

Aalborg Universitet

A Vector Quantization Approach to Scenario Generation for Stochastic NMPC

C. Goodwin, Graham; Østergaard, Jan; E. Quevedo, Daniel; Feuer, Arie

Published in:
Lecture Notes in Computer Science

DOI (link to publication from Publisher):
10.1007/978-3-642-01094-1_19

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
C. Goodwin, G., Østergaard, J., E. Quevedo, D., & Feuer, A. (2009). A Vector Quantization Approach to
Scenario Generation for Stochastic NMPC. Lecture Notes in Computer Science, 384, 235-248.
https://doi.org/10.1007/978-3-642-01094-1_19

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VBN

https://core.ac.uk/display/60448614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-01094-1_19
https://vbn.aau.dk/en/publications/67010fd0-8c87-11de-90ca-000ea68e967b
https://doi.org/10.1007/978-3-642-01094-1_19

A Vector Quantization Approach to Scenario
Generation for Stochastic NMPC

Graham C. Goodwin†, Jan Østergaard‡, and Daniel E. Quevedo⋆

The University of Newcastle,
School of Electrical Engineering and Computer Science,

New South Wales, Australia
† graham.goodwin@newcastle.edu.au
‡ jan.ostergaard@newcastle.edu.au

⋆ dquevedo@ieee.org

Keywords : Scenario generation, closed loop control, stochastic nonlinear model pre-
dictive control, vector quantization

Abstract : This paper describes a novel technique for scenario generation aimed at
closed loop stochastic nonlinear model predictive control. The key ingredient in the
algorithm is the use of vector quantization methods. We alsoshow how one can impose
a tree structure on the resulting scenarios. Finally, we briefly describe how the scenarios
can be used in large scale stochastic nonlinear model predictive control problems and
we illustrate by a specific problem related to optimal mine planning.

1 Introduction

The motivation for the research described in the current paper arises from large scale
optimization problems having a temporal component. A specific example of such a
problem is open-cut mine planning. In this example, the goalis to determine the value
of an asset by carrying out an optimization of possible future actions over a suitable
planning horizon (typically 20 years for a mine). Such problems can be converted into
nonlinear model predictive control problems by appropriate choice of variables. An
important feature of such problems is that they contain a large number of inputs and
states. Indeed, a simplified version of the mine optimization problem involves tens of
thousands of state variables. Hence, even after the application of spatial and temporal
aggregation, it typically takes many hours to carry out the required optimization on
a high speed computer. Another important feature of such problems is that there are
usually variables whose future values cannot be accuratelypredicted. For example, in
the case of mining, one does not know the future price that theore will bring. Hence
it is desirable to treat such problems in a stochastic setting. Alas, the issue of com-
putational complexity now becomes critical. Given that theproblem may take several
hours to solve for one particular realization of the random variables, then one is neces-
sarily restricted to use a handful (say 100) “scenarios” to represent the possible future
values of the uncertain processes when carrying out closed loop optimization. With the
above as background, the current paper addresses the problem of scenario generation
for complex stochastic optimization problems.

The specific motivation for the current work arises from the problem of open-cut
mine planning. This problem typically has a planning horizon of the order of 20 years.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

Invited Paper

A plan based on nominal values for the uncertain processes can take many hours on a
high speed computer. Interestingly, this speed of solutionis achieved only after several
simplifying steps have been made [].

As can be readily appreciated, the values of certain key variables are not precisely
known into the future. In such cases, it makes sense to use a stochastic problem formu-
lation. Indeed, it could be argued that such a formulation should, in principle, be used
for all model predictive control (MPC) problems since, in practice, future disturbances
will always have a non-predictable element. However, for many problems, taking a
formal stochastic approach is unwarranted since the gains achieved from such an ap-
proach can be quite small. Hence, the usual MPC paradigm usedin industrial control
is the so called “receding horizon” approach. Here one typically uses open loop op-
timization to determine the control sequence over some horizon and then one applies
the first control action. At the next time instant, one measures (or estimates) the state
and then recomputes the control over a future control horizon and the first control step
is again implemented. This strategy is very well known to thecontrol community and
has been extremely successful in practice []. This kind of strategy “reacts” to distur-
bances when they occur (since the input is recalculated based on the measured state).
However, no explicit account is taken of the fact that, in thefuture, we will have more
information about the uncertain states than we do at the present time. Control policies
which implement the latter policy are usually termed “closed loop”.

