

Aalborg Universitet

Private and Flexible Proximity Detection in Mobile Social Networks

Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas; Yiu, Man Lung

Published in:
Eleventh International Conference on Mobile Data Management, MDM 2010

DOI (link to publication from Publisher):
10.1109/MDM.2010.43

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Siksnys, L., Thomsen, J. R., Saltenis, S., & Yiu, M. L. (2010). Private and Flexible Proximity Detection in Mobile
Social Networks. In Eleventh International Conference on Mobile Data Management, MDM 2010 (pp. 75-84).
IEEE Computer Society Press. https://doi.org/10.1109/MDM.2010.43

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60448491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/MDM.2010.43
https://vbn.aau.dk/en/publications/707c17e8-e7a9-41ae-a7a8-a4c3e5d37e39
https://doi.org/10.1109/MDM.2010.43

Private and Flexible Proximity Detection in Mobile Social Networks

Laurynas Šikšnys∗ Jeppe Rishede Thomsen∗ Simonas Šaltenis∗ Man Lung Yiu†
∗ Department of Computer Science

Aalborg University DK-9220, Denmark
†Department of Computing

Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

A privacy-aware proximity detection service deter-

mines if two mobile users are close to each other

without requiring them to disclose their exact loca-

tions. Existing proposals for such services provide

weak privacy, give low accuracy guarantees, incur

high communication costs, or lack flexibility in user

preferences.

We address these shortcomings with a client-server

solution for proximity detection, based on encrypted,

multi-level partitions of the spatial domain. Our ser-

vice notifies a user if any friend users enter the user’s

specified area of interest, called the vicinity region.

This region, in contrast to related work, can be of any

shape and can be flexibly changed on the fly. Encryp-

tion and blind evaluation on the server ensures strong

privacy, while low communication costs are achieved

by an adaptive location-update policy. Experimental

results show that the flexible functionality of the pro-

posed solution is provided with low communication

cost.

1. Introduction

Mobile devices with geo-positioning capabilities are
becoming cheaper and more popular [1]. By sharing
their location information (e.g., via Wi-Fi, Bluetooth,
or GPRS), mobile users can enjoy a variety of location-
based services (LBSs). An interesting type of such
services is a friend-locator service, which shows users
their friends’ locations on a map and/or helps identify
nearby friends. Friend-locators together with other
mobile social-networking services are predicted to be-
come a multi-billion dollar industry over the next few
years [2]. Several friend-locator services, like iPoki,
Google Latitude, and Fire Eagle1 are already available.

1. ipoki.com; google.com/latitude; fireeagle.yahoo.net

In existing friend-locator services, nearby friends
can be notified automatically (as in Location Alerts
of Google Latitude) or a user has to check an on-
screen map for nearby friends manually. This works
only if users agree to share their exact locations
or at least obfuscated location regions (e.g., a city
center). However, LBS users often require some level
of privacy and may even feel threatened [3] if it is not
provided. If user’s friends require complete privacy,
they have to disable their location sharing, thus also
preventing the user from finding his or her nearby
friends. Consequently, due to poor location-privacy
support, nearby-friend detection is not always possible
in existing friend-locator products.

To address this problem, a number of privacy-aware
proximity detection methods were proposed [4]–[7].
They allow two online users to determine if they are
close to each other without requiring them to disclose
their exact locations to a service provider or other
friends. The proximity message is generated when
friends approach each other closer than some prede-
fined distance threshold d, which, in some approaches,
can be defined individually for each user. For example,
in Figure 1a, user u2 is in u1’s proximity (defined by
a distance threshold d1), but user u1 is not in u2’s
proximity (defined by a distance threshold d2).

This type of proximity definition enables proximity
detection only in a non-constrained Euclidean space,
e.g., a football field with no obstacles, where, on
proximity notification, users can walk in a straight line
to each other. However, if the distance between two
users is defined as the shortest path distance (which
is not always equal to the “crow-fly” distance), then
the existing methods are not applicable. For example,
if two users are located on different banks of the river
(see Figure 1b) such that existing methods classify
them being in proximity, the generated proximity noti-
fication might not be very useful, as it might be difficult
for users to meet each other (shortest path distance

Eleventh International Conference on Mobile Data Management

978-0-7695-4048-1/10 $26.00 © 2010 IEEE

DOI 10.1109/MDM.2010.43

75

u
1

u2

d1
d

2
ddirect

d road

u

u2

1

u1

Baru2

u3u4 u5

(a) (b) (c)

Figure 1. User vicinities and proximity detection

scenarios

droad > direct distance ddirect).
Moreover, proximity defined by a distance threshold

does not allow users to choose “areas of interest”. This
could be inconvenient in some cases, e.g., if a user uses
the service to find friends in a bar (see Figure 1c),
while his friends are traveling along some nearby road
with no intention of entering the bar. In this example,
user u1 will get useless proximity notifications from
friends u3, u4, and u5. This scenario is likely if the
user has many friends and the road is traffic-intensive.

To eliminate the shortcomings of the threshold-
based proximity definition, we introduce the concept
of vicinity region. Two users are said to be in proximity
of each other if the vicinity region of one user contains
the location of the other user. The vicinity region is an
area around the user’s location that defines his “scope
of interest” and it can be understood as a parameter
of a spatial range query over the locations of his
friends. In addition, we allow the vicinity region to
be changed dynamically. In Figure 1b, user u1 would
select a vicinity region (shown in dark gray) such that
the road-network distance between every point of the
region and u1’s location is less than some threshold.
Similarly in Figure 1c, user u1 would preselect a
vicinity region matching the bar and only friend u2

would be identified as being in proximity.
In practice, such vicinity regions coud be drawn on

maps manually by the users or generated automatically
based on the shapes of the nearest spatial objects.

