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Abstract : This paper describes a novel technique for scenario géoeraimed at
closed loop stochastic nonlinear model predictive contidie key ingredient in the
algorithm is the use of vector quantization methods. We sti®ov how one can impose
atree structure on the resulting scenarios. Finally, weflgrilescribe how the scenarios
can be used in large scale stochastic nonlinear model pired@ontrol problems and
we illustrate by a specific problem related to optimal mirenping.

1 Introduction

The motivation for the research described in the currenepagses from large scale
optimization problems having a temporal component. A dfpeekample of such a
problem is open-cut mine planning. In this example, the gota determine the value
of an asset by carrying out an optimization of possible fitactions over a suitable
planning horizon (typically 20 years for a mine). Such pesb$ can be converted into
nonlinear model predictive control problems by approprigtioice of variables. An
important feature of such problems is that they contain gelamumber of inputs and
states. Indeed, a simplified version of the mine optimizagimblem involves tens of
thousands of state variables. Hence, even after the appliaaf spatial and temporal
aggregation, it typically takes many hours to carry out thguired optimization on
a high speed computer. Another important feature of suchlenes is that there are
usually variables whose future values cannot be accurpteljicted. For example, in
the case of mining, one does not know the future price thabtbewill bring. Hence
it is desirable to treat such problems in a stochastic gettias, the issue of com-
putational complexity now becomes critical. Given that pneblem may take several
hours to solve for one particular realization of the rand@mables, then one is neces-
sarily restricted to use a handful (say 100) “scenarioséfresent the possible future
values of the uncertain processes when carrying out clasgddptimization. With the
above as background, the current paper addresses themrobieenario generation
for complex stochastic optimization problems.

The specific motivation for the current work arises from tihebpem of open-cut
mine planning. This problem typically has a planning honiodthe order of 20 years.
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A plan based on nominal values for the uncertain processetaka many hours on a
high speed computer. Interestingly, this speed of solii@thieved only after several
simplifying steps have been made [].

As can be readily appreciated, the values of certain keyakibas are not precisely
known into the future. In such cases, it makes sense to uselzesitic problem formu-
lation. Indeed, it could be argued that such a formulatiaugh in principle, be used
for all model predictive control (MPC) problems since, imgtice, future disturbances
will always have a non-predictable element. However, fonyngroblems, taking a
formal stochastic approach is unwarranted since the gaimswsed from such an ap-
proach can be quite small. Hence, the usual MPC paradigminsedustrial control
is the so called “receding horizon” approach. Here one sfljiaises open loop op-
timization to determine the control sequence over somezborand then one applies
the first control action. At the next time instant, one measyor estimates) the state
and then recomputes the control over a future control horézal the first control step
is again implemented. This strategy is very well known todbetrol community and
has been extremely successful in practice []. This kind i@tegy “reacts” to distur-
bances when they occur (since the input is recalculatedlbas¢he measured state).
However, no explicit account is taken of the fact that, infitere, we will have more
information about the uncertain states than we do at thepteisne. Control policies
which implement the latter policy are usually termed “clbsmop”.

There exists a substantial literatlio “closed loop” optimization in the stochastic
programming literature []. There has also been some intémethe topic in recent
control literature. For example, Mufioz de la Pefia, Berap@and Alamo [1] consider
closed loop policies based on the vertices of an assumed set.

Our particular interest in the current paper resides incageere the state dimen-
sion is very large and the underlying system is highly nadin Clearly, in such a
problem one needs to be extremely careful with stochastiomggation since the as-
sociated computations can easily become intractable. mHeesult of this line of
reasoning is that one can, at best, deal with a “handful” éemgral hundred) possible
realizations of the uncertain elements in the problem. Tihigurn, raises the issue
of how one should choose this “handful” of realizations (gthive term “scenarios”)
so they give representative “coverage” of the likely outesmTo illustrate the diffi-
culty of this problem, we note that if we utilize an optimiet horizon of 20 steps
and we consider just 10 values for the uncertain variablesel step then this gives
1020 realizations of the uncertain process. Since in non-cost@hastic optimization
the computational time grows linearly with the number ofrem@os, then if it takes
several hours to deal with one realization, then cleddRf realizations is completely
impossible. (It would take0'” years!).