There exists a substantial literature1 on “closed loop” optimization in the stochastic
programming literature []. There has also been some interest in the topic in recent
control literature. For example, Muñoz de la Peña, Bemporad and Alamo [1] consider
closed loop policies based on the vertices of an assumed set.

Our particular interest in the current paper resides in cases where the state dimen-
sion is very large and the underlying system is highly nonlinear. Clearly, in such a
problem one needs to be extremely careful with stochastic optimization since the as-
sociated computations can easily become intractable. The end result of this line of
reasoning is that one can, at best, deal with a “handful” (sayseveral hundred) possible
realizations of the uncertain elements in the problem. This, in turn, raises the issue
of how one should choose this “handful” of realizations (which we term “scenarios”)
so they give representative “coverage” of the likely outcomes. To illustrate the diffi-
culty of this problem, we note that if we utilize an optimization horizon of 20 steps
and we consider just 10 values for the uncertain variables ateach step then this gives
1020 realizations of the uncertain process. Since in non-convexstochastic optimization
the computational time grows linearly with the number of scenarios, then if it takes
several hours to deal with one realization, then clearly1020 realizations is completely
impossible. (It would take1017 years!).

The topic of scenario generation has been addressed in the stochastic programming
literature []. Indeed, there exists a substantial literature devoted to this topic. One
obvious recommendation made in the literature is that one should ideally design the
scenarios taking into account the “true problem”. However,this is not sensible in the
context of complex problems since it is computational intractable to compare different
scenario patterns via a Monte-Carlo study. Indeed, if this were possible then one could
simply use a Monte-Carlo study to carry out the intended design.

Our strategy will be to divide the problem into two stages. Inthe first stage, we will
carry out scenario design based on a simple measure of scenario performance. In this
stage, we rely upon the fact that the number of uncertain variables is typically small

1The policies are sometimes said to be “with recourse” in the stochastic programming literature.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

2

Invited Paper

(say 2 or 3 in the case of the mining problem). Then, in a secondstage, we will utilize
the scenarios on the “true problem”. This “divide-and-conquer” strategy is aimed at
making the overall problem computationally tractable.

The novel contribution in the current paper is to link the problem of scenario gener-
ation to code book design in vector quantization. This link allows us to develop a new
strategy for scenario generation. We also explain several embellishments of the basic
scheme including how to enforce a tree structure on the scenarios. The latter is used in
the context of closed loop stochastic control.

The layout of the remainder of the paper is as follows: In section 2, we give a brief
overview of the mine planning problem so as to place the subsequent work in a practi-
cal context. In section 3 we briefly review different stochastic optimization strategies.
Section 4 contains the key result of the paper, namely, the scenario generation algo-
rithm. In section 5 we briefly return to the mine planning problem and conclusions are
given in section 6.

2 Motivational Problem

Before describing the scenario generation strategy, we will first set the work in a prac-
tical context by briefly describing the optimal mine planning problem.

The key idea is as follows: given geological data based on preliminary exploration,
determine where and when to dig. The optimization problem can be cast as a mixed
integer linear programming (MILP) problem. A host of constraints need to be satisfied
e.g. mining capacity in each year, slope constraints on the walls of the mine, precedent
constraints on the order in which material is removed, processing plant constraints etc.

If one adopts the, so called, block model approach, then one divides the mine into
blocks say100 × 100 on the surface and10 vertically. This gives105 blocks. Over a
15 year horizon, this gives1075 decisions on when to remove a block. Interestingly,
1075 is approximately the number of atoms in the known universe, so clearly some
simplifications are necessary.

The basic problem can be given a nice interpretation in the NMPC framework.
To see how this can be done, we divide the surface into rectangular blocks{j =
1, . . . , M ; k = 1, . . . , M} as shown in Fig. 1.

j

k
xjk(t)

Figure 1: Block model of a mine.