Existing proximity detection methods only support
static, circular-shaped, user-location-centered vicini-
ties. The challenge is to develop a proximity detection
method that supports both user location privacy and
dynamic-shape vicinities.

The contribution of this paper is the design of a
client-server location-privacy aware proximity detec-
tion service, the VICINITYLOCATOR. The proposed
solution is based on both spatial cloaking and encryp-
tion, where the central server checks users proximity
blindly knowing no spatial data. In contrast to some
related work, no peer-to-peer communication between
the users is necessary. The users are allowed to specify
individually their dynamic vicinities of any shape

and a combination of minimum location privacy and
service accuracy. To reduce communication cost, a
flexible location-update policy requires users to update
their location data only when leaving automatically
adjustable regions that shrink and expand depending
on the distance of a user’s closest friend.

The paper is organized as follows. The related work
is reviewed in Section 2 followed by our problem
setting in Section 3. The VICINITYLOCATOR and
experimental results are presented in Sections 4 and
5 respectively.

2. Related work

A lot of research on proximity-detection among
mobile users focuses on optimizing the communication
and computation costs [8] ignoring the location pri-
vacy. In this section we focus only on privacy-related
research. First, we review general location privacy
preserving techniques followed by the relevant work
on location privacy in proximity detection services.

2.1. General location privacy techniques

In the most common setting assumed in location-
privacy research, an LBS server maintains a public set
of points-of-interest (POI), e.g., gas stations. The goal
is then to retrieve from the server the nearest POIs
to the user, without revealing the user’s location q to
the server. Many location privacy solutions exist for
this setting and they can be broadly classified into two
categories: spatial cloaking and transformation.

Spatial cloaking [9]–[12] techniques generalize the
user’s exact location q into a region Q′, which is then
used for querying the LBS server. The server returns
all the results that are relevant to any point in Q′. Such
techniques ensure that the user’s position is known
to the server not more precisely than the area of Q′.
Alternatively, if the attacker knows the locations of
all users but not the identities of the querying users,
the identity of the querying user can be inferred only
with some probability, if Q′ is chosen to include the
locations of multiple users.

The transformation approaches [13], [14] map the
user’s location q and all POIs to a transformed space,
in which the LBS server evaluates queries blindly
without knowing how to decode the corresponding real
locations of the users.

In contrast, in the proximity detection problem, the
users’ locations are both query locations and points-
of-interest that must be kept secret. Thus, the existing
spatial cloaking and transformation techniques, which
assume public data sets, cannot be directly applied for

76

proximity detection. However the concepts of spatial
cloaking and transformation can be and are used in the
existing privacy-aware proximity detection approaches.

2.2. Privacy-aware proximity detection

Ruppel et al. [6] develop a centralized solution that
supports proximity detection with a certain level of
privacy. It applies a distance-preserving mapping (a
rotation followed by a translation) to convert the user’s
location q into a transformed location q′. Then, a
centralized proximity detection method is applied to
detect the proximity among the transformed locations.
However, Liu et al. [15] points out that such distance-
preserving mapping is not safe and an attacker can
easily derive the secret mapping function.

Mascetti et al. present a centralized solution
Longitude [4]. Here users apply spatial cloaking
followed by modular transformation prior to sending
their locations to the server. The applied transformation
prevents the disclosure of location information, but
introduces false proximity detections that do not occur
in our proposed approach.
Hide&Crypt, presented in [5], is a privacy pre-

serving solution which employs a filter-and-refine
paradigm. First, users spatially cloak their locations
and send them to the server. Then, the server com-
putes a minimum and maximum distances (Figure
2a) between these cloaking regions. Depending on
the specified thresholds and computed distances, the
server classifies friends being in, not-in, or possibly-in
proximity. The last case requires refinement.

In the peer-to-peer refinement step, first, the two
users map their locations and vicinity regions to a
spatial subdivision, e.g., a grid. Then, they use a
protocol for set-inclusion checking to determine if the
mapped location of one user lays inside the mapped
vicinity of the other user. In Figure 2b, this corresponds
to checking whether the ID of the dark cell (u2’s
location) is in a set of the IDs of the gray cells (u1’s
vicinity region). Using a secure two-party computation

(SMC) protocol, this is performed without the users
exposing to each other their mapped locations and
vicinities. Note that, as in most proximity detection
approaches, there is a trade-off between the proximity
detection accuracy and the communication cost. The
finer the grid used by the users is, the more accurately
the proximity is detected, but at the cost of more
communication.

Unlike our approach, Hide&Crypt does not com-
pletely hide locations of the users from the central
server, which always knows their cloaked regions. If
strong privacy is required, users are forced to perform

u
1

u
2

(a) (b)

c

u

u

3

2

1

0

0

u3

2

1

1 2 3

c

c

c

c c c c

Col/ Row Ψ

0 c0

1 c1

2 c2

3 c3

(c) (d)

Figure 2. Hide&Crypt and FRIENDLOCATOR

user-to-user communication more frequently, thus sig-
nificantly increasing the amount of client communica-
tion due to an expensive SMC protocol.

