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1. Introduction

Worldwide, the pressure for flexible yet efficient produc-
tion systems is growing rapidly. To optimize those, multidi-
mensional optimization issues have to be tackled and complex
dependencies need to be designed [8]. Due to the unchanged
mental capacity of human beings, supportive techniques for the
planning of these production systems have to be applied.

Increased attention is paid to simulations, serving as tools
for decision-making in production control [2]. Panzer et al. [19]
provide a review of research regarding neural networks in pro-
duction planning and control whereby a large number of re-
search was implemented in simulations. As the application of
simulation programs, is referblack to as a common tool to im-
prove the efficiency and control of manufacturing systems, they
help to fine-tune the production systems and, thus, to foresee
the near term behavior of the regarded production system [15].
By applying carefully selected suitable concepts on their appli-

cation, this can drastically reduce material and resource usage
[18]. However, in order to derive meaningful information, these
simulations themselves have to be configured in such a way that
they closely mimic real behavior.

Due to the high complexity, this modeling process is time
consuming and expensive [17]. Nevertheless, current improve-
ments are pointing towards a simulation that follows closely
the real environment on the selected level of granularity - a so-
called digital twin. [16].

Due to the high amount of data acquired in production sys-
tems the originally manual creation process of such simulation
environments is prone to errors or oversimplification [17]. In
wake of recent breakthroughs in the field of machine learning,
this data based task could be assisted or even automated by a
concept based on machine learning [4]. Therefore, this paper
proposes a framework for simple, automated simulation model
creation and parameter tuning based on observable big data and
its integration into a machine learning approach.
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Abstract

Production system simulation is a powerful tool for optimizing the use of resources on both the planning and control level. However, creating and
tuning such models manually is a tedious and error-prone task. Despite some approaches to automate this process, the state-of-the-art relies on
the generation of models, by incorporating the knowledge of experts. Nevertheless, effectively creating and tuning such production simulations
is, thus, a key driver for reducing costs, carbon footprint, and tardiness and therefore an essential factor in today´s production. Beneficial would
be automated and flexible frameworks, since these are applicable to different use cases requiring less effort. Yet, in the age of Industry 4.0, data
is ubiquitous and easily available and can serve as a basis for virtual models representing reality. Increasingly, these virtual models shall be
interlinked with the current state of real-world systems to form so-called digital twins. As automated and flexible frameworks are missing, this
paper proposes a novel approach where observed real system behavior is used and fed into a large-scale machine learning model trained on a
plethora of possible parameter sets. The main target is to train this machine learning model to minimize the reality gap between the behavior of
the simulated and real system by selecting corresponding simulation system parameters. By estimating those parameters an enhancement of the
simulation will emerge. An interlink to real systems can be derived resulting in a digital shadow which is capable to forecast the future similarly
to reality. The approach to overcoming the gap between reality and simulation (real2sim) is validated in simulations.
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To do so, this paper is structured in seven sections, begin-
ning with the introduction. The state-of-the-art is examined in
Section 2, which derives the main research question, based on
the research gap. The following Section 3 explains the machine
learning based automated simulation tuning framework itself
as well as the corresponding building, refining and testing. Sec-
tion 4 introduces the case study. In the subsequent Section 5
the results of the application of this framework with the intro-
duced testing-approach are shown and analyzed. These results
and the corresponding analysis are then discussed in Section
6. Relevant insights as a summary and various subsequent re-
search questions are then pointed out in Section 7.

2. State-of-the-art

As discussed in Section 1, simulations are used to investi-
gate production systems. They are typically based on discrete
event simulation systems and can be modeled with various soft-
ware available. This process is normally executed by an expert
of simulation creation. To tackle the problem of complexity,
one normally adheres to guidelines, such as VDI-3633 [25].
These guidelines support the creator with various methods and
granular steps, but the process itself remains time consuming
and, therefore, expensive. Especially the time needed for data
collection and preparation grows proportionally with the com-
plexity of the production system. For instance, the VDI-3633
[25] shows, that information of different domains has to be ag-
gregated such as plant-layout, technical machinery data, pro-
cessing sequences, operations planning or production planning.
Therefore, the person in charge needs to interview experts, con-
sult machine suppliers, read documentations, observe the cur-
rent production processes and access various databases.

