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Abstract

Quantifying the predictive uncertainty emerged as a pos-
sible solution to common challenges like overconfidence or
lack of explainability and robustness of deep neural net-
works, albeit one that is often computationally expensive.
Many real-world applications are multi-modal in nature
and hence benefit from multi-task learning. In autonomous
driving, for example, the joint solution of semantic segmen-
tation and monocular depth estimation has proven to be
valuable. In this work, we first combine different uncer-
tainty quantification methods with joint semantic segmenta-
tion and monocular depth estimation and evaluate how they
perform in comparison to each other. Additionally, we re-
veal the benefits of multi-task learning with regard to the
uncertainty quality compared to solving both tasks sepa-
rately. Based on these insights, we introduce EMUFormer, a
novel student-teacher distillation approach for joint seman-
tic segmentation and monocular depth estimation as well as
efficient multi-task uncertainty quantification. By implicitly
leveraging the predictive uncertainties of the teacher, EMU-
Former achieves new state-of-the-art results on Cityscapes
and NYUv2 and additionally estimates high-quality predic-
tive uncertainties for both tasks that are comparable or su-
perior to a Deep Ensemble despite being an order of mag-
nitude more efficient.

1. Introduction

Because of their unparalleled performance in fundamen-
tal perception tasks like semantic segmentation [46] or
monocular depth estimation [9], deep neural networks are
increasingly being deployed in real-time and safety-critical
applications like autonomous driving [44], industrial in-
spection [21,62], and automation [31]. However, they often
suffer from overconfidence [17], lack explainability [16],
and struggle to distinguish between in-domain and out-of-

domain samples [34], which is of paramount importance for
applications where prediction reliability is crucial. Since in-
correct predictions can lead to severe consequences, previ-
ous work suggests that quantifying the uncertainty inherent
to a model’s prediction is a promising endeavour to make
such applications safer [32–35, 40, 49, 50]. In autonomous
driving, for instance, the car could provide feedback to the
driver when it is uncertain or preemptively make risk-averse
predictions based on the uncertainty.

In recent years, a number of promising uncertainty quan-
tification methods have been proposed to make deep neural
networks more robust [1, 12, 30, 37, 42, 50, 63, 64]. Unfor-
tunately, these methods either introduce technical complex-
ity or require computationally expensive sampling from a
stochastic process to estimate the uncertainty of a predic-
tion. Additionally, they do not consider that real-world ap-
plications, like robotics [52] or autonomous driving [5], are
multi-modal in nature and benefit from multi-task learning,
especially within the context of semantic segmentation and
monocular depth estimation [5, 52]. Although there have
been successful attempts at making uncertainty quantifica-
tion methods more efficient through the concept of knowl-
edge distillation [2, 23, 33, 57, 60], they have thereby either
focused on semantic segmentation [2, 23, 33, 57] or monoc-
ular depth estimation [57, 60]. This represents a notable
research gap in the current literature.

In this work, we conduct a comprehensive series of ex-
periments to study multi-task uncertainties and propose a
novel student-teacher distillation approach for joint seman-
tic segmentation and monocular depth estimation as well as
efficient multi-task uncertainty quantification. Our contri-
butions can summarized as follows:

• We propose a novel student-teacher distillation ap-
proach for Efficient Multi-task Uncertainties for joint
semantic segmentation and monocular depth estima-
tion with a modern Vision-Transformer, which we call
EMUFormer.
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Seg. Pred. Unc. Depth Pred. Unc. Parameters FLOPs FPS

a) SegFormer-B2 [69] ✓ × × × 27.3M 72.6G 55.3
b) DepthFormer-B2 × ✓ × × 27.3M 72.1G 57.1
c) SegDepthFormer-B2 ✓ × ✓ × 30.5M 120.1G 44.8
DE of a) ✓ ✓ × × 273.6M 726.4G 5.6
DE of b) × × ✓ ✓ 273.5M 720.8G 7.2
DE of c) ✓ ✓ ✓ ✓ 305.1M 1201.1G 4.9
EMUFormer-B2 (Ours) ✓ ✓ ✓ ✓ 30.5M 120.1G 44.8

Table 1. Overview of the segmentation (Seg.), depth estimation
(Depth) and uncertainty quantification (Pred. Unc.) capabilities
as well as the respective number of parameters, FLOPs and FPS
for different single-task and multi-task models and their respec-
tive Deep Ensemble (DE) versions with 10 members. SegFormer
[69] and DepthFormer represent single-task models, whereas
SegDepthFormer and EMUFormer depict multi-task models. B2
represents the medium-sized encoder of SegFormer, which was
used for all models. Results are based on single-scale inference
conducted on the NYUv2 [59] dataset using an NVIDIA A100
GPU.

• We show that by implicitly leveraging the predictive
uncertainties during training, EMUFormer can achieve
new state-of-the-art results on Cityscapes and NYUv2.

• We combine different uncertainty quantification meth-
ods with joint semantic segmentation and monocular
depth estimation and evaluate how they perform in
comparison to each other.

• We reveal the benefits of multi-task learning with re-
gard to the uncertainty quality compared to solving se-
mantic segmentation and monocular depth estimation
separately.

As Table 1 demonstrates, EMUFormer estimates high-
quality predictive uncertainties for both tasks that are com-
parable to the Deep Ensemble teacher despite being an order
of magnitude more efficient.

2. Related Work
In this section, we summarize the related work on joint

semantic segmentation and monocular depth estimation,
uncertainty quantification, and knowledge distillation.

2.1. Joint Semantic Segmentation and Monocular
Depth Estimation

Semantic segmentation and monocular depth estima-
tion are both fundamental problems in image understand-
ing that involve pixel-wise predictions based on a single in-
put image. Motivated by the strong correlation and com-
plementary properties of the two tasks, multiple previous
works have focused on solving both tasks in a joint man-
ner [3, 4, 14, 20, 26, 27, 29, 36, 38, 39, 48, 52, 67, 70, 71]. To
limit the scope of this literature review, we refrain from cov-
ering other multi-task approaches with joint representation

sharing [72] or methods that leverage the depth map to im-
prove the semantic segmentation prediction [24, 66].