FRIENDLOCATOR by Šikšnys et al. [7] is a cen-
tralized, privacy-aware proximity detection method,
which provides strong privacy guarantees and employs
a grid-based, adaptive position-update policy to opti-
mize communication cost. Users map their locations
into four cells of a grid, and, prior to sending to
the server, encrypt them using one-to-one encryption
function shared among the users. For example, if the
encryption function Ψ is defined as in Figure 2d, the
encrypted coordinates of user u1 in Figure 2c are
(x : [c1, c2], y : [c0, c1]). By checking for matching
encrypted coordinates among the groups of four cells,
sent by different users, the server can detect that user
u1 is in proximity with u2, but u3 is not in proximity
with anyone.

Similar to the approach presented in this pa-
per, FRIENDLOCATOR employs an adaptive position-
update policy, in order to reduce the communication
cost. The policy works by tracking users in a sparse
grid while they are far away from their friends. Only
when a potential proximity is detected in a sparse
grid, the users are asked to switch to a finer grid in a
predefined list of grids.

The limitation of the FRIENDLOCATOR is a rather
low, and uncontrollable, accuracy of the proximity de-
tection. On a proximity notification, the actual distance
between the two users can be in the range from d to
d + λ, where d is the width/height of a grid cell. Here
λ = d(2

√

(2) − 1) is a service accuracy parameter
stemming from the square shape of the grid cells.

Existing privacy-aware approaches use static

77

circular-shape vicinity so they cannot directly
support the “river” and the “bar” proximity detection
scenarios (see Figures 1b,c). However some solutions,
like Hide&Crypt [5], might be adapted to support
dynamic vicinities, though current limitations will
persist and introduce new problems such as how to
efficiently update user locations and vicinities.

The VICINITYLOCATOR presented in this paper
combines the ideas of encrypted coordinates, their
blind matching at the server-side, and the adaptive
update-policy based on multi-level spatial subdivisions
(such as a list of grids) to support the flexibly defined
vicinity regions. Our solution, unlike Mascetti et al. [5]
proposal, employs only centralized architecture, where
the server knows no users’ location data.

3. Problem definition

In this section we introduce relevant notations, for-
mally define privacy requirements and the behavior of
our proximity detection service.

We assume a setting where a set of mobile users
form a social network. Every user uses a mobile device
(MD) with positioning and communication capabili-
ties, allowing them to have access to a central location
server (LS) and to determine their own locations. In the
following, the terms mobile device, user, and client are
used interchangeably. The set of all MDs is denoted
by M ⊂ N. The social network containing the users
from M is defined by the friendship relation F, where
{(u, v), (v, u)} ⊆ F if u, v ∈ M are friends.

At every time instant, every user u ∈ M de-
fines its current loc(u) and vic(u). Here loc(u) =
(loc(u).x, loc(u).y) represents u’s 2D location in Eu-
clidean space and vic(u) specifies u’s dynamic vicinity

region. The vicinity region is a region around the user’s
current location. It can have any shape and can consist
of multiple, possibly disconnected, parts.

The privacy-aware proximity detection service noti-
fies user u ∈ M if any of his friends v ∈ M|(u, v) ∈ F

enters u’s vicinity region. More specifically, u’s friends
are classified to be in proximity or not by checking the
following conditions:

1) if loc(v) ∈ vic(u), user v is in u’s proximity;
2) if distLV (loc(v), vic(u)) > λ, user v is not in

u’s proximity;
3) if distLV (loc(v), vic(u)) ≤ λ, the service can

freely choose to classify v as being in u’s prox-
imity or not.

Here distLV (l, v) denotes a shortest Euclidean dis-
tance between location l and vicinity region v. If l
is inside v then distLV (l, v) = 0. The λ ≥ 0 is

the service accuracy parameter. It introduces a degree
of freedom in the detection of location-to-vicinity
intersection. Note that small values of λ correspond to
higher accuracy. When the classification is complete,
u is provided with a set of friends that are now
classified as being in proximity while they were not in
proximity before. Every user can adjust their desirable
service accuracy level λ and the service must minimize
communication cost for a given λ setting. Intuitively,
more communication is needed for higher accuracy.

In addition to this functionality, for every user u ∈
M, the service has to satisfy the following location
privacy requirements:

• The exact location of u is not disclosed to any
party (e.g., other user or LS).

• User u allows nobody else but his friends to detect
him in their vicinities.

The following section details our proposed proxim-
ity detection service that meets these requirements.

4. Privacy-aware proximity detection

In this section we introduce basic concepts em-
ployed in our proximity detection service, followed by
client and server algorithms.

4.1. Proximity detection idea

This section describes how the LS can locate users
in their friend’s vicinity without them disclosing their
locations and vicinities.

Similarly to FRIENDLOCATOR [7], where all users
in M share a list of grids, we let all users in M

share a list of granularities, denoted by Γ. A single
granularity Γ(l) (l = 0, 1, 2, ...) specifies a subdivision
of the spatial domain into a number of non-overlapping
regions, called granules [5]. The granularity’s index
l ≥ 0 in Γ is termed the level of granularity. Every
granularity Γ(l) satisfies the following three properties:

• Every granule g ∈ Γ(l) is identifiable by an index
id(g) ∈ N.

• Every granule g ∈ Γ(l) has a bounded, not higher
than L(l), size, i.e., ∀g ∈ Γ(l), MaxDist(g) ≤
L(l), where MaxDist(g) is the maximum Eu-
clidean distance between any two points in g.

