for short τ , the heat transfer is considerably slower
than the energy increment. Pushing the short-time
limit to the extreme, εFτ 	 1, we find that the heat
transfer is suppressed by the temperature-dependent
coefficient if compared to the energy change in the same
regime. Estimating the finite temperature corrections to
Eq. (10) using the Sommerfeld expansion [42], we find

FIG. 1. (Top) Energy increment in reservoir A, �EA, due to
quench-coupling with B as a function of time calculated from
Eq. (9). The inset demonstrates that the approximation of τ 	 1/εF

in Eq. (10) accurately describes the energy increment up to τ ∼ 1/εF

for a given initial temperature imbalance. (Bottom) Energy balance
in the system upon decoupling at t = τ for TA = 0.15εF and TB =
0.1εF. �E q

A is the energy change at zero temperature (10), �EB is
the energy change in the initially colder system, �EA is the energy
change in the initially hotter system, W is the work done by the
quench upon decoupling, and �Q is the heat transferred from A to
B. The vertical line marks the maximum of �E q

A . The figures for a
different set of initial temperatures are presented in the Supplemental
Material [42].

�Q ∝ π2(T 2
A − T 2

B )εFτ
2/6, so that the ratio �Q/�E q

A =
π2(T 2

A − T 2
B )/(6ε2

F) vanishes in the low-temperature
limit.

As shown in Fig. 1, the energy increment in both reservoirs
does not depend on temperature up to τ ∼1/εF and is well de-
scribed by the quantum contribution (10) (TA = TB = 0). The
refrigerated system starts showing energy decrease (cooling
down) near τ ∼π/εF, which corresponds to the maximum of
the zero-temperature energy curve (10). Accordingly, the heat
contribution to energy increases as τ approaches the inverse
temperature [46].

The heat transfer lowers the energy in reservoir A. Thus,
the energy gain originates from external work. Indeed, the
generic form of the Hamiltonian (1) implies that energy
can be added to or subtracted from the total system when
turning on or off the interaction between A and B: d〈H〉/dt =
δ(t )〈VAB(0)〉 − δ(t − τ )〈VAB(τ )〉. Evaluating the expectation
value of the coupling term as we did for the energy (9), we
find 〈VAB(τ )〉 = −�EA − �EB and consequently 〈VAB(0)〉 =
0, meaning that the first quench does not transfer energy in or
out of the system. Hence, the total energy of �EA + �EB is
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added to the system at t = τ ,

d〈H〉
dt

= δ(t − τ )W, (12)

as a work W = �EA + �EB done by the quench to decouple
the two reservoirs. Alternatively, one can think of the energy
�EA + �EB as the binding energy of A and B—the energy
required to decouple the reservoirs.

The work W does not depend on the thermal gradient in
the system, as shown in Fig. 1 (bottom) (dash-dotted magenta
curve compared to the solid blue and dashed red curves). Fur-
thermore, on a timescale of τ � 1/εF, W defines the energy
increment in both reservoirs, whereas the latter is given by the
zero-temperature result (10). Combining Eqs. (11) and (12),
we find for τ � 1/εF and TA, TB 	 εF that

�EA/B = ∓�Q + W

2
� W

2
, (13)

where we neglect the heat transfer compared to the work
contribution to the reservoir’s energy. In the above, the “−”
sign is taken for reservoir A and the “+” sign for reservoir B.

Having the energy dynamics set, we proceed to the entropy
analysis to account for the correlations’ generation. From here
on, we consider the reservoirs at equal temperatures TA =
TB = T 	 εF since the short-time dynamics (τ � 1/εF) is not
affected by temperature imbalance.

Once we decouple the system at t = τ , while it remains
well isolated from the outer environment, each reservoir pur-
sues unitary evolution. We assume that the reservoirs are
independent if observed much later after decoupling [47]. In
this case, their von Neumann entropies equal the entropy of
a Fermi gas expressed in their occupation numbers [48] and
coincide with the diagonal entropy known for contributing to
the energy change in an out-of-equilibrium process [49]. For
reservoir A, the entropy is SvN(t ) = −∑

p[〈a†
pap〉 ln〈a†

pap〉 +
(1 − 〈a†

pap〉) ln(1 − 〈a†
pap〉)]. Since the postdecoupling uni-

tary evolution of each reservoir implies the von Neumann
entropy conservation, we have SvN(t = τ ) = SvN(t � τ ).