In their pioneering work, Wang et al. [67] propose a
unified framework for semantic segmentation and monoc-
ular depth prediction through joint training and applying a
two-layer hierarchical conditional random field to enforce
synergy between global and local predictions. Similarly,
Liu et al. [38] use a conditional random field that fuses the
feature maps from both tasks. In contrast, Mousavian et
al. [48] train parts of the model for each task separately
and then fine-tune the full model on both tasks with a sin-
gle loss function. On a similar note, Xu et al. [70] propose
a multi-task prediction-and-distillation network, which first
predicts a set of intermediate auxiliary tasks. These inter-
mediate outputs are then utilized as multi-modal input for
the final task - a concept also followed by Vandenhende et
al. [65]. The idea of knowledge distillation is also used by
Nekrasov et al. [52], primarily focusing on real-time esti-
mation without specifically delving into uncertainty quan-
tification. Jiao et al. [27] introduce an attention-driven loss
that does not treat all pixels in an image equally to mutu-
ally improve semantic segmentation and monocular depth
estimation. In a similar way, Bruggemann et al. [4] and Liu
et al. [39] build on the idea of introducing attention mecha-
nisms into the architecture to improve results. Comparably,
Gao et al. [14] propose a shared attention block with con-
textual supervision next to a feature-sharing module and a
consistency loss. In a follow-up work, they extend their ap-
proach by incorporating confidences into their losses to im-
prove the performance [15]. Similarly, Kendall et al. [29]
utilize the homoscedastic uncertainty, which they define as
a task-dependent uncertainty that captures the relative con-
fidence between tasks, to weight the individual losses. Fi-
nally, there are multiple works [20,26,36] that propose spe-
cialized architectures, where they either improve the feature
extraction by separating the relevant features for one task
from the features which are relevant for both tasks [36] or
exploit geometric constraints by integrating the information
of the objectness [20] or apply a randomly-weighted train-
ing strategy to balance the losses and gradients impartially
and dynamically [26].

Remarkably, most of the discussed approaches use out-
of-date architectures and require complex adaptions to ei-
ther the model, the training process, or both. In or-
der to push the state-of-the-art forward, we adapt a mod-
ern Vision-Transformer-based architecture similar to Xu
et al. [71]. In order to maintain methodological simplic-
ity and transparency of the results, we refrain from intro-
ducing cross-task attention mechanisms, contrastive self-
supervised learning algorithms, and the loss weighting strat-
egy of [29], and nevertheless achieve superior results. How-
ever, these strategies could also be applied to our method,
potentially further improving the results.
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2.2. Uncertainty Quantification

A large variety of uncertainty quantification methods
[1,12,30,37,42,50,63,64] have been developed to compen-
sate for the above-mentioned shortcomings of deep neural
networks. The predictive uncertainty can be decomposed
into aleatoric and epistemic uncertainty [11]. Aleatoric un-
certainty captures the irreducible data uncertainty, which,
for example, can be introduced by image noise or noisy la-
bels as a result of imprecise measurements. Epistemic un-
certainty accounts for the model uncertainty, which can be
reduced by using more or better training data [11, 28]. Dis-
entangling these two uncertainty components can be essen-
tial for applications such as active learning [13] or the detec-
tion of out-of-distribution samples [56]. For instance, active
learning benefits from avoiding inputs with high aleatoric
uncertainty unless they exhibit high epistemic uncertainty,
which is vital for model improvement [13, 28].

Most well-known uncertainty quantification methods re-
quire multiple forward passes at test time, making them
computationally expensive. For instance, Gal and Ghahra-
mani [12] propose Monte Carlo Dropout (MCD) as an
approximation of a stochastic Gaussian process. While
dropout is usually only used for regularization during train-
ing [61], MCD applies this technique during test time to
sample from the posterior distribution of the predictions at
test time. Although MCD is easy to implement and thus
very popular, Deep Ensembles [30] are commonly regarded
as the state-of-the-art approach for uncertainty quantifica-
tion across varying tasks [19, 54, 68]. They consist of an
ensemble of trained models that generate diverse predic-
tions due to the introduction of randomness through random
weight initialization or different data augmentations during
training [10].

Multiple forward passes at test time render the afore-
mentioned methods impracticable or even unusable for real-
time applications because of their high computational cost.
Consequently, there has been an increased interest in de-
terministic single forward-pass methods that demand less
overhead. For example, Van Amersfoort et al. [64] and Liu
et al. [37] consider distance-aware output layers for quan-
tifying the predictive uncertainty. Even though these meth-
ods provide a computationally more efficient approach, they
are not competitive with the current state-of-the-art and re-
quire significant modifications to the training process [50].
By using Gaussian Discriminant Analysis post-training for
feature-space density estimation, Mukhoti et al. [50] sim-
plify the aforementioned approaches. Although they man-
age to perform on par with a Deep Ensemble in some set-
tings, their method requires performing Gaussian Discrim-
inant Analysis after training, which adds complexity. In
contrast, Valdenegro-Toro [63] proposes a simple, yet ef-
fective approximation to Deep Ensembles, where the en-
semble covers only a subset of layers instead of the whole

model. These so-called Deep Sub-Ensembles (DSE) enable
a trade-off between uncertainty quality and computational
cost [63].

To the best of our knowledge, quantifying predictive un-
certainties in joint semantic segmentation and monocular
depth estimation has not been explored yet. To this end,
we compare multiple uncertainty quantification methods for
this task and investigate how multi-task learning influences
the quality of uncertainty estimates in comparison to solv-
ing both tasks separately.

2.3. Knowledge Distillation

Knowledge distillation, introduced by Hinton et al. [22],
involves transferring the knowledge from a complex model
(teacher) to a typically smaller model (student), aiming to
enhance the student’s performance on a given task by im-
itating the predictions of the teacher [22] or transferring
knowledge from intermediate features [55]. More recent
work has adapted the concept of knowledge distillation to
enable real-time uncertainty quantification. While some
previous work employs MCD to estimate uncertainties for
the student to learn [2, 18, 57], the majority proposes to use
a Deep Ensemble [7, 23, 33, 43, 60]. Among these, Deng et
al. [7] are the only ones to consider a multi-task problem by
looking at emotion recognition.

To enable real-time uncertainty quantification in joint se-
mantic segmentation and monocular depth estimation, we
propose EMUFormer, a novel student-teacher distillation
approach that aims to preserve both prediction and uncer-
tainty quality without introducing a speed-penalty during
inference.

3. Methodology

In the following, we provide an overview of the method-
ology of this paper, describe the baseline models that we use
to analyse the uncertainties of joint semantic segmentation
and monocular depth estimation. We will also explain our
student-teacher distillation approach for efficient multi-task
uncertainties.

3.1. Overview

This paper can broadly be categorized into two parts:
First, we evaluate how multi-task learning influences the un-
certainty quality. Second, we propose EMUFormer, a novel
student-teacher distillation approach for efficient multi-task
uncertainties.

Multi-task Uncertainty Evaluation. Drawing from the
related work on uncertainty quantification (Section 2.2), we
evaluate Deep Ensembles (DEs) [30], Monte Carlo Dropout
(MCD) [12], and Deep Sub-Ensembles (DSEs) [63]. The
choice is motivated by their simplicity, ease of imple-
mentation, parallelizability, minimal tuning requirements,
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Figure 1. A schematic overview of the SegFormer [69] architec-
ture. The model consists of two main modules: A hierarchical
Transformer-based encoder that generates high-resolution coarse
features and low-resolution fine features and a lightweight all-
MLP segmentation decoder.

and representation of the current state-of-the-art in uncer-
tainty quantification. Moreover, applying these approaches
to both semantic segmentation and monocular depth esti-
mation is straightforward, which is not the case for the
other aforementioned uncertainty quantification approaches
[1, 37, 50, 64].