Let xjk(t) denote the depth at locationj, k at timet, ujk(t) ∈ {0, 1} denote the
decision to mine(1) or not to mine(0) at timet. Then a simple state space model is

xjk(t) = xjk(t − 1) + bujk(t). (1)

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

3

Invited Paper

The various constraints take the form
∑

jk

hl
jkxjk ≤ bl. (2)

The cost function can be expressed as

J =
N

∑

t=1

dtct

∑

j,k

Vj,k(xjk(t))uj,k (3)

whereVjk(xjk(t)) denotes the amount of ore at depthxjk(t) in location (j, k), dt

denotes a discount factor andct denotes the value of ore at timet.

3 Stochastic Optimization Strategies

The simplified description of the mine planning problem given above implicitly as-
sumes that the value of the ore is known. However, future values of this variable are
certainly not exactly known. Several strategies can be adopted to deal with this uncer-
tainty as described below:

3.1 Open Loop Policies

Here one carries out the design based on some nominal trajectory (say the expected
value) for the uncertain variables. Then one applies the strategy irrespective of what
actually happens. This may sound rather strange to the control community but, in mine
planning, certain decisions (e.g. how large to make the processing plant) cannot easily
be changed in the light of updated information.

3.2 Receding Horizon (or Reactive) Policies

Here one bases the original design on some nominal trajectory for the uncertain vari-
ables. However, one only implements the first stage. One thenredoes the optimization
when new information is obtained (i.e. one “reacts” to incoming data). This idea is
central to model predictive control and will be very familiar to the control community.

3.3 Closed Loop Policies

These policies take account of the fact that, in the future, we will have additional infor-
mation not available now. Closed loop policies typically lead to function optimization
problems in which one designs a mapping from the future information state to the con-
trol. We give a brief overview of the dynamic programming (DP) approach to these
policies.

Let Ik denote the information available to the controller at timek, that is

Ik = (y0, . . . , yk, u0, . . . , uk−1). (4)

The required control policyπ(µ0, . . . , µN−1) mapsIk into the control spaceck. A
key feature is the non-anticipatory constraint i.e. decisions can only be based on the
information that has been revealed so far.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

4

Invited Paper

The cost function takes the form:

Jπ = E
z0,{ωk},{νk}

{

gN(xN) +
N−1
∑

k=0

gk(xk, µk(Ik), ωk)

}

(5)

where the state evolution satisfy

xk+1 = fk(xk, µk(Ik), ωk). (6)

The available measurements are

y0 = h0(x0, ν0) (7)

yk = hk(xk, µk−1(Ik−1), νk) (8)

where{ωk}, {νk} are i.i.d. sequences (typically Gaussian distributed).
The associated DP equations are

JN−1(IN−1) = min
uN−1∈UN−1

{

E
xN−1,ωN−1

[

gN(fN−1(xN−1, uN−1, ωN−1))

+ gN−1(xN−1, uN−1, ωN−1)|IN−1, µN−1

]

} (9)

and fork = 0, . . . , N − 2

Jk(Ik) = min
uk∈Uk

{

E
xk,ωk,yk+1

[

gk(xk, uk, ωk) + Jk+1(Ik, yk+1, uk)|Ik, µk

]

}

. (10)

3.4 A Simple Example

To illustrate closed loop planning, we consider the simple two-stage stochastic decision
problem in Fig. 2. We see in this figure that there is only one random variable,ω,
which takes one of two values,ω1, ω2 with equal probability. There are two stages in
the problem and two decisions for the control at each stage. Thus, at stage 1,u0 can
be chosen asa or b and at stage 2,u1 can be chosen asa or b. The final rewards (cost
function) are shown on the right of the diagram.

Optimal open loop and reactive policies do not use the fact that the state will be
known after stage 1 has been completed. Thus open loop and reactive policies both
lead to the same return of$2. This can be seen from the following simple argument:

Say we applyu0 = a; then whatever we do next gives±$50, 000 with equal
probability. Hence, the expected return is$0. However,u0 = b, u1 = a returns$1
andu0 = b, u1 = b returns$2. Thus, in conclusion, the best open loop strategy is
u0 = b, u1 = b yielding$2 (we would get the same answer with a reactive policy).

For the closed loop case, we add the extra information that wewill know where we
have reached at the end of stage 1. The obvious closed loop policy is; u0 = a, then
u1 = a if ω = ω1 which implies a return of$50, 000 andu0 = a, thenu1 = b if
ω = ω2 which implies a return of$50, 000.

