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ABSTRACT

In this paper, we present a novel method for joint estimation of the
order and fundamental frequency of a set of harmonically related si-
nusoids. This method uses a subband based approach to estimate
the involved parameters using subspace techniques, and the result-
ing algorithm is termed Frequency-selective Harmonic MUSIC (F-
HMUSIC). The performance of F-HMUSIC is evaluated and com-
pared to both Harmonic MUSIC (HMUSIC) and Cramér-Rao lower
bound (CRLB). Especially, in a low signal-to-noise ratio (SNR) with
the colored noise scenarios, where F-HMUSIC outperforms HMU-
SIC. The F-HMUSIC is concluded to be more computationally effi-
cient and more robust against the colored noise than other subspace
based fundamental frequency estimators.

Index Terms— Fundamental frequency, pitch, sub-band, sub-
space, orthogonality.

1. INTRODUCTION

The problem of estimating fundamental frequencies or pitch peri-
ods has been of interest to the signal processing society throughout
the years, and many sophisticated solutions have been suggested.
It is especially important in many speech and audio processing ap-
plications such as linear prediction based speech coding, coding of
speech and audio using a harmonic sinusoidal model, and musical
information retrieval. The problem is described by considering a set
of harmonic signals with fundamental frequencyω0 embedded in
noise. The fundamental frequency estimation problem can then be
stated as follow:

y(t) =
L

∑

l=1

βle
jω0lt + e(t), βl = αle

jθl , (1)

for t = 0, . . . , N − 1, whereαl is the real-valued amplitude of
the complex exponential,ω0 is the fundamental frequency,L is the
model order,θl is the phase, ande(t) is the complex symmetric
white Gaussian noise. The estimation problem associated with the
real case can be cast as (1) by the use of analytic signals, which is
valid when there is little or no spectral content of interest near0 and
π.
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Fundamental frequency estimators are typically time-domain
techniques based on autocorrelation, cross-correlation and the av-
erage magnitude difference function [1]. Recently, a fundamental
frequency estimator based on subspace techniques termed Harmonic
MUltiple SIgnal Classification (HMUSIC) has been suggested in [2],
based on the MUSIC algorithm used in spectral analysis by impos-
ing the assumed harmonic structure in (1) on the MUSIC criterion.
HMUSIC is able to jointly estimate the order and the fundamental
frequency where good statistical performance has been shown com-
pared to both Markov-like weighted least squares estimator (WLS)
and Craḿer-Rao lower bound (CRLB) [2]. However, the compu-
tational complexity as well as the sensitivity to colored noise are
still considered as major drawbacks of HMUSIC. Traditionally pre-
whitening is one of the standard methods to reshape colored noise,
but in speech and audio signals the noise is usually non-stationary,
which makes pre-whiteneing based on the noise characteristic hard
to achieve. Recently, few papers have shown advantages on the
computational efficiency in subspace based frequency estimators by
processing the signal using a frequency-selective (FS) data model
instead of the traditional covariance matrix model [3, 4, 5, 6].

In this paper we will further develop the concept used in the
HMUSIC, where we propose a new joint order and fundamental fre-
quency estimation algorithm termed Frequency-selective Harmonic
MUSIC (F-HMUSIC) using ideas from frequency-selective MUSIC
(F-MUSIC) [5]. The F-HMUSIC is a subband based approach where
the signal spectrum is divided into Q equally spaced subbands us-
ing the FS matrix model and considering each band as an individual
subproblem. This approach gives a more computationally efficient
algorithm than subspace decomposition directly on the covariance
matrix used in HMUSIC [5]. Furthermore, by averaging the esti-
mated fundamental frequency from subbands will possibly be more
robust to the colored noise.

2. SOME PRELIMINARIES

In this section, we present the fundamentals of the FS data model
and introduce some useful vector and matrix notations. We start
by defining the FS data model which is formulated using the for-
mulations defined in [7], where the samples from a discrete Fourier
transform (DFT) are used as input data. The given signal sequence
(1) is first Fourier transformed usingN points FFT. Let us then as-
sume that the component of interest lie in a prespecified subband
composed of the following Fourier frequencies:

{

2π
N

k1,m
2π
N

k2,m . . . 2π
N

kM,m

}

, (2)

wherem denotes the subband index of Q equally divided subbands,
and the{k1,m...kM,m} areM given consecutive integers. The num-



ber of componentsLm of (1) lying in the subband specified by (2) is
assumed to beLm ≤ L.