To evaluate the entropy we begin with formally expanding
it in occupation numbers:

SvN(τ ) = S(0)
vN −

∑
p

[
n(1)

p (τ ) + n(2)
p (τ ) + · · · ] ln

n(0)
p

1 − n(0)
p

−
∑

p

n(1)
p (τ )2

2n(0)
p

(
1 − n(0)

p
) + · · · , (14)

where n(m)
p (τ ) are perturbative corrections to equilibrium oc-

cupation numbers n(0)
p = (eξp/T+1)−1, with the superscript m

marking the order in T [50]. The first term in Eq. (14) is the
initial entropy of the reservoir S(0)

vN = N (π2/3)(T/εF), where
N = V p2

F/(4π ) is the number of particles [51]. The second
term in Eq. (14) is the overall energy increment �EA divided
by the initial temperature T , where we used n(0)

p /(1 − n(0)
p ) =

e−ξp/T . We compare Eq. (14) to Eq. (6) and combine the
remaining terms in Eq. (14) into the relative entropy taken
with a minus sign:

S(ρA(τ )||ρA) =
∑

p

n(1)
p (τ )2

2n(0)
p

(
1 − n(0)

p
) − · · · . (15)

In contrast to the energy increment obtained within
quantum-mechanical perturbation theory and most promi-
nent at zero temperature, the entropy computation explicitly
requires T �= 0. Indeed, taking the lower energy bound in
Eq. (6) leads to the entropy divergence �SvN = �EA/T at
T → 0 since the primary contribution to energy (10) does not
depend on temperature. Furthermore, the relative entropy may
also diverge at low temperatures due to the Fermi functions
in the denominator in Eq. (15). Thus, combining quantum
mechanical perturbation theory with nonequilibrium thermo-
dynamics requires a lower bound on temperature T ∗.

Minding the low-temperature divergences, we aim to
compute both the entropy production �SvN = SvN(τ ) − S(0)

vN
and the relative entropy S(ρA(τ )||ρA) in the leading or-
der in T . We begin with evaluating the first correction
to the occupation numbers analogously to the energy shift

(9): n(1)
p (τ ) = −|λ|2

V 2

∑
p′

sin2(δξpp′ τ/2)
(δξpp′/2)2 (n(0)

p − n(0)
p′ ), where δξpp′ =

ξp − ξp′ . Then we substitute n(1)
p (τ ) into the first entropy con-

tributions in Eqs. (14) and (15). For temperatures in the range

T ∗ � T 	 εF, (16)

where T ∗ ∼εF/ ln N , we find the entropy production

�SvN � �EA/T, (17)

where �EA is the energy increment computed in the leading
order in T in Eq. (9). In turn, the relative entropy is subleading
in T compared to Eq. (17):

S(ρA(τ )||ρA) = 2T 2

(2π )4

εF

N

∫ εF

−εF

dωJ (ω,τ )2 cosh2 ω

2T
, (18)

where J (ω,τ ) = ∫ εF

−εF
dω′ sin2(δωτ/2)

(δω/2)2 [n(0)(ω)−n(0)(ω′)].
The lower temperature bound T ∗ in Eq. (16) extensively

depends on the particle number in the reservoir and origi-
nates from regularizing the perturbative series for entropy that
we discuss in the Supplemental Material [42]. Consequently,
within the settled temperature range (16), the perturbative
expressions for the von Neumann entropy production (17) and
the relative entropy (18) are well defined. Though the lower
temperature bound is suppressed only logarithmically with N ,
for a trapped atomic cloud, e.g., see Ref. [5], N ∼105 atoms
giving T ∗ ∼0.1εF—well within the experimental reach.