We see from the above that a closed loop strategy can give significant benefits
compared with open loop or reactive. At a heuristic level theclosed loop policy keeps
“all options open” and avoids being “painted into a corner” by the first move.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

5

Invited Paper

u0
=

a,
ω

=
ω2

u0 = a, ω = ω2

u
0 =

b u1 = a

u1 = a

u1 = a

u1 = b

u1 = b

u1 = b

−$50, 000

−$50, 000

+$50, 000

+$50, 000

+$1

+$2

Figure 2: Simple example.

3.5 Computational Issues

The computational burden associated with the design of closed loop policies grows
linearly with the number of alternatives considered for theuncertain variables. Hence,
it is usually essential to restrict the cardinality of the set of alternatives for the uncertain
variables. The issue of how to choose the representative setof alternatives is addressed
in the next section.

4 Scenario Generation

The goal of scenario generation is to come up with a (relatively small) set of represen-
tatives trajectories for a stochastic process. A specific example is that of ore prices as
described in section 2.

A “brute force” method is to use Monte Carlo type methods to simulate a set of tra-
jectories using different “seeds” for the underlying innovation process. This is known
to perform well for a large number of scenarios []. However, in the case where the
cardinality of the scenario set is severely restricted, then it is prudent to exercise some
care in the scenario selection.

In the next subsection we describe the key novel contribution of this paper, namely,
linking the problem of scenario generation to vector quantization.

4.1 Vector Quantization

Let us first briefly review some important properties of vector quantization (VQ). For
a thorough introduction to VQ we refer the reader to [2, 3].

An L-dimensional vector quantizerQL is a (nonlinear and non-invertible) map:

QL : R
L → C (11)

whereC is a discrete set ofM distinct elements given by

C , {ci ∈ R
L : i = 1, . . . , M}. (12)

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

6

Invited Paper

The setC is also known as a codebook and the elementci ∈ C is usually referred to as
theith codeword orith reconstruction point.

It is convenient to decomposeQL into a cascade of two functions, e.g.QL(·) =
β(α(·)) whereα is referred to as the encoder andβ is the decoder. The encoder is a
many-to-one function which maps points inR

L to indices, i.e.

α : R
L → I (13)

whereI is an index set defined as

I , {i ∈ N : i = 1, . . . , M}. (14)

We then defineα(x) , i if and only if x ∈ Si whereSi ∈ S and where

S , {Si ⊂ R
L : i = 1, . . . , M}. (15)

We generally require thatS “cover” R
L, i.e. RL ⊆ S and moreover that any pair of

subsets(Si, Sj), i 6= j, do not overlap except possibly at their boundaries.
The decoder is given by

β : I → C (16)

whereI is given by (14) andC by (12). With this, we establish the following chain of
equivalence:

QL : x 7→ ci ⇔ x ∈ Si ⇔ α(x) = i, β(i) = ci so that QL(x) = β(α(x)). (17)

Given a distortion measure (or cost function)ρ : R
L×C → R

+ we define a Voronoi
cell V i :

V i , {x ∈ R
L : ρ(x, ci) ≤ ρ(x, cj), j = 1, . . . , M}, i = 1, . . . , M. (18)

It follows that if QL is anearest neighbor quantizer, thenSi = V i and this is in fact
an optimal encoder for the given decoder, i.e. for the given set of codewordsC [2].

Let φX(x) denote the probability density function for the random variable X .
Then, an optimal quantizer is one that, for a givenM , minimizes the expected cost
J where

J = Eρ(X, QL(X)) (19)

=

M
∑

i=1

∫

x∈Si

φX(x)ρ(x, ci) dx (20)

=

M
∑

i=1

P (X ∈ Si)E[ρ(x, ci)|X ∈ Si]. (21)

In simple cases, the codewordci only appears in one of the terms of the sum in (21).
It then follows that the optimal codeword, given the setSi, is the generalized centroid
of Si. Specifically, givenSi ∈ S

ĉi = arg min
ci∈RL

E
[

ρ(X, ci)|X ∈ Si
]

(22)

= arg min
ci∈RL

∫

x∈Si

φX(x)ρ(x, c) dx
∫

x∈Si

φX(x) dx
. (23)

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

7

Invited Paper

In other words, given the encoder, or equivalently, given the setS, the optimal decoder
is defined by the set of reconstructions pointsC = {ĉi : i = 1, . . . , M}, whereĉi is
given by (22).