For the derivation of the FS data model and the orthogonality
principle, following notations will be used:

wk = ej 2π
N

k, k = 0, 1, . . . , N − 1 (3)

uk =
[

wk . . . ws
k

]T
(4)

vk =
[

1 wk . . . wN−1
k

]T
(5)

y =
[

y(0) . . . y(N − 1)
]T

(6)

Yk = v∗
ky, k = 0, 1, . . . , N − 1 (7)

whereuk is the phase shift vector,vk is the Fourier vector,y is the
signal vector,∗ is the hermitian transpose,T is the vector transposi-
tion operator, ands is a user parameter.

The FS data model for a subband with indexm is decomposed
using either Singular value decomposition (SVD) or Eigen value de-
composition (EVD) which is given as [7, 3]:

YmΠ
⊥
m = HmΛmVm. (8)

with Ym ∈ C
s×M , andΠ

⊥
m ∈ C

M×M . The involved matrices in
(8) are given as:

Ym =
[

uk1,m
Yk1,m

. . . ukM,m
YkM,m

]

(9)

Π
⊥
m = I − U∗

m(UmU∗
m)−1Um (10)

Um =
[

uk1,m
. . . ukM,m

]

, (11)

whereYm is the compact matrix form of DFT data samples (7) for a
givenk multiplied with their corresponding phase shift vectors (4),
andΠ

⊥
m is the projection matrix which projects onto the nullspace

of Um [3, 7]. The decomposed matrixHm in (8) is written as

Hm =
[

h1,m h2,m . . . hs,m

]

, (12)

where the columns ofHm containing the singular vectors of the sig-
nal and the noise subspaces, andΛm is a diagonal matrix containing
the corresponding singular values. Furthermore, letSm andGm be
the orthonormal subspaces denoted as follows:

Sm =
[

h1,m h2,m . . . hLm,m

]

(13)

Gm =
[

hLm+1,m hLm+2,m . . . hs,m

]

, (14)

with Sm being the signal subspace associated withLm principal sin-
gular values, andGm being the orthonormal noise subspace associ-
ated withs − Lm singular values. To model the singular vectors of
the signal subspace a Vandermonde vectora(ωk) is introduced, and
given as:

a(ωk) =
[

ejωk . . . ejsωk
]T

, (15)

which is orthogonal toGm for frequenciesωk = ω0l wherel =
1, ..., Lm. The cost function of F-MUSIC is formed as [4]:

P (ω) = |a∗(ω)GmG∗
ma(ω)|

2
, (16)

where the estimates are found on everyωk of (16) which is orthogo-
nal toGm.

3. PROPOSED METHOD

Herein, we will extend the cost function of F-MUSIC for jointly es-
timate the fundamental frequency and the order of harmonic signals
distributed over several subbands. The spectrum of the signal is di-
vided intoQ number of equally spaced subbands where the number
of subbands containing harmonics goes fromm = 1, . . . , Q′, and
Q − Q′ are the remaining bands without harmonics. In this paper
the number of bandQ′ containing the harmonics are assumed to be
known due to the limitation of the MUSIC algorithm where the limit
is L ≥ 1. The estimation ofQ′ is a simple detection problem that
will not be discussed here. The number of harmonicsL distributed
into subbands, is defined by the model as:

L =

Q′

∑

m=1

Lm(ω0), (17)

where the functionLm(ω0) stands for number of harmonics in the
bandm with respect to the frequencyω0. The functionLm(ω0) is
given as:

Lm(ω0) =

⌊

ωm

ω0
−

m−1
∑

i=1

⌊

ωi

ω0

⌋

⌋

, (18)

with ωm = 2π
N

kM,m being the highest frequency in the subbandm.
The Vandermonde matrixAm ∈ C

s×Lm(ω0) modeling the har-
monics in the desired subband with indexm consist of (15) applied
on different frequencies, and given as follows:

Am =
[

a(ω0 + ϕ) . . . a(ω0Lm(ω0) + ϕ)
]

, (19)

whereL0(ω0) = 0, and the termϕ = ω0L(m−1)(ω0) being a fre-
quency offset off harmonics on the frequencyω0 with respect to the
previous band. The offset term is important in order to unify the es-
timation ofω0 in subbands containing harmonics. In each band the
signal and the noise subspaces are orthogonal, and defined as:

∥

∥

∥
AH

mGm

∥

∥

∥

F
= 0, (20)

for frequencyω0, with ‖·‖
F

being the Forbenius norm.
The two dimensional cost function for the joint order and funda-

mental frequency estimator is defined as:

J(ω0, L) =
1

Q′

Q′

∑

m=1

∥

∥AH
mGm

∥

∥

2

F

Lm(ω0)s(s − Lm(ω0))
, (21)

where the denominator is a scaling factor which makes the noise
floor of the cost function invariant to the changing matrix dimensions
of Am andGm [2].

The orderL and the fundamental frequencyω0 are the desired
estimates when values for which the Vandermonde matrix is closest
to being orthogonal to the noise subspace, formulated as:

ω̂ = arg min
ω0∈Ω

min
L∈L

J(ω0, L), (22)

with Ω being the searching space for the fundamental frequency, and
L being the space for the order estimation. It should be noted that
due to the knowledge ofQ′ the candidates ofL can be reduced to
LQ′−1(ω0) ≤ L ≤ LQ′(ω0) which is an advantage in order to re-
duce the computational complexity related to computations of the
cost function. The resolution of the algorithm is mainly dependent
on the parameters such as the data lengthN , the number of sub-
band Q, and the user parameters. Previous experience of similar



Fig. 1. A) Spectrogram of the trumpet signal. B) Fundamental fre-
quencies estimated using F-HMUSIC and HMUSIC.
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Fig. 2. The calculated RMSE of F-HMUSIC compared with HMU-
SIC and CRLB, versus different SNR with the white noise.

approaches show that this parameters may be selected as large as
possible to increase the number of linearly independent vectors in
the noise subspace, but still less thanM in order to still achieve a
correct estimate of the FS data model [7].

Like HMUSIC our proposed method can also be efficiently im-
plemented using FFT based method described in [2]. For applica-
tions that require a very accurate estimates for a givenL a gradi-
ent search algorithm with a slightly modification of the method de-
scribed in [2] can be used.

4. NUMERICAL EXAMPLES

First, an audio example using a trumpet signal is evaluated where the
spectrogram of the signal is shown in Fig. 1A). The sampling fre-
quency wasfs = 11025Hz and segments withN = 512 were used
to calculate the time-frequency representation of the signal. The
model order of HMUSIC was set to⌊0.85N⌋, and for F-HMUSIC
s = ⌊0.85M⌋. In the proposed method two subband was selected
whereQ′ = 1. The cost function was evaluated on a0.5 Hz grid
from 80 to 1000 Hz. The estimated fundamental frequencies is
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Fig. 3. The order estimation errors calculated using F-HMUSIC and
HMUSIC with the white noise.

shown in Fig. 1 B), both methods are able to provide good estimates
of the signal.

The statistical properties of the proposed method will be evalu-
ated next using the Monte-Carlo simulation. The signal setup used in
the following examples will consist ofL = 13 complex exponentials
embedded in noise with a fundamental frequency ofωo = 0.15, and
amplitudesαl = 1 ∀l, and observed data is a sequence ofN = 1024
samples. Furthermore the spectrum of region0 to π is divided into
Q = 2 subbands withM = N

2Q
, and the harmonics is occupied

by both bands (Q′ = 2). The cost function in (21) is evaluated for
candidates in the intervalΩ. In both methods first a coarse estimate
of the fundamental frequency and the order are given using the FFT-
based method [2]. Later, a refined estimate based on the gradient
search method using [2]. The calculated root mean square estima-
tion error (RMSE) of F-HMUSIC is compared to both HMUSIC and
exact CRLB. We use the signal-to-noise ratio (SNR) defined as,

SNR = 10 log10

L
∑

l=1

α2
l

φ(ωl)
, (23)

where the functionφ(ωl) is the power spectrum of the noise at fre-
quencyωl = ω0l. The exact CRLB is calculated for both the white
and the colored noise cases using equations stated in [2, 8, 9]. The
order error is defined as the difference between the estimated order
subtracted on the true order.