• Granule size bound L(l) at level l > 0 is always
lower than at level l − 1, i.e., L(l) < L(l − 1).

• Every granule at level l > 0 is fully contained by
some granule at level l − 1.

Figure 3a visualizes a valid granularity list, where
uniform grids are used as granularities and grid cells
are used as granules at levels 0 to 2. The “top-view”

78

Level 0

Level 1

Level 2

0 25 50

25

50

u
1

u2

e211 e987

e342 e433 e034

e123

(a) (b) (c)

Figure 3. The valid list of granularities and the

behavior of the granularity-based classifier

projection of this list is provided in Figure 3b. Solid,
dashed, and dotted lines depict the boundaries of cells
at levels 0, 1, and 2 respectively. The figure also shows
that maximum distances between any two points of
cells c0, c1, and c2 at levels 0, 1, and 2 are respectively
70.71, 35.36, and 17.68. These values correspond to
L values of levels 0, 1, and 2.

The list of granularities Γ is globally defined in the
system and fixed for all clients. We let all users in M

share an encryption function Ψ. Function Ψ : N 7→ N

is a one-to-one mapping that is used to map the index
id(g) of some granule g to the corresponding encrypted
representation. In practice, Ψ can be implemented as a
keyed secure hash function (e.g., SHA-2) such that it
is computationally infeasible for the attacker to break.
A key of the hash function can be distributed among
clients of M in a peer-to-peer fashion or with a help
of a trusted third-party server.

When Ψ is known by clients, but not by LS, each
client can use Ψ to encrypt indices of granules that
enclose their location and vicinity at some granularity.
Encrypted representation of these indices can be com-
pared on LS without the need to disclose indices of
granules and consequently the vicinity or location of
any user. In particular, assume that two friends u1, u2

use granularity of some level l (see Figure 3c). The
user u2 finds the granule gl, containing his location,
applies Ψ on its index id(gl) and sends the encrypted
representation, e123, to LS. Similarly user u1 finds all
the granules intersecting his vicinity region gv, applies
Ψ on their indices and sends their encrypted represen-
tations, {e342, e433, e034, e211, e987, e123}, to LS.
If encrypted index of u2’s location granule, e123, can
be found in the set of encrypted indices of user u1

vicinity, then we can conclude that user u2 is in u1’s
vicinity. We term such location-vicinity intersection
detection approach granularity-based classifier. Based
on the knowledge about the list of granularities, the
following lemma can be proven.

Lemma 4.1: The granularity-based classifier can be
used to classify one user as being in another user’s
proximity or not with the accuracy parameter λ =

L(l), defined in Section 3.
Proof: According to Section 3, in order for user

u2 to be in u1’s proximity or not in proximity, re-
spective conditions distLV (loc(u2), vic(u1)) ≤ λ and
loc(u2) /∈ vic(u1) must hold. Because Ψ is a one-to-
one mapping, if the encrypted index of u2’s location
granule gl is in the set of encrypted indices of u1’s
vicinity-intersecting granules gv, we know that granule
gl is in a set of granules gv. This in turn means that
granule gl both encloses u2’s location loc(u2) and in-
tersects with u1’s vicinity vic(u1). Utilizing properties
of granularity at level l, we know that the maximum
Euclidean distance between any two points within
granule gl is not more than L(l), i.e., MaxDist(gl) ≤
L(l). Thus, distLV (loc(u2), vic(u1)) ≤ L(l), L(l) =
λ. Similarly, it can be proven that if gl cannot be found
in gv, then loc(u2) /∈ vic(u1).

According to Lemma 4.1, the λ value depends on the
function L and the granularity level l. Note that higher
levels provide higher proximity detection accuracy, but
the number of vicinity-intersecting granules increases
causing higher client-server communication. Thus, we
let every user u ∈ M select a constant Lmax(u) that
controls the functionality of the system as follows:

• User u will never use granularities of higher
than Lmax(u) levels, thus limiting his worst case
communication cost.

• User u lets other users to detect him in a prox-
imity with no higher than λ = L(Lmax(u))
accuracy. Thus, Lmax(u) can be used to specify
u’s minimum location-privacy requirements with
respect to u’s peers.

• User u will be able to detect friends being in his
proximity with no higher than λ = L(Lmax(u))
accuracy.

• Every encrypted coordinate of the user that is
sent to LS will have no higher than L(Lmax(u))
resolution, i.e., if an attacker breaks the encrypted
coordinate, then deciphered value will correspond
to a cloaking region with maximum distance
between two points no lower than L(Lmax(u)).

We assume that users can freely select their Lmax

at runtime and upload it to LS.
The introduced granularity-based classifier is in-

tegrated into our proximity detection service which
is defined using client and server algorithms in the
following section.

4.2. Client and server algorithms

We define our proximity based service by providing
handler algorithms for different type of software events
on MD and LS. In particular:

79

Message
Type

Args Sender Description

Mel u, l,
g∗

l
,

g∗

v

MD MD with id equal to u sends this
type of message to LS in order to
report its encrypted location g∗

l
and

the vicinity g∗

v
for level l.

Mprox v, l LS LS sends this type of message to
MD to inform that a friend v is
within user’s vicinity at granularity
level l.

MLevInc l LS LS sends this type of message to
MD to make it increase its level to
l.

