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Abstract:
This paper proposes a novel reconfigurable control design approach for a class of nonlinear
systems using a piecewise affine system approximation. The piecewise affine model is obtained
in an on-line manner through linearizing the considered nonlinear system along system’s real-
time trajectory. The H∞ control synthesis is employed for the local reconfigurable control
design. A supervisory framework is used to determine the updating of the affine system models,
the reconfiguration module and the possibly nonlinear state estimation as well. The proposed
method is illustrated in a ship propulsion system and the results showed the power and flexibility
of the proposed method for nonlinear reconfigurable control design. The payoff of these benefits
is the computation load and complexity of the reconfigured system.

1. INTRODUCTION

The objective of control reconfiguration is to recover the
faulty system’s operation or functionality to the same
or degraded but acceptable level as that of the nominal
system (Blanke et al. [2003], Patton [1997]). The design
of reconfigurable control for nonlinear systems is always
a challenging topic (Kanev and Verhaegen [2000], Yang
and Stoustrup [2000]). In recent decades there has been
increasing interest in the use of so-called Multiple Model
Approaches (MMAs) to handle complicated nonlinear sys-
tems (Chang and Davison [1999], Morse [1997], Murray-
Smith and Johansen [1997]). Basing on the divide-and-
conquer strategy, a typical MMA partitions the entire
operating range of the considered system into a set of local
operating regimes, where each of them is associated with a
locally valid model or controller, so that the analysis and
design of controls for these local regimes could be easier
(Murray-Smith and Johansen [1997]). The switches of
different models and/or controllers need to be supervised
by a proper logic diagram (Chang and Davison [1999],
Morse [1996]). For many cases, the development of this
logic program needs to be coordinated with the design
of local controls so as to guarantee the global system’s
stability and performance (Morse [1997]).

As one of early research work using multiple linear mod-
els for control reconfiguration design, Huang and Sten-
gel [1990] proposed a Multiple Model Adaptive Control
(MMAC) method. The main idea of this method is that
all potential fault scenarios need to be defined as a set
of fault hypotheses. Each fault hypothesis corresponds
to one candidate model and one corresponding control
mode. During the system operation, the control mode
corresponding to the model with the highest likehood will

be selected for controlling the current system operation.
However, the MMAC method can be very complicated
for a large number of faults. Furthermore, this method
can only handle anticipated fault scenarios. Nevertheless,
the acquisition and coordination of these local models,
especially when some linear models are not priori, are still
in a quite ad hoc situation. From the systematical point of
view, Sontag [1981] proposed a Piecewise Linear (PL)
approach for handling nonlinear control system design
using a set of linear maps. However, how to apply this
theoretical approach into practice is not clear yet. Morse
[1996] introduced a supervisory framework for coordinat-
ing switches of a set of linear controllers into a feedback
loop, so that the output of the controlled system tracks
a set-point. Chang and Davison [1999] extended Morse’s
framework into the MIMO consideration. However, both
approaches are under assumption that the system, which
need to be controlled, is modeled as a linear system, and
these linear controllers and the model known beforehand.

This paper proposes a reconfigurable control design ap-
proach for a class of nonlinear systems using an on-
line piecewise affine system approximation. The piecewise
affine system model has been extensively studied and used
in hybrid system research (Bemporad et al. [2000], Collins
and van Schuppen [2004]). Comparing with these exist-
ing work, the difference of the proposed method is that
the piecewise affine model are not known beforehand. it
can only be obtained in a on-line manner, i.e., through
linearization of the considered nonlinear system along the
system’s real-time trajectory. A local-region reconfigurable
control can be designed using some linear reconfigurable
control design methods based on a corresponding affine
system model which is obtained around some specific tra-
jectory point. Then, a supervisory framework is needed so
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Fig. 1. considered Reconfigurable Control Configuration

as to determine the updating of the affine system model,
the reconfiguration module and possibly nonlinear state
estimation as well. Comparing with our previous work
Yang et al. [2000], the contribution here is that the robust
control mixer method proposed in (Yang and Stoustrup
[2000], Yang et al. [2007]) is employed for the local recon-
figurable control design, so that the reconfiguration mod-
ule is extended to be a dynamic-type, and the constant bias
in the piecewise affine system model can be systematically
handled by H∞ control design by regarding them as system
disturbances. The proposed method is more powerful and
flexible than the previous work. However, the payoff of
these benefits is the complexity of the reconfigured system.