In the first example the noise is a symmetric white Gaussian
noise with SNR calculated as (23) with theφ(ωl) being the variance
of the white noise. The candidates forω0 was set toΩ ∈ [0.06, 0.4]
for both algorithms. Note that this interval includes2ω0 and 1

2
ω0,

so any potential problems with spurious estimates at these frequen-
cies would show up in the statistical evaluation. For each possible
fundamental frequencyω0 ∈ Ω, the model orders considered were
L ∈ [5, ⌊π/ω0⌋ − 1]. The estimated RMSE versus SNR, and the
associated order errors are plotted in Fig. 2 and 3. As expected, due
to the computational savings the performance of F-HMUSIC is a bit
worse than HMUSIC in case of the white noise, shown in Fig. 2.
The order estimation performance of both algorithms are shown in
Fig 3, where F-HMUSIC has the tendency to overestimate the order
in low SNR conditions on region when the algorithm performance
breaks down. From numerous simulations it can be concluded that
F-HMUSIC is sensitive to the noise if lower part of the searching
spaceΩ is selected to be too low. The performance of the estima-
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Fig. 4. The calculated RMSE of F-HMUSIC compared with HMU-
SIC and CRLB, versus different SNR with the colored noise.

tor can be significantly increased ifΩ is moved higher up in the fre-
quency scale or selects larger, but the RMSE evaluated on each SNR
will still be a bit worse than HMUSIC in the white noise scenario.
Fortunately the upper part ofΩ will not significantly influence the es-
timation performance. However for many applications the degraded
performance might still be attractive because of the computational
savings due to subspace decomposition on the individual subbands
[4].

Another example shown here will demonstrate the robustness to
colored noise. The goal here is to show that by formulating the prob-
lem into subbands, and estimating parameters from the averaged cost
function of involving bands will reduce the influence of the colored
noise. The same signal setup is used except that white noise is fil-
tered with a second order AR process( 1

1+0.3z−1+0.8z−2 ), where the
power of the colored noise is mainly concentrated on the subband
containing higher frequencies. The SNR of the colored noise is cal-
culated using (23) where functionφ(ωl) is the power spectrum of the
filtered noise at frequencyωl. A new regions is used for both algo-
rithms whereΩ ∈ [0.1, 0.4], and the order space was calculated as
the previous example. The evaluated RMSE of F-HMUSIC is com-
pared with HMUSIC and CRLB, and the order estimates are shown
in respectively Fig. 4 and 5. It shows that HMUSIC fails under “low”
SNR with the colored noise conditions while F-HMUSIC still can
achieve good estimates close to CRLB. The performance drop down
of HMUSIC can be explained by the phenomena termed subspace
swapping where part of the noise subspace erroneously determined
as the signal subspace while estimates provided by F-HMUSIC is
from the averaged mean cost function between the involving sub-
bands. Therefore the errors caused due to the subspace swapping are
reduced.

5. CONCLUSION

In this paper, a joint order and fundamental frequency estimator
termed F-HMUSIC has been proposed. This algorithm is a fre-
quency domain based estimator using subspaces decomposed from
the FS data model to efficiently estimate the fundamental frequency,
where a subband based approach is addopted to reduce the sensitiv-
ity to the colored noise and increase the computational efficiency.
The performance of F-HMUSIC has been evaluated and compared
to both HMUSIC and CRLB. From simulations it has been shown
that F-HMUSIC is more robust against colored noise in low SNR
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Fig. 5. The order estimation errors calculated using F-HMUSIC and
HMUSIC with the colored noise.

scenarios compared to HMUSIC. In general the price to be paid for
the reduced computational complexity and increased robustness to
the colored noise is a slightly reduction in the estimation accuracy.
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