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Abstract— A fundamental precondition for the operation of
district heating networks (DHNs) is a stable hydraulic behavior.
However, the ongoing transition toward a sustainable heat supply,
especially the rising integration of distributed heat sources
and the increasingly meshed topologies, introduces complex
and potentially destabilizing hydraulic dynamics. In this work,
we propose a unifying, equilibrium-independent passivity (EIP)-
based control framework, which guarantees asymptotic stability
of any feasible, hydraulic DHN equilibrium for a wide range
of DHN setups covering different DHN generations, meshed,
time-varying topologies, and multiple, dynamically interacting
distributed heat sources. The obtained results hold for the state of
the art as well as future DHN generations featuring, for example,
multiple distributed heat sources, asymmetric pipe networks, and
multiple temperature layers.

Index Terms— Decentralized control, fluid flow control,
hydraulic systems, nonlinear control systems, pressure control,
stability analysis.

I. INTRODUCTION

DISTRICT heating networks (DHNs) are a key element
for a holistic energy transition, particularly in densely

populated areas [2], [3], [4], [5]. For their operation, well-
defined and stable hydraulic conditions are a fundamental
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requirement, as they form the basis for the actual thermal
power flows [4], [6]. In traditional second- or third-generation
DHNs, the hydraulics and, thus, the thermal power flows
are well understood (see [7, pp. 52–54]). However, emerging
fourth-generation DHNs bring about challenges that call for
new strategies and methods of operating, controlling, and
analyzing DHNs [2], [3], [4], [8].1 Most prominently, we can
observe a decentralization trend with several interacting sub-
systems and controllable components, such as distributed
variable speed pumps (DVSPs) and control valves. Primarily,
this is due to the desire of flexibly and efficiently integrating
ever more renewable and distributed heat generation units
(DGUs), e.g., heat pumps, combined heat and power, or solar
thermal power plants [2], [3], [5], [9], [10]. Furthermore, the
integration of—typically intermittent—renewable heat sources
and new types of consumers, such as low-energy buildings,
is supported by novel, more efficient DHN setups that have
multiple temperature layers and in which more frequent
changes in the hydraulic conditions occur [2], [3], [11], [12],
[13]. To ensure a proper heat supply in such new DHN setups,
it is required to include additional controllable devices, such as
booster pumps, at strategic points in the DHN, e.g., in crucial
pipes or at consumers [2], [7, p. 54], [14]. However, this
leads to complex pressure and volume flow dynamics and
interactions on small time scales [4], which may produce more
frequent volume flow reversals in pipes [15], [16] or severe
hydraulic oscillations [5], [9], [17].

To face the abovementioned challenges and ensure stable
hydraulic conditions, we present a unifying framework based
on equilibrium-independent passivity (EIP) for the decen-
tralized pressure and volume flow rate control in general
DHN setups. In summary, our main contributions are as
follows.

A. C1

Using a graph-theoretic approach, we modularly derive a
comprehensive control design model covering the hydraulic
dynamics of general DHNs with an arbitrary number of DGUs
and consumers that are connected in a meshed, possibly
asymmetric pipe network topology with multiple tempera-
ture layers. In particular, our model encompasses traditional
second- and third-generation DHNs, future fourth-generation

1See [2] for a comparison and overview of the different DHN generations.
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DHNs, and intermediate stages. Moreover, we incorporate
dynamic models for the pumps, consider valves as actuators,
and explicitly account for the presence of pressure holding
units. The main challenge behind this contribution was to
combine the scattered information from the interdisciplinary
literature (e.g., on multitemperature topologies and pressure
holding units) and finally translate all into a comprehensive
dynamic DHN model suitable for control design and system
analysis.

B. C2

We propose decentralized, passivity-based pump and valve
controllers for achieving pressure and volume flow rate
regulation in the actuated DHN subsystems and ensuring
that the closed-loop subsystems are EIP. The pump pres-
sure controller is based on an algebraic interconnection
and damping assignment (IDA) [18] extended with integral
action on the nonpassive output [19]; the pump volume
flow rate controller comprises a state feedback with integral
action on the passive output, and the valve volume flow
rate controller uses a proportional–integral (PI) action on a
modified passive output inspired by Monshizadeh et al. [20].
The main challenge behind this contribution was to deal
with the nonlinear, uncertain, and networked nature of the
DHN subsystems.

C. C3

By leveraging the intrinsic EIP properties of the DHN sub-
systems, the skew-symmetric nature of their interconnection
structure, and LaSalle’s invariance principle, we prove asymp-
totic stability of any feasible, hydraulic DHN equilibrium in
a modular, bottom-up manner. This establishes a unifying
framework for pressure and volume flow rate control, where
multiple DHN subsystems, if EIP, can enter or leave the
DHN in a plug-and-play fashion without having any impact
on the stability properties of the hydraulic equilibrium. The
main challenge behind this contribution was to deal with the
nonlinear and differential-algebraic nature of the overall DHN
closed-loop system.

The relevance of decentralized control designs for pressure
and volume flow rate regulation is that they provide scalability
and allow for an easy addition or removal of subsystems
in a plug-and-play fashion without requiring communication,
without adapting the other controllers in the DHN, and without
endangering pressure and volume flow rate stability. Indeed,
since stability is established modularly and independently
of a communication protocol, decentralized controllers in
general provide resilience against communication failure and
preserve stability in case of unit malfunctions and topology
changes.

In the literature, the field of decentralized, passivity-based
hydraulic control of DHNs has recently been explored in [21].
However, the considered DHN model exhibits a number
of restrictions, such as symmetric DHN topologies,2 two

2In symmetric DHN topologies, supply and return pipes are laid in parallel.
This excludes practically relevant cases with meshed supply pipe networks and
tree-like return pipe networks or more complex structures arising in multilayer
topologies.

temperature layers only, static pump models, no pressure
holding units, and valves modeled as nonactuated components.
Furthermore, pumps are assumed to be installed at every pro-
ducer and every consumer, which excludes traditional DHNs
in which consumers regulate their volume flow rates only
via control valves. The same restrictions underlie the DHN
models used in [14], [22], [23], and [24], where, additionally,
only single producer DHNs are considered. Further noteworthy
works that contribute toward a passivity-based control design
and analysis of DHNs by introducing port-Hamiltonian sys-
tem (PHS) models are [25] and [26]; see also [27], where
water distribution networks are modeled as PHSs. However,
Hauschild et al. [25] exhibit the same setup restrictions as [14],
[22], [23], and [24], while Strehle et al. [26] overcome most
of these restrictions with the exception of modeling valves
as nonactuated components and considering pumps installed
at every producer and consumer. Finally, pumps typically
exhibit quadratic nonlinear behavior with model orders ranging
between 1 and 5 [27], [28], [29]. To bridge the gap between
the prevalent use of static pump models and the more complex
nonlinear dynamics, we consider the linearized pump model
in [26] and [28]. This allows the significant pump dynamics
to be considered when analyzing the DHN stability. Note
that Contribution 3 retains its validity when using more
complex pump models as long as the same EIP properties
are maintained.

II. SYSTEM SETUP AND PROBLEM DESCRIPTION

In this section, we outline the general DHN setups that
are covered by our approach and formally describe them as
weakly connected digraphs. Subsequently, we describe the
considered problem of decentralized pressure and volume flow
rate regulation in DHNs.

A. DHN Setup and Digraph Representation

We describe DHNs as weakly connected digraphs G =

(N , E) without self-loops, as illustrated in Fig. 1. The edges
E are partitioned into four sets: D = {1, . . . , D}, D ≥ 1,
represents the DGUs, L = {D + 1, . . . , D + L}, L ≥ 1, the
consumers (loads), P = {D + L + 1, . . . , D + L + P}, P ≥ 2,
the pipes, and M = {D + L + P + 1, . . . , D + L + P + M},

M ≥ 0, the mixing connections. Conventionally, the nodes N
correspond to ideal system junctions interconnecting DGUs,
consumers, and mixing connections with the pipe network of
the DHN. At an ideal junction, all volume flow rates sum up
to zero. However, in this work, we also view pressure holding
units and elasticity capacitors arising from equipment in the
DGU and consumer circuits as nodes. Therefore, we have
N = H ∪ C ∪ K, where H are pressure holding units,
C are elasticity capacitors, and K are the remaining ideal
junctions. The orientation of the edges represents the arbitrary
reference direction of positive flows. Moreover, for any i ∈ E ,
N−

i and N+

i denote its source and target node, respectively.
Analogously, for a given node j ∈ N , E−

j and E+

j denote the
sets of edges with j as source node and j as target node,
respectively.
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Fig. 1. Digraph representation of an exemplary DHN containing three
DGUs i ∈ D = {1, 2, 3}, five consumers i ∈ L = {4, 5, 6, 7, 8}, 16 pipes
i ∈ P = {9, . . . , 24}, and one mixing connection i ∈ M = {25} in a
three-temperature layer topology indicated by the three different colors. The
17 nodes represent one pressure holding unit j ∈ H = {4}, one ideal junction
j ∈ K = {7}, and 15 elasticity capacitors j ∈ C = N \{4, 7}.

Fig. 2. Illustration of a traditional second- or third-generation DHN
with high-temperature supply and medium-temperature return (left) and a
fourth-generation DHN with medium-temperature supply and low-temperature
return (right). Between the temperature layers may be an any number of D ≥ 1
DGU and L ≥ 1 consumer edges. The temperature layers coincide with the
two hydraulic layers (gray dashed bubbles).

Fig. 3. Illustration of a DHN with the three temperature layers: high (red),
medium (orange), low (blue), and the two hydraulic layers (gray dashed
bubbles). Between the temperature layers may be any number of D ≥ 1
DGU and L ≥ 1 consumer edges. Between the high and medium layers may
be any number of M ≥ 0 mixing connections.

B. Temperature and Hydraulic Layers

As illustrated in Figs. 1–3, a DHN may comprise different
temperature layers. We distinguish between three temperature
layers, i.e., high temperature (80 ◦C–120 ◦C), medium tem-
perature (40 ◦C–70 ◦C), and low temperature (20 ◦C–40 ◦C)
[2], [4], [7, p. 44], [12], [13], [30, pp. 16–17]. The high-
and medium-temperature layers form the supply and return
of the dominating second- and third-generation DHNs, while
the medium- and low-temperature layers form the supply and
return of the emerging fourth-generation DHNs (see Fig. 2)
[2], [30, pp. 16–17].