The topic of scenario generation has been addressed irottieastic programming
literature []. Indeed, there exists a substantial literatdevoted to this topic. One
obvious recommendation made in the literature is that ooeldhdeally design the
scenarios taking into account the “true problem”. Howetlds is not sensible in the
context of complex problems since it is computational ictithle to compare different
scenario patterns via a Monte-Carlo study. Indeed, if tlésanpossible then one could
simply use a Monte-Carlo study to carry out the intendedgtesi

Our strategy will be to divide the problem into two stagesthifirst stage, we will
carry out scenario design based on a simple measure of ge@eaiormance. In this
stage, we rely upon the fact that the number of uncertairalbbes is typically small

1The policies are sometimes said to be “with recourse” in thehgstic programming literature.
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(say 2 or 3 in the case of the mining problem). Then, in a sestagk, we will utilize
the scenarios on the “true problem”. This “divide-and-coexj strategy is aimed at
making the overall problem computationally tractable.

The novel contribution in the current paper is to link thelgeon of scenario gener-
ation to code book design in vector quantization. This lilddves us to develop a new
strategy for scenario generation. We also explain severhkdishments of the basic
scheme including how to enforce a tree structure on the sosndhe latter is used in
the context of closed loop stochastic control.

The layout of the remainder of the paper is as follows: Inisa@, we give a brief
overview of the mine planning problem so as to place the sules® work in a practi-
cal context. In section 3 we briefly review different stodfmsptimization strategies.
Section 4 contains the key result of the paper, namely, theas® generation algo-
rithm. In section 5 we briefly return to the mine planning gesb and conclusions are
given in section 6.

2 Motivational Problem

Before describing the scenario generation strategy, wdivgil set the work in a prac-
tical context by briefly describing the optimal mine plargproblem.

The key idea is as follows: given geological data based olimgireary exploration,
determine where and when to dig. The optimization problembmcast as a mixed
integer linear programming (MILP) problem. A host of coastts need to be satisfied
e.g. mining capacity in each year, slope constraints on #ikswf the mine, precedent
constraints on the order in which material is removed, gsicg plant constraints etc.

If one adopts the, so called, block model approach, then otiged the mine into
blocks sayl00 x 100 on the surface antl vertically. This givesl0° blocks. Over a
15 year horizon, this give$0” decisions on when to remove a block. Interestingly,
107 is approximately the number of atoms in the known universeslsarly some
simplifications are necessary.

The basic problem can be given a nice interpretation in thePREMramework.
To see how this can be done, we divide the surface into restanflocks{; =
1,....,.M;k=1,...,M} as shownin Fig. 1.

I
k
zjk(t)

Figure 1: Block model of a mine.

Let ;1 (t) denote the depth at locatighk at timet, u;x(t) € {0,1} denote the
decision to mind1) or not to ming(0) at timet. Then a simple state space model is

:Ejk(t) = {Ejk(t — 1) + bujk(t). D
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The various constraints take the form

Zhljkl‘jk < b. (2
ik

The cost function can be expressed as
N
J = dier > Vg (t))u (3)
t=1 3.k

where Vj; (251 (t)) denotes the amount of ore at depth;(t) in location (j, k), d;
denotes a discount factor anddenotes the value of ore at time

3 Stochastic Optimization Strategies

The simplified description of the mine planning problem giaove implicitly as-
sumes that the value of the ore is known. However, futureegbf this variable are
certainly not exactly known. Several strategies can be tedidp deal with this uncer-
tainty as described below:

3.1 Open Loop Palicies

Here one carries out the design based on some nominal trigjdsty the expected
value) for the uncertain variables. Then one applies tletesiy irrespective of what
actually happens. This may sound rather strange to theag@atmmunity but, in mine
planning, certain decisions (e.g. how large to make thegasing plant) cannot easily
be changed in the light of updated information.

3.2 Receding Horizon (or Reactive) Policies

Here one bases the original desigh on some nominal trajefiothe uncertain vari-
ables. However, one only implements the first stage. Onertiames the optimization
when new information is obtained (i.e. one “reacts” to ingogndata). This idea is
central to model predictive control and will be very familta the control community.