The rest of this paper is organized as: Section 2 formu-
lates the reconfigurable control design problem; Section 3
presents some theoretical results regarding the piecewise
affine approximation; Section 4 briefs the robust reconfig-
urable control method; Section 5 states the model updat-
ing algorithm; Section 6 illustrates the application of the
proposed approach in a ship propulsion control system;
Finally Section 7 concludes the paper.

2. PROBLEM FORMULATION

Consider a class of nonlinear control system, denoted as
Σθ

nonp, described by a general form:

Σθ
nonp :

{
ẋ(t) = f(x(t), u(t), θ(t)), x(t0) = x0

y(t) = g(x(t), u(t), θ(t))
(1)

where x(t) ∈ X ⊆ Rn is the state vector, x0 is the
initial state, u(t) ∈ U ⊆ Rm is the input (controllable)
vector, y(t) ∈ Rr is the output vector and θ(t) ∈ Rp

is the fault parameter vector, meaning that each entry
θi(t), i = 1, · · · , p in this vector represents one specific
fault scenario in the considered system. If the system is
fault-free, there is θ(t) = 0. Vector field f : X × U ×
Rp �→ X and g : X × U × Rp �→ Rr both are continuous
and differentiable functions w.r.t. x and u, respectively.

In the following, we denote the nominal system as Σθ
nonp

with output yn(t) and dynamical fields fn and gn, respec-

tively. Denote the faulty system as Σ
θf
nonp when some fault

occurs in the considered system. Suppose θ(t) �= 0 for
t ≥ tf > 0 represents the situation that a fault occurs at
instant tf . Furthermore, we assume that the fault vector
θ(t) can be provided by some on-line fault detection and
diagnosis mechanism in this work.

Suppose that we are not allowed to change the existing
system structure and parameters except adding some extra
configuration for control reconfiguration. This situation is
quite common when we want to improve some existing
industrial systems to be fault tolerant ones. Normally

the industry is reluctant to completely change their sys-
tems which development and deployment could be very
cost and time consuming. Nevertheless, to enhance the
system’s capability or reliability by adding extra compo-
nents/subsystems into the existing systems sounds more
simple and acceptable to industry. Thereby we assume that
an extra feedback control module denoted as K in Fig.1 is
allowed to be added into the already-existing control sys-
tem, denoted as Σθ

nonp, for control reconfiguration purpose.
K is referred to as Reconfiguration Modules (RM) in this
paper. Denote the feedback control system as Σθ

non. Then,
a reconfigurable control design problem can be proposed
as a suboptimal problem, i.e.,

To synthesize compensator K such that the reconfigured
closed-loop system, denoted as:

Σcr
non :

{
ẋcr(t) = fcr(xcr(t), uref (t), θf ,K),
ycr(t) = gcr(xcr(t), uref (t), θf ,K),

(2)

satisfies ∀(x, uref ) ∈ X × U , there is

J(x, uref , θf ,K) < αx,uref
, (3)

where

J=̂βx,uref
‖gn(x, uref , 0) − gcr(x, uref , θf )‖2 (4)

where αx,uref
is some given constant used to evaluate

the reconfiguration quality, and βx,uref
is some weighting

function depending on operating point (x, uref ).

In the following, the RM K will be synthesized using the
model matching strategy (Huang and Stengel [1990], Yang
et al. [2007]) based on an on-line piecewise affine system
approximation. The piecewise affine model is obtained
through linearization of the considered nonlinear system
along the system’s real-time trajectory. A supervisory
control is developed for the updating of the affine system
model and module K.

3. PIECEWISE AFFINE APPROXIMATION

In the following the fault vector θ is treated as a system
parameter instead of a system state. Firstly, consider
the nonlinear system Σθ

nonp described by (1) within an
open ball-type neighborhood, denoted as B(x0, u0), of one
operating point (x0, u0) ∈ X×U with radius δ0. according
to the nonlinear system theory (Isidori [1995]), there is:

Definition 1: The θ-parameterized affine system, denoted
as Σθ

linp, is called the Local Affine Approximation (LAA)

of the nonlinear system Σθ
nonp within B(x0, u0), if the

θ-parameterized vector functions f(x, u, θ) and g(x, u, θ)
both are C1 differentiable w.r.t. x and u at point (x0, u0),
respectively, where

Σθ
linp :

