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I

RESUME

Inden for de sidste ar er det blevet mere og mere udbredt at anvende palidelighed-
steori til at modellere usikkerheder ved design af offshorekonstruktioner. Usikker-
hederne relaterer til fysiske stgrrelser, sisom materialegenskaber, og til usikkerheder
i forbindelse med matematisk modellering af konstruktioners opfgrsel. De mest an-
vendte metoder inden for systempalidelighed er baseret pa den antagelse, at en kon-
struktion er et system af sikaldte svigtelementer. Et svigtelement er defineret som
et lokalt svigt i konstruktionen. Som eksempler pa svigtelementer kan naevnes:

1) treek/tryk svigtelement (flydning)

2) bgjnings svigtelement (flydning)

3) kombineret virkning af flere snitkreefter (flydning)
4) udmattelsés svigtelement

5) instabilitets svigtelement

6) folnings svigtelement
Formalet med denne athandling er at beskrive nogle praktisk anvendelige metoder til
at estimere offshorekonstruktioners palidelighed. To forskellige metoder betragtes:

I  Metode til estimering af palidelighed af ramme- og gitterkonstruktioner med
hensyn til flydemekanisme (kollaps), hvori svigtelementer 1), 2) og 3) med-
tages. Metoden, der er baseret pa gvreveerdisztningen fra plasticitetsteorien,
er beskrevet i kapitel 3. I afsnit 3.2 er generel plasticitetsteori for ramme- og
gitterkonstruktioner beskrevet. Afsnit 3.3 omhandler anvendelse af palidelighed-
steori i forbindelse med estimering af palidelighed med hensyn til kollaps, og i
afsnit 3.4 er beskrevet en metode til identifikation af de mest signifikante kollaps-
former. I forbindelse hermed er udarbejdet et computerprogram ”COLLAPSE”.
Programmet er kort beskrevet og illustreret med to eksempler i afsnit 3.5.

II Metode til estimering af palidelighed af jacket-konstruktioner med hensyn til ud-
mattelse, d.v.s. svigtelement 4) er benyttet. Konstruktionen antages at svigte,
nar et enkelt svigtelement svigter. Kun bglgebelastning betragtes. Korttids-
og langtids-modellering af bglgetilstande er beskrevet i afsnit 4.2. I afsnit 4.3 er
beskrevet en sansynlighedsmodel af bglgebelastningen. Morisons formel benyttes
ved estimering af bglgelaster pa konstruktionselementer. I afsnit 4.4 er beskrevet
hvordan kryds-spektral tezetheder for spezendingerne i et svigtelement kan es-
timeres. To forskellige metoder til at estimere fordelinger af speendingsvaria-
tioner i svigtelementer for en given kryds-spektral tzethed, er beskrevet, nemlig
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rain-flow-counting metoden og range-counting metoden. I afsnit 4.5 er betragtet
tre forskellige modeller til estimering af den akkumulerede udmattelsesskade i
svigtelementer, nemlig Miners regel, en brudmekanisk model og den sékaldte
B-model. I forbindelse hermed, er udarbejdet et computerprogram "SAOFF”
(Stochastic Analysis Of Fatigue Failure). Programmet er kort beskrevet og il-
lustreret med et enkelt eksempel i afsnit 4.6.
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1. INTRODUCTION

The use of modern structural reliability theory for modelling uncertainties in off-
shore engineering has gained widespread support. The uncertainties may relate to
both physical quantities, e.g. material quantities and loads, and uncertainties in the
mathematical modelling of the structural system. Most systems reliability methods
are based on the concept of failur: elements. A failure element is defined as a lo-
cal failure mode for a structure. In Thoft-Christensen? 1987' t , some examples of
different failure elements used in structural systems reliability theory are discussed,
namely

1) Tension/compression failure elements (yielding)
2) Bending failure elements (yielding)

3) Combined load effect failure elements (yielding)
4) Strain softening failure elements

5) Instability failure elements

6) Buckling failure elements

7) Global instability failure elements

8) Fatigue failure elements

9) Punching failure elements

10) Slab failure elements.

It is of great importance when estimating the reliability of an offshore structure to
include all failure elements in the analysis. However, the number of failure elements
will often be very high, so from a computational point of view it is therefore necessary
to exclude insignificant failure elements.

Reliability of a single failure element can be estimated sufficiently accurately by
the reliability methods available to-day. However, estimation of the reliability of a
structural system is much more complicated. Even such an important and difficult
question how to define systems failure is still being discussed, Thoft-Christensen?
19872,

The scope of this thesis is the development of some applicable methods for evaluating
the reliability of offshore structures.