3.3 Closed Loop Palicies

These policies take account of the fact that, in the futueewill have additional infor-
mation not available now. Closed loop policies typicallsgdeo function optimization
problems in which one designs a mapping from the future médion state to the con-
trol. We give a brief overview of the dynamic programming jC#pproach to these
policies.

Let I}, denote the information available to the controller at timéhat is

Ik:(yOa"'aykvu()a"'aukfl)' (4)

The required control policyr(uo, - .., un—1) Mapsiy into the control space,. A
key feature is the non-anticipatory constraint i.e. decisican only be based on the
information that has been revealed so far.

Int. Workshop on Assessment and Future Directions of NMPC 4
Pavia, Italy, September 5-9, 2008



Invited Paper

The cost function takes the form:

N-1
Jr= E {gzv(xzv) +) gk(xk,uk(fk),wk)} (5)

zo {wi b {vk} =0
where the state evolution satisfy

Trp1 = fr(or, pr(Ix), wi)- (6)

The available measurements are

Yo = ho(zo,v0) (7
Y = hi(@p, po—1(Tk—1), V&) 8)

where{wy}, {v} are i.i.d. sequences (typically Gaussian distributed).
The associated DP equations are

UN-1€EUN-1 | TN—1,WN -1

Jv_1(Iny—1) =  min { E |:gN(fN—1($N—1;UN—l;WN—l))
9
+gnv_1(zno1,un—1,wn—1)IN—1, NN—1:| }

andfork=0,...,N —2

ur €U | ThWk Yk+1

Ji(Ix) = min { E [gk(xknukawk:) + Jk:+1(Ik,yk+17uk)|fk7,uk] } (10)

3.4 A Simple Example

To illustrate closed loop planning, we consider the simple stage stochastic decision
problem in Fig. 2. We see in this figure that there is only ormedoen variablew,
which takes one of two values; , wo with equal probability. There are two stages in
the problem and two decisions for the control at each staes,Tat stage 1y, can
be chosen ag or b and at stage 2;; can be chosen asor b. The final rewards (cost
function) are shown on the right of the diagram.

Optimal open loop and reactive policies do not use the faattte state will be
known after stage 1 has been completed. Thus open loop aativeepolicies both
lead to the same return 82. This can be seen from the following simple argument:

Say we applyuy = a; then whatever we do next gives$50, 000 with equal
probability. Hence, the expected return$ia However,ug = b,u; = a returns$l
anduy = b,u; = breturns$2. Thus, in conclusion, the best open loop strategy is
ug = b, u; = byielding $2 (we would get the same answer with a reactive policy).

For the closed loop case, we add the extra information thatiwknow where we
have reached at the end of stage 1. The obvious closed loayy ®luy = a, then
uy = a if w = wy which implies a return 050,000 andug = a, thenu; = b if
w = wy Which implies a return 0$50, 000.

We see from the above that a closed loop strategy can givdisagm benefits
compared with open loop or reactive. At a heuristic leveldlosed loop policy keeps
“all options open” and avoids being “painted into a corner'the first move.

Int. Workshop on Assessment and Future Directions of NMPC 5
Pavia, Italy, September 5-9, 2008



Invited Paper

—3$50, 000

+$50, 000

+3$50, 000

—$50, 000

Figure 2: Simple example.

3.5 Computational |ssues

The computational burden associated with the design okdldsop policies grows
linearly with the number of alternatives considered foruheertain variables. Hence,
it is usually essential to restrict the cardinality of theafealternatives for the uncertain
variables. The issue of how to choose the representativeé atiernatives is addressed
in the next section.

4 Scenario Generation

The goal of scenario generation is to come up with a (relgtsmall) set of represen-
tatives trajectories for a stochastic process. A specifrgte is that of ore prices as
described in section 2.

A “brute force” method is to use Monte Carlo type methodshoudate a set of tra-
jectories using different “seeds” for the underlying inatign process. This is known
to perform well for a large number of scenarios []. Howevarthie case where the
cardinality of the scenario set is severely restrictedh ihés prudent to exercise some
care in the scenario selection.

In the next subsection we describe the key novel contribuifdhis paper, namely,
linking the problem of scenario generation to vector quaatibn.