In future DHNs, the medium-temperature return of a
second- or third-generation DHN may additionally serve as
supply for (new) low-temperature DHN sections, yielding a
three temperature layer topology, as illustrated in Figs. 1 and 3.
Such low-temperature DHN sections allow to efficiently use

the heat energy in a DHN (temperature cascading) and inte-
grate renewable heat sources (e.g., waste heat, solar thermal,
and heat pumps) and new consumers (e.g., low-energy build-
ings) into existing DHNs [7, p. 44], [11], [12], [13]. However,
due to the ongoing trend of decreasing DHN temperatures,
particularly during summer, the medium temperature might not
be sufficiently high to cover the heat demand of some low-
temperature consumers. Thus, low-temperature DHN sections
in a three layer topology typically have at least one mixing
connection, i.e., an edge i ∈ M, that allows to boost the
temperature by mixing high- with medium-temperature water
(see node 7 in Fig. 1) [11], [12], [13].

Furthermore, in a three temperature layer topology, the
low-temperature water is typically fed directly into the
medium-temperature layer (see node 5 in Fig. 1 and the set of
pipe edges P between low and medium temperature in Fig. 3)
[11], [12], [13]. This implies that despite there possibly being
three temperature layers, there are exactly two hydraulic layers
(see Fig. 3). The number of hydraulic layers can be defined
as follows.

Definition 1: A DHN has nl ≥ 2 hydraulic layers, where
nl is the number of weakly connected subgraphs G1, . . . ,Gnl

obtained by removing all edges i ∈ D∪L∪M, i.e., all DGUs,
consumers, and mixing connections, from G.

C. Problem Description

In this article, we address the problem of pressure and flow
rate regulation in DHNs via decentralized control schemes
with plug-and-play capabilities. Specifically, the following
hold.

1) For each DGU i ∈ D, we aim at either regulating the
differential pressure generated by pumps or regulating
the volume flow rate using a combination of pump and
valve. This is done to ensure that consumers have a
sufficiently high pressure at their inlets and to adjust
the heat injection into the DHN.

2) For each consumer i ∈ L, the goal is to regulate the
volume flow rate using valves or pumps. This is done
to adjust the heat extraction by the consumers.

3) For each pipe i ∈ Pboost ⊂ P with a pump in series, the
objective is to counteract (frictional) differential pressure
losses.

4) For each mixing connection i ∈ M, the goal is to
stabilize the volume flow rate through it to a desired set
point and, thus, ensure a desired mixing ratio between
high- and medium-temperature water streams.

5) For each pressure holding unit j ∈ H, the goal is to
regulate the pressure at the suction side of the circulation
pump to prevent cavitation phenomena.

III. HYDRAULIC MODELING

With the DHN setup formalized as a digraph, we now
present the models describing the hydraulic dynamics of
the edges and nodes. First, we focus on the main actuators
responsible for pressure and volume flow rate control, i.e.,
pumps and valves. They serve as building blocks for the
hydraulic models of the DGU, consumer, pipe, and mixing
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Fig. 4. Equivalent circuit of a linear, second-order approximation of pump
dynamics (see [28]).

connection edges, as well as for the pressure holding nodes.
The section concludes with the models of the capacitive and
simple junction nodes. The latter models, being algebraic or
static relations, cause the overall hydraulic DHN model to be
of differential-algebraic form.

For the remainder of this article, we make the following
modeling assumptions, which are valid under normal operating
conditions (see also [14], [31]).

Assumption 1: The compressibility of water is neglected.
Any reference and nominal pressure values as well as all model
parameters are strictly positive. Pressure losses inside pipes
λ : R → R and valves µ : R × R≥0 → R caused by volume
flow rates q ∈ R are continuously differentiable functions that
are strictly monotonically increasing and satisfy λ(q = 0) =

0 and µ(q = 0, s) = 0 for all valve stem positions s ∈ R≥0,
respectively.

A. Hydraulic Actuators

1) Pumps: Pumps are the essential actuated components in
DHNs. They are used for controlling the absolute pressure at
specific points (pressure holding) (see [5], [7, pp. 54–55]), for
(differential) pressure and volume flow rate control in DGUs
(see [3], [5], [10], [14], [23]), for boosting the pressure in
consumers and pipes (see [2], [14]), and for direct volume flow
rate control in consumers (see [5], [9], [10]). In the prevalent
literature (see the references above), pumps are considered
as ideal pressure sources, which are analogous to voltage
sources in dc networks. However, the dynamics of pumps,
particularly the ones of centrifugal pumps that are widely
used in DHNs [14], [24], lie in the range of several hundred
milliseconds (see [28, Figs. 8 and 9]). Since this is a time scale
comparable to that of the overall DHN hydraulics (see [4],
[31]), a more accurate control design and system analysis must
be performed if increasing numbers of pumps are integrated
into DHNs.

As a starting point for such an improved design and analysis,
we follow [26] and [28] and model each pump by a linear
equivalent RLC circuit, as shown in Fig. 4. The RLC circuit
arises by approximating the complex arrangement of power
electronics, speed-controlled ac motor, and pump hydraulics
by a linear second-order system. By applying Kirchhoff’s
voltage law (KVL) and Kirchhoff’s current law (KCL) to
Fig. 4, we obtain

d
dt

[
JP,i qP,i
CP,i pP,i

]
︸ ︷︷ ︸

xi

=

[
−pP,i − RP,i qP,i

qP,i

]
︸ ︷︷ ︸

f i (xi )

+

[
1
0

]
︸︷︷︸
Gi (xi )

[
uP,i

]︸ ︷︷ ︸
ui

+

[
0
1

]
︸︷︷︸

K i

[
−qi

]︸ ︷︷ ︸
di

(1a)

yi =
[
qP,i pP,i

]⊤︸ ︷︷ ︸
hi (xi )

, zi =

[
0 1

CP,i

]
︸ ︷︷ ︸

T i

xi = pP,i (1b)

where xi is the state vector, ui the control input, and yi the
measurable output vector. The additional input di and output zi

model the interaction or physical interconnection between the
pump and other subsystems, e.g., a DGU. Furthermore, RP,i ,
JP,i , and CP,i are the model parameters; pP,i is the pressure
difference produced by the pump between its terminals; qi is
the volume flow rate through the pump; and qP,i is an auxiliary
variable without physical interpretation. The control input uP,i
can be interpreted as a pressure source originating from the
rotational speed of the pump produced by an ac motor [28].3

2) Control Valves: Besides pumps, valves are the main
actuators in DHNs. Their main task is the regulation of volume
flow rates [3], [7, pp. 143–145 and 151], [30, pp. 19 and
29], [33]. In order to establish a desired volume flow rate
q∗

i , valves adjust their pressure drop µi (sv,i , qi ) by varying
their stem position between fully closed (sv,i = 0) and fully
open (sv,i = 1). Thus, they behave as variable, nonlinear flow
resistors. In order to avoid volume surge behavior around their
closing point, valves are designed, such that the stem has a
lower limit just above zero in normal operation [7, p. 145].
Consequently, the following assumption can be made.

Assumption 2: In normal operation, the valve stem position
is never zero, i.e., sv,i ∈ (0, 1].

The nonlinear characteristic pressure drop equation of any
valve is given by [10, eq. (5)], [33, eq. (18)]

µi (sv,i , qi ) =
1

(Cv,i fv,i (sv,i ))2
|qi |qi (2a)

where sv,i ∈ (0, 1] is the stem position, qi ∈ R the volume
flow rate through the valve, Cv,i > 0 the flow capacity of the
valve, and fv,i (sv,i )

4 the valve characteristic (see also the static
orifice law [34, eq. (12)] or the definition of the so-called kv
value [7, p. 144]). By substituting

uv,i
(
sv,i

)
:=

1

fv,i
(
sv,i

)2 , µ̂i (qi ) :=
1

C2
v,i

|qi |qi (2b)

in (2a), the pressure drop can be written as follows:

µi
(
sv,i , qi

)
= uv,i

(
sv,i

)
µ̂i (qi ) (3)

where uv,i (si ) : (0, 1] → R>0 is a bijective mapping of
the actual stem position sv,i to the virtual control input uv,i ,

3The choice of the variables xi , di , and zi in (1) is based on the port-
Hamiltonian [32, p. 114] representation of the system done in [26] (see [27]
for a similar approach). We follow an analogous reasoning for the remaining
DHN subsystems. In [1], we explicitly identify the port-Hamiltonian form of
each of the DHN subsystems. Such a representation, which we skipped in this
article due to space reasons, gives a clear perspective on which input–output
ports are accessible for control and over which ports subsystems interact with
each other. Furthermore, the passivity properties with respect to these ports
and the Hamiltonian as storage function are directly visible.

4The two most common valve types are equal-percentage valves
( fv,i (sv,i ) = R

sv,i −1
i with rangeability Ri > 0) and linear valves ( fv,i (sv,i ) =

sv,i ).
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Fig. 5. Equivalent circuit of a hydraulic pipe model (i ∈ P) with optional
booster pump; j ∈ N−

i and k ∈ N+

i .

and µ̂i (qi ) a continuously differentiable, strictly monotonically
increasing function satisfying µ̂i (0) = 0. Note that (3) is affine
in the virtual control input uv,i .

B. Edge Dynamics

1) Pipes: The hydraulic pipe model at an edge i ∈ P is
illustrated in the equivalent circuit diagram in Fig. 5. Follow-
ing the literature (see [8], [14], [23], [26], [35]), we model the
pipe friction by a nonlinear, volume flow-dependent resistance
λi (qi ) (see Assumption 1) and the volume inertia by the linear
inductance Ji . In contrast to prior works, we assume that some
pipes might have booster pumps in series. Such pumps are
represented by the voltage source in Fig. 5 and modeled by (1).
By applying KVL and KCL to Fig. 5, we obtain the model
for each i ∈ P as follows:

d
dt

 Ji qi

JP,i qP,i
CP,i pP,i


︸ ︷︷ ︸

xi

=

 pP,i − λi (qi )

−pP,i − RP,i qP,i
qP,i − qi


︸ ︷︷ ︸

f i (xi )

+

0
1
0


︸︷︷︸
Gi (xi )

[
uP,i

]︸ ︷︷ ︸
ui

+

1
0
0


︸︷︷︸

K i

[
p j − pk

]︸ ︷︷ ︸
di

(4a)

yi =
[
qi qP,i pP,i

]⊤︸ ︷︷ ︸
hi (xi )

, zi =

[
1
Ji

0 0
]

︸ ︷︷ ︸
T i

xi = qi

(4b)

where xi is the state vector, ui the control input, yi the
measurable output vector, (di , zi ) the interaction (coupling)
port pair, and ( j, k) ∈ N−

i × N+

i are the source and target
nodes of i with pressures p j and pk , respectively.