{
ẋlin = A0(θ)xlin + B0(θ)u + φ0(θ),
ylin = C0(θ)xlin + D0(θ)u + ψ0(θ),

(5)

with xlin(t0) = x0 and (xlin, u) ∈ B(x0, u0)), and
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Fig. 2. Affine Approximation with reconfiguration module

A0(θ) =
∂f(x, u, θ)

∂x
|(x0,u0);

B0(θ) =
∂f(x, u, θ)

∂u
|(x0,u0);

C0(θ) =
∂g(x, u, θ)

∂x
|(x0,u0);

D0(θ) =
∂g(x, u, θ)

∂u
|(x0,u0);

φ0(θ) = f(x0, u0, θ) − A0(θ)x0 − B0(θ)u0;
ψ0(θ) = g(x0, u0, θ) − C0(θ)x0 − D0(θ)u0.

(6)

Lemma 2: The LAA has the following properties:

• (i) For a fixed (x0, u0), the LAA is unique;
• (ii) If f and g belong to C∞ and all correspond-

ing derivatives are bounded w.r.t. x and u within
B(x0, u0), then, there exist two positive reals related
to θ and δ0, denoted as αx(θ, δ0) and αy(θ, δ0), re-
spectively, satisfying ∀t ∈ (t0, t1), ∀u ∈ U, there is

‖ẋ(t) − ẋlin(t)‖2 < αx(θ, δ0),
‖y(t) − ylin(t)‖2 < αy(θ, δ0),

(7)

where the interval (t0, t1), t1 > t0 denotes the interval
when the system operates within B(x0, u0), and t1−t0
is often referred to as dwell time (Morse [1996]).

The control reconfiguration strategy showed in Fig.1 is
also employed to the corresponding LAA Σθ

linp. This
configuration leads to a linear closed-loop control system,
which is denoted as Σθ

lin. Then there is

Theorem 3: Suppose that the linear system Σθ
linp is the

LAA of the nonlinear system Σθ
nonp within B(x0, u0) and

the following conditions are fulfilled:

• K is a LTI system, and
• Ir×r + D0(θ)K is invertible.

Then the linear closed-loop control system Σθ
lin is also the

LAA of nonlinear control system Σθ
non within B(x0, uref0)

with uref0 = u0 + Kg(x0, u0, θ).

Proof: Firstly, we assume K is just a gain-matrix, denoted
as K. The output equation of the closed-loop control
nonlinear system is described as y = g(x, uref − Ky, θ).
Define a r-dimension vector function F as:

F (x, uref , y, θ) = y − g(x, uref − Ky, θ). (8)

Define y0 = g(x0, u0, θ), and an n+m+ r-dimension open
neighbor set of (x0, uref0, y0) according to the set δ(x0, u0),
denoted as δ(x0, uref0, y0). Then we can observe

(1) F is continuous within set δ(x0, uref0, y0);

(2) ∂F
∂x

, ∂F
∂uref

and ∂F
∂y

all exist and are continuous within

the set δ(x0, uref0, y0);
(3) F (x0, uref0, y0) = 0;

(4) ∂F
∂y

|(x0,uref0,y0) is full rank, since

∂F

∂y
|(x0,uref0,y0) = (Ir×r +

∂g

∂u
K)|(x0,uref0,y0)

= Ir×r +
∂g

∂u
|(x0,u0)K = Ir×r + D0(θ)K.

Then, according to the implicit function theorem, it is
noted that the equation F (x, uref , y, θ) = 0 uniquely
determines a r-dimensional vector function in terms of
explicit y:

y = ϕ(x, uref , θ), (9)

which is defined within a neighbor open set of point
(x0, uref0), denoted as δy(x0, uref0), such that

• The n + m + r-dimension set {(x, uref , y)| y =
ϕ(x, uref , θ), (x, uref ) ∈ δy(x0, uref0)} ⊂ δ(x0, uref0, y0);

• F (x, uref , ϕ(x, uref ), θ) ≡ 0, ∀(x, uref ) ∈ δy(x0, uref0);
• y0 = ϕ(x0, uref0, θ); and
• Function ϕ(x, uref , θ) has the continuous partial

derivations within the set δy(x0, uref0), i.e.,

∂ϕ

∂x
= −(

∂F

∂y
)−1 ∂F

∂x
,

∂ϕ

∂uref

= −(
∂F

∂y
)−1 ∂F

∂uref

.(10)

According to Definition 1 a linear system to approximate
the nonlinear relationship (9) within a open neighbor set
of (x0, uref0), denoted as δ′y(x0, uref0), can be obtained as

ylin = Ccl(x0, uref0, θ)x + Dcl(x0, uref0, θ)uref + ψcl(θ),(11)

where

Ccl(x0, uref0, θ) =
∂ϕ(x, uref , θ)

∂x
|(x0,uref0);

Dcl(x0, uref0, θ) =
∂ϕ(x, uref , θ)

∂uref

|(x0,uref0);

ψcl(θ) = (ϕ(x, u, θ) − Ccl(x, u, θ)x − Dcl(x, u, θ)u)|x0,uref0
.