Table 1. Client and server message types

Algorithm 1: MD’s event handlers
Data:
u ∈M - current user ID.
loc(u) - user’s current location.
vic(u) - user’s vicinity region.
GS - Stack of 2-tuples 〈gl, gv〉, where positions on the stack
correspond to levels. gl is loc(u) granule index at level l. gv

is a set of indices of granules intersecting vic(u) at level l.
Lmax(u) - user specified highest granularity level.
mapLocationToGranularity(Level number level)1

gl ← id(g)|g ∈ Γ(level) : loc(u) ∈ g ;2

gv ← {id(g)|∀g ∈ Γ(level) : g ∩ vic(u) 6= ∅};3

return (gl, gv);4

pushAndSend()5

(gl, gv) ← mapLocationToGranularity(|GS|);6

Push 〈gl, gv〉 to stack GS;7

Send to LS Mel(u, |CS| − 1, Ψ(gl), {Ψ(g)|∀g ∈ gv});8

onLocationChange()9

wasPopped← false10

while |GS| > 0 and11

top(GS) 6= mapLocationToGranularity(|CS| − 1)
do

Pop from stack GS;12

wasPopped← true;13

if wasPopped or |GS| = 0 then14

pushAndSend()15

onMessageReceived(MLevInc, Level l)16

while |GS| ≤ l and |GS| ≤ Lmax(u) do17

pushAndSend()18

- onMessageReceived(msg, arg) handler is exe-
cuted on MD or LS each time a message of type msg
with arguments arg is received. A summarizing list of
employed messages with their arguments is presented
in Table 1.

- onLocationChange() A handler executed on MD,
each time its geographical location changes.

Algorithms 1 and 2 specify the behavior of MD
and LS. They contain local data definitions, helper
functions, and main event handlers.

A mobile device u remembers its last sensed geo-
graphical location loc(u), and, for granularity levels

l = 0..(|GS| − 1), stores its location and vicinity
mappings (indices of location and vicinity granules) in
the stack GS (see Algorithm 1). Once MD changes its
location, the onLocationChange handler is triggered.
If user’s location change invalidates current location or
vicinity granules at levels l = (|GS|−1)..0, MD pops
respective elements from GS, reducing his current
level (|GS|−1). This corresponds to zero or more u’s
switches from finer to coarser granularities. If the cur-
rent level is reduced, pushAndSend is called, which
computes the new location and vicinity mappings for
level |GS| (current + one level) and sends them to LS.

Client granularity level shifts are shown in Figures
4a and 4b, where user’s u1 vicinity and user’s u2

current location mapping into a list of granularities
(grids) are visualized at consecutive time points. Note,
that u1’s current location and u2’s vicinity mappings
are not shown. User u1 changes his location and shifts
from level 1 to level 0 (Figure 4a and 4b) because
his location change invalidates his vicinity mappings
at levels 1 and 0. In contrast, u2’s location change
causes no changes of location mappings at levels 1
and 0, thus he stays at level 1.

For every user u, LS stores GL(u), which is an en-
crypted version of the user’s GS. It contains encrypted
representations of u’s location and vicinity granule
indices for levels 0..GL(u) − 1. The u’s stack GS is
synchronized with GL(u) with the help of Mel mes-
sages. When LS receives this type of message, handler
onMessageReceived is executed. It updates GL(u)
(lines 2–3 in Algorithm 2) and checks if any of u’s
friends entered his vicinity or if user u entered any
of his friends’ vicinities. This is checked by searching
if encrypted location granule g∗l can be found in the
set of encrypted vicinity granules g∗

v
for some friend

v at some level lm. The level lm is the highest level,
available in GL(u) and GL(v) that does not exceed
Lmax(u) and Lmax(v) (line 6). If g∗l is found in g∗

v
but

lm is lower than Lmax(u) and Lmax(v), the proximity
detection accuracy can still be increased, as Lmax

values specified by the users are not yet reached. Thus,
LS sends MLevInc to one or both users, asking them to
increase their current levels (lines 17–21). Otherwise,
if g∗l is found in g∗

v
and lm is equal to Lmax(u) or

Lmax(v), LS sends Mprox message, informing the user
about a friend in his vicinity (lines 11–16).

To show the working of the algorithms, Figure 4
provides an example, where Lmax(u1) = Lmax(u2) =
2. In Figure 4a, the server finds that g∗l of user
u2 lays in g∗

v
of user u1 at level 0 and, because

0 = lm is lower than Lmax(u1) or Lmax(u2), it
sends MLevInc messages to both users asking them to
increase their current levels. When they both deliver

80

Figure 4. Example of level changes and proximity

detection

level 1 encrypted coordinates, LS no longer finds g∗l
in g∗

v
and nothing happens until one of the users starts

moving. When u1 sends his location data for level 0
in Figure 4b, the lm is set to 0 and because it is lower
than Lmax(u1) or Lmax(u2) and user u2 is at level
1 already, only user u1 is asked to switch to level 1.
When this is done and LS finds g∗l in g∗

v
also at level 1

in Figure 4c, it asks both users to increase their levels
as 1 = lm is still lower than Lmax(u1) or Lmax(u2).
Finally, when two users deliver their encrypted location
data to LS for level 2 in Figure 4d, the user u1 is
informed about u2’s proximity with message Mprox.

Note that, similarly to FRIENDLOCATOR [7], the
presented algorithms implement a kind of adaptive
region-based location update policy. The clients update
their encrypted location data on LS only when location
change triggers the change of location or vicinity
granularity mappings at their current levels. If a user
is far away from his friends, then he or she stays at
a low-level granularity with large cells, which results
in few location updates as the user moves. Only when
the user approaches one of his friends is he asked to
switch to higher levels with smaller granules. Thus, at
a given time point, the user’s current communication
cost is not affected by the total number of his or her
friends, but by the distance of the closest friend.