To reduce the time needed for simulation-creation, different
toolboxes and frameworks are proposed throughout the scien-
tific community. In the 1990s so called expert systems were
developed to aid in the process of simulation creation or pro-
duction control as mentioned in Egresitis et al. [5], Ikkai et al.
[7] or Westkämper et al. [26]. In toady’s complex world, pro-
duction control approaches extend towards the idea of a digital
twin [15]. These in turn are based on complex real-time simula-
tions. The old approaches are not flexible enough to be able to
react to rapidly changing conditions. Therefore, improved ap-
proaches, ideally based on the plethora of available data and
typically enhanced through machine learning have to be devel-
oped. The system model can be enhanced by a permanent and
flexible responding estimation of parameters. Consequently, the
application of even more powerful machine learning would be
achieved and thus a reduction of human work and error.

Reaching a high performance while keeping computing
power low as well as considering changing circumstances are
challenges in ML. To increase the ability to handle complex sys-
tems, automatic solutions are desirable [4]. In addition, mod-
eling accuracy has to achieve the desired objective [25]. In
order to overcome these challenges, various requirements are
specified for one approach. In addition, this paper introduces
so-called framework maturity, leading to five different require-

ments. The focus remains on the ability to perform detailed
analysis with reduced manual interaction. Meanwhile, the re-
quired computing power ought to be low in order to be tech-
nically feasible. Hereafter various more recent approaches are
discussed, regarding those requirements.

For instance, von Rueden et al. [22], propose various ap-
proaches to enhance simulations with the help of machine
learning. First off, one can use machine learning to modify the
model itself and delete irrelevant, but overly complex parts of
it. The approach referred to as initial model causes an enhanced
adjustment of the simulation model, but could lack diversity in
further investigations. Second, one can use machine learning to
find the optimal parameters to configure the simulation, with-
out altering the model itself. This process, referred to as input
parameters saves time while still preserving all features of the
simulation. Both could be used to reduce the time consumed in
the creation process but still lack detail to make the framework
directly feasible.

Kasim et al. [10] combine both ideas into the concept of sim-
ulation emulation. In this concept, a neural network is used to
train the correlations of input parameters to output parameters
and, thus, replace the simulation entirely. With this approach,
however, the loss of information leads to disadvantages. The
decisions cannot be reproduced despite similar results so the
requirements for the detailed analysis are hard to be achieved.

Elbattah and Molloy [6] propose a concept in which only
parts of the simulation are replaced by emulations to reduce
complexity. In a production context these parts could be agents
such as machines or autonomous transportation vehicles as pro-
posed by Bergmann et al. [2]. The main downside of this ap-
proach is the lack of actual insights into the decision process
and, hence, the missing ability to try out new features. A similar
approach uses reinforcement learning to make decisions in the
actual production system, which increases efficiency, but does
not provide further insights into the system itself [21]. Thus,
both approaches [2] and [21] fail to meet the requirements for
analysis detail. Another framework proposed by Bergmann and
Straßburger [3] is based on the idea of automatic model cre-
ation, based on a premodeled description of the simulation sys-
tem and, therefore, shifts the problem of complexity towards
the premodeled description language. However, a major disad-
vantage is that for this approach the computing power cannot
be decreased sufficiently to satisfy the requirement.

The fulfillment levels and disadvantages of the aforemen-
tioned approaches are presented in Table 1. It shows that only
one of the solutions available (ML for parameter tuning) ful-
fills the requirements regarding lesser manual interaction while
maintaining a high level of analysis detail [22]. But the matu-
rity of this solution is not high enough as successful implemen-
tations and case study solutions are missing. Thus, it represents
only a starting point for further investigations which are pre-
sented within our paper.