An optimal quantizer is therefore a nearest neighbor quantizer having centroids as
codewords [2]. For example, ifρ is the squared error distortion measure, i.e.ρ(x, x′) =

‖x − x′‖2 =
∑L−1

n=0 |xn − x′
n|

2 then it is easy to show that

ĉi = arg min
ci∈RL

E
[

ρ(X, ci)|X ∈ Si
]

(24)

= E
[

X |X ∈ Si
]

(25)

=

∫

x∈Si

φX(x)xdx
∫

x∈Si

φX(x) dx
. (26)

Furthermore, ifX is stationary and ergodic, then one can approximate the centroid by
the sample average obtained simply by drawing a large numberof points fromSi and
taking their average [2].

Unfortunately, it is generally hard to design a jointly optimal encoder and decoder
pair (α(·), β(·)). However, there exist iterative design algorithms which yield locally
optimal quantizers. One such algorithm is Lloyd’s algorithm, which was originally
defined for the scalar case [6, 7] and later extended to the vector case [5].

Lloyd’s algorithm (and its extension to the vector case) is basically a cyclic mini-
mizer that alternates between two stages; given an optimal encoderα, find the optimal
decoderβ and given an optimal decoder find an optimal encoder. More specifically, we
first construct a random set of codewordsC. Then we repeatedly apply the following
two steps:

1. Given a set of centroidsC = {ci}M
i=1, find the Voronoi cellsS = {Si}M

i=1 by use
of (18).

2. Given a set of decision cellsS = {Si}M−1
i=0 find the centroidsC = {ci}M

i=1 by
use of (22).

This approach guarantees convergence to a (local) minimum [4].

4.2 Scenario Generation by Vector Quantization Techniques

We will now establish a connection between the extended Lloyd’s VQ design algorithm
and scenario generation in stochastic MPC.

Let zk ∈ R
L be a state vector that satisfies the Markovian recursion given by

zk+1 = f(zk, ωk) (27)

whereωk ∈ R
L is an arbitrary distributed random vector process.

In the special case whereωk ∈ {wk(0), ωk(1)}, i.e. the disturbance, can take on
only two distinct values at every time instantk, then the evolving state sequence de-
scribes a binary tree as shown in Fig. 3. The root of the tree describes the initial state
z0 at timek = 0. Then, at timek = 1, the next state, i.e.z1 will take on the value
z1(0) or z1(1) depending upon whether the eventω0(0) or ω0(1) happens. At time
k = 2, if the previous state wasz1(0), the current state will be eitherz2(0) or z2(1).
Similarly, if the previous state wasz1(1) then the current state will be eitherz2(2) or
z2(3) depending on the actual realization of the uncertain disturbanceωk. Thus, four

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

8

Invited Paper

z0

z1(0)

z1(1)

z2(0)

z2(1)

z2(2)

z2(3)

w0(0)

w0(1)

w1(0)

w1(1)

w1(0)

w1(1)

k = 0 k = 1 k = 2

Figure 3: Binary tree.

different state trajectories are possible and at timek = 0 it is not known in advance
which one of them will eventually happen. The only information that is available at
time k = 0 is the statistics, i.e. the probability of each of the trajectories. Notice that
we can describe each trajectory, i.e. each path in the tree, by a sequence of disturbances.
Specifically, theith path can be described by the sequenceωi = (ω0(i), ω1(i)), where
i ∈ {0, . . . , 3}. In the general case where we haveN + 1 stages in the tree andM
distinct end nodes{zN(i)}, i = 1, . . . , M , which (in the case of the binary tree) cor-
responds toM distinct paths in the tree, we haveωi = (ω0(i), ω1(i), . . . , ωN−1(i)).
Furthermore, there is a one-to-one correspondence betweenthe sequence of distur-
bancesωi and the sequence of state vectorszi = (z0(i), z1(i), . . . , zN (i)). To see this,
recall thatzk+1(i) = fk(zk(i), ωk(i)).