Next we review several optimizations that can fur-
ther reduce client communication and server computa-
tion costs, followed by a technique to minimize privacy
leakage if encryption function Ψ is intercepted by an
adversary.

Algorithm 2: LS event handler
Data:
M - a set of users;
F - a friendship relation that represents a social network.
Lmax(u)∀u ∈M - highest allowed granularity level
specified by user u.
GL(u)∀u ∈M - a stack of 2-tuples 〈g∗

l
,g∗

v
〉, where every

2-tuple corresponds to level l. For level l the g∗
l

is an
encrypted index of granule containing u’s location. The g∗

v
is

a set of encrypted indices of granules, that intersect u’s
vicinity.
P(u) ⊆M - a set of u ∈M’s currently proximate friends.
onMessageReceived(Mel, User u, Level l, g∗

l
,g∗

v
)1

while |GL(u)| > 0 and |GL(u)| > l do2

Pop from stack GL(u);3

Push 〈g∗
l
,g∗

v
〉 to stack GL(u);4

foreach v ∈M such that v 6= u and |GL(v)| > 05

and (u, v) ∈ F do

lm ← min(|GL(u)| − 1, |GL(v)| − 1, Lmax(u),6

Lmax(v));
vInU ←7

get(GL(v), lm).g∗
l
∈ get(GL(u), lm).g∗

v
;

uInV ←8

get(GL(u), lm).g∗
l
∈ get(GL(v), lm).g∗

v
;

if vInU = true or uInV = true then9

if lm = Lmax(u) or lm = Lmax(v) then10

if vInU and v /∈ P(u) then11

insert v into P(u);12

send Mprox(v, lm) to MD u;13

if uInV and u /∈ P(v) then14

insert u into P(v);15

send Mprox(u, lm) to MD v;16

else17

if lm = |GL(u)| − 1 then18

send MLevInc(lm + 1) to MD u19

if lm = |GL(v)| − 1 then20

send MLevInc(lm + 1) to MD v21

if vInU = false then22

remove v from P(u);23

if uInV = false then24

remove u from P(v);25

4.3. Incremental update optimization

According to the presented algorithms, even if only
few of vicinity region granules change due to the user’s
movement, the user’s encrypted data must be updated
on LS by sending an Mel message. Thus, in most
cases, user’s two consecutive Mel messages would
contain duplicated encrypted vicinity region granules.

The communication can be reduced by enabling the
so called incremental updates (IU). We introduce a
new type of message MelUpd. In addition to items
u, l, g∗l from Mel, it contains g∗

vDel
, g∗

vIns
, where

g∗

vDel
, g∗

vIns
define encrypted granules that must be

deleted and inserted on LS in order to update u’s
set of encrypted vicinity granules for level l. More

81

!È
!È

g
vIns

Uts=1
U ts=0

g vDel

!È

R
U1

(a) (b)

Figure 5. IU and RF optimizations

precisely, if m1 and m2 are two consequent messages
of type Mel such that m1.u = m2.u and m1.l = m2.l,
then a client may choose to send a message m3

of type MelUpd instead of m2, where m3.g
∗

vDel
=

m1.g
∗

v
\ m2.g

∗

v
and m3.g

∗

vIns
= m2.g

∗

v
\ m1.g

∗

v
.

Figure 5a visualizes locations, vicinities, and vicinity-
intersecting granules of user u at two consequent time
points 0 and 1. Darkened cells show gvDel and gvIns

sets. Note, that introduction of m3 helps reducing
communication only if |m3.g

∗

vDel
| + |m3.g

∗

vIns
| <

|m2.g
∗

v
|.

Our presented client and server algorithms (See
Algorithm 1, 2) can be easily modified to support
incremental updates. As presented in Section 4.2, once
a user goes from higher to lower levels (switches into
coarser granularity), granules of active level are re-
moved from the stacks GS and GL, without possibility
to reuse them. The idea is to preserve these granules
on both the client and the server such that it would be
possible to update them with incremental updates.

The impact of incremental updates on client com-
munication is evaluated in Section 5.

4.4. Road-network filtering of granules

The VICINITYLOCATOR’s ability to handle user
vicinities of arbitrary shapes can also be used to
minimize the amount of granules needed to be sent
to the server when users move on a road network.
Based on this assumption, we propose a road network

filter (RF) for circular vicinity regions defined by a
Euclidean distance threshold.

When RF is enabled, users use the intersection of
a location-centered circle with road segments as their
vicinities. An example of such a vicinity mapped into
granules is shown in Figure 5b as dark cells. Note
that, for simplicity, we use Euclidean distance and do
not consider road-network distance based vicinities as
shown in Figure 1b.

4.5. Grouping of users

As described in Section 4, all users share a single
encryption function Ψ. Security of Ψ directly influ-
ences the location privacy of all users in the system.
An adversary knowing Ψ can easily decipher encrypted
granules of a user’s current location and his vicinity.
It is difficult to ensure that function Ψ will stay secret
in case of a high number of users of the service.

In order to limit the number of affected users in case
of a leaked Ψ, grouping of users can be enforced. The
idea is that all users in the system are grouped into
possibly overlapping groups, so that each user is put
into one or more groups. Both friends and non-friends
can belong to the same group, but if two users are
friends, they must be in at least one common group.
Each such group G is assigned a distinct ΨG function
and it is used by all members of G. Then, if such
ΨG is leaked, only the location privacy of the users in
group G is compromised. Note also that, even in case
of a leaked Ψ, users’ minimum privacy requirements,
specified by Lmax, are still guaranteed.