4.1 Vector Quantization

Let us first briefly review some important properties of vecfoantization (VQ). For
a thorough introduction to VQ we refer the reader to [2, 3].
An L-dimensional vector quantizé};, is a (nonlinear and non-invertible) map:

QL:R'—c¢C (11)
whereC is a discrete set a¥/ distinct elements given by

CE{ecRFi=1,...,M}. (12)

Int. Workshop on Assessment and Future Directions of NMPC 6
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The sel is also known as a codebook and the elem&mt C is usually referred to as
theith codeword oiith reconstruction point.

It is convenient to decompos®;, into a cascade of two functions, e@y(-) =
B(a(+)) wherec is referred to as the encoder afids the decoder. The encoder is a
many-to-one function which maps pointsi¥ to indices, i.e.

a:RFEST (13)
whereZ is an index set defined as
I2{ieN:i=1,...,M}. (14)
We then definev(z) £ 4 if and only if 2 € S* whereS' € S and where
SE{S'cRF:i=1,...,M}. (15)

We generally require tha$ “cover” RY, i.e.R” C S and moreover that any pair of
subsetgS?, S7),i # j, do not overlap except possibly at their boundaries.
The decoder is given by
B:7—C (16)

whereZ is given by (14) and’ by (12). With this, we establish the following chain of
equivalence:

Qr:r—c orecS ealr)=1i00i) =c sothat Qr(z) = B(a(z)). (17)

Given a distortion measure (or cost functipn)R” xC — R* we define a Voronoi
cellVi:

Vié{xéRL:p(w,ci)gp(w,cj), j=1....M}, i=1,...,M. (18)

It follows that if 1, is anearest neighbor quantizer, thers® = V¢ and this is in fact
an optimal encoder for the given decoder, i.e. for the giwtrmscodewords [2].

Let ¢x () denote the probability density function for the random ahle X .
Then, an optimal quantizer is one that, for a giveh minimizes the expected cost
J where

J=Ep(X,QL(X)) (19)
M ,
-3 | oxt@pta.c)ds (20)
M
= P(X € $)E[p(x,c")|X € 5. (21)
=1

In simple cases, the codewardonly appears in one of the terms of the sum in (21).
It then follows that the optimal codeword, given the Sétis the generalized centroid
of S%. Specifically, givers’ € S

¢' = arg min E [p(X,')|X € '] (22)
cteRL
ox(x)p(x,c)dr
= arg min fme& ¢x (@)l ) (23)
cert [ oo dx(x)dx
Int. Workshop on Assessment and Future Directions of NMPC 7
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In other words, given the encoder, or equivalently, givendétS, the optimal decoder
is defined by the set of reconstructions poiits- {¢‘ : i = 1,..., M}, where¢’ is
given by (22).

An optimal quantizer is therefore a nearest neighbor gaentiaving centroids as
codewords [2]. For example, jfis the squared error distortion measure g(@., ') =
o — 2|2 = 252} |2, — 2/, |? then it is easy to show that

& =arg min E [p(X, )X € 5] (24)
cteRE
=E[X|X € '] (25)

_ Jues 9x @)z dr
- fa:eS,i (bX(.’L') dx ’

Furthermore, ifX is stationary and ergodic, then one can approximate theaidrity
the sample average obtained simply by drawing a large nuofimints fromS? and
taking their average [2].

Unfortunately, it is generally hard to design a jointly opéil encoder and decoder
pair (a(-), 3(-)). However, there exist iterative design algorithms whiatld/iocally
optimal quantizers. One such algorithm is Lloyd’s algarithwhich was originally
defined for the scalar case [6, 7] and later extended to thewnease [5].

Lloyd’s algorithm (and its extension to the vector case)dsitally a cyclic mini-
mizer that alternates between two stages; given an optintaldera, find the optimal
decodes and given an optimal decoder find an optimal encoder. Moreifipaly, we
first construct a random set of codewotdsThen we repeatedly apply the following
two steps:

(26)

1. Given a set of centroids= {c'}},, find the Voronoi cellsS = {S*}M, by use
of (18).

2. Given a set of decision cell$ = {S} ! find the centroid€ = {c¢'}, by
use of (22).

This approach guarantees convergence to a (local) minimym [

4.2 Scenario Generation by Vector Quantization Techniques

We will now establish a connection between the extendedd’$dyQ design algorithm
and scenario generation in stochastic MPC.
Let z;, € R” be a state vector that satisfies the Markovian recursiomdiye

21 = [z, wi) (27)

wherew;, € R is an arbitrary distributed random vector process.