To explore the impact of multi-task learning on uncer-
tainty quality, we conduct all of the evaluations using three
models:

1. SegFormer [69]: An efficient semantic segmentation
Vision Transformer.

2. DepthFormer: An efficient monocular depth estima-
tion model Vision Transformer.

3. SegDepthFormer: A joint model addressing both se-
mantic segmentation and monocular depth estimation.

We derive the latter two, DepthFormer and SegDepth-
Former, from the SegFormer [69] architecture. Key modifi-
cations will be explained in Section 3.2.2 and 3.2.3 respec-
tively.

EMUFormer. In order to achieve efficient multi-task
uncertainties without sacrificing neither prediction perfor-
mance nor uncertainty quality, we propose EMUFormer.
EMUFormer applies student-teacher distillation as a two-
step framework: First, we train an adequate teacher with
ground truth labels that is able to quantify high-quality un-
certainties. Subsequently, we train a student with the same
ground truth labels while distilling the teacher’s uncertain-
ties.

3.2. Baseline Models

Hereinafter, we go over the three baseline models, Seg-
Former [69], DepthFormer, and SegDepthFormer. For all
of the three models, we will shortly describe their archi-
tecture, illustrate the training criterion, and how we obtain
a measurement for the uncertainty. While these models are
capable of estimating the aleatoric uncertainty [28,30], they
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Figure 2. A schematic overview of our DepthFormer architec-
ture. Being derived from SegFormer [69], it consists of two main
modules: A hierarchical Transformer-based encoder that gener-
ates high-resolution coarse features and low-resolution fine fea-
tures and a lightweight all-MLP depth decoder.

are not able to quantify the more complete predictive uncer-
tainty, which includes the epistemic uncertainty. For this,
one of the aforementioned uncertainty quantification meth-
ods has to be used.

3.2.1 SegFormer

Architecture. For the semantic segmentation task, we use
SegFormer [69], a modern Transformer-based architecture
that stands out because of its high efficiency and perfor-
mance. Thus, it is particularly suitable for real-time uncer-
tainty quantification. As depicted in Figure 1, SegFormer
consists of two main modules: A hierarchical Transformer-
based encoder that generates high-resolution coarse features
and low-resolution fine features and a lightweight all-MLP
segmentation decoder. The latter fuses the multi-level fea-
tures of the encoder to produce a final segmentation pre-
diction with the softmax activation function, which can be
formulated as:

p(z) =
ezi∑K

k=1 e
zk
, (1)

where p(z) are the class probabilities of the softmax func-
tion that exponentiates each of the K elements of the in-
put vector x, often referred to as logits, and then normal-
izes the results to obtain a probability distribution. Since
SegFormer [69] only outputs logits at a H

4 × W
4 resolution

given an input image of size H × W , we use bilinear in-
terpolation [69] before applying the softmax function on z
to obtain the original resolution for the final segmentation
prediction.

Training Criterion. For the objective function during
training, we use the well-known categorical Cross-Entropy
loss

LCE = − 1

N

N∑
n=1

C∑
c=1

yn,c · log(p(z)n,c) , (2)

where LCE is the Cross-Entropy loss for a single image, N
is the number of pixels in the image, C is the number of
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Figure 3. A schematic overview of the SegDepthFormer architecture. The model combines the SegFormer [69] architecture with a
lightweight all-MLP depth decoder.

classes, yn,c is the corresponding ground truth label, and
p(z)n,c is the predicted softmax probability.

Aleatoric Uncertainty. We compute the predictive en-
tropy

H(p(z)) = −
C∑

c=1

p(z)c · log(p(z)c) , (3)

which serves as the aleatoric uncertainty [28].

3.2.2 DepthFormer

Architecture. Inspired by the efficiency and performance
of SegFormer [69], we propose DepthFormer for monocular
depth estimation. As Figure 2 shows, we use the same hier-
archical Transformer-based encoder as SegFormer to gener-
ate high-level and low-level features. Similarly, those multi-
level features are fused in an all-MLP decoder. In contrast
to the segmentation decoder, the depth decoder differs by
having two output channels: one for the predictive mean
µ(z) and one for the predictive variance s2(z) [40].

Predictive Mean. The first output channel uses a Recti-
fied Linear Unit (ReLU) output activation function

µ(z) = max(0, z) , (4)

which serves as the predictive mean for monocular depth
estimation.

Predictive Variance. The second output channel applies
a Softplus activation

s2(z) = log(1 + ez) , (5)

which is a smooth approximation of the ReLU function with
the advantage of being differentiable, also at z = 0. Em-
pirically, we found Softplus to work better than ReLU for
the predictive variance, following the work by Lakshmi-
narayanan et al. [30].

Training Criterion. For regression tasks, neural net-
works typically output only a predictive mean µ(z) and the
parameters are, in the most straightforward approach, opti-
mized by minimizing the mean squared error (MSE). How-
ever, the MSE does not cover uncertainty. Therefore, we
follow the approach of Nix and Weigend [53] instead: By
treating the neural networks prediction as a sample from
a Gaussian distribution with the predictive mean µ(z) and
corresponding predictive variance s2(z), we can minimize
the Gaussian Negative Log-Likelihood (GNLL) loss, which
can be formulated as:

LGNLL =
1

2

(
(y − µ(z))2

s2(z)
+ log(s2(z))

)
, (6)

where y is the the ground truth depth.

Aleatoric Uncertainty. Through GNLL minimiza-
tion, DepthFormer does not only optimize the predictive
means, but also inherently learns the corresponding vari-
ances, which can be interpreted as the aleatoric uncertainty
[28, 40].
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Figure 4. A schematic overview of EMUFormer. In comparison to our proposed SegDepthFormer, EMUFormer utilizes two additional
losses that distill the predictive uncertainties of the teacher into the student model.

3.2.3 SegDepthFormer.

Architecture. In order to solve semantic segmentation and
monocular depth estimation in a joint manner, we propose
SegDepthFormer. The architecture, which is shown in Fig-
ure 3, comprises three modules: a hierarchical Transformer-
based encoder, an all-MLP segmentation decoder, and an
all-MLP depth decoder. The encoder and segmentation
decoder are adapted from SegFormer [69] (Section 3.2.1),
while the depth decoder is from DepthFormer (Section
3.2.2). Both decoders fuse the multi-level features obtained
through the shared encoder to predict a final segmentation
mask and a pixel-wise depth estimation, respectively.

Training Criterion. SegDepthFormer is trained to min-
imize the weighted sum of the two previously described ob-
jective functions:

L = LCE + w1LGNLL , (7)

where w1 is a simple weighting factor. Because both loss
values are of similar magnitude, we set w1 = 1. However,
tuning w1 might slightly improve SegDepthFormer’s per-
formance.