Remark 1: Any pipe i ∈ P without a booster pump can be
modeled by (4) by fixing uP,i = pP,i = 0 and removing the
part corresponding to the dynamics of qP,i and pP,i .

2) DGUs: From a hydraulic viewpoint, a DGU may com-
prise two main parts, as illustrated in Fig. 6: a circulation
circuit (red) [36], [37] and an optional pressure holding unit
[7, pp. 54–55]. We view the circulation circuit in red as the
actual edge i ∈ D. It comprises a serial connection of a
circulation pump, a control valve, pipes, and a heat exchanger.
The circulation pump is modeled by (1). The control valve
is modeled as a variable, nonlinear resistance µ̂i (qi )uv,i (sv,i )

with control input uv,i (sv,i ) as in (2). All pipes are lumped
into the nonlinear, volume flow-dependent resistance λi (qi )

and the inductance Ji , which represent the pipe friction and
volume inertia, respectively. By applying KVL and KCL to
the red part in Fig. 6, we obtain the model for each i ∈ D

Fig. 6. Equivalent circuit of a hydraulic DGU model (i ∈ D) with pressure
holding (black voltage source) and circulation circuit (red) [26, Fig. 2];
without loss of generality, the capacitance C j may be lumped with the pressure
holding (see Section III-C1); j ∈ N−

i and k ∈ N+

i .

as follows:

d
dt

 Ji qi

JP,i qP,i
CP,i pP,i


︸ ︷︷ ︸

xi

=

 pP,i − λi (qi )

−pP,i − RP,i qP,i
qP,i − qi


︸ ︷︷ ︸

f i (xi )

+

−µ̂i (qi ) 0
0 1
0 0


︸ ︷︷ ︸

Gi (xi )

[
uv,i
uP,i

]
︸ ︷︷ ︸

ui

+

1
0
0


︸︷︷︸

K i

[
p j − pk

]︸ ︷︷ ︸
di

(5a)

yi =
[
qi qP,i pP,i

]⊤︸ ︷︷ ︸
hi (xi )

, zi =

[
1
Ji

0 0
]

︸ ︷︷ ︸
T i

xi = qi

(5b)

where xi is the state vector, ui the control input vector, yi the
measurable output vector, (di , zi ) the interaction (coupling)
port pair, and ( j, k) ∈ N−

i × N+

i are the source and target
nodes of i with pressures p j and pk , respectively.

Remark 2: The pressure holding unit of a given DGU is
represented by the (black) voltage source pP,h shown in Fig. 6.
The capacitances C j and Ck model the hydraulic elasticity
of all the components in the DGU circulation circuit, partic-
ularly of the heat exchanger (see [34], [38]). For simplicity,
we assume that C j is lumped with CP,h of the pressure holding
(see Fig. 4). Furthermore, to clearly describe the network inter-
connection among all the subsystems in the DHN, we view
the pressure holding and the elasticity capacitances as nodes of
the DHN graph; we elaborate on their models in Section III-C.

3) Consumers: Nowadays, most of the consumers are con-
nected indirectly to a DHN via heat exchangers in series
with pipes and a control valve for volume flow rate control
[7, pp. 87 and 143]. In future DHNs, however, additional
pumps are expected to be included in some (up to all) con-
sumer circuits: either for pressure boosting to ensure a proper
functioning of the control valves under unclear and changing
hydraulic conditions [2], [14] or in DHNs operated with
DVSPs [5], [9], [10]. Consequently, the hydraulic consumer
circuit at an edge i ∈ L is modeled similar to the hydraulic
DGU circulation circuit (red part in Fig. 7, and see [8, Fig. 2]).
The only differences are on the working direction of the pump
and the sign convention of the volume flow rate, which is
reflected in the edge orientation in the DHN digraph (see Fig. 1
and [7, pp. 87 and 143]). Furthermore, pressure holding units
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Fig. 7. Equivalent circuit of a hydraulic consumer model (i ∈ L) [8, Fig. 2];
j ∈ N−

i and k ∈ N+

i .

Fig. 8. Equivalent circuit of a hydraulic mixing connection model (i ∈ M);
j ∈ N−

i and k ∈ N+

i .

are typically not installed at consumers. By applying KVL and
KCL to Fig. 7, we obtain the model for each consumer i ∈ L
as in (5).

Remark 3: Any consumer i ∈ L without a pump can be
modeled by (5) by fixing uP,i = pP,i = 0 and removing the
part corresponding to the dynamics of qP,i and pP,i . Such
consumers regulate their flow rate through their respective
control valve.

4) Mixing Connection: As outlined in Section II-B, future
DHNs may have a topology with three temperature lay-
ers. In order to guarantee a sufficient heat supply to the
low-temperature sections, the medium-temperature water is
typically mixed with high-temperature water via a mixing
connection before it is fed into the low-temperature section
(see node 7 in Fig. 1). The hydraulic circuit of a mixing
connection at an edge i ∈ M is illustrated in Fig. 8.
It comprises a pipe in series with a control valve. By applying
KVL to Fig. 8, we obtain the model for each i ∈ M as follows:

d
dt

[
Ji qi

]︸ ︷︷ ︸
xi

=
[
−λi (qi )

]︸ ︷︷ ︸
fi (xi )

+
[
−µ̂i (qi )

]︸ ︷︷ ︸
G i (xi )

[
uv,i

]︸ ︷︷ ︸
ui

+
[
1
]︸︷︷︸

Ki

[
p j − pk

]︸ ︷︷ ︸
di

(6a)

yi = qi︸︷︷︸
hi (xi )

, zi =

[
1
Ji

]
︸︷︷︸

Ti

xi = qi (6b)

where xi is the state, ui the control input, yi the measurable
output, (di , zi ) the interaction (coupling) port pair, and ( j, k) ∈

N−

i × N+

i are the source and target nodes of i with pressures
p j and pk , respectively.

C. Node Models

As outlined in Sections II-A, III-B2, and III-B3, the set of
nodes N of the DHN graph G = (N , E) is the union of three
disjoint sets

N = H ∪ C ∪K (7)

where H is the set of pressure holding units, C is the set of
elasticity capacitances, and K is the set of simple junctions.

1) Pressure Holding: Pressure holding units are realized
technically in two ways: dynamic pressure holding with a
pressure dictation pump and static pressure holding with a
closed vessel [7, pp. 54–56]. Furthermore, pressure holding
units are almost exclusively installed on the suction side of
circulation pumps (prepressure control) (see Fig. 6) and are
instrumental in preventing cavitation [7, pp. 54–55], [17].

Dynamic pressure holding is typically conducted in larger
DGUs with powerful circulation pumps. It is realized by a
pressure dictation pump located between a pressurized con-
tainer and the DHN [7, pp. 54–55], [39, Fig. 1]. As outlined
in Section III-A1, we approximate the dynamics of any pump
by the linear second-order system (1). Thus, the case in which
a dynamic pressure holding unit is installed at a DGU i ∈ D is
equivalent to replacing the black voltage source in Fig. 6 by the
RLC circuit in Fig. 4. Note that in contrast to the circulation
pump, which is coupled with the circulation circuit (red part in
Fig. 6), the black voltage source already represents the entire
pressure holding unit, i.e., we assume that the dictation pump
is lumped together with the pressurized container. Thus, the
model for each j ∈ H is similar to (1) and given by

d
dt

[
JP, j qP, j

CP, j pP, j

]
︸ ︷︷ ︸

x j

=

[
−pP, j − RP, j qP, j

qP, j

]
︸ ︷︷ ︸

f j(x j)

+

[
1
0

]
︸︷︷︸

G j(x j)

[
uP, j

]︸ ︷︷ ︸
u j

+

[
0
1

]
︸︷︷︸

K j

∑
i∈I j

qi︸ ︷︷ ︸
d j

(8a)

y j =
[
qP, j pP, j

]⊤︸ ︷︷ ︸
h j(x j)

, z j =

[
0 1

CP, j

]
︸ ︷︷ ︸

T j

x j = pP, j

(8b)

where x j is the state vector, u j the control input, y j the
measurable output vector, (d j , z j ) the interaction (coupling)
port pair, and I j ⊆ E the set of edges that are incident to j .

Remark 4: A static pressure holding is used in smaller
DGUs with compact circulation pumps. It is realized by
directly adding a closed, pressurized vessel. In an equivalent
circuit perspective, this can be understood as a preloaded
capacitor. Thus, in case of static pressure holding, we simply
replace the black voltage source in Fig. 6 with a capacitor CP,h
that we consider to be lumped with C j .

2) Capacitive Nodes: Invoking the volume balance,
we obtain the model for each j ∈ C as follows:

d
dt

[
C j p j

]︸ ︷︷ ︸
x j

=
[
1
]︸︷︷︸

K j

∑
i∈I j

qi︸ ︷︷ ︸
d j

(9a)

z j =

[
1

C j

]
︸︷︷︸

T j

x j = p j (9b)

where x j is the state, (d j , z j ) the interaction (coupling) port
pair, and I j the set of edges that are incident to j .
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3) Simple Junctions: The model for each j ∈ K is anal-
ogous to (9) with C j fixed to zero and treating z j = p j as
an algebraic variable. Note that there is no state variable to
describe the behavior of simple junctions.

IV. PROBLEM FORMULATION AND APPROACH

Having modularly defined the overall DHN model, we pro-
ceed to formally stating the main pressure and volume flow
rate control problems addressed in this work. Afterward,
we give an overview of the EIP-based approach taken to solve
these problems via decentralized control design. In the sequel,
¯(·) denotes any variable in steady state, whereas (·)∗ denotes

a desired set point that is to be established in steady state.
For the case of DGUs, we adopt the terminology of electri-

cal power systems and suppose that they may operate either
in grid-forming or grid-feeding mode i ∈ D = Dform ∪ Dfeed.
DGUs in grid-forming mode i ∈ Dform actively form the
hydraulic conditions required to operate DHNs by regulating
the differential pressure generated by their circulation pumps
to desired set points p∗

P,i [7, pp. 47–48], [40]. In this case, the
control valves in their circulation circuits are fully open, i.e.,
ūv,i = uv,i (sv,i = 1). DGUs in grid-feeding mode i ∈ Dvalve ⊆

Dfeed regulate the volume flow rate through their circulation
circuits to desired set points q∗

i by means of their control
valves. Under approximately constant water temperature, this
is equivalent to controlling the thermal energy they feed
into the DHN (see [36], [41], [42, Sec. 2.3]). Note that
for a proper functioning of the control valve, the circulation
pump still introduces some differential pressure p∗

P,i , which
is then throttled by the control valve, such that the desired
volume flow rate q∗

i is reached. To guarantee feasible operating
modes of the DHN subsystems, the following assumption is
introduced (see [1, Proposition 1] for more details).