In the special case whetg, € {w(0),wr(1)}, i.e. the disturbance, can take on
only two distinct values at every time instantthen the evolving state sequence de-
scribes a binary tree as shown in Fig. 3. The root of the treerd®es the initial state
zp at timek = 0. Then, at timek = 1, the next state, i.ez; will take on the value
z1(0) or z1(1) depending upon whether the event(0) or wy(1) happens. At time
k = 2, if the previous state was, (0), the current state will be eithes(0) or 25(1).
Similarly, if the previous state was (1) then the current state will be eithes(2) or
z2(3) depending on the actual realization of the uncertain distocew,. Thus, four

Int. Workshop on Assessment and Future Directions of NMPC 8
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Figure 3: Binary tree.

different state trajectories are possible and at time 0 it is not known in advance
which one of them will eventually happen. The only informatithat is available at
time k = 0 is the statistics, i.e. the probability of each of the trajeies. Notice that
we can describe each trajectory, i.e. each path in the tyelesequence of disturbances.
Specifically, theith path can be described by the sequenice- (w (i), w; (7)), where

i € {0,...,3}. In the general case where we haVe+ 1 stages in the tree ant/
distinct end node$zy(i)},7 = 1,..., M, which (in the case of the binary tree) cor-
responds taV/ distinct paths in the tree, we havé = (wq (i), w1 (4),...,wn_1(i)).
Furthermore, there is a one-to-one correspondence bettheesequence of distur-
bances.’ and the sequence of state vecters= (zo(i), 21(i), . .., zx(i)). To see this,
recall thatz 11 (4) = fr(2k(2), wr(7)).

With the above, we will refer to a sequence of disturbancag.$, as a scenario.
In particular,w® denotes theth scenario. We are interested in scenario generation
for finite-horizon stochastic MPC. If the disturbances ta&a only a finite number of
possible values at each time instant, then we can form a sodree, e.g. as the one
shown in Fig. 3. Of course, many other trees are possibl&igsé. 4(a) and 4(b).

It is often the case that the disturbances take on a contimefuvalues. In this
case, we seek to form a finite number of scenarios by distrgtthe set of possible
disturbances. Specifically, we wish to desifghdistinct scenarios, whose trajectories
capture the evolution of the the most likely state sequeroesther words, the set of
M candidate scenarios should (on average) be a good apptimméall possible se-
guences of disturbances. Thus, we actually wish to desigdemolC in thew-space
havingM codewords where the codeworfls’ € C}, are themselves scenarios.

Let Jy be theN-horizon cost function defined by

Jn £ Emin py(z,2") (28)
wieC
M
= n}ginZP(w € SYE[pn(z, 2")|w € S (29)
i=1
Int. Workshop on Assessment and Future Directions of NMPC 9
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k=0 k=1 k=2 k=0 k=1 k=2
(a) No node sharing (b) Partial node sharing

Figure 4: Different scenario trees.

where ‘ ‘ ‘

ot = azgeﬁg(r}vﬂ) E[pn(z,2")|w € S*] (30)
is the generalized centroid of an optimal nearest neighbantiger,5* ¢ RE(V+1)
andpy (-, -) is given by

pn(z,2") = ||z = 2% (31)

N
=z — 2013, (32)
k=0

where{Q; € RI*E} k= 0,..., N is a sequence of weighting matrices ajd=
diag Qo, - - -, QnN)-

Interestingly, this approach yields a jointly (locally)topal distribution of code-
words over the temporal as well as spatial dimensions. Nwwever, that one has
no control over the resulting structure of the scenario. tieefact, a likely outcome
is a scenario tree with a root node that branches Mtgeparataleterministic paths
(similar to Fig. 4(a) for the case @il = 4).

4.3 Imposing a Tree Structure on the Scenarios

In the previous section we allowed arbitrary scenario tre€kearly, this yields the
lowest possible cost. Nonetheless, in stochastic closgaptanning one requires that
the future uncertainty be progressively reduced as thestagpceed. Thus, a tree like
structure is required in the scenario space.