To support user groups, the client and server algo-
rithms should treat each group individually such that
clients report their encrypted data for all groups that
they are part of and the server independently analyzes
encrypted data for every distinct group. We envision
user grouping and distribution of the encryption func-
tions as an automated process that is transparent to
the users. Design of user grouping strategies is an
interesting future research direction.

5. Experimental results

In this section, we present the results of performance
experiments, demonstrating the efficiency and real-
world applicability of the proposed algorithms. We
have implemented a prototype of VICINITYLOCATOR,
as well as Hide&Crypt [5], and FRIENDLOCATOR

[7] for comparison. For simplicity in comparing the
three implementations, Γ contains granularities as grids
with uniform squares, where edge length B(l) depends
on level l. We set B(l) = L0 ·2−l where L0 is the cell
width at level 0. L(l) = B(l)

√
2 in this case.

Data generation. The generator [16] was used to gen-
erate data sets based on the German city of Oldenburg.
The data sets cover an area of 26915× 23572 units2,
corresponding to 14 × 12.26 km2, and they contain
location records for each user at each time stamp.
The duration between two consecutive timestamps is 1
minute and the average speed of the users is 52 km/h
(i.e. 1670 units per time stamp).

82

10
0

10
1

10
2

10
3

10
4

 5 6 7 8 9 10

G
ra

n
u

le
s

Lmax

Granules sent for one user and timestamp

No Optimization
IU & RF

IU
RF

10
0

10
1

10
2

10
3

10
4

10
5

 0 2000 4000 6000 8000 10000 12000

G
ra

n
u

le
s

Radius

Granules sent for one user and timestamp

Not Optimized
IU & RF

IU
RF

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

10
3

10
4

M
e

s
s
a

g
e

s

Level Zero Cell Size

Messages sent/received, for one user and timestamp

HC10 users

HC5 users

5 VL users
10 VL users

5 FL users
10 FL users

Peer−to−Peer
Client−Server

 0

 50000

 100000

 150000

 200000

 250000

 300000

H
C

V
L

F
L

H
C

V
L

F
L

H
C

V
L

F
L

M
es

sa
g

es
 P

er
 T

im
e

S
ta

m
p

Number of Users
25000 50000		 75000		

(a) (b) (c) (d)

Figure 6. (a) Effect of increasing Lmax. (b) Granules sent when increasing radius of vicinity. (c) Messages

sent when increasing L0, keeping B(Lmax) constant. (d) Server messages for one timestamp.

For road network filter (see Section 4.3), in order
to realistically simulate real roads, the road edges
are represented as polygons. We choose the width of
polygons based on road types.

Experimental setting. Hide&Crypt, FRIENDLOCA-
TOR, and VICINITYLOCATOR share a number of set-
tings which we, unless otherwise stated, set to default
values: the number of users is set to 50000; the number
of timestamps is set to 40 (producing a workload of 2
million location records); users are partitioned into dis-
joint groups, each group containing 250 users. Within
the same group, the friend relationships between users
form a complete graph.

Default cell size L0 is 12800 units and the max-
imum level allowed by users, denoted by Lǫ and
Lmax for FRIENDLOCATOR and VICINITYLOCATOR

respectively, is set to 6, yielding cell side lengths of
200 units at this level. In the VICINITYLOCATOR, the
vicinity region is circular, and the default radius is 500,
corresponding to 260 meters.

We consider two cases for Hide&Crypt: minimum
privacy and total privacy. For min. privacy we set Gsp

and Gu equal to 200 to mirror the same minimum user
location privacy as in VICINITYLOCATOR & FRIEND-
LOCATOR. For maximum privacy we set Gsp = 80000
to force Hide&Crypt to detect proximity in peer-
to-peer mode, revealing no spatial information to the
server.

Experiments. We focus mainly on the performance
parameter of transmitted messages and granules since
they are important parameters in real world usage as
users will have to pay for data when using the service.

In Figure 6a, we show the cost of increasing the
accuracy of proximity detection. For all users we
change Lmax that consequently sets the accuracy (λ
= L(Lmax)). The experiment was run with no opti-
mizations, with incremental updates (IU), with road
network filter (RF), and both the road network filter
and the incremental updates (IU & RF). Note the

logarithmic scale on the y-axis. At level 10, the IU
and RF techniques respectively save a user 50% and
80% of the granules he would have to send with no
optimization. When IU and RF are combined, less
than 10% of the granules are sent compared to the
unoptimized version of VICINITYLOCATOR.

Figure 6b shows the effect the increased radius of
the user’s vicinity has on the number of granules sent.
When using RF, there is a significant reduction which,
as expected, is larger when the radius increases. This is
because there are more road segments to work on. The
RF and IU combination performs best, dramatically
reducing the granule count. The amount of messages
does not change for either of the options.