Two different definitions of system failure modes are used, namely a failure mode due
to formation of a mechanism (collapse), and a failure mode due to fatigue failure.

In chapter 2 a short introduction on the reliability theory relevant in this thesis on

€ indicates in which part of

In the following, references are made as: author(s)® yeari, where the code
the reference list the reference is located. The following codes are used: b = books, t = thesis and p
= papers. If the author(s) has more than one publication in the same year, index ' indicates which of

these the reference signifies.
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structural reliability analysis is given.

Chapter 3 contains an applicable method for evaluating the reliability of jacket type
offshore structures with respect to plastic collapse, where failure elements 1), 2) and 3)
are used. The method is based on the upper-bound theorem of plasticity (kinematic
theorem of mechanisms). To make this method applicable a new program package
"COLLAPSE” has been made. Failure elements 1), 2) and 3) have been included
for plane structures, but for space structures only failure elements 1) and 2) have
been included so far. The program package is briefly described in section 3.5, and is
illustrated by two examples. Problems connected with modelling of the loading on a
jacket structure are not treated in the chapter.

In chapter 4 an applicable method for evaluating the reliability of jacket type offshore
structures with respect to fatigue failure, i.e. failure element 8) is used. The struc-
ture is considered to be in a state of failure when a single failure element fails. Only.
wave loading is considered. In section 4.2. a probabilistic model of the sea states is
considered, where for a short-term period (a few hours) the sea surface is assumed to
be a zero-mean ergodic Gaussian process. The long-term probability of the sea states
is estimated from wave observations in the ocean area concerned. Section 4.3 con-
tains a probabilistic modelling of the wave loading. Morison’s equation is applied to
estimate the force on the structural elements. In section 4.4 the structural response
in considered. A modal analysis is applied. Section 4.5 contains a stochastic mod-
elling of fatigue failure. Two different methods to estimate the distribution of stress
amplitudes for a given sea state is described, namely the rain-flow-counting method
and the range-counting method. The probability of fatigue failure is estimated using
three different damage accumulation models, namely 1) Miner’s rule combined with
the so-called S-N approach, 2) a crack growth model, and 3) model introduced by
Bogdanoff et al.? 19781:2:3) 1980, called the B-model.

To make this method applicable a new program package "SAOFF” (Stochastic Anal-
ysis Of Fatigue Failure) has been made. The program package is briefly described in
section 4.6, and is illustrated by a single example.

At last, chapter 5 offers some general conclusions.

In connection with this thesis a number of computer programs have been made, con-
taining approx. 15000 source lines written in FORTRANT7. Some of the programs,
e.g. simulation programs used in sections 4.5.2.1-4.5.2.3, are not described in the
present thesis.
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2. STRUCTURAL RELIABILITY THEORY

2.1. Introduction

In this chapter a short introduction to the reliability theory relevant in this thesis is

given.

A large number of books and papers of structural reliability theory has been written in
the last few years. It is beyond the scope of this thesis to give a thorough description
of this theory. The reader is referred to e.g. Melchers® 1987, Madsen, Krenk &
Lind® 1986, Thoft-Christensen & Murotsu® 1986, Augusti, Baratta & Casciati® 1984,
Sgrensen’ 1984, Bjerager’ 1984 and Thoft-Christensen & Baker® 1982.

Most systems reliability methods are based on the concept of a failure element. A
failure element is defined as a local failure mode for a structure. In section 2.2 it is
described how the reliability of a failure element can be estimated using the first-order
second-moment reliability index. When the reliability of the structure is considered
the reliability of every failure element must be evaluated. This can be estimated using
a systems approach. In section 2.3 it is described how the reliability of a structure is
estimated on the basis of a series system, i.e. the structure is defined in failure when
a single failure element fails.

2.2. Reliability of a Failure Element

In this section an estimation of the reliability of a failure element is briefly described
using the first-order reliability index.

The stochastic variables X = (Xi,...,Xn) used to model the uncertainties of a
structure are called basic variables and are defined by the joint distribution function
Pz In general, these variables model physical quantities e.g. material quantities and
loads but model uncertainty variables are also included in X. For a given failure
element it is assumed that there is a deterministic failure function f(7), defined in
such a way that it divides the n-dimensional basic variable space w into two regions,
namely a safe region w,, where f(Z) > 0, and an unsafe region wy where f(Z) < 0.
The stochastic variable

= f(X) (2.2.1)

is called the safety margin of the failure element.
The probability of failure Ps of the failure element is defined by

P, = PIM<0] = / p_(z)dz (2.2.2)

In general, the safety margin M in eq.(2.2.1) is a function of correlated non-Gaussian
distributed basic variables. However, by a suitable transformation, e.g. Rosenblatt
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transformation, Sgrensen® 1984, the correlated and non-Gaussian distributed basic
variables X are transformed into uncorrelated and standardised Gaussian distributed
variables Z. By this transformation the failure surface dw is given by f*(z) = 0.in
the corresponding z-space. In the n-dimensional z-space the reliability index f is
defined as the shortest distance from the origin to the failure surface, i.e.