Aleatoric Uncertainty. The respective aleatoric un-
certainty is obtained by computing the predictive entropy
H(p(z)) (see Equation 3) for the segmentation task or by
the predictive variance s2(z) (see Equation 5), which is
learned implicitly through the optimization of LGNLL.

3.3. EMUFormer

In the following, we explain our student-teacher distilla-
tion framework for efficient multi-task uncertainties, which
we call EMUFormer. Our objective with EMUFormer is
threefold:

1. Achieve state-of-the-art joint semantic segmentation
and monocular depth estimation results.

2. Estimate well-calibrated predictive uncertainties for
both tasks.

3. Avoid introducing additional computational overhead
during inference.

In order to achieve these goals, EMUFormer employs a
two-step student-teacher distillation framework:

1. Training a teacher with ground truth labels.

2. Training the student with ground truth labels while dis-
tilling the teacher’s predictive uncertainties.

Teacher. Although our framework is flexible with re-
gard to the type of teacher, we use a DE that is known for
producing high-quality estimates [19, 54, 68].

Student. We propose employing the SegDepthFormer
architecture for the student model due to its simplicity, per-
formance, and efficiency. In principle, though, any archi-
tecture capable of outputting a semantic segmentation mask
along with a predictive mean and variance for monocular
depth estimation is suitable.

Distillation Approach. To efficiently estimate predic-
tive uncertainties for semantic segmentation and monocu-
lar depth estimation, EMUFormer utilizes student-teacher
distillation. Figure 4 shows a schematic overview of
EMUFormer. The training is performed with two ad-
ditional uncertainty-related losses compared to the regu-
lar SegDepthFormer. To compute both predictive uncer-
tainties we compute multiple prediction samples from the
teacher. Additionally, we add color jittering as an addi-
tional data augmentation to the teacher’s input x̃. Pre-
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vious work showed that this is helpful when the training
dataset is used for training and distillation to prevent the
student from underestimating the epistemic uncertainty of
the teacher [33, 57]. The color jitter causes the teacher’s
uncertainty distribution on the training dataset to be more
closely related to the test-time distribution.

Segmentation Uncertainty Loss. The segmentation un-
certainty knowledge of the teacher model is transferred into
the student model by using the Kullback-Leibler divergence
loss:

LKL =

C∑
c=1

qc(z̃) · log
(
qc(z̃)

pc(z)

)
, (8)

where z̃ are the logits based on the perturbed input image,
qc(z̃) is the teacher’s mean softmax probability map, and
pc(z) is the student’s softmax probability map. Minimizing
this loss ensures that the student learns to match the well-
calibrated softmax probabilities provided by the teacher, al-
lowing the predictive entropy H(p(z)) (see Equation 3) to
capture the underlying predictive uncertainty.

Depth Uncertainty Loss. Because it is not possible to
match two distributions for the unbound uncertainties in the
regression task, we introduce the root mean squared log-
arithmic error (RMSLE) for the depth uncertainty distilla-
tion:

LRMSLE =
√

1
N

∑N
n=1 (log(σ

2
n(z̃) + 1)− log(s2n(z) + 1))

2 , (9)

where σ2
n(z̃) is the teacher’s predictive uncertainty and

s2n(z) is the student’s predictive uncertainty estimate. The
natural logarithm penalizes underestimations more than
overestimations, thereby providing special attention to the
pixels with higher uncertainties. Minimizing the depth un-
certainty loss trains the student to mimic the predictive un-
certainty of the teacher. Consequently, the second output
channel of the decoder does not only output the aleatoric
uncertainty anymore, but rather the more meaningful pre-
dictive uncertainty, which additionally covers the epistemic
uncertainty.

We follow Loquercio et al. [40] to calculate the predic-
tive uncertainty of the teacher with:

σ2(z̃) =
1

T

T∑
t=1

s2t (z̃) +
1

T

T∑
t=1

(µt(z̃)− µ̄t(z̃))
2

, (10)

where T is the number of prediction samples from the
teacher, v(z̃) is the predictive variance (see Equation 5, µ(z̃)
is the predictive mean of a sample, and µ̄(z̃) is the mean
predictive mean across all samples.

Training Criterion. In summary, EMUFormer is
trained to minimize the weighted sum of four objective
functions:

L = LCE + w1LGNLL + w2LKL + w3LRMSLE. (11)

By setting w1 = w3 = 1 and w2 = 10, we obtain good re-
sults across all of our experiments. However, depending on
the application, tuning these hyperparameters may further
enhance performance.

4. Experimental Setup
Datasets. We conduct all experiments on Cityscapes [6]

and NYUv2 [59]. Cityscapes, with 2975 training and 500
validation images, is a popular urban street scene bench-
mark dataset. Notably, the depth values are based on the
disparity of stereo camera images. NYUV2 contains 795
training and 654 testing images of indoor scenes.

Data Augmentations. Regardless of the trained model,
we apply a very common data augmentation strategy:

1. Random scaling with a factor between 0.5 and 2.0.

2. Random cropping with a crop size of 768× 768 pixels
on Cityscapes and 480× 640 pixels on NYUv2.

3. Random horizontal flipping with a flip chance of 50%.

Implementation Details. For all training processes, we
use AdamW [41] optimizer with a base learning rate of
0.00006 and employ a polynomial rate scheduler:

lr = lrbase · (1−
iteration

total iterations
)0.9 , (12)

where lr is the current learning rate and lrbase is the initial
base learning rate. Besides, we use a batch size of 8 and
train on four NVIDIA A100 GPUs with 40 GB of mem-
ory using mixed precision [45]. The encoders of the base-
line models are initialized with weights pre-trained on Im-
ageNet [8] and then trained for 250 epochs on Cityscapes
and for 100 epochs on NYUv2, respectively. In contrast,
EMUFormer is initialized with the weights of a pre-trained
SegDepthFormer and fine-tuned for 100 epochs on both
datasets. Unless otherwise noted, we use the SegFormer-
B2 [69] backbone for all experiments. We do not adopt any
of the widely-used methods such as OHEM [58], auxiliary
losses, class imbalance compensation, or sliding window
testing to keep our approach as simple and transparent as
possible.

Metrics. For quantitative evaluations of the semantic
segmentation task, we report the mean Intersection over
Union (mIoU), also known as the Jaccard Index. Addition-
ally, we use the Expected Calibration Error (ECE) [51] to
evaluate the calibration of the softmax probabilities. For the
monocular depth estimation task, we use the common root
mean squared error (RMSE). Finally, we employ the fol-
lowing uncertainty evaluation metrics proposed by Mukhoti
and Gal [49]:

1. p(accurate|certain): The probability that the model
is accurate on its output given that the uncertainty is
below a certain threshold.
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2. p(uncertain|inaccurate): The probability that the
uncertainty of the model exceeds a certain threshold
given that the prediction is inaccurate.