Assumption 3: Dform ̸= ∅.
Consumers i ∈ L regulate the thermal energy they consume

by controlling their volume flow rates to desired set points q∗

i
[7, pp. 143–145 and 151], [30, p. 29]. Traditionally, this is
done by control valves only. The set of consumers for which
uv,i (sv,i ) is the main control input is, thus, denoted by Lvalve ⊆

L. However, as discussed in Section III-B3, booster pumps
might be added to some consumer circuits. We identify these
consumers by the set Lboost ⊆ L. In each consumer i ∈ Lboost,
the pump pressure is controlled to some desired set point p∗

P,i ,
which is then throttled by the control valve, such that the
desired volume flow rate q∗

i is reached.
Remark 5: In some DHNs with DVSPs, it is suggested

to directly conduct the volume flow rate control in DGUs
i ∈ DVSP ⊆ Dfeed and consumers i ∈ LVSP ⊆ L by
pumps without including control valves in the respective
hydraulic circuits [5], [9].5 In [10], a hybrid DVSP setup is
proposed in which all DGUs and some consumers have only
pumps, while some consumers have only control valves. Con-
sequently, it is apparent that depending on the topology and
producer–consumer configuration, different hydraulic designs
of DGU and consumer circuits might be beneficial. Thus,

5To avoid cluttering notation, we assume that valves in DGUs and con-
sumers with DVSPs are still there, however fully open, i.e., ūv,i = uv,i
(sv,i = 1).

in this work, we consider all possible combinations of designs
(see Problem 1).

For pipes i ∈ P , we denote by Pboost ⊆ P the subset of
pipes that have a booster pump connected in series. These
pumps are in charge of counteracting the differential pressure
loss over the corresponding pipe by introducing a differential
pressure p∗

P,i . Mixing connections i ∈ M control their volume
flow rates to desired set points q∗

i to establish a desired
mixing ratio of high- and medium-temperature water (see
Section III-B4). Pressure holding units j ∈ H regulate the
pressure p j at the suction side of the circulation pump of their
associated DGUs j ∈ N−

i (see Fig. 6) to a suitable set point
p∗

j = p∗

P,h . This pressure also serves as the static pressure in
a DHN (see [7, p. 55]).

In summary, we note that the control tasks amount to
pressure and volume flow rate control of pumps and volume
flow rate control of valves.

Problem 1: Consider a DHN as described in Section III.
Design decentralized controllers for the pumps and valves in
the actuated subsystems i ∈ D ∪ L ∪ Pboost ∪M∪ ∈ H, such
that hydraulic equilibria with the following characteristics are
asymptotically stabilized.

1) For each DGU i ∈ Dform [see (5)], uv,i (sv,i = 1) = 1 =

ūv,i is fixed, and uP,i is such that p̄P,i = p∗

P,i > 0.
2) For each DGU i ∈ Dvalve [see (5)], uP,i and uv,i are such

that p̄P,i = p∗

P,i > 0 and q̄ i = q∗

i > 0.
3) For each DGU i ∈ DVSP [see (5)], uv,i (sv,i = 1) = 1 =

ūv,i is fixed, and uP,i is such that q̄ i = q∗

i > 0.
4) For each consumer i ∈ Lboost [see (5)], uP,i and uv,i are

such that p̄P,i = p∗

P,i > 0 and q̄ i = q∗

i > 0.
5) For each consumer i ∈ Lvalve [see (5)], uP,i = 0 is fixed,

and uv,i is such that q̄ i = q∗

i > 0.
6) For each consumer i ∈ LVSP [see (5)], uv,i (sv,i = 1) =

1 = ūv,i is fixed, and uP,i is such that q̄ i = q∗

i > 0.
7) For each pipe i ∈ Pboost [see (4)], uP,i is such that p̄P,i =

p∗

P,i > 0.
8) For each mixing connection i ∈ M [see (6)], uv,i is

such that q̄ i = q∗

i > 0.
9) For each pressure holding unit j ∈ H [see (8)], uP, j is

such that p̄P, j = p∗

P, j > 0.
Remark 6: Note that similar to the hierarchical control of

power systems, the set points of the volume flow rates and
pressures are assumed to be known and specified by a higher
level control. However, showing the existence of equilibrium
points for given desired set points is not a trivial task in view
of the nonlinear nature of the equilibrium equations and is not
the focus of this manuscript. The interested reader is referred
to for example [43], where hydraulic equilibria are computed
using global and local system information.

A. Approach

In order to address Problem 1, we recall from Section III
that the dynamics of any edge or node subsystem i ∈ E∪N of
a DHN, with the exception of simple junctions, can be written
in the general form

ẋi = f i (xi )+ Gi (xi )ui + K i di

yi = hi (xi ), zi = T i xi .
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Then, inspired by Strehle et al. [8], [45] and Arcak et al.
[44, Th. 3.1], we take a modular, bottom-up approach and
design decentralized passivity-based controllers for the actu-
ated subsystems specified in Problem 1. These controllers take
the form

ξ̇ i = π i
(

yi , ξ i
)
, ui = ci

(
yi , ξ i

)
and act on the pumps and valves, such that each closed-loop
subsystem i ∈ D ∪ L ∪ Pboost ∪M ∪H fulfills its respective
steady-state characteristic from 1)–5) in Problem 1.

Moreover, each controller is such that the associated closed-
loop subsystem is EIP with respect to its interaction port
pair (di , zi ) and some positive definite storage function. That
is, it is to be shown that for any feasible equilibrium pair
( ¯x̂i , d̄ i ) with x̂i = [x⊤

i , ξ
⊤

i ]
⊤ the augmented closed-loop

state vector fulfilling the respective requirement 1)–5) in
Problem 1, there exists a scalar function x̂i 7→ Ĥ i (x̂i ) that
is positive definite with respect to any feasible equilibrium
¯x̂i and satisfies ˙̂H i (x̂i ) ≤ (di − d̄ i )(zi − z̄i ). A subsequent
step consists of showing that the interconnection among the
DHN subsystems is power-preserving, i.e., it satisfies

∑
i∈E∪N

(di −d̄ i )(zi − z̄i ) = 0, which makes
∑

i∈E∪N Ĥ i (x̂i ,
¯x̂i ) a Lya-

punov function for any feasible, hydraulic, closed-loop DHN
equilibrium and, thus, ensures its stability. Asymptotic stability
is then investigated either by invoking LaSalle’s invariance
principle or checking for strict EIP of all subsystems.

V. PASSIVITY-BASED CONTROL DESIGN

In the first part of this section, we develop decentralized,
passivity-based controllers for pumps and valves. In the sec-
ond part, we deploy the controlled pumps and valves to
each of the actuated DHN subsystems (DGUs, consumers,
booster pumps, and so on) and show that the resulting
closed-loop dynamics are EIP with respect to the interaction
ports. As stated in Section VI-A, this paves the way for our
bottom-up, modular stability analysis that we present in the
sequel.

A. Pressure and Volume Flow Rate Control of Pumps

Instrumental to solving Problem 1 is the ability to regulate
the pressure pP,i or the volume flow rate qi of a given pump
in the subsystems i ∈ D ∪ Lboost ∪ LVSP ∪ Pboost ∪H toward
desired constant set points. For the control design, we initially
consider the isolated pump model (1) and address pressure
and volume flow rate regulation. Then, the closed-loop pump
dynamics are interconnected to the respective subsystems
D ∪ Lboost ∪ LVSP ∪ Pboost ∪H.

1) Pressure Control of Pumps: For the pump pressure pP,i ,
we propose a controller for uP,i that is based on algebraic
IDA [18] passivity-based control extended with integral action
on the nonpassive output of the pump model [19].

Proposition 1: Consider the pump model (1). Assign the
control input uP,i as follows:

QI,i ṙ i =
(

pP,i − p∗

P,i

)
(10a)

χi = qP,i + ri (10b)

νi = −pP,i − RP,i qp,i +
JP,i
QI,i

(
pP,i − p∗

P,i

)
(10c)

uP,i = −νi−Rp
i χi − pP,i (10d)

where ri is a controller state, p∗

P,i > 0 is a pressure set point,
and Rp

i , QI,i > 0 are control parameters. Then, the closed-loop
system is given by

d
dt

 JP,iχi

CP,i pP,i
QI,iri


︸ ︷︷ ︸

xp
i

=

−Rp
i χi −

(
pP,i − p∗

P,i

)
χi − ri

pP,i − p∗

P,i


︸ ︷︷ ︸

f p
i (xp

i )

+

0
1
0


︸︷︷︸

K p
i

di

(11a)
zi = pP,i . (11b)

Moreover, (11) is EIP with supply rate (zi − z̄i )(di − d̄ i ) and
positive definite storage function

H p
i =

1
2∥xp

i − x̄p
i ∥

2
diag−1(JP,i ,CP,i ,QI,i)

(12)

for any (feasible) equilibrium pair (d̄ i , z̄i ) and associated
equilibrium state

x̄p
i =

[
JP,i χ̄ i CP,i p∗

P,i QI,i r̄ i
]⊤
. (13)

Proof: See Appendix A.
Remark 7: The controller (10) is decentralized, as it only

requires knowledge of local variables and parameters, such as
qP,i , pP,i , and JP,i . Observe, in particular, that if we choose
RP

i = RP,i , (10) becomes independent of qP,i . This is desired
as qP,i does not represent a physical quantity. Moreover, note
that (10d) can be written as follows:

uP,i =
(
−Rp

i + RP,i
)
qP,i + Rp

i Q−1
I,i

∫ t

0

(
p∗

P,i − pP,i
)
dt

+ JP,i Q−1
I,i

(
p∗

P,i − pP,i
)

(14)

which clearly illustrates its composition as the combination of
a state feedback term and a PI term.

2) Volume Flow Rate Control via Pumps: Next, we address
the task of achieving volume flow rate control of pipes or heat
exchangers via pumps. For this, we focus on the model of a
pump in series with a pipe element, which is equivalent to (4)
but with di treated as an arbitrary external input.