With the above, we will refer to a sequence of disturbances, say ωi, as a scenario.
In particular,ωi denotes theith scenario. We are interested in scenario generation
for finite-horizon stochastic MPC. If the disturbances takes on only a finite number of
possible values at each time instant, then we can form a scenario tree, e.g. as the one
shown in Fig. 3. Of course, many other trees are possible, cf.Figs. 4(a) and 4(b).

It is often the case that the disturbances take on a continuumof values. In this
case, we seek to form a finite number of scenarios by discretizing the set of possible
disturbances. Specifically, we wish to designM distinct scenarios, whose trajectories
capture the evolution of the the most likely state sequences. In other words, the set of
M candidate scenarios should (on average) be a good approximation of all possible se-
quences of disturbances. Thus, we actually wish to design a codebookC in theω-space
havingM codewords where the codewords{ωi ∈ C}M

i=1 are themselves scenarios.
Let JN be theN -horizon cost function defined by

JN , E min
ωi∈C

ρN (z, zi) (28)

= min
S

M
∑

i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (29)

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

9

Invited Paper

z0

z1(0)

z1(1)

z1(2)

z1(3)

z2(0)

z2(1)

z2(2)

z2(3)

w0(0)

w0(1)
w0(2)

w0(3)

w1(0)

w1(1)

w1(2)

w1(3)

k = 0 k = 1 k = 2

(a) No node sharing

z0

z1(0)

z1(3)

z2(0)

z2(1)

z2(3)

w0(0)

w0(3)

w1(0)

w1(1)

w1(2)

w1(3)

k = 0 k = 1 k = 2

(b) Partial node sharing

Figure 4: Different scenario trees.

where
ω̂i = arg min

ωi∈RL(N+1)
E[ρN (z, zi)|ω ∈ Si] (30)

is the generalized centroid of an optimal nearest neighbor quantizer,Si ⊂ R
L(N+1)

andρN (·, ·) is given by

ρN (z, zi) = ‖z − zi‖2
Q (31)

=

N
∑

k=0

‖zk − zk(i)‖2
Qk

(32)

where{Qk ∈ R
L×L}, k = 0, . . . , N is a sequence of weighting matrices andQ =

diag(Q0, . . . , QN).
Interestingly, this approach yields a jointly (locally) optimal distribution of code-

words over the temporal as well as spatial dimensions. Note,however, that one has
no control over the resulting structure of the scenario tree. In fact, a likely outcome
is a scenario tree with a root node that branches intoM separatedeterministic paths
(similar to Fig. 4(a) for the case ofM = 4).

4.3 Imposing a Tree Structure on the Scenarios

In the previous section we allowed arbitrary scenario trees. Clearly, this yields the
lowest possible cost. Nonetheless, in stochastic closed loop planning one requires that
the future uncertainty be progressively reduced as the stages proceed. Thus, a tree like
structure is required in the scenario space.

To enforce the tree structure one needs to ensure that nodes of the tree share com-
mon points. LetΥM

N denote the set of all possible tree structures containing exactly
M distinct paths each havingN + 1 nodes. For example, Figs. 3, 4(a), and 4(b), all
belong toΥ4

2. It should be clear that any codebookC havingM codewords{ωi}M
i=1

(each havingN elementsωi
k, k = 0, . . . , N −1) admits a treeΓ ∈ ΥM

N . We writeC ⊲Γ
if C admits the specific scenario tree described byΓ.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

10

Invited Paper

When we restrict the codebook to admit a specific scenario tree, the codeword
separation described in (30) does not apply and one needs to design the full codebook
simultaneously. Specifically, given a scenario treeΓ ∈ ΥM

N and a set of decision cells
S = {Si ∈ R

L : i = 1, . . . , M}, the optimal set̂C of codewords must jointly satisfy:

Ĉ = arg min
C⊲Γ

M
∑

i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (33)

where the minimization is now over discrete setsC ⊂ R
L(N+1) satisfying|C| = M in

addition toC ⊲ Γ, which has the equivalent interpretation of minimizing over points in
a higher dimensional vector space, i.e.C ∈ R

ML(N+1) subject toC ⊲ Γ.
We thus modify Lloyd’s algorithm to alternate between updating the decision cells

S using (18) keeping the codebookC fixed and updating the codebook using (33) keep-
ing the decision cells fixed.