The relative entropy (18) is a measure of state sepa-
ration indicating how far the evolved state of the reser-
voir is from its initial thermal state. In Fig. 2 we
observe that the state separation occurs on a timescale
of τF ∼1/εF. For the initial temperatures of the reser-
voirs equal to T ∗, this regime is well described by
the εFτ 	 1 approximation of Eq. (18), S(ρA(τ )||ρA) �
2[T 2/(2π )4/N]ε4

Fτ
4[T sinh(T/εF)/εF − 1], illustrated in the

inset in Fig. 2. Alongside, the relative entropy is subleading to
the energy contribution to the von Neumann entropy, which
leaves us with the expression (17) in the leading order in
tunneling coefficient. Combining the perturbative result for
the von Neumann entropy production (17) and the energy
balance in the reservoir upon decoupling (13), we deduce
that the von Neumann entropy of reservoir A accumulated
during its mutual evolution with B defines the work required
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FIG. 2. Relative entropy computed in the second order in trans-
mission T at T = T ∗. The black dots in the inset show the relative
entropy within εFτ 	 1 approximation.

to uncouple A from B:

W � 2T �SvN. (19)

The same is valid for reservoir B, whose entropy equals the
entropy of reservoir A.

The work-to-entropy relation (19) is derived for TA = TB,
and therefore there is no heat flow. However, as seen from
Eq. (13) and Fig. 1, even implying the initial temperature
imbalance, the heat transfer is negligible compared to the
work contribution to energy on a timescale of the Fermi
time. Hence, on this timescale, one neglects the initial tem-
perature imbalance and considers the reservoirs at equal
temperatures with no loss of generality. Combining Eqs. (13)
and (19) with quantum-mechanical energy increment (10),
which defines the primary contribution to energy at low tem-
peratures, we conclude that the von Neumann entropy is
increasing on a timescale of τF, which is faster than the heat
flow.

Determination of the regime where the influence of the heat
flow on the entropy dynamics can be discarded may allow
one to characterize the quantum correlations’ generation after
the local quench at finite temperatures, in contrast with the
previous studies strictly implying zero temperature [20,21].
Furthermore, despite being focused on the free homogeneous
Fermi gas in the tunneling regime, we anticipate our results
to hold beyond these limitations. Indeed, relation (6) is non-
perturbative and does not depend on the microscopic details

of the system. A predicted energy change associated with
quench-induced entropy requires (a) the initial state of the
reservoir described by a thermal state and (b) the quench
potential that does not commute with the initial Hamiltonian
of the system. Accordingly, in Ref. [52], we study a setup with
finite-size reservoirs with strongly interacting fermions using
exact diagonalization and confirm Eq. (19) on a timescale set
by the inverse largest energy scale in the problem.

Conclusion. Inspired by recent advances in ultracold Fermi
gases, showing a drastic difference between the characteris-
tic transport timescales in atomic systems compared to their
electronic counterparts, we investigate the dynamics of Fermi
gas on a timescale of τF after driving the system out of
equilibrium.

We consider a two-terminal geometry confining two reser-
voirs filled with a cold Fermi gas and coupled by a tunneling
contact. The reservoirs are initially at different temperatures,
while the tunneling contact instantly opens at time t = 0 and
closes at t = τ by a series of two local quenches following
one another. The energy change in either reservoir consists
of the heat transferred from the hotter system to the colder
one through the open tunneling contact and the work done
by the second quench to decouple the reservoirs. For τ ∼ τF,
we find that both reservoirs gain energy independent of their
initial temperatures. This energy increment arises from work
done by the second quench, whereas the heat contribution to
the resulting energy change is negligible. We relate the work
to the von Neumann entropy accumulated by the reservoir
from t = 0 to t = τ . This relation grants a dynamic track
of the von Neumann entropy production. On a timescale of
τF, the quench-induced entropy production is positive and
grows sufficiently faster than the heat flow. This provides a
thermodynamic insight into the ultrafast out-of-equilibrium
dynamics of Fermi gas and a possibility to characterize quan-
tum correlations’ generation at finite temperature. In turn,
the τF timeframe and the required temperature regime are
experimentally accessible in ultracold atoms.
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