Proposition 2: Consider the model of any pump in series
with a pipe element [see (4)]. Assign uP,i as follows:

QI,i ṙ i =
(
qi − q∗

i

)
(15a)

uP,i = −KP,i pP,i − ri (15b)

where ri is a controller state, q∗

i > 0 is a volume flow rate set
point, and QI,i , KP,i are control parameters satisfying

QI,i > 0, 0 < QI,i
(
KP,i + 1

)
− CP,i =: κ f

i . (16)

Then, the closed-loop system is given by

d
dt


Ji qi

JP,i qP,i
CP,i pP,i
QI,iri


︸ ︷︷ ︸

xf
i

=


pP,i − λi (qi )

−pP,i − RP,i qP,i − KP,i pP,i − ri

qP,i − qi

qi − q∗

i


︸ ︷︷ ︸

f f
i(xf

i)
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+


1
0
0
0


︸︷︷︸

K f
i

di (17a)

zi = qi . (17b)

Moreover, (17) is EIP with supply rate (zi − z̄i )(di − d̄ i ) and
positive definite storage function

H f
i =

1
2∥xf

i − x̄f
i∥

2
Qf

i
(18a)

Qf
i =


1
Ji

0 0 0
0 QI,i

JP,iκ
f
i

0 0

0 0 1
CP,i

+
1
κ f

i

1
κ f

i

0 0 1
κ f

i

1
κ f

i

 (18b)

for any (feasible) equilibrium pair (d̄ i , z̄i ) and associated
equilibrium state

x̄f
i =

[
Ji q∗

i JP,i q∗

i CP,i p̄P,i QI,i r̄ i
]⊤
. (19)

Proof: See Appendix B.
Remark 8: The controller (15), which is inspired by

Nahata et al. [46, Th. 2], is used in the sequel for flow
control in some DGUs and some consumers. Note that the
dynamics (5) of DGUs and consumers are equivalent to
the dynamics (4) of a pipe element in series with a pump,
excluding the control valve.

B. Volume Flow Rate Control of Valves

Problem 1 also considers the regulation of volume flow
rates qi through DGUs, consumers, and mixing connections
via control valves. Note that the model of a control valve in
series with a pipe element is equivalent to (6), but with di

treated as an arbitrary external input.
Proposition 3: Consider the model of any control valve in

series with a pipe element [see (6)]. Let

ŷv,i = −µ̂i (qi )
(
qi − q∗

i

)
(20)

and assign the control input uv,i as follows:

QI,i ṙ i = −ŷv,i (21a)

uv,i = −KP,i ŷv,i + ri (21b)

where ri is a controller state, q∗

i > 0 is a volume flow rate
set point, and QI,i , KP,i > 0 are control parameters. Then, the
closed-loop system is given by

d
dt

[
Ji qi

QI,iri

]
︸ ︷︷ ︸

xv
i

=

[
−λi (qi )− µ̂i (qi )

(
−KP,i ŷi + ri

)
−ŷv,i

]
︸ ︷︷ ︸

f v
i (xv

i )

+

[
1
0

]
︸︷︷︸

K v
i

di

(22a)
zi = qi . (22b)

Moreover, (22) is EIP with supply rate (zi − z̄i )(di − d̄ i ) and
positive definite storage function

H v
i =

1
2∥xv

i − x̄v
i ∥

2
diag−1(Ji ,QI,i)

(23)

for any (feasible) equilibrium pair (d̄ i , z̄i ) and associated
equilibrium state

x̄v
i =

[
Ji q∗

i QI,i r̄ i
]⊤ or x̄v

i =
[
0 QI,i r̄ i

]⊤
. (24)

Proof: See Appendix C.
Remark 9: The design of the PI controller (21) is based

on the observation that the dynamics of a control valve in
series with a pipe are EIP with respect to the (control)
input–output pair (uv,i , ŷi ). The definition of the output ŷi

originates from the fact that the input matrix G i (xi ) as
in (6) is state-dependent. This circumstance complicates the
use of a standard PI controller around the shifted passive
output (see also [20], [32, p. 137], [44, p. 26]). Following
[20, eq. (8)], we instead propose ŷi as a new passive output,
which is obtained from a suitable, shifted representation of the
dynamics.

In steady state, ŷi = 0 generally allows for either q̄ i =

q∗

i or q̄ i = 0 [see (20) and (22)]. However, q̄ i = 0 implies
λi (0) = 0, µ̂i (0) = 0 (see (2b) and Assumption 1), and,
thus, d̄ i = 0, where di is the pressure difference over the
serial connection of valve and pipe element [see (6)]. This
makes sense from a practical perspective, as a control valve
with zero differential pressure cannot regulate is volume flow
rate. Moreover, a positive pressure difference leads to a well-
defined (desired) direction of the flow in the devices that are
equipped with a control valve (i.e., i ∈ D∪L∪M∪H). From a
system design viewpoint, in practice, one can first identify via
a steady-state analysis critical points corresponding to sections
in the network with low pressure. Then, in order to achieve
di > 0, booster pumps can be installed in such sections.

Assumption 4: Any control valve in series with a pipe
element [see (6)] has a positive differential pressure di > 0 for
all time. This implies for DGUs and consumer circuits i ∈

D ∪ L that p j + pP,i − pk > 0 (see Figs. 6 and 7) and for
mixing connections i ∈ M that p j − pk > 0 (see Fig. 8).

C. Properties of the Closed-Loop Systems

In this section, we deploy the controlled pumps and valves
from Propositions 1–3 in the corresponding actuated edges
and nodes i ∈ D ∪ L ∪ Pboost ∪ M∪ ∈ H. In particular,
we show that these closed-loop systems are also EIP, a fact
which is central for the subsequent stability analysis of the
overall, interconnected DHN model.

Lemma 1: Assign the pump controllers (10) and (15) and
the valve controller (21) to the respective open-loop edge and
node subsystems i ∈ D ∪ L ∪ Pboost ∪ M ∪ H [see (4)–(6)
and (8)] according to the control tasks in Problem 1. Then, the
resulting closed-loop subsystems can be written as follows:

˙x̂i = f̂ i
(
x̂i

)
+ K̂ i di (25a)

zi = T̂ i x̂i (25b)

with appropriate vectors and matrices. Moreover, for any i ∈

D ∪ L ∪ Pboost ∪M ∪H, (25) is EIP with supply rate (zi −

z̄i )(di − d̄ i ) and positive definite storage function

Ĥ i
(
x̂i ,

¯x̂i
)

=
1
2
∥x̂i −

¯x̂i∥
2
Q̂i

(26)
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where Q̂i is a suitable positive definite matrix and ¯x̂i is
any (feasible) equilibrium value of x̂i associated with d̄ i .
In addition, under Assumption 4, the equilibrium value ¯x̂i of
any i ∈ D ∪ L ∪ Pboost ∪ M ∪ H is such that q̄ i = q∗

i and
p̄P,i = p∗

P,i in accordance with Problem 1.
Proof: See Appendix D.

Remark 10: Note that in Lemma 1 the original interaction
input and output variables di and zi are used. This is due to
the fact that our control designs and the resulting closed-loop
systems have not altered the description of the physical inter-
connection among the DHN subsystems.

VI. MODULAR STABILITY ANALYSIS

In this section, we prove that any feasible, hydraulic
equilibrium of the overall closed-loop DHN dynamics is
asymptotically stable.

A. EIP of the Unactuated Edges and Nodes

First, we show that the unactuated pipe edges without
booster pumps i ∈ P \ Pboost and the capacitive nodes i ∈ C
are EIP as well, although with nonassignable steady states.

Lemma 2: The model of any unactuated pipe edge (4) with
uP,i = 0 and any capacitive node (9), i.e., any subsystem
i ∈ P \ Pboost ∪ C, can be written as (25) with an appropriate
choice of the defining vectors and matrices. Furthermore,
these subsystems are EIP with some positive definite storage
function in the form of (26).

Proof: See Appendix E.

B. Interconnection Structure

Next, we illustrate the power-preserving nature of the inter-
connection structure between the edge and node subsystems
of the DHN. In order to facilitate the subsequent elaborations
and provide a compact representation, we assemble the overall
system dynamics in vector form. Recall that the set of edges
E is the ordered union of D, L, P , and M. Let 1 be
the ordered union of the sets of nodes H and C. For � =

{E,1}, let x̂� = stack(x̂i )i∈�, f̂ �(x̂�) = stack( f̂ i (x̂i ))i∈�,
K̂� = diag(K̂ i )i∈�, d� = stack(di )i∈�, z� = stack(zi )i∈�,
T̂� = diag(Ĉ i )i∈�, and Ĥ�(x̂�) =

∑
i∈� Ĥ i (x̂i ), where for

each i ∈ �, x̂i , f̂ i , K̂ i , di , zi , and Ĥ i are as in Lemmas 1
and 2. Then, the overall, closed-loop DHN can be written as
follows:

˙x̂E = f̂ E
(
x̂E

)
+ K̂EdE , zE = T̂E x̂E (27a)

˙x̂1 = f̂ 1
(
x̂1

)
+ K̂1d1, z1 = T̂1 x̂1 (27b)

0 = K̂KdK. (27c)

Let us denote by B the incidence matrix of the DHN digraph G
(see Section II-A). With the considered ordering of the edges
and nodes of G, the incidence matrix can be written as follows:

B =

[
B1E
BKE

]
. (28)

With (28), the interaction inputs of each of the subsystems
in (27) can be represented as follows:

dE = −B⊤

1E z1 − B⊤

KE zK (29a)

d1 = B1E zE (29b)
dK = BKE zE . (29c)

Note, e.g., that for any i ∈ E , di = p j − pk , where ( j, k) ∈

N−

i × N+

i [see (5)]. That is, di is expressed as the product
of an appropriate column of B and the vector [z⊤

1 z⊤

K]
⊤.

Subsequently, we can establish the following lemma, which
will be useful later to analyze the stability of (27).

Lemma 3: The interconnection structure (29) among the
subsystems in (27) is power-preserving.

Proof: As (29) is a skew-symmetric interconnection struc-
ture, it holds for all time that

z⊤

E dE + z⊤

1d1 + z⊤

KdK = 0. (30)

Hence, the interconnection among the subsystems in (27) is
power-preserving.6

The system conformed by (27)–(29) is an index-2 differ-
ential algebraic system in Hessenberg form (see [47]). Based
on [47], the time derivative of the algebraic constraint (27c)
can be computed once to explicitly obtain zK in terms of x̂E
and x̂1 as follows:

zK = 8
(
x̂E , x̂1

)
8 :=

(
BKEdiag

(
1
Ji

)
i∈E

B⊤

KE

)−1(
K̂EB⊤

1E Ĉ1 x̂1 − f̂ E
(
x̂E

))
(31)

where we have used the fact that K̂K is an identity matrix and
ĈE K̂E = diag(1/Ji )i∈E . Then, (27)–(29) are equivalent to the
ordinary differential equations (ODEs)

˙x̂E = f̂ E
(
x̂E

)
− K̂EB⊤

1E T̂1 x̂1 − K̂EB⊤

KE8
(
x̂E , x̂1

)
(32a)

˙x̂1 = f̂ 1
(
x̂1

)
+ K̂1B1E ĈE x̂E (32b)

defined on the invariant manifold

M =
{(

x̂E , x̂1
)

: 0 = K̂KBKE ĈE x̂E
}
. (33)

The positive definiteness and invertibility of
BKEdiag(1/Ji )i∈EB⊤

KE in (31) follow from the fact that
BKEB⊤

KE is a principal submatrix of the Laplacian L = BB⊤

of the DHN graph. This submatrix is invariant under removal
of any row of B not associated with K. Removal of any
such row can be understood as a grounding of G (see [48]
for a definition). Laplacians of grounded connected graphs,
or grounded Laplacians, are positive definite [48]. Note
directly that BKE2B⊤

KE is positive definite for any symmetric,
positive definite matrix 2.