To enforce the tree structure one needs to ensure that nbttesteee share com-
mon points. Lefr}! denote the set of all possible tree structures containiagtix
M distinct paths each havingV + 1 nodes. For example, Figs. 3, 4(a), and 4(b), all
belong toY'3. It should be clear that any codeboGkaving M codewords{w®}M,
(each havingV elementsoi, k = 0,..., N —1) admitsa treel’ € T/, We writeC>T"
if C admits the specific scenario tree described by

Int. Workshop on Assessment and Future Directions of NMPC 10
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When we restrict the codebook to admit a specific scenars ttee codeword
separation described in (30) does not apply and one needsigndthe full codebook
simultaneously. Specifically, given a scenario flee T/ and a set of decision cells
S={S"eRl:i=1,..., M}, the optimal se€ of codewords must jointly satisfy:

M
Czargrcrl;p;P(wéS)E[pN(z,z)|w€S] (33)

where the minimization is now over discrete séts R*(V+1) satisfying|C| = M in
addition toC > I", which has the equivalent interpretation of minimizing iopeints in
a higher dimensional vector space, ez RML(N+1) sybjecttoC > T'.

We thus modify Lloyd’s algorithm to alternate between upttathe decision cells
S using (18) keeping the codebo6Kixed and updating the codebook using (33) keep-
ing the decision cells fixed.

4.4 Example of Scenario Generation

To illustrate the principle behind the proposed scenarieggtion technique, we carry
out a simple simulation. Let; 1 = 0.9z, + wi Wherezy, wr € R andwy, is a zero-
mean unit-variance Gaussian distributed random varidbét.the horizon length be
N = 4 and let the number of codewords bé = 16. It follows that we are interested
in finding 16 “good” 4-dimensional codeword&.*}?}_, defined in thes-space, which
admit a specific scenario tree, say a binary tree. For siityplige will minimize the
squared error in the state-space domaingingz, 2%) = ||z — 2%||°.

We now first randomly pick a set df6 codewords (from the distribution @f)
which admits a binary scenario tree. We then randomly d?@y®00 4-dimensional
vectors (also from the distribution af) to be used as “training” vectofs.Finally,
we alternate between numerically evaluating (18) and (8&mgthe training set. The
resulting codebook and scenario tree after five iteratisfiliistrated in Figs. 5(a) and
5(b), respectively.

5 Return tothe Motivational Problem

Finally, we return to the optimal mine planning example. &eall that the state for this
problem has two decoupled components; namely the mine depthrious locations
and the ore price. For simplicity we assume that the curremfpoice states can be
measured.

We can set the problem up as a large problem in which we assliffeeent control
action to each node of the scenario tree. This implicitly dsgs a mapping from the
measured state to the control input.

We utilize the scenario tree for ore price to evaluate thearuicontrol as a function
of the measured state,. Now time is advanced 1 step o = 1. Since we have
descretized the scenario space, the measured value will, with probability one,
not coincide with any of the values used in evaluating theentrinput. Thus, the
scenario tool is really only a computational device to allsswo compute the current
control actionug whilst accounting (in some way) for the fact that, in the fetuve

2In the case of simple distributions in thespace, it might be possible to explicitly derive the asstea
distribution in thez-space. This is convenient, since it eliminates the neetirfmining” vectors.
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(a) 16 (4-dimensional) codewords (b) The resulting binary scenario tree

Figure 5: The resulting codebook and scenario tree afteitévations of the modified
Lloyd’s algorithm.

will actually know more than we do now. In other words, exaetf in example 3.2, we
utilize scenarios to ensure that the first step is made inbevledge that more will be
known in the future.

Of course, the fact that the measured value ofs not exactly equal to any of the
values used the calculation should not be of great conceun.té\ll we need to do is
to react to the measured valuexgfat time 1 and recalculate by the same procedure
as was used to evaluatg.

We call the above strategy a receding horizon closed lodpypol

6 Conclusion

This paper has described a novel approach to scenario giemezéamed at complex
nonlinear model predictive control problems. We have shivat the problem can
be casted in the framework of codebook design for vector tigetion. We have also
shown how the method can be embellished in several waysbg.gnposing a tree
structure on the scenarios.
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