Process mining techniques have been increasingly employed
in more recent approaches regarding model generation [1]. Lu-
garesi and Matta [11] generate simulation-based digital twins
by information derivation from data logs of production systems.
Pourbafrani et al. [20] propose an approach based on event data
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Table 1. Comparison of different approaches
Approach Low Com-

puting
Power

Less
Manual
Interac-
tion

Framework
Maturity

Applicability
on dif-
ferent
scenarios

Analysis
Detail

Standard
procedure
(e.g. [25])

�� � � � �

ML for
model ad-
justment
[22]

� �� � � �

ML for
parameter
tuning
[22]

� �� � � �

simulation
emulation
[10]

� � �� �� �

partial
simu-
lation
emulation
[2]

�� �� �� �� �

RL for
decision
making[21]

� �� �� �� ��

automatic
model
creation
[3]

�� � �� � �

Legend: �fulfilled, ��partial fulfilled, �not fulfilled or regarded

to generate system dynamics simulation models. However, the
goal of this work is to develop a model that can react flexibly
and quickly. Obtaining parameters from process mining (e.g.
processing times) results in waiting for a complete trace to be
run before effects can be captured and reacted to. Therefore,
this paper distinguishes itself from the newer approaches by
not creating the infrastructure based on event logs and result-
ing process models but still manually by an expert in order to
ensure the necessary flexibility. This paper addresses the exist-
ing gap between industrial requirements and the actual state of
the art in research and proposes a framework that addresses the
aforementioned requirements.

The basis of the framework is built upon the idea of find-
ing the optimal input parameters for the simulation through ma-
chine learning, in a similar vein to one of the approaches men-
tioned in von Rueden et al. [22]. Thus, analyses of the produc-
tion system are still possible, while maintaining the advantages
of an easier simulation creation.

3. Methods

To accomplish the aim of a mostly automatic simulation cre-
ation through machine learning, the resulting degrees of free-
dom for the algorithm have to be designed. This process is
based on the purpose of building an ideal simulation adjusted
to reality and, thus, a digital twin of the real production system.
Other systems should not be taken into account, to reduce the
degrees of freedom for the algorithm. As aforementioned, the
expert has to model the structure of the system manually. This
structure consists of every determined part in the system, such
as the number of machines and transportation systems or the

required process steps for certain products. Such information is
usually accessible and known. Due to the determined character
of these parameters, the complexity is still manageable for the
simulation expert.

Based on this structure, ML is used to train the algorithm in
order to find the behavioral parameters in the system that gener-
ate KPIs that hardly differ from the real KPIs. The needed data
can be collected from past production log files. The estimated
behavior parameters are fed into the simulation. Comparing the
thereby calculated KPIs to real KPIs an error can be derived
that serves for the adjustment of the ML algorithm.

The main challenge of this approach is backpropagation. To
achieve a desired prediction, with backpropagation, the error
needs to be mapped to specific weights of the neural network.
Based on the simulation with stochastic elements in the back-
propagation cycle, this cannot be realized. Therefore, this paper
proposes three different approaches to solve this problem. The
KPIs addressed in each approach refer to supported KPIs of the
simulation based on Kang et al. [9], Stricker et al. [23] and May
et al. [12].

One implementation approach consists of building a second
neural network, which emulates the simulation. Therefore, the
backpropagation can be calculated by being able to derive the
error function over the neural network emulating the simula-
tion. Hence, the problematic stochastic elements in the cycle
are cut.

Another possible approach makes use of reinforcement
learning. In this solution, the error does not need to be derived,
but rather a simple feedback has to be implemented. This num-
ber is also known as reward and measures the quality of the
given output of the neural network.

The third implementation approach is based on generaliza-
tion. In this approach, the neural network is trained on huge
amounts of presimulated data and, therefore, known correla-
tions between behavioral parameters and resulting KPIs. As
a result, the neural network learns these correlations. When
being fed with the real KPIS it uses the correlations to find
the corresponding behavioral parameters. Thus, it generalizes
from known correlations. Due to the implementation simplic-
ity, this paper uses a generalization technique and, therefore, a
supervised learning approach to test and evaluate the proposed
framework. Due to the framework style of this paper, the fol-
lowing insights can still be easily transferred.