C. Asymptotic Stability of the Hydraulic DHN Equilibrium

As a last step, we combine the EIP properties of the DHN
subsystems analyzed in Lemmas 1 and 2, the power-preserving
property of their interconnection structure shown in Lemma 3,
and LaSalle’s invariance principle to prove asymptotic stability
of any feasible, hydraulic DHN equilibrium in a modular,
bottom-up manner.

6The equivalence (30) also holds if the respective (interaction) input–output
pairs are shifted with respect to any feasible equilibrium values.
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TABLE I
PRESSURE AND VOLUME FLOW RATE SET POINTS

Theorem 1: Consider a DHN with arbitrary setup as
described in Sections II and III in which pumps and valves are
controlled as in Lemma 1. Then, under Assumptions 3 and 4,
any feasible hydraulic equilibrium ( ¯x̂E , ¯x̂1) of such a DHN
is asymptotically stable. Furthermore, the pump pressures as
well as the pump and valve volume flow rates take on the
steady states specified in Problem 1, i.e., for any i ∈ D ∪L∪

Pboost ∪ M ∪ H, the respective ¯x̂ i in ( ¯x̂E , ¯x̂1) is such that
q̄ i = q̄P,i = q∗

i and p̄P,i = p∗

P,i in accordance with Problem 1.
Proof: See Appendix F.

VII. SIMULATION

In this section, we demonstrate the stabilizing properties,
plug-and-play capabilities, and robustness of the proposed
pressure and volume flow rate controllers via simula-
tions in MATLAB/SIMULINK using SIMSCAPE components.
In Section VII-A, we present a scenario with plug-and-play
operations and varying reference values. In Section VII-B, the
first scenario is repeated, albeit with parameter uncertainties
and a saturation to the valve input.

The simulations are conducted by means of the DHN
depicted in Fig. 1, which shows all structural features dis-
cussed in Sections II and III. Furthermore, we cover all control
problems outlined in Problem 1 by assigning appropriate
DGU, consumer, and pressure holding configurations, i.e.,
Dform = {1}, Dvalve = {2}, DVSP = {3}, Lboost = {7},
Lvalve = {4, 5, 6}, LVSP = {8}, Pboost = {15}, M = {25},
and H = {4}.

The model and controller parameters used in the simulations
are reported in [1, Tables I and II].

A. Scenario A: Plug-and-Play and Set-Point Changes

In this scenario, the simulation starts with DGU 3 discon-
nected. The pressure and volume flow rate set points for the
pumps and valves are assigned as in Table I. At the indicated
times, the following events occur.

1) t = 5 s: Consumers i ∈ {6, 7, 8} increase their volume
flow rates by 100 % until t = 10 s.

2) t = 20 s: To help cover the increased demand, DGU
3 connects, and the mixing connection 25 increases its
volume flow rate to 3 × 10−3 m3/s.

Fig. 9. Scenario A: simulated pump pressures in DGUs i ∈ {1, 2}, consumer
i ∈ {7}, booster pump i ∈ {15}, and dynamic pressure holding unit at node
j ∈ {4} with corresponding deviations from the references; the line colors are
as per Table I.

Fig. 10. Scenario A: simulated volume flow rates through DGUs i ∈ {2, 3},
consumers i ∈ {4, 5, 6, 7, 8}, and mixing valve i ∈ {25} with corresponding
deviations from the references; the line colors are as per Table I.

3) t = 30 s: DGU 2 increases its input volume flow rate to
4.5 × 10−3 m3/s.

4) t = 40 s: Consumer 4 disconnects.

The pressure and volume flow rate trajectories shown in
Figs. 9 and 10 confirm the theoretical stability statements.
Despite plug-and-play operations and changing operating con-
ditions, the pressures of pressure-controlled pumps and the
volume flow rates of flow-controlled pumps and valves are
asymptotically stabilized at their desired set points. For the
pressures, the maximum deviations resulting from the events
at t = 5, 20, 30, and 40 s remain within a 1 % band with
respect to the set points and subside below 0.2 % within
approximately 5 s. For the volume flow rates, larger deviations
can be observed. In particular at t = 20 s and t = 30 s
during the connection of DGU 3, the set point that changes the
error plots in Fig. 10 shows large outliers. However, from a
practical perspective, this is natural as abrupt set point changes
cannot be realized instantly by the respective volume flow rate
controllers. More importantly, except for the load ramps at
t ∈ [5, 10] s, the volume flow rates settle to within a 1.5 %
band with respect to the set points after at most 5 s. During
the load ramps, the errors are slightly higher, but remain
below 8 %. This shows that the volume flow rate controllers
for both pumps and valves, although not specifically designed
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Fig. 11. Scenario B: simulated pump pressures in DGUs i ∈ {1, 2}, consumer
i ∈ {7}, booster pump i ∈ {15}, and dynamic pressure holding unit at node
j ∈ {4} with corresponding deviations from the references; the line colors are
as per Table I.

Fig. 12. Scenario B: simulated volume flow rates through DGUs i ∈ {2, 3},
consumers i ∈ {4, 5, 6, 7, 8}, and mixing valve i ∈ {25} with corresponding
deviations from the references; the line colors are as per Table I.

for it, are sufficiently fast to adquately track set points that
vary on a time scale of seconds.

B. Scenario B: Parameter Uncertainty and Valve Saturation

Scenario B is similar to Scenario A except for two modifica-
tion: first, a 10 % uncertainty is added to the pump parameters
RP,i , JP,i , and CP,i and the valve parameters Cv,i ; second,
the virtual valve control input of all valves is saturated to
uv ∈ [1, umax

v,i ] (see Assumption 2).7

The resulting pressure and volume flow rate trajectories
shown in Figs. 11 and 12 are similar to those shown in Fig. 9.
The main difference introduced by the valve saturation is an
impaired convergence performance of the volume flow rate
control via valves, particularly at DGU 2 and Consumer 6
(see the orange and black lines in Fig. 12). In practice,
an appropriate redesign of the valves or by increasing the
available pressure, e.g., via the booster pump in Pipe 15 or a
separate booster pump in the respective consumer, the control
performance can be improved.

Overall, the results of the two scenarios illustrate that
the passivity-based pressure and volume flow rate controllers

7In line with classical feedback control design, we did not consider the
possibility of control input saturation explicitly during the control design
stage in Section V. Instead, we analyze its impact by means of the numerical
simulation in this section.

indeed asymptotically stabilize the hydraulic variables while
allowing for plug-and-play operations of the different DHN
subsystems. Furthermore, the integral parts of the proposed
controllers ensure zero steady-state errors in the presence
of parameter uncertainties and changing hydraulic conditions
naturally occurring during the operation of DHNs.

VIII. CONCLUSION

In this work, we have proposed a unifying control frame-
work that guarantees asymptotic pressure and volume flow
rate stability based on the EIP properties of the DHN subsys-
tem models. We provided a comprehensive hydraulic model
covering state of the art as well as future DHN genera-
tions and formalized the hydraulic control problems arising
in such systems. Subsequently, we designed decentralized,
passivity-based controllers for the pumps and valves in the
DHN subsystems and proposed three controllers: two for
pressure and volume flow rate control via pumps and one
for volume flow rate control via valves. Based on the EIP
properties of the (actuated and unactuated) subsystem models,
the skew-symmetry of their interconnection structure, and
LaSalle’s invariance principle, we then proved asymptotic
stability of any feasible, hydraulic DHN equilibrium in a
modular manner. In conclusion, we want to highlight that the
modular approach of the EIP-based stability analysis allows
to incorporate different and more detailed models (e.g., for
the pumps and valves) and presents general guidelines for
developing other decentralized pressure and volume flow rate
controllers.

APPENDIX A
PROOF OF PROPOSITION 1

Following [19], we begin by introducing a change of
coordinates from qP,i to χi as follows [see (10b)]:

χi = qP,i + ri . (34)

Then, by computing χ̇ i , we get

JP,i χ̇ i = JP,i q̇P,i + JP,i ṙ i = νi + uP,i (35)

where νi is given in (10c). Following the IDA-PBC design
methodology [18], we assign uP,i as in (10d) to obtain

JP,i χ̇ i = −Rp
i χi −

(
pP,i − p∗

P,i

)
. (36)

By propagating the coordinate transformation (34) to the pP,i
dynamics, we can write the closed-loop dynamics as in (11).
In order to show that (11) is EIP with supply rate (di −d̄ i )(zi −

z̄i ) and positive definite storage function H p
i in (12), let d̄ i

denote an arbitrary equilibrium value of di with associated
equilibria z̄i for the output and x̄p

i [see (13)] for the state
vector. Since x̄p

i satisfies f p
i (x̄

p
i ) + K p

i d̄ i = 0, we can write
(11) equivalently as follows:

ẋp
i = f p

i

(
xp

i

)
− f p

i

(
x̄p

i

)
+ K p

i

(
di − d̄ i

)
. (37)

For the time derivative of H p
i in (12), it holds that

Ḣ p
i = ∇

⊤ H p
i ẋp

i = −ψ
p
i

(
xp

i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(38a)

ψ
p
i

(
xp

i

)
= Rp

i

(
χi − χ̄ i

)2
(38b)
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where we have used the identity

(K p
i )

⊤
∇ H p

i = zi − z̄i = pP,i − p̄P,i .

Since Rp
i > 0, it follows that ψp

i (x
p
i ) ≥ 0, implying Ḣ p

i ≤

(zi − z̄i )(di − d̄ i ). Hence, EIP is established.