From the property (10), we can further have

Ccl(x0, uref0, θ) =
∂ϕ(x, uref , θ)

∂x
|(x0,uref0)

= (Ir×r + D0(θ)K)−1C0(θ),
(12)

Dcl(x0, uref0, θ) =
∂ϕ(x, uref , θ)

∂uref

|(x0,uref0)

= (Ir×r + D0(θ)K)−1D0(θ).
(13)

Similarly, the state equation of the closed-loop nonlinear
system can be expressed as ẋ = f(x, uref − Ky, θ).
Take the linearization of the above nonlinear equation
within an open neighbor set of (x0, uref0), denoted as
δx(x0, uref0), then the nonlinear closed-loop system can
be approximated by a linear system, Σθcl

lin described as
{

ẋlin = Acl(θ)xlin + Bcl(θ)uref + φcl(θ)
ylin = Ccl(θ)xlin + Dcl(θ)uref + ψcl(θ)

(14)

where

Acl = A0(θ) − B0(θ)K(Ir×r + D0(θ)K)−1C0(θ);
Bcl = B0(θ) − B0(θ)K(Ir×r + D0(θ)K)−1D0(θ);
Ccl = (Ir×r + D0(θ)K)−1C0(θ);
Dcl = (Ir×r + D0(θ)K)−1D0(θ).

(15)

Now we consider the closed-loop linear system as shown
in Fig.2. A state space formulation of this control system,
denoted as Σθcl′

lin , can be obtained
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{
ẋlin = A′

cl(θ)xlin + B′
cl(θ)uref + φ′

cl(θ)
ylin = C ′

cl(θ)xlin + D′
cl(θ)uref + ψ′

cl(θ)
(16)

where it can be observed that A′
cl, B′

cl, C ′
cl, D′

cl and
φ′

cl(θ), ψ′
cl(θ) have the same formats as (15). Thereby a

nonlinear control-loop system, as shown in Fig.1, can be
approximated by a closed-loop linear system, as shown
in Fig.2, within a common neighbor open set of point
(x0, uref0).

In case that K is a LTI system, the consistency between
(14) and (16) can still be kept. �

Corollary 4: If g belongs to C∞ and all its corresponding
derivatives are bounded w.r.t. x within B(x0, u0), then,
there exist a positive real related to θ and δ0, denoted as
βcy(θ, δ0), satisfying

‖ycn(t) − yclin(t)‖2 < βcy(θ, δ0), ∀t ∈ (t0, t1),∀uref ∈ U(17)

where ycn(t) and yclin(t)) represent the outputs of the
closed-loop nonlinear and linear systems, respectively.

Corollary 5: The nonlinear control system Σθ
non within

its whole operation range X × U can be linearly ap-
proximated by a piecewise affine linear system, denoted

as {Σθi

lin}
N
i=1, if there exists a set of ordered points

(xi, urefi) ∈ X × U and a set of corresponding neighbor-
hoods B(xi, urefi) i = 1, · · · , N , where N can be a finite
integer or +∞, satisfying

N⋃

i=1

B(xi, urefi) ⊇ X × U, and

B(xi, urefi)
⋂

B(xi+1, urefi+1) �= φ.