3. PAvPU : The combination of both cases, i.e.
accurate|certain and inaccurate|uncertain.

Although these metrics have originally been proposed
for semantic segmentation [49], we also use them to eval-
uate the depth regression uncertainties. Since one cannot
simply determine whether a depth prediction is accurate, we
apply the following formula:

max

(
µ(z)

y
,

y

µ(z)

)
= δ1 < 1.25 , (13)

where µ(z) is the predicted depth value of a pixel and y is
the corresponding ground truth depth [47]. δ1 serves as a
standard metric for quantifying the accuracy of monocular
depth estimation models, using 1.25 as the threshold to de-
termine whether a depth prediction is accurate or not. In
contrast, δ2 and δ3 are less strict, typically utilizing thresh-
olds of 1.252 and 1.253, respectively.

For the sake of simplicity and to simulate real-world em-
ployment, we set the uncertainty threshold to the mean un-
certainty of a given image for all evaluations.

Monte Carlo Dropout. MCD depends primarily on the
number of dropout layers, where they are inserted inside
the network, and most-importantly the dropout rate. Since
the original SegFormer [69] already applies dropout layers
throughout the entire network, we follow their work and
only consider two dropout rates, 20% and 50%. We sample
ten times to obtain the prediction and predictive uncertainty
[12, 19, 57].

Deep Sub-Ensemble. Consistent with the DEs and
MCD, we train the DSE with ten decoder heads for each
task on top of a shared encoder [63]. During training, we
only optimize a single decoder head per training batch and
alternate between them. Thereby, we aim to introduce as
much randomness as possible, analogous to the training of
DEs. For inference, we utilize all decoder heads, of course.

Deep Ensemble. DEs achieve the best results if they are
trained to explore diverse modes in function space, which
we accomplish by randomly initializing all decoder heads,
by using random augmentations, and by applying random
shuffling of the training data points [10, 30]. Unless oth-
erwise noted, we report results of a DE with ten members,
following the suggestions of previous work [10, 30, 33].

Predictions. Regardless of the uncertainty quantifica-
tion method, we report the results of the mean prediction.
For the semantic segmentation task, we compute the mean
softmax probability of all samples. For the monocular depth
estimation task, we first apply ReLU (see Equation 4) and
then compute the mean depth of the corresponding samples.

Uncertainty. For the semantic segmentation task, we
compute the predictive entropy (see Equation 3) based on
the mean softmax probabilities as a measure for the predic-
tive uncertainty [49]. For the depth estimation task, how-
ever, we calculate the predictive uncertainty based on the
mean predictive variance and the variance of the depth pre-
dictions of the samples (see Equation 10) [40].

5. Joint Uncertainty Evaluation
In this section, we describe the results of our joint un-

certainty evaluation quantitatively. We compare combina-
tions of the baseline models SegFormer, DepthFormer, and
SegDepthFormer with the uncertainty quantification meth-
ods MCD, DSE, and DEs. Tables 2 and 3 contain a detailed
quantitative comparison for the different combinations. The
focus particularly lies on the uncertainty quality.

Single-task vs. Multi-task. Looking at the differences
between the single-task models, SegFormer and Depth-
Former, and the multi-task model, SegDepthFormer, the
single-task models generally deliver slightly better pre-
diction performance. However, SegDepthFormer exhibits
greater uncertainty quality for the semantic segmentation
task in comparison to SegFormer. This is particularly evi-
dent for p(uncertain|inaccurate) on Cityscapes. For the
depth estimation task, there is no significant difference in
terms of uncertainty quality.

Baseline Models. As expected, the baseline models have
the lowest inference times, being 5 to 30 times faster with-
out using any uncertainty quantification method. While
their prediction performance turns out to be quite competi-
tive, only beaten by DEs, they show poor calibration and un-
certainty quality for semantic segmentation. Surprisingly,
the uncertainty quality for the depth estimation task is very
decent, often only surpassed by the DE.

Monte Carlo Dropout. The use of MCD causes a sig-
nificantly higher inference time compared to the respec-
tive baseline model. Additionally, leaving dropout activated
during inference to sample from the posterior has a detri-
mental effect on the prediction performance, particularly
with a 50% dropout ratio. Nevertheless, MCD outputs well-
calibrated softmax probabilities and uncertainties, although
the results should be interpreted with caution because of the
deteriorated prediction quality.

Deep Sub-Ensemble. Across both datasets, DSEs
show comparable prediction performance compared with
the baseline models. Notably, DSEs consistently demon-
strate a high uncertainty quality across all metrics, particu-
larly in the segmentation task on Cityscapes.

Deep Ensemble. In accordance to previous work [19,54,
68], DEs emerge as state-of-the-art, delivering the best pre-
diction performance and mostly superior uncertainty qual-
ity. At the same time, DEs suffer from the highest compu-
tational cost.
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Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

B
as

el
in

e SegFormer 0.772 0.033 0.882 0.395 0.797 - - - - 17.90 ± 0.47
DepthFormer - - - - - 7.452 0.749 0.476 0.766 17.59 ± 0.82
SegDepthFormer 0.738 0.028 0.913 0.592 0.826 7.536 0.745 0.472 0.762 22.04 ± 0.27

M
C

D
(2

0%
) SegFormer 0.759 0.007 0.883 0.424 0.780 - - - - 177.13 ± 0.64

DepthFormer - - - - - 7.956 0.749 0.555 0.739 139.32 ± 0.78
SegDepthFormer 0.738 0.020 0.911 0.592 0.803 7.370 0.761 0.523 0.757 202.23 ± 0.39

M
C

D
(5

0%
) SegFormer 0.662 0.028 0.883 0.485 0.760 - - - - 176.98 ± 0.53

DepthFormer - - - - - 21.602 0.181 0.366 0.431 139.81 ± 1.20
SegDepthFormer 0.640 0.021 0.906 0.616 0.782 8.316 0.733 0.558 0.723 203.82 ± 0.81

D
SE

SegFormer 0.772 0.037 0.890 0.456 0.797 - - - - 132.30 ± 3.16
DepthFormer - - - - - 7.036 0.762 0.467 0.772 91.82 ± 2.01
SegDepthFormer 0.749 0.009 0.931 0.696 0.844 7.441 0.751 0.463 0.766 212.11 ± 8.44

D
E

SegFormer 0.784 0.033 0.887 0.416 0.798 - - - - 667.51 ± 2.89
DepthFormer - - - - - 7.222 0.759 0.486 0.771 626.79 ± 2.05
SegDepthFormer 0.755 0.015 0.917 0.609 0.828 7.156 0.763 0.493 0.773 743.23 ± 32.95

Table 2. Quantitative comparison on the Cityscapes dataset [6] between the three baseline models paired with MCD, DSE, and DEs,
respectively. Best results are marked in bold.

Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

B
as

el
in

e SegFormer 0.470 0.159 0.768 0.651 0.734 - - - - 18.09 ± 0.41
DepthFormer - - - - - 0.554 0.786 0.449 0.610 17.51 ± 0.87
SegDepthFormer 0.466 0.151 0.769 0.659 0.733 0.558 0.776 0.446 0.594 22.31 ± 0.23

M
C

D
(2

0%
) SegFormer 0.422 0.102 0.767 0.706 0.724 - - - - 222.67 ± 0.61

DepthFormer - - - - - 0.605 0.741 0.478 0.568 139.58 ± 052
SegDepthFormer 0.433 0.093 0.771 0.710 0.725 0.610 0.731 0.450 0.560 251.25 ± 0.81

M
C

D
(5

0%
) SegFormer 0.273 0.083 0.705 0.722 0.713 - - - - 223.25 ± 0.82

DepthFormer - - - - - 0.978 0.516 0.492 0.526 139.27 ± 0.69
SegDepthFormer 0.272 0.084 0.702 0.721 0.711 0.837 0.576 0.473 0.525 251.98 ± 0.60

D
SE

SegFormer 0.469 0.092 0.776 0.681 0.726 - - - - 180.42 ± 3.93
DepthFormer - - - - - 0.547 0.782 0.423 0.596 91.66 ± 0.26
SegDepthFormer 0.461 0.077 0.776 0.692 0.723 0.584 0.738 0.403 0.573 261.69 ± 5.10

D
E

SegFormer 0.486 0.125 0.782 0.675 0.734 - - - - 715.97 ± 7.55
DepthFormer - - - - - 0.524 0.808 0.475 0.613 624.30 ± 2.07
SegDepthFormer 0.481 0.122 0.783 0.682 0.733 0.552 0.785 0.453 0.590 788.76 ± 2.00

Table 3. Quantitative comparison on the NYUv2 dataset [59] between the three baseline models paired with MCD, DSE, and DEs,
respectively. Best results are marked in bold.

6. Efficient Multi-task Uncertainties

In this section, we conduct several experiments to
demonstrate the efficiency and efficacy of EMUFormer. We
begin by comparing EMUFormer’s performance with its
DE teacher for multiple backbones. Subsequently, we com-
pare our results with previous state-of-the-art approaches,
followed by qualitative examples. Lastly, we provide an ab-
lation study on the impact of the GNLL loss.

6.1. Quantitative Evaluation

Baseline vs. Teacher vs. Student. We present
a comprehensive analysis in Tables 4 and 5 by com-

paring SegDepthFormer (baseline), SegDepthFormer DE
(teacher), and EMUFormer (student). EMUFormer
emerges as the standout performer, surpassing the baseline
SegDepthFormer model across all metrics on both datasets,
with only a single exception. Remarkably, this perfor-
mance is achieved while maintaining an equivalent infer-
ence time. Remarkably, EMUFormer even outperforms
the SegDepthFormer DE, which served as its teacher and
has approximately 33 times higher inference time, in most
cases. In terms of prediction performance, EMUFormer
gives slightly worse segmentation results compared to the
DE. However, it notably excels in the depth estimation task,
especially on Cityscapes [6], which is a phenomenon we
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Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

SegDepthFormer (Baseline) 0.738 0.028 0.913 0.592 0.826 7.536 0.745 0.472 0.762 22.04 ± 0.27
SegDepthFormer (DE) 0.755 0.015 0.917 0.609 0.828 7.156 0.763 0.493 0.773 743.23 ± 32.95
EMUFormer 0.752 0.012 0.923 0.658 0.811 6.983 0.772 0.491 0.783 22.04 ± 0.27

Table 4. Quantitative comparison on the Cityscapes dataset [6] between the baseline SegDepthFormer, a SegDepthFormer Deep Ensemble,
which acts as the teacher with ten members, and our EMUFormer. Best results are marked in bold.

Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

SegDepthFormer (Baseline) 0.466 0.151 0.769 0.659 0.733 0.558 0.776 0.446 0.594 22.31 ± 0.23
SegDepthFormer (DE) 0.481 0.122 0.783 0.682 0.733 0.552 0.785 0.453 0.590 788.76 ± 2.00
EMUFormer 0.475 0.129 0.787 0.692 0.737 0.514 0.810 0.440 0.633 22.31 ± 0.23

Table 5. Quantitative comparison on the NYUv2 dataset [59] between the baseline SegDepthFormer, a SegDepthFormer Deep Ensemble,
which acts as the teacher with ten members, and our EMUFormer. Best results are marked in bold.

Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

B
0

B
ac

kb
on

e SegFormer (DE) 0.689 0.037 0.888 0.486 0.779 - - - - 273.20 ± 1.38
DepthFormer (DE) - - - - - 8.452 0.692 0.414 0.719 236.13 ± 0.70
SegDepthFormer (DE) 0.651 0.045 0.912 0.634 0.803 8.495 0.692 0.425 0.718 317.47 ± 15.64
EMUFormer 0.630 0.023 0.924 0.714 0.791 8.086 0.717 0.473 0.732 9.58 ± 0.07

B
5

B
ac

kb
on

e SegFormer (DE) 0.809 0.032 0.896 0.435 0.819 - - - - 1931.01 ± 12.77
DepthFormer (DE) - - - - - 6588 0.782 0.487 0.791 1892.47 ± 9.24
SegDepthFormer (DE) 0.789 0.037 0.928 0.657 0.852 6.664 0.785 0.502 0.792 2018.04 ± 32.31
EMUFormer 0.771 0.014 0.934 0.703 0.845 6.157 0.804 0.536 0.799 50.72 ± 0.45

Table 6. Quantitative comparison on the Cityscapes dataset [6] between the three baseline models as Deep Ensembles and EMUFormer
with SegFormer’s B0 and B5 backbone [69]. The respective SegDepthFormer Deep Ensemble served as the teacher for the corresponding
EMUFormer. Best results are marked in bold.

Semantic Segmentation Monocular Depth Estimation Inference Time [ms]
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

B
0

B
ac

kb
on

e SegFormer (DE) 0.376 0.105 0.743 0.701 0.718 - - - - 315.42 ± 2.41
DepthFormer (DE) - - - - - 0.642 0.720 0.476 0.566 227.92 ± 2.39
SegDepthFormer (DE) 0.375 0.097 0.744 0.703 0.718 0.678 0.693 0.466 0.553 346.21 ± 2.72
EMUFormer 0.363 0.090 0.743 0.713 0.720 0.674 0.705 0.498 0.558 10.04 ± 0.06

B
5

B
ac

kb
on

e SegFormer (DE) 0.534 0.138 0.792 0.653 0.744 - - - - 1958.46 ± 36.71
DepthFormer (DE) - - - - - 0.468 0.852 0.505 0.647 1875.53 ± 12.83
SegDepthFormer (DE) 0.526 0.133 0.794 0.665 0.743 0.451 0.838 0.478 0.619 2038.26 ±13.06
EMUFormer 0.520 0.134 0.798 0.688 0.744 0.476 0.846 0.467 0.647 52.27 ± 1.40

Table 7. Quantitative comparison on the NYUv2 dataset [59] between the three baseline models as Deep Ensembles and EMUFormer
with SegFormer’s B0 and B5 backbone [69]. The respective SegDepthFormer Deep Ensemble served as the teacher for the corresponding
EMUFormer. Best results are marked in bold.

observed across multiple experiments (cf. Tables 6, 7, and
8) and which we will discuss in Section 7.