APPENDIX B
PROOF OF PROPOSITION 2

By combining (4) with controller (15), the closed-loop
system (17) follows directly. In order to show that system (17)
is EIP with supply rate (di − d̄ i )(zi − z̄i ) and positive defi-
nite storage function H f

i in (18), let d̄ i denote an arbitrary
equilibrium value of di with associated equilibria z̄i for the
output and x̄f

i [see (19)] for the state vector. Since x̄f
i satisfies

f f
i (x̄

f
i )+K f

i d̄ i = 0, we can write (17a) equivalently as follows:

ẋf
i = f f

i

(
xf

i

)
− f f

i

(
x̄f

i

)
+ K f

i

(
di − d̄ i

)
. (39)

For the time derivative of H f
i in (18), it holds that

Ḣ f
i = ∇

⊤ H f
i ẋf

= −ψ f
i

(
xf

i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(40a)

ψ f
i

(
xf

i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+ 2

RP,i QI,i

κ f
i

(
qP,i − q̄P,i

)2
(40b)

where we have used the identity

(K f
i )

⊤
∇ H f

i = zi − z̄i = qi − q̄ i .

Since λi (qi ) is strictly increasing and (16) holds, it follows
that ψ f

i (x
f
i ) ≥ 0, implying Ḣ f

i ≤ (zi − z̄i )(di − d̄ i ). Hence, EIP
is established.

APPENDIX C
PROOF OF PROPOSITION 3

Following the same reasoning as in the proof of Proposi-
tion 2 together with using ūi = r̄ i and adding and subtracting
µ̂i (qi )r̄ i , we can write the closed-loop system (22) equiva-
lently as follows:

Ji q̇ i = −
(
λi (qi )− λi

(
q̄ i

))
+ µ̂i (qi )KP,i ŷi − µ̂i (qi )

(
ri − r̄ i

)
− r̄ i

(
µ̂i (qi )− µ̂i

(
q̄ i

))
+

(
di − d̄ i

)
(41a)

QI,i ṙ i = µ̂i (qi )
(
qi − q∗

i

)
. (41b)

Note that (41) is equivalent to

ẋv
i = f v

i

(
xv

i

)
− f v

i

(
x̄v

i

)
+ K v

i

(
di − d̄ i

)
(42)

for any arbitrary equilibrium pair (d̄ i , z̄i ) and associated equi-
librium state vector x̄v

i [see (24)]. For the time derivative of
H v

i in (23), it holds that

Ḣ v
i = ∇

⊤ H v
i ẋv

i = −ψv(xv
i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(43)

ψv
i

(
xv

i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+ KP,i ŷ2

i

+ r̄ i
(
qi − q̄ i

)(
µ̂i (qi )− µ̂i

(
q̄ i

))
(44)

where we have used the identity

(K v
i )

⊤
∇ H v

i = zi − z̄i = qi − q̄ i .

Since both λi (qi ) and µ̂i (qi ) are strictly increasing [see
Assumption 1 and (2b)], ūi = r̄ i > 0 per definition (see
Section III-A2), and KP,i > 0, it follows that ψv

i (x
v
i ) ≥ 0,

implying Ḣ v
i ≤ (zi − z̄i )(di − d̄ i ). Hence, EIP is established.

APPENDIX D
PROOF OF LEMMA 1

In the following, we consider the closed-loop systems
according to their order from 1)–5) in Problem 1. Thus,
we begin with i ∈ Dform. By combining the open-loop DGU
model (5) with uP,i in (10d) and fixing uv,i = ūv,i > 0 (due
to sv,i = 1), we can write the closed-loop system as in (25),
i.e.,

d
dt


Ji qi

JP,iχi

CP,i pP,i
QI,iri


︸ ︷︷ ︸

x̂ i

=


pP,i − λi (qi )− µ̂i (qi )ūv,i

−Rp
i χi −

(
pP,i − p∗

P,i

)
χi − ri(

pP,i − p∗

P,i

)


︸ ︷︷ ︸
f̂ i(x̂i)

+


1
0
0
0


︸︷︷︸

K̂ i

di

(45a)

zi =

[
1
Ji

0 0 0
]

︸ ︷︷ ︸
T̂ i

x̂ i (45b)

with di as in (5). To show that (45) is EIP, we follow the same
reasoning as in the proofs of Propositions 1 and 2. The storage
function Ĥ i is as in (26) with

Q̂i = diag−1(Ji , JP,i ,CP,i , QI,i
)
. (46)

The time derivative of Ĥ i along the solutions of (45) satisfies
˙̂H i = ∇

⊤ Ĥ i
˙x̂ i = −ψ̂ i

(
x̂i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(47)

ψ̂ i
(
x̂i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+ RP

i

(
χi − χ̄ i

)2

+
(
qi − q̄ i

)
ūv,i

(
µ̂i (qi )− µ̂

(
q̄ i

))
(48)

where we have used the identity

K̂⊤

i ∇ Ĥ i = zi − z̄i = qi − q̄ i = T̂ i (x̂i −
¯x̂ i ).

As λi and µ̂i are strictly increasing and ūv,i , RP
i > 0, it follows

that ψ̂ i (x̂i ) ≥ 0 and ˙̂H i ≤ (zi −z̄i )(di −d̄ i ). Hence, (45) is EIP.
Finally, observe that due to the integral action (10a), it holds
for any feasible equilibrium value of x̂i that p̄P,i = p∗

P,i .
Next, we consider i ∈ Dvalve. By combining the open-loop

DGU model (5) with uP,i and uv,i in (10d) and (21b), respec-
tively, we can write the closed-loop system as in (25), i.e.,

d
dt


Ji qi

JP,iχi

CP,i pP,i
Qα

I,ir
α
i

Qβ

I,ir
β

i


︸ ︷︷ ︸

x̂ i

=


pP,i − λi (qi )− µ̂i (qi )

(
−KP,i ŷi + rβi

)
−Rp

i χi −
(

pP,i − p∗

P,i

)
χi − rαi(

pP,i − p∗

P,i

)
µ̂i (qi )

(
qi − q∗

i

)


︸ ︷︷ ︸

f̂ i(x̂i)

+


1
0
0
0
0


︸︷︷︸

K̂ i

di (49a)

zi =

[
1
Ji

0 0 0 0
]

︸ ︷︷ ︸
T̂ i

x̂i (49b)
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with di as in (5). Note that we have used the indices α and
β to distinguish between the integral actions of (10) and (21),
respectively. To show that (49) is EIP, we proceed as before.
The storage function Ĥ i is as in (26) with

Q̂i = diag−1
(

Ji , JP,i ,CP,i , Qα
I,i , Qβ

I,i

)
. (50)

The time derivative of Ĥ i along the solutions of (49) satisfies
˙̂H i = ∇

⊤ Ĥ i
˙x̂ i = −ψ̂ i

(
x̂ i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(51)

ψ̂ i
(
x̂i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+ RP

i

(
χi − χ̄ i

)2

+ r̄βi
(
qi − q̄ i

)(
µ̂i (qi )− µ̂i

(
q̄ i

))
+ KP,i ŷ2

i (52)

where we have used the identity

K̂⊤

i ∇ Ĥ i = zi − z̄i = qi − q̄ i = T̂ i (x̂i −
¯x̂ i ).

With the same reasoning as for (44) and considering that RP
i >

0, it follows that ψ̂ i (x̂i ) ≥ 0 and ˙̂H i ≤ (zi − z̄i )(di − d̄ i ).
Hence, EIP is established. Finally, observe that due to the
integral actions (10a) and (21a) and Assumption 4, it holds
for any feasible equilibrium value of x̂i that q̄ i = q∗

i and
p̄P,i = p∗

P,i .
For i ∈ DVSP, we combine the open-loop DGU model (5)

with uP,i as in (15b) and fix uv,i = ūv,i > 0 (due to sv,i = 1)
to write the closed-loop system as in (25), i.e.,

d
dt


Ji qi

JP,i qP,i
CP,i pP,i
QI,iri


︸ ︷︷ ︸

x̂ i

=


pP,i − λi (qi )− µ̂i (qi )ūv,i

−pP,i − RP,i qP,i − KP,i pP,i − ri

qP,i − qi(
qi − q∗

i

)


︸ ︷︷ ︸
f̂ i(x̂i)

+


1
0
0
0


︸︷︷︸

K̂ i

di (53a)

zi =

[
1
Ji

0 0 0
]

︸ ︷︷ ︸
T̂ i

x̂ i (53b)

with di as in (5). To show that (53) is EIP, we note that Ĥ i is
given by (26) with Q̂i = Qf

i from (18b). The time derivative
of Ĥ i along the solutions of (53) satisfies

˙̂H i = ∇
⊤ Ĥ i

˙x̂ i = −ψ̂ i
(
x̂i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(54)

ψ̂ i
(
x̂i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+

(
qi − q̄ i

)
ūv,i

(
µ̂i (qi )− µ̂

(
q̄ i

))
+ 2

RP,i QI,i

κ f
i

(
qP,i − q̄P,i

)2
(55)

where we have used the identity

K̂⊤

i ∇ Ĥ i = zi − z̄i = qi − q̄ i = T̂ i (x̂i −
¯x̂ i ).

As λi and µ̂i are strictly increasing, ūv,i > 0, and (16) holds,
it follows that ψ̂ i (x̂i ) ≥ 0 and ˙̂H i ≤ (zi − z̄i )(di − d̄ i ).
Hence, (53) is EIP. Finally, observe that due to the integral
action (15a), it holds for any feasible equilibrium value of x̂i

that q̄ i = q̄P,i = q∗

i .

For describing the consumers L in closed loop, we recall
that the open-loop model of any i ∈ L is identical to that of
any DGU i ∈ D, i.e., to (5). For i ∈ Lboost, we assign uP,i
and uv,i as in (10d) and (21b), respectively. Then, the resulting
closed-loop system is equivalent to (49) with the same EIP and
equilibrium properties. Next, we consider i ∈ Lvalve. In this
case, the associated pump can either be turned off or is not
present. Thus, the open loop of any i ∈ Lvalve is equivalent
to that of a control valve in series with a pipe element,
i.e., (6). By closing the loop with uv,i as in (21b), we obtain a
closed-loop system equivalent to (22), which is clearly of the
form (25). Moreover, EIP and q̄ i = q∗

i directly follow from
Proposition 3 and Assumption 4. Finally, for i ∈ LVSP, we fix
uv,i = ūv,i > 0 and assign uP,i as in (15b). Then, the resulting
closed-loop system is equivalent to (53) with the same EIP
and equilibrium properties.