(18)

and functions f and g belong to C1 in x and u at any
point (xi, ui), and all matrices Ir×r+Di

0(θ)K are invertible
i = 1, · · · , N , where

Σθi

lin :

{
ẋi

clin = Ai
c(θ)x

i
clin + Bi

c(θ)uref + φi
c(θ),

yi
clin = Ci

c(θ)x
i
clin + Di

c(θ)uref + ψi
c(θ),

(19)

with xi
clin(ti0) = xi, (xclin, uref ) ∈ B(xi, urefi) and

Ai
c(θ)=̂(Ai

0(θ) − Bi
0(θ)K(Ir×r + Di

0(θ)K)−1Ci
0(θ));

Bi
c(θ)=̂(Bi

0(θ) − Bi
0(θ)K(Ir×r + Di

0(θ)K)−1Di
0(θ));

Ci
c(θ)=̂(Ir×r + Di

0(θ)K)−1Ci
0(θ);

Di
c(θ)=̂(Ir×r + Di

0(θ)K)−1Di
0(θ);

φi
c(θ)=̂φi

0(θ) − Bi
0(θ)K(Ir×r + Di

0(θ)K)−1ψi
0(θ);

ψi
c(θ)=̂(Ir×r + Di

0(θ)K)−1ψi
0(θ).

(20)

The local affine approximation (Ai
0, B

i
0, C

i
0, D

i
0, φ

i
0, ψ

i
0) can

be obtained by using (6) at point (xi, ui), where ui satisfies
ui = urefi − g(xi, ui, θ) for i = 1, · · · , N .

Based on one LAA, the compensator K can be designed
using some standard linear reconfiguration design meth-
ods, such as the robust control mixer methods (Yang et al.
[2000], Yang and Stoustrup [2000], Yang et al. [2007]).

4. LOCAL RECONFIGURATION DESIGN

Different with the control mixer method used in Yang et al.
[2000], where the control mixers are limited to be gain
matrices, the robust control mixer method extends the

� � �un

Pn�ωi

� � �
�ωs

�K
yc uc

�
uref yclin

Fig. 3. The LTI reconfiguration system
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Fig. 4. The Augmented Control System Using K

control mixer module to be more powerful dynamic-type.
The standard H∞ and µ control synthesis can be employed
for this module development (Yang and Stoustrup [2000]).

The feedback control configuration as shown in Fig.2 can
be reformulated into the structure as shown in Fig.3, where
Pn is the linear part of Σθ

linp. The constant bias parts

of Σθ
linp are arranged as system process disturbance ωi

and measurement disturbance ωs, respectively. The design
problem of compensator K can be formulated as:

For a given real positive scalar constant γ, find out a real
rational and proper compensating module K, such that

‖W(Pn − Pfc(K))‖∞ < γ, (21)

under the condition that the reconfigured system Pfc(K) is
internally stable, where Pn is the transfer function matrix
of the nominal linear system, and Pfc(K) is the transfer
function matrix of the reconfigured linear system by using
module K.

There are many numerical methods to deal with this γ-
suboptimal problem after the original problem is formu-
lated into a standard control design problem as shown in
Fig.4, such as the two-Riccati-equation method and LMI
based method. As pointed out by Yang et al. [2007], the
γ can be regarded as a kind of quantitative evaluation
of this control reconfiguration strategy. The infimum γ⋆

represents the best reconfiguration level that a LTI con-
troller can achieve for the impaired System. This also gives
some hints in the selection of threshold for updating LAA
models. This design is linked to the objective (3) by the
following statement.

Corollary 6(Yang et al. [2007]): Given a real scalar
constant γ > 0, if there exists a real rational controller
K which satisfies (21), then the tracking error between the
nominal and reconfigured system is bounded by

‖yn − yfc(Ki)‖2 < γβ, (22)

where β is the excitation level of the system, ‖[dT rT ]T ‖2 =
β.
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5. ON-LINE UPDATING ALGORITHM

The adaptive algorithm proposed in Yang et al. [2000] can
also be used here. The inspiration for that comes from the
the following relationship:

‖yn(t) − ycr(t)‖2 ≤ (‖yn(t) − ycnlin(t)‖2
︸ ︷︷ ︸

cn−term

+

‖‖ycnlin(t) − ycrlin(t)‖2
︸ ︷︷ ︸

lcr−term

+ ‖ycr(t) − ycrlin(t)‖2
︸ ︷︷ ︸

cr−term

). (23)

This means that the reconfiguration design can be decom-
posed into two cooperative parts, i.e., the affine approx-
imations of the nominal and the reconfigured nonlinear
systems, corresponding to the cn-term and cr-term in
equation (23); and local linear RM part, corresponding
to the lcr-term.