The main framework is shown in Figure 1. The ANN es-
timates the parameters which are fed into the simulation. The
simulation calculates the predicted KPIs which are then com-
pared to the real KPIs. The error which occurs here serves for
the adjustment of the ML algorithm.

Evaluating this approach according to the aforementioned
requirements introduced in Section 2 the following results can
be derived. While the requirements according to the applica-
bility on different scenarios and analysis detail can be reached,
framework maturity and computing power are regarded on a
medium level. Almost none manual interaction is needed.
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Fig. 1. Explanation of the proposed framework with the focus within the dashed lines - IP is the abbreviation for Input Parameters

Table 2. Overview of used production systems and measured parameters on
different structures

Production system Parameters on different structures

ID Machines Products ID Varied parameters

1xx 1 2 xx0 all possible
2xx 4 2 xx1 order amount, process time
3xx 4 8 xx2 + process variance
4xx 8 8 xx3 + setup time
5xx 8 16 xx4 + handling times

4. Case study

This paper makes use of different production types, func-
tion as a categorization of a variety of production structures
as well as parameter combinations and is formed by three dig-
its. Whereas the first digit indicates the underlying production
structure, the latter two refer to the parameter configuration.
The different production structures are shown in Table 2. They
reach from simple to complex systems and build a reasonable
base to discuss the quality of the framework. As aforemen-
tioned, this paper applies a wide range of KPIs based on the
KPI system proposed by Kang et al. [9] and Stricker et al. [23].
The used input parameters for the simulation system consist of
the structural and behavioral parameters introduced in Table 2.
These are designed to be able to map the corresponding KPIs.
An example could be implementing the failure probability for
a machine, if there is a KPI describing the machine downtime.
The number of used parameters is also varied over several dif-
ferent systems. As previously illustrated, the third digit repre-
sents the variation of the parameters of the production type.
They can be gradually increased in complexity analogously to
the production types as shown in Table 2. Based on the five
different production structures together with parameter config-
urations, twenty-five possible production types result.

The method described is used within a situation aware,
knowledge graph based DES, OntologySim [13]. It is an event
discrete simulation, generating KPIs by appropriate parameter-
ization and can later serve as a digital twin. It is capable of log-
ging aggregated KPIs, agent based KPIs and time step based
KPIs [13].

For the evaluation, a reasonable range for the behavioral pa-
rameters for every production system was set. This step tremen-

dously reduces the number of possible combinations and makes
use of the already existing knowledge about the specific system
[18]. Based on this range, huge amounts of randomized behav-
ioral parameters were created and fed into the simulation to ob-
tain the corresponding KPIs, a standard approach in using ma-
chine learning techniques for production planning and control
optimization [24]. The resulting KPIs and the corresponding in-
put parameters are saved as sample. Based on these, the neural
network is trained. Previously, one of these was separated for
evaluation to represent the real production system being simu-
lated. The entered number of configurations, an expert estima-
tion, and the real data set are generated for each of the 25 pro-
duction types. To generate data a process simulation program is
used. During training, the early-stopping approach is chosen to
avoid overfitting, as well as to optimize the required time. After
the training, the process is evaluated by feeding the represent-
ing real input parameters into the simulation and comparing the
resulting KPIs with the representing real KPIs. While doing so,
optimal hyperparameters are searched systematically. The aim
of this search is to find the best parameters for a high accuracy
as well as efficiency.

5. Results

Fig. 2. Detailed comparison for parameters of system 101 (blue) with the pro-
posed ML model prediction (yellow)
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Fig. 3. Parameter prediction performance comparison of all different systems

By searching systematically for the best hyperparameters
with the lowest generalization error, the parameters of Table
3 were the most accurate and efficient. Therefore, the following
results were recorded using these hyperparameters.