Next, we consider i ∈ Pboost, i.e., an arbitrary pipe in
series with a booster pump. By combining the open-loop pipe
model (4) with uP,i as in (10d), we can write the closed-loop
dynamics as in (25), i.e.,

d
dt


Ji qi

JP,iχi

CP,i pP,i
QI,iri


︸ ︷︷ ︸

x̂ i

=


pP,i − λi (qi )

−Rp
i χi −

(
pP,i − p∗

P,i

)
χi − ri(

pP,i − p∗

P,i

)


︸ ︷︷ ︸
f̂ i(x̂i)

+


1
0
0
0


︸︷︷︸

K̂ i

di (56a)

zi =

[
1
Ji

0 0 0
]

︸ ︷︷ ︸
T̂ i

x̂i (56b)

with di as in (4). To show that (56) is EIP, we note that Ĥ i

is given by (26) with

Q̂i = diag−1(Ji , JP,i ,CP,i , QI,i
)
. (57)

The time derivative of Ĥ i along the solutions of (56) satisfies
˙̂H i = ∇

⊤ Ĥ i
˙x̂ i = −ψ̂ i

(
x̂ i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(58)

ψ̂ i
(
x̂i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
+ RP

i

(
χi − χ̄ i

)2
(59)

where we have used the identity

K̂⊤

i ∇ Ĥ i = zi − z̄i = qi − q̄ i = T̂ i (x̂i −
¯x̂ i ).

As λi is strictly increasing and RP
i > 0, it follows that

ψ̂ i (x̂i ) ≥ 0 and ˙̂H i ≤ (zi − z̄i )(di − d̄ i ). Hence, (56) is EIP.
Finally, observe that due to the integral action (10a), it holds
for any feasible equilibrium value x̂i that p̄P,i = p∗

P,i .
The final type of actuated edges corresponds to mixing

valves i ∈ M. By combining the open-loop model (6) with
uv,i as in (21b), we obtain a closed-loop system equivalent
to (22), which is clearly of the form (25). Moreover, EIP and
q̄ i = q∗

i directly follow from Proposition 3 and Assumption 4.
Finally, we consider pressure holding units i ∈ H, which

are the only actuated nodes. By combining the open-loop
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model (8) with uP,i as in (10d), we obtain a closed-loop
system equivalent to (11). Clearly, this system can be written
as in (25). Moreover, EIP and p̄P,i = p∗

P,i follow directly from
Proposition 1.

APPENDIX E
PROOF OF LEMMA 2

For any pipe i ∈ P \ Pboost without booster pump, we use
the open-loop model (4) and set uP,i = 0 to obtain a model
of the form (25) with

d
dt

Ji qi︸︷︷︸
x̂ i

= −λi (qi )︸ ︷︷ ︸
f̂ i(x̂ i)

+ [1]︸︷︷︸
K̂ i

di (60a)

zi = qi =

[
1
Ji

]
︸ ︷︷ ︸

T̂ i

x̂ i (60b)

where di is as in (4). EIP of (60) follows directly by using Ĥ i

in (26) as storage function with Q̂i = (1/Ji ) and noting that
˙̂H i = −ψ̂ i

(
x̂ i

)
+

(
zi − z̄i

)(
di − d̄ i

)
(61a)

ψ̂ i
(
x̂ i

)
=

(
qi − q̄ i

)(
λi (qi )− λi

(
q̄ i

))
≥ 0. (61b)

Writing the model (9) of any capacitive node i ∈ C as in (25)
is trivial. Furthermore, EIP of the system (9) follows directly
by using Ĥ i in (26) as a storage function with Q̂i = (1/Ci )

and noting that
˙̂H i

(
x̂ i

)
=

(
zi − z̄i

)(
di − d̄ i

)
. (62)

APPENDIX F
PROOF OF THEOREM 1

Let ( ¯x̂E , ¯x̂1) denote a feasible equilibrium of the closed-
loop system (32). Due to Lemma 1, this equilibrium is such
that each bullet point in Problem 1 is fulfilled. Then, consider
the Lyapunov function candidate

V
(
x̂E , x̂1

)
=

∑
i∈E∪1

Ĥ i
(
x̂i

)
(63)

where each Ĥ i is defined in Lemma 1 or 2. Note
that V (x̂E , x̂1) > 0 for all (x̂E , x̂1) ̸= ( ¯x̂E , ¯x̂1) and
V ( ¯x̂E , ¯x̂1) = 0. Via direct computations, it can be shown
that the time derivative of V along the solutions of (32) on
the invariant set M in (33) is given by

V̇
(
x̂E , x̂1

)
=

∑
i∈E∪1

∇ Ĥ⊤

i

(
x̂i

)
˙x̂ i

=

∑
i∈E∪1

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
(64)

where we have implicitly used Lemma 3 to cancel out cross
terms. Stability of ( ¯x̂E , ¯x̂1) follows directly from (64), as its
right-hand side is upper bounded by zero according to the EIP
properties established in Lemmas 1 and 2.

We move on to show that ( ¯x̂E , ¯x̂1) is, in fact, asymptotically
stable. Considering LaSalle’s invariance principle, it is suffi-
cient to show that ( ¯x̂E , ¯x̂1) is the largest invariant set of (32)
where V̇ is zero. As a first step, we characterize the conditions

under which V̇ (x̂) = 0. For that we split the summands in the
right-hand side of (64) as follows.

First, from the proof of Lemma 1, we have that∑
i∈D

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈D

ψ̂ i
(
x̂i

)
(65)

where ψ̂ i is given in (48), (52), and (55) for i in Dform, Dvalve,
and DVSP, respectively. For i ∈ Dform, the mononoticities of λi

and µ̂i , and the condition ūv,i > 0 (see Assumption 2), imply
that ψ̂ i (x̂i ) = 0 if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i , χi = χ̄ i = 0
}
. (66)

For i ∈ Dvalve, the monotonicity of λi in combination with
Assumptions 2 and 4 implies that ψ̂ i (x̂i ) = 0 if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i , χi = χ̄ i = 0
}
. (67)

For i ∈ DVSP, the monotonicities of λi and µ̂i , and the
condition ūv,i > 0 (see again Assumptions 2 and 4), imply
that ψ̂ i (x̂i ) = 0 if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i , qP,i = q̄P,i = q∗

i

}
. (68)

Following an analogous reasoning for the set of consumers
L, we have from Lemma 1 that∑

i∈L

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈L

ψ̂ i
(
x̂i

)
(69)

with ψ̂ i = ψ̂k as in (52) for i ∈ Lboost and k ∈ Dvalve; ψ̂ i = ψv
i

as in (44) for i ∈ Lvalve; and ψ̂ i = ψ̂k as in (55) for i ∈ LVSP
and k ∈ DVSP Then, ψ̂ i (x̂i ) = 0 for i ∈ Lboost if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i , χi = χ̄ i = 0
}

(70)

ψ̂ i (x̂i ) = 0 for i ∈ Lvalve if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i

}
(71)

and ψ̂ i (x̂i ) = 0 for i ∈ LVSP if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i , qP,i = q̄P,i = q∗

i

}
. (72)

Moving on to the pipes with booster pumps Pboost, it holds
due to Lemma 1 that∑

i∈Pboost

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈Pboost

ψ̂ i
(
x̂i

)
(73)

with ψ̂ i as in (59). Then, it holds that ψ̂ i (x̂i ) = 0 for i ∈ Pboost
if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i , χi = χ̄ i = 0
}
. (74)

Next, we consider the set of mixing valves M. Due to
Lemma 1, it holds that∑

i∈M

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈M

ψ̂ i
(
x̂i

)
(75)

with ψ̂ i = ψv
i as in (44). Then, considering Assumption 4,

it holds that ψ̂ i (x̂i ) = 0 for i ∈ M if and only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i = q∗

i

}
. (76)
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Moving on to the set of pipes without booster pumps
P \ Pboost, we get from Lemma 2 and its proof that∑

i∈P\Pboost

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈P\Pboost

ψ̂ i
(
x̂i

)
(77)

with ψ̂ i as in (61). Then, ψ̂ i (x̂i ) = 0 for i ∈ P \Pboost if and
only if

x̂i ∈ 4i =
{

x̂i : qi = q̄ i
}
. (78)

For the set of pressure holding units H [in closed loop
with (10)], we have from Lemma 1 (and Proposition 1) that∑

i∈H

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= −

∑
i∈H

ψ̂ i
(
x̂i

)
(79)

with ψ̂ i = ψ
p
i as in (38). Then, ψ̂ i (x̂i ) = 0 for i ∈ H if and

only if

x̂i ∈ 4i =
{

x̂i : χi = χ̄ i = 0
}
. (80)

For the set of capacitive nodes C, it holds from the proof
of Lemma 2 that∑

i∈C

∇ Ĥ⊤

i

(
x̂i

)(
f̂ i

(
x̂i

)
− f̂ i

(
¯x̂ i

))
= 0. (81)

Considering these developments, its possible to characterize
the condition V̇ (x̂E , x̂1) = 0 as follows:

V̇
(
x̂
)

= 0 ⇔ x̂ ∈ 4

4 =
{

x̂ : x̂ i ∈ 4i , ∀i ∈ E ∪1
}
.

To show asymptotic stability of ( ¯x̂E , ¯x̂1), let (x̂E , x̂1) ∈ 4 be
any solution of (32) in the manifold M that remains in 4 for
all time. Then, we directly have that qi = q̄ i for all i ∈ E .
Next, we show that qi = q̄ i for all i ∈ E implies p j = p̄ j for
all j ∈ 1 and that eventually these two conditions imply that
rk = r̄ k for all k ∈ D ∪ L ∪ Pboost ∪M ∪H and, hence, that
(x̂E , x̂1) = ( ¯x̂E , ¯x̂1).

From the dynamics (9) of any capacitive node j ∈ C,
we have that if qi = q̄ i for all i ∈ E , then ṗ j = 0 for all
time (

∑
i∈I j

q̄i = 0 due to volume balance). From the closed-
loop dynamics (11) of any pressure holding unit j ∈ H, the
condition qi = q̄ i for all i ∈ E together with χ j = 0 leads to
pP, j = p̄P, j = p∗

P, j . This means that if (x̂E , x̂1) ∈ M ∩ 4

for all time, both qi = q̄ i for all i ∈ E and p j = p̄ j

for all j ∈ 1. A consequence of this is that ri = r̄ i for
any i ∈ D ∪ L ∪ Pboost ∪ M ∪ H. Indeed, see, on the
one hand, the definition of the pumps and valves controllers
(Propositions 1–3) that ṙ i would be zero. On the other hand,
since ri enters linearly in the dynamics of the—now at
equilibrium variables χi , qP,i , or qi , of the respective pumps
and valves dynamics—then ri = r̄ i . Therefore, ( ¯x̂E , ¯x̂1) is the
largest invariant set of the overall closed-loop DHN dynamics
contained in 4. By LaSalle’s invariance principle, ¯x̂ is an
asymptotically stable equilibrium point.
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