4.4 Example of Scenario Generation

To illustrate the principle behind the proposed scenario generation technique, we carry
out a simple simulation. Letzk+1 = 0.9zk + ωk wherezk, ωk ∈ R andωk is a zero-
mean unit-variance Gaussian distributed random variable.Let the horizon length be
N = 4 and let the number of codewords beM = 16. It follows that we are interested
in finding16 “good” 4-dimensional codewords{ωi}4

i=1 defined in theω-space, which
admit a specific scenario tree, say a binary tree. For simplicity, we will minimize the
squared error in the state-space domain, i.e.ρN (z, zi) = ‖z − zi‖2.

We now first randomly pick a set of16 codewords (from the distribution ofω)
which admits a binary scenario tree. We then randomly draw20, 000 4-dimensional
vectors (also from the distribution ofω) to be used as “training” vectors.2 Finally,
we alternate between numerically evaluating (18) and (33) given the training set. The
resulting codebook and scenario tree after five iterations is illustrated in Figs. 5(a) and
5(b), respectively.

5 Return to the Motivational Problem

Finally, we return to the optimal mine planning example. We recall that the state for this
problem has two decoupled components; namely the mine depthat various locations
and the ore price. For simplicity we assume that the current ore price states can be
measured.

We can set the problem up as a large problem in which we assign adifferent control
action to each node of the scenario tree. This implicitly imposes a mapping from the
measured state to the control input.

We utilize the scenario tree for ore price to evaluate the current control as a function
of the measured statex0. Now time is advanced 1 step tok = 1. Since we have
descretized the scenario space, the measured value ofx1 will, with probability one,
not coincide with any of the values used in evaluating the current input. Thus, the
scenario tool is really only a computational device to allowus to compute the current
control actionµ0 whilst accounting (in some way) for the fact that, in the future, we

2In the case of simple distributions in theω-space, it might be possible to explicitly derive the associated
distribution in thez-space. This is convenient, since it eliminates the need for“training” vectors.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

11

Invited Paper

0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

(a) 16 (4-dimensional) codewords

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

(b) The resulting binary scenario tree

Figure 5: The resulting codebook and scenario tree after fiveiterations of the modified
Lloyd’s algorithm.

will actually know more than we do now. In other words, exactly as in example 3.2, we
utilize scenarios to ensure that the first step is made in the knowledge that more will be
known in the future.

Of course, the fact that the measured value ofx1 is not exactly equal to any of the
values used the calculation should not be of great concern tous. All we need to do is
to react to the measured value ofx1 at time 1 and recalculateu1 by the same procedure
as was used to evaluateµ0.

We call the above strategy a receding horizon closed loop policy.

6 Conclusion

This paper has described a novel approach to scenario generation aimed at complex
nonlinear model predictive control problems. We have shownthat the problem can
be casted in the framework of codebook design for vector quantization. We have also
shown how the method can be embellished in several ways, e.g.by imposing a tree
structure on the scenarios.

References

[1] D. Muñoz de la Peña, A. Bemporad, and T. Alamo. Stochastic programming ap-
plied to model predictive control. Inin Proc. 44th IEEE Conf. on Decision and
Control and European Control Conf., pages 1361 – 1366, Sevilla, Spain, 2005.

[2] A. Gersho and R. M. Gray.Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

[3] R. M. Gray and D. Neuhoff. Quantization.IEEE Trans. Inf. Theory, 44(6):2325 –
2383, 1998.

[4] R.M. Gray, J.C. Kieffer, and Y. Linde. Locally optimal block quantizer design.
Information and Control, 45:178 – 198, May 1980.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

12

Invited Paper

[5] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design.
IEEE Trans. Commun., 28(1):84 – 95, January 1980.

[6] S. P. Lloyd. Least squares quantization in PCM. Unpublished Bell Laboratories
technical note, 1957.

[7] S. P. Lloyd. Least squares quantization in PCM.IEEE Trans. Inf. Theory, IT-
28(2):127 – 135, March 1982.

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

13