The on-line updating algorithm is summarized in the
following (Yang et al. [2000]):

• Step 1: Get a trajectory sample (xi, urefi) from the

considered nonlinear system Σ
θf
nonp, then obtain the

LAA Σ
θf i

linp for Σ
θf
nonp at (xi, urefi). Meanwhile the

LAA Σ0i
linp corresponding to the fictitious nominal

nonlinear system denoted as Σ0
nonp also needs to be

achieved at (xi, urefi);

• Step 2: Design the RM K based on the LAA Σ
θf i

linp

and Σ0i
linp, where the second system serves as Pn

as shown in Fig.4. Implement the developed K into

the undergoing nonlinear system Σ
θf
nonp, so that the

reconfigured nonlinear system Σcr
non is obtained;

• Step 3: Obtain the LAA Σcri
lin of nonlinear Σcr

non;
• Step 4: Keep the fictitious Σ0i

linp, Σcri
lin and Σ0

nonp

running from the initial (xi, urefi) parallel (e.g., in
software programs) to the real undergoing nonlinear
system Σcr

non and monitor the inequality: ‖Err(t)‖2 ≤
Thres, where Err(t) represents combination of track-
ing error functions of linear models to corresponding
nonlinear systems plus local CR design error, it could
be the weighted right part of inequality (23).

• Step 5: When ‖Err(t)‖2 ≤ Thres is valid, keep the
current nonlinear system and its RM K running.
Otherwise, the fictitious linear systems as well as
the compensating modules K need to be updated
according to step (1)-(2).

6. RECONFIGURABLE CONTROL FOR A SHIP
PROPULSION SYSTEM

6.1 Benchmark System

The ship propulsion system developed in Izadi-Zamanabadi
and Blanke [1999] is used to test the proposed method.The
Schematic diagram of the considered system is shown in
Fig.27.

• The Diesel Engine generates a torque Qeng controlled
by its fuel index Y , and the transfer function of this
part has the form:

Qeng(s) =
kye−τs

1 + τcs
Y (s). (24)

Fig. 5. Schematic diagram of the ship propulsion system
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Fig. 6. Piecewise affine approximation to the nominal system

• The Shaft part generates speed n according to:

Imṅ(t) = Qeng(t) − Qprop(t) − Qf (t). (25)

• The thrust Tprop and torque Qprop generated by the
Propeller are determined by:







Tprop(t) = T|n|n(θ(t))|n(t)|n(t) + T|n|U (θ(t))
|n(t)|(1 − w)U(t)

Qprop(t) = Q0|n(t)|n(t) + Q|n|n(θ(t))|n(t)|n(t)
+Q|n|U (θ(t))|n(t)|(1 − w)U(t)

(26)

• The Ship dynamic is described as:

mU̇(t) = XuuU2(t) + (1 − tu)Tprop(t) (27)

• The Propeller-Pitch control is a P controller (kt), and
the Governor is a PI controller (kr, τi).

We refer to Izadi-Zamanabadi and Blanke [1999] for more
details.

6.2 Piecewise Affine Approximation

First of all, the piecewise affine approximation is examined.
One performance comparison of the piecewise affine sys-
tem with the original nonlinear system under the nominal
operation is shown in Fig.6. It can be clearly observed
that the piecewise affine approximation works very well.
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Fig. 7. Affine model updating in a high frequency
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Fig. 8. Nonlinear System responses: Nominal([100,200]),
faulty((200,300]) and reconfigured((300,600])

However, in some cases, the phenomenon of local affine
model updating in a very high frequency can also be
observed, especially during the transition period when the
system transfers from one static operation into another
one. A specific example is shown in Fig.7.

6.3 Reconfiguration Performance

A fault scenario - the engine loses half efficiency denoted as
kf

y = 0.5ky is considered for control reconfiguration design.
As shown in Fig.8, this type of fault has no influence to the
pitch loop. This fault causes lowdown of engine shaft speed
(n), meanwhile the engine consume much more fuel (Y ),
even though the ship speed doesn’t have obvious change.
The reconfiguration makes the reconfigured system follow
a new strategy, i.e., turn to a smaller pitch angle and then
the engine consume less fuel comparing with the faulty
situation.

7. CONCLUSION

The proposed reconfigurable control design approach for
nonlinear systems is a kind of multiple model method.
However, the difference compared with most research in
this category lies in that the piecewise affine approxima-
tion are not known beforehand. It is obtained through on-
line linearization of the considered nonlinear system along
system’s real-time trajectory. The robust control mixer
method enhances the reconfiguration capability in terms of
better performance and disturbance attenuation. However,
the payoff of these benefits is the computation load and
complexity of the reconfigured system.
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