Backbone Size. Tables 6 and 7 display a comprehen-
sive assessment of the influence of the backbone size on
Cityscapes [6] and NYUv2 [59]. In this context, we de-

cided to evaluate the three baseline models as a DE with ten
members each in comparison to EMUFormer for the small-
est, B0, and the biggest, B5, backbone of SegFormer [69],
respectively. The findings broadly align with the earlier ob-
servations of Section 5 in terms of single-tasking versus
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NYUv2 Cityscapes
mIoU ↑ RMSE ↓ mIoU ↑ RMSE ↓

HybridNet A2 [36] 0.343 0.682 0.666 12.09
Mousavian et al. [48] 0.392 0.816 - -
C-DCNN [38] 0.398 0.628 - -
BMTAS [3] 0.411 0.543 - -
Gao et al. [15] 0.419 0.528 - -
Nekrasov et al. [52] 0.420 0.565 - -
CI-Net [14] 0.426 0.504 0.701 6.880
Wang et al. [67] 0.442 0.745 - -
SOSD-Net [20] 0.450 0.514 0.682 -
ATRC [4] 0.463 0.536 - -
MTI-Net [65] 0.490 0.529 - -
PAD-Net [70] 0.502 0.582 0.761 -
MTFormer [71] 0.506 0.483 - -

SegDepthFormer-B2 (Ours) 0.476 0.549 0.763 7.286
SegDepthFormer-B5 (Ours) 0.518 0.499 0.784 6.819
EMUFormer-B2 (Ours) 0.475 0.514 0.752 6.983
EMUFormer-B5 (Ours) 0.520 0.476 0.771 6.157

Table 8. Comparison against previous state-of-the-art approaches
in joint semantic segmentation and monocular depth estimation.
Best results are marked in bold, second best results are underlined.

multi-tasking. More specifically, EMUFormer emerges as
the top performer on all segmentation metrics, except for
the mIoU where the SegFormer DE gives slightly better re-
sults. On the Cityscapes dataset, EMUFormer stands out by
delivering the best results for all depth metrics across both
backbones. Notably, it achieves this superior performance
while maintaining a 20 to 30 times faster inference time
compared to the DEs. On NYUv2, the DepthFormer DE
performs marginally better on the depth metrics, although
EMUFormer remains highly competitive, especially if in-
ference time is considered.

Comparison with SOTA. On both datasets, Cityscapes
[6] and NYUv2 [59], EMUFormer-B5 outperforms the pre-
vious state-of-the-art in joint semantic segmentation and
monocular depth estimation. For instance, on NYUv2
[59], EMUFormer delivers 1.4 % higher mIoU and 0.007
lower RMSE than MTFormer [71], which also adopts a
modern Vision-Transformer-based architecture. In con-
trast to our work, however, they rely on cross-task at-
tention mechanisms and on a sophisticated self-supervised
pre-training routine, which introduce additional complexity.
Our SegDepthFormer-B5 baseline model already achieves
very competitive results without such adaptations to the ar-
chitecture or the training routine. It improves upon previ-
ous work in all cases except for RMSE on NYUv2 [59].
Besides, even with the lightweight B2 models, we achieve
very decent results in comparison to prior work, offering an
alternative for real-time applications.

6.2. Qualitative Evaluation

In addition to the quantitative evaluation, we also pro-
vide qualitative examples of EMUFormer-B2 in Figure 5
for Cityscapes [6] and NYUv2 [59].

Cityscapes. On Cityscapes, EMUFormer demonstrates
good prediction performance for both tasks. In the segmen-
tation task, its uncertainty prediction proves particularly in-
sightful as the red rectangles highlight. For example, in
areas such as the car hood, which is not part of the train-
ing labels (indicated by black pixels), the model exhibits
high uncertainty, indicating its ability to capture out-of-
distribution information or epistemic uncertainty. Similarly,
in noisy background areas, the model effectively captures
the aleatoric noise. Additionally, the model correctly pre-
dicts high uncertainties for challenging areas like the wall
on the right of the image, highlighting the utility of uncer-
tainties in identifying potential model errors. In the depth
estimation task, analogous to the segmentation task, EMU-
Former predicts high uncertainty on the car hood or the sky,
which are both areas that are not part of the training ground
truth, i.e. areas of high epistemic uncertainty. Furthermore,
the uncertainty is appropriately high at object boundaries,
indicating sensitivity to significant depth variations.

NYUv2. For the segmentation task, EMUFormer again
outputs high uncertainties for pixels that are not part of
the ground truth or those that are misclassified, consistently
providing useful predictive uncertainties. In the depth esti-
mation task, the uncertainties seem to correlate with the es-
timated depth, providing an intuitive and helpful indication.
This alignment suggests that the model effectively captures
the depth prediction quality, particularly as it relates to in-
creasing distances.

In summary, the qualitative evaluation aligns with the
quantitative findings of Section 6.1 and highlights EMU-
Former’s proficiency in handling both the segmentation and
the depth estimation tasks, showcasing its ability to gen-
erate meaningful predictive uncertainties that enable more
thorough interpretations of the predictions.

6.3. Ablation Studies

Impact of GNLL Loss. EMUFormer is trained to mini-
mize the weighted sum of the following four objective func-
tions:

1. Cross-Entropy loss for the semantic segmentation task.

2. Kullback-Leibler divergence loss for the segmentation
uncertainty distillation.

3. Gaussian Negative Log-Likelihood loss for the monoc-
ular depth estimation task.

4. Root mean squared error loss for the depth uncertainty
distillation.
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(a) Input Image (b) Segmentation Ground Truth (c) Segmentation Prediction (d) Segmentation Uncertainty

(e) Depth Ground Truth (f) Depth Prediction (g) Depth Uncertainty

(h) Input Image (i) Segmentation Ground Truth (j) Segmentation Prediction (k) Segmentation Uncertainty

(l) Depth Ground Truth (m) Depth Prediction (n) Depth Uncertainty

Figure 5. Qualitative examples of our EMUFormer-B2 on the Cityscapes [6] (top) and NYUv2 [59] (bottom) datasets. Red rectangles are
added to highlight interesting areas. Best viewed in color.