In the next set of experiments we investigate the
setting of an optimal cell width at level 0, the L0.
Note that changing L0 gives the effect that there will
be fewer or no level shifts (but maybe more cell
boundary crossings) in order to have the same prox-
imity detection accuracy. To this end we vary L0 and
Lmax, keeping B(Lmax) = 200 and user’s vicinity
radius equal to 200 throughout the tests (Figure 6c).
We compare against FRIENDLOCATOR with equivalent
precision, where setting of ǫ is equal to 200. We plot
the graph for 5 and 10 users in the system, setting all
users in one group for each test. We run Hide&Crypt
prototype with δA = 200 to demonstrate what a
user would pay in terms of messages, when a com-
plete privacy or VICINITYLOCATOR-equivalent level
of minimum privacy is required. The graph shows
results of Hide&Crypt with minimum privacy only.
When maximum privacy is required numbers for 5/10
users are 8.2/14.88 messages. The optimal L0 for
VICINITYLOCATOR or FRIENDLOCATOR is the low-
est point on the graphs. The graphs show that, with
the right settings, VICINITYLOCATOR is competitive
with Hide&Crypt in terms of transmitted messages
even when the privacy of Hide&Crypt is set at the
minimum (the two horizontal lines).

Figure 6d shows the total amount of messages sent

83

by 25000, 50000, and 75000 users for one timestamp.
Light bars correspond to client-server messages, and
dark bars to peer-to-peer messages of Hide&Crypt
with minimum privacy. It is clear that Hide&Crypt,
even with minimum privacy (the communication is
much higher when complete privacy is required), in-
curs a higher amount of messages compared to VICIN-
ITYLOCATOR or FRIENDLOCATOR due to expensive
peer-to-peer communication. VICINITYLOCATOR in-
curs reasonable amount of communication consider-
ing the flexibility it offers. Also note that VICIN-
ITYLOCATOR knows no users’ spatial data unlike
Hide&Crypt, which knows the cloaking regions of
all users.

6. Conclusion

In this paper we develop the VICINITYLOCATOR,
a client-server solution for detecting proximity by
checking for inclusion of one user’s location inside
another user’s vicinity, offering users control over both
location privacy and accuracy of proximity detection.

The client maps its location into a granule and
finds all granules contained in his vicinity, which
can be shaped arbitrarily. The client then encrypts its
location- and vicinity- granules and sends them to the
server, which checks for proximity by testing for the
inclusion of an encrypted location granule within a set
of encrypted vicinity granules of a different user.

Experimental results show that VICINITYLOCATOR

is communication-efficient for real world applications
and it is scalable to a high number of users. Our
presented optimization techniques work very well and,
in some cases, cut the amount of transferred data by ap-
proximately 90%. VICINITYLOCATOR’s features such
as irregular shaped vicinities and adjustable accuracy
does not introduce significant communication overhead
when compared with the alternative approaches.

An interesting future research direction is to explore
our approach in a road network, such that the user’s
vicinity is defined by all paths accessible from his
current location within a given threshold of network
distance.

References

[1] Canalys.com, “Gps smart phone shipments overtake
pnds in emea,” November 2008. [Online]. Available:
http://www.canalys.com/pr/2008/r2008111.html

[2] ABIresearch, “Location-based mobile social network-
ing will generate global revenues of $3.3 billion
by 2013,” August 2008. [Online]. Available: http:
//www.abiresearch.com/abiprdisplay.jsp?pressid=1204

[3] “Stalk your friends with google,” 2009. [Online]. Avail-
able: http://features.csmonitor.com/innovation/2009/02/
04/stalk-your-friends-with-google/

[4] S. Mascetti, C. Bettini, and D. Freni, “Longitude:
Centralized privacy-preserving computation of users’
proximity.” in Secure Data Management, 2009, pp.
142–157.

[5] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and
S. Jajodia, “Privacy-aware proximity based services,”
in MDM, 2009, pp. 31–40.

[6] P. Ruppel, G. Treu, A. Küpper, and C. Linnhoff-Popien,
“Anonymous User Tracking for Location-Based Com-
munity Services,” in LoCA, 2006, pp. 116–133.

[7] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu,
and O. Andersen, “A Location Privacy Aware Friend
Locator,” in SSTD, 2009, pp. 405–410.

[8] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and
K. Wampler, “Buddy Tracking - Efficient Proxim-
ity Detection Among Mobile Friends,” in INFOCOM

,

2004, pp. 298–309.

[9] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C.
di Vimercati, and P. Samarati, “Location Privacy Pro-
tection Through Obfuscation-Based Techniques,” in
DBSec, 2007, pp. 47–60.

[10] M. Duckham and L. Kulik, “A Formal Model of
Obfuscation and Negotiation for Location Privacy,” in
PERVASIVE, 2005, pp. 152–170.

[11] M. Gruteser and D. Grunwald, “Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking,” in USENIX MobiSys, 2003, pp. 31–42.

[12] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The
New Casper: Query Processing for Location Services
without Compromising Privacy,” in VLDB, 2006, pp.
763–774.

[13] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi,
and K.-L. Tan, “Private Queries in Location Based Ser-
vices: Anonymizers are not Necessary,” in SIGMOD

,

2008, pp. 121–132.

[14] A. Khoshgozaran and C. Shahabi, “Blind Evaluation of
Nearest Neighbor Queries Using Space Transformation
to Preserve Location Privacy,” in SSTD, 2007, pp. 239–
257.

[15] K. Liu, C. Giannella, and H. Kargupta, “An Attacker’s
View of Distance Preserving Maps for Privacy Preserv-
ing Data Mining,” in PKDD, 2006, pp. 297–308.

[16] T. Brinkhoff, “A Framework for Generating Network-
Based Moving Objects,” GeoInformatica, vol. 6, no. 2,
pp. 153–180, 2002.

84