Hyperparameters Value

samples 500
epochs 10.000.000
batch-size ≥samples
learning rate 0.1
momentum 0.1
hidden layers 1
loss function MSE
activation function None
optimizer adamax
Nesterov True
dropout False
patience 1000

Table 3. Hyperparameters used in this evaluation

With this configuration, Figure 2 shows the predicted param-
eters in relation to the real parameters of an example ”system
101”. Deep diving into the various investigated systems shows
excellent results. Even parameters in a wide range can be fit-
ted as indicated by the logarithmic scale. Especially on systems
with a low to medium complexity, such as 101, the behavioral
parameters match the real ones almost perfectly, despite the fact
that the observed parameters are not present in the training data
set.

Nonetheless, the accuracy of the neural network drops with
increasing complexity when analyzing the overall performance
as shown in Figure 3. For example, the accuracy decreases
when observing gradually more complex production structures
(100, 200, 300, 400, 500). Simpler derivatives of these base sys-
tems, such as 501, clearly show a better performance than their
root system with more variables to handle.

6. Discussion

To interpret the quality of the proposed framework, the given
requirements are compared with the actual results of the exem-
plary implementation. As stated in Section 5, the deep dive into
single systems shows excellent results, especially in low com-
plexity systems. Therefore, the resulting simulation is optimally
adapted to reality and can be used for complex scenarios, such
as production planning based on realtime simulation.

Problematically is the drop of performance on systems of
higher complexity. This is due to the fact that the training took
place on a single machine with limited resources and could not
be tested on huge amounts of data. The data has to be created
artificially and can not be extracted out of already existing logs
from physical systems. In industrial scenarios this data is al-
ready available from the past and more resources for comput-
ing can be allocated. However, in contrast to simulative data
that is used to obtain the presented results, real world systems
can include a higher degree of abnormalities. Furthermore, the
exemplary implementation itself is not yet perfectly optimized.
According to this, the bottleneck of highly complex systems in
the exemplary implementation can be neglected when analyz-
ing the overall framework.

The tendency is that more data can improve the accuracy to
some extent, as shown by ”systems 101”’s deepdive. This ac-
curacy is the unique selling point of the framework, along with
the reduced labor required to create a simulation. When the al-
gorithm is implemented and the structure remains the same, the
process of simulation creation can be automated completely.
Therefore, the framework itself fulfills the requirements as out-
lined in the literature review and delivers a mature solution for
automatic simulation creation. Nonetheless, the implementa-
tion has to be further optimized to move from a solution for
now to a high fidelity ”four know” machine learning applica-
tion as introduced by Chen et al. [4].

7. Summary and Outlook

The analysis shows that the proposed framework works well
in scenarios with sufficient available data and that a good imple-
mentation of the machine learning algorithm is feasible. Suffi-
cient data is a term depending on the complexity of the present
production system.

All in all, the proposed framework fulfills its claims and
can automatically tune a simulation to match reality in order
to facilitate digital twins that are fine-tuned based on authen-
tic parameters rather than comparably output. This can be used
in various scenarios, such as simulation based production con-
trol systems, digital twins or future analysis. The framework
still uses a simulation as a core element and enables to analyze
the decision-making in the system while still using all the ad-
vantages a machine learning algorithm provides. Therefore, it
solves the problem of time consuming simulation creation of
complex systems and offers a high maturity to be directly ap-
plicable. In addition, the complete manual effort can be saved.
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In future directions, the approach should be adapted in or-
der to be applied to more complex and flexible structures such
as job shops. As the process starts with simulating a variety
of system descriptions, the ANN is locked to the regarded sys-
tem, as it was designed. The implemented production systems
and parameters require expansion by adding the routes and the
more complex characteristics of the job shops. However, this
requires just a couple of parameters to be included in the train-
ing, while the basic framework remains the same. In addition,
this framework can be adapted or more efficient implementa-
tions can be tested by making use of novel machine learning
algorithms, cleverer and knowledge infused state-space model-
ing [4] or the integration of natural-language processing capa-
bilities in the front end or alike transformer machine learning
models [14]. It can also be compared with frameworks based
on the other proposed solutions for the problem of backpropa-
gation.

Simulation will remain challenging in the future since this
approach is dependent on data quality and availability. The
method still needs improvements and will benefit from experts.
However, the need to involve experts has already been reduced
to a certain degree.
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