As described in Section 3.2.2 and shown by Equation 6,
GNLL treats every prediction as a sample from a Gaus-
sian distribution with a predictive mean and a correspond-
ing predictive variance. Usually, these variances are solely
learned implicitly through the optimization of the predic-
tive means based on the ground truth labels. In the case
of EMUFormer, however, the network is also being trained
to mimic the predictive uncertainty of the teacher in paral-
lel. Consequently, the depth uncertainty does not need to be
learned implicitly, rather it can be used to improve the depth
estimation itself. In order to explore this more thoroughly,
we performed an ablation study on the impact of the GNLL
loss by replacing the GNLL loss with the Mean Squared
Error (MSE) loss and the Huber loss [25], respectively.

Tables 9 and 10 show a quantitative comparison of the
impact of the respective depth loss for EMUFormer-B2 on
the Cityscapes and NYUv2 datasets. On Cityscapes, train-
ing with GNLL loss leads to the best performance across

the board, especially with regard to the RMSE for monoc-
ular depth estimation. GNLL loss results in a RMSE of
6.983 in comparison to 7.217 and 7.340 for MSE and Hu-
ber loss [25], respectively. Similarly, on NYUv2, training
with GNLL loss yields the best RMSE with 0.514 versus
0.527 and 0.533 for MSE and Huber loss [25], although
at the cost of a very slight deterioration of 0.006 in mIoU.
Remarkably, using GNLL loss leads to the highest depth
uncertainty quality for both datasets.

Overall, these results show that incorporating the predic-
tive uncertainties using the GNLL loss enhances the per-
formance of EMUFormer for depth estimation and depth
uncertainty quantification compared to other loss functions
like MSE or Huber loss [25] that do not account for the un-
certainty. We consider this a valuable insight and believe
that leveraging high-quality predictive uncertainties during
the optimization process offers great potential for future
work.
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Semantic Segmentation Monocular Depth Estimation
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

MSE 0.749 0.014 0.922 0.659 0.810 7.217 0.742 0.446 0.761
Huber [25] 0.748 0.013 0.923 0.657 0.809 7.340 0.743 0.446 0.760
GNLL 0.752 0.012 0.923 0.658 0.811 6.983 0.772 0.491 0.783

Table 9. Ablation study on the impact of the depth loss on the results of EMUFormer-B2 on Cityscapes [6]. Best results are marked in
bold.

Semantic Segmentation Monocular Depth Estimation
mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑

MSE 0.481 0.127 0.788 0.690 0.737 0.527 0.788 0.431 0.587
Huber [25] 0.481 0.127 0.788 0.689 0.737 0.533 0.786 0.431 0.587
GNLL 0.475 0.129 0.787 0.692 0.737 0.514 0.810 0.440 0.633

Table 10. Ablation study on the impact of the depth loss on the results of EMUFormer-B2 on NYUv2 [59]. Best results are marked in
bold.

7. Discussion

Joint Uncertainty Evaluation. Quantifying the un-
certainty in joint segmentation and depth estimation has
not been thoroughly examined in prior research. There-
fore, we evaluated multiple uncertainty quantification meth-
ods with modern Vision-Transformer-based architectures
for joint semantic segmentation and monocular depth esti-
mation. In general, single-task models demonstrate slightly
better prediction performance, which may arise from mul-
tiple factors. For one, the single-task models can optimize
all available parameters for their specific task. Additionally,
the multi-task models do not exploit any sophisticated adap-
tions to the architecture or the training process. Unlike pre-
vious work [3,4,14,20,26,27,29,36,38,39,48,52,67,70,71],
we intentionally left out all of the complexities for the joint
uncertainty evaluation in order to maintain methodologi-
cal simplicity and transparency of the results. Interest-
ingly, multi-task models showcase greater uncertainty qual-
ity, particularly in the context of the semantic segmentation
task. This suggests that jointly training a model to solve
multiple tasks can enhance the model’s ability to better
quantify its uncertainty. In terms of uncertainty quantifica-
tion methods, DEs stand out as the preferred choice, demon-
strating superior prediction performance and, for the most
part, higher uncertainty quality. However, it is crucial to
note that this advantage comes at the highest computational
cost. Both findings align closely with previous work focus-
ing on the evaluation of uncertainties [19, 54, 68]. Among
the more efficient methods, MCD and DSE, the latter ex-
hibits a prediction performance that is comparable with the
baseline models while achieving a high uncertainty qual-

ity. This positions DSEs as an attractive alternative to DEs,
offering efficiency without significant sacrifices in perfor-
mance or uncertainty quality.

EMUFormer. In addition to the joint uncertainty eval-
uation, we also proposed EMUFormer, which employs
student-teacher distillation to achieve state-of-the-art results
in joint semantic segmentation and monocular depth esti-
mation on Cityscapes [6] and NYUv2 [59]. Notably, it ac-
complishes this while estimating well-calibrated predictive
uncertainties for both tasks, all without introducing any ad-
ditional computational overhead during inference. Remark-
ably, EMUFormer even surpasses the performance of its DE
teacher in certain cases, despite the latter having ten times
the parameters and approximately 30 times higher inference
time. The backbone ablation analysis further reinforces
the versatility of our proposed method, showcasing its ef-
ficacy across different backbone configurations. Most inter-
estingly, however, EMUFormer achieves particularly out-
standing performance in the depth estimation task in com-
parison to the teacher. We primarily attribute this success to
the use of the Gaussian Negative Log-Likelihood loss (cf.
Section 6.3), which is commonly employed to implicitly
learn corresponding variances in addition to the predictive
means. In the case of EMUFormer, however, the teacher
model already provides high-quality variances through dis-
tillation, allowing for a more accurate approximation of the
predictive means and their associated uncertainties. Con-
sequently, leveraging uncertainties during the training, ei-
ther implicitly like EMUFormer, or explicitly like previous
work [29, 32], is an interesting venue for future work.
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8. Conclusion
In this work, we first combine multiple uncertainty quan-

tification methods with joint semantic segmentation and
monocular depth estimation and evaluate how they per-
form in comparison to each other. Quantitative evalua-
tions revealed that Deep Ensembles stand out as the pre-
ferred choice concerning prediction performance and un-
certainty quality, although having the highest computational
cost. Among the less costly methods, Deep Sub-Ensembles
emerge as an attractive alternative to Deep Sub-Ensembles,
offering efficiency without major sacrifices in prediction
performance or uncertainty quality. Additionally, we reveal
the benefits of multi-task learning with regard to the un-
certainty quality compared to solving both tasks separately.
Building on these insights, we propose EMUFormer, a
novel student-teacher distillation approach for joint seman-
tic segmentation and monocular depth estimation as well as
efficient multi-task uncertainty quantification. By implicitly
leveraging the predictive uncertainties of the teacher, EMU-
Former achieves new state-of-the-art results on Cityscapes
and NYUv2 for both tasks. Notably, EMUFormer also man-
ages to estimate high-quality predictive uncertainties for
both tasks that are comparable or superior to a DE despite
being an order of magnitude more efficient.
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