= ?é_gi (Zz) (2.2.3)

=1

In many situations the probability of failure in eq.(2.2.2) can be determined with
good approximation from

Py ~ &(-p) (2.2.4)
where ®(-) is-the standard Gaussian distribution function.

2.3. Reliability of a Structural System

In section 2.2 the probability of failure for a single failure element has been considered.
When the probability of failure of the whole structure is considered, the probability of
failure for every failure element must be evaluated. If the largest of these probabilities
is used as a measure of the probability of failure of the structure it is called reliability
modelling at level 0. A more satisfactory estimate of the probability of failure of the
structure P} is based on a systems approach, Thoft-Christensen & Murotsu® 1986.

A simple deﬁmtlon of systems failure is failure in a single failure element, i.e. the
structure is considered to be in a state of failure when a single failure element fails.

The system probability of failure can be estimated as

P} ~ 1 — () 231

where n is the number of failure elements in the structure, @,, is the n-dimensional
Gaussian distribution function, 8 = (B1,...,8.) are the reliability indices for the
failure elements and 7 is the correlation coefficient matrix for the safety margins. In
real structures the number of failure elements n is often very large, but usually a
large number of the failure elements are not significant for the systems reliability,
which means that the evaluation of the systems probability of failure in eq.(2.3.1)
becomes much less complicated. A number of approximate evaluations of eq.(2.3.1)
can be found in the literature. It is beyond the scope of this thesis to deal with these
approximate evaluations. The reader is referred to the references given is section 2.1.
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3. RELIABILITY ANALYSIS OF A DISCRETIZED IDEAL
PLASTIC STRUCTURAL SYSTEM

3.1. Introduction

This chapter focuses on time-invariant system reliability analysis with respect to
plastic collapse of truss and frame structures of ideal rigid plastic materials.

It is assumed that the points of possible yield hinge formation (failure elements) have
fixed positions in the structure and that the number of such points is finite. The ex-
ternal load is represented as a finite set of random forces/moments. Furthermore,
the yield stress is assumed to be random.

The reliability analysis of ideal-plastic structures is usually based on the lower- bound
theorem of plasticity theory (static theorem of admissible stress fields) or the upper-
bound theorem (kinematic theorem of mechanisms). Application of the lower-bound
theorem leads to lIower bounds on the reliability, and is more relevant for engineering
decision than the upper-bound theorem which leads to upper bounds of the reliabil-
ity. However, analysis based on the lower-bound theorem is in general quite difficult
and often the best lower bounds known in deterministic theory are not nearly as close
to the exact result as the upper bound results, Ditlevsen & Bjerager? 1934.

In this thesis the analysis is carried out using the upper-bound theorem. The number
of potential failure modes is usually very large. However, in most cases the majority
of these are not significant, i.e. they have negligible influence on the failure proba-
bility of the structure.

In section 3.2 the general theory of plasticity for frame and truss structures is de-
scribed. This description is mainly based on Hodge® 1959, Neal® 1970, Lange-Hansen?
1983 and Thoft-Christensen, Sigurdsson & Sgrensen? 1986. In section 3.3 a reliability
theory of ideal plastic frame and truss structures is described. In section 3.4 a method
to identify the most significant plastic collapse mechanisms is described. In section
3.5 a new computer package "COLLAPSE” is introduced. The program, which is
based on the methods and assumptions described in sections 3.2 - 3.4, is illustrated
by two examples.
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3.2. General Theory of Plasticity

Traditionally the estimate of the load-bearing capacity of a structural system is based
on either the theory of elasticity or the theory of plasticity.

If the theory of plasticity is used then it is assumed that the material behaviour is
elasto-plastic. This assumption is in general reasonable for steel frame structures,
e.g. offshore jacket structures, considered in this chapter. Further, it is assumed that
the definition of structural failure is formation of a collapse mechanism (mechanism

level).

In this section & = (01,02,...,0,)T and € = (€1,€2,..-,€n)T denote generalised
stresses and strains, see Hodge? 1959 or Neal® 1970. The yield capacity of the material
is described by the yield condition f(g) = 0, where the generalised stresses 7 are
functions of material properties, e.g. the yield stress ¥ in pure tension. The yield
surface in the n-dimensional 7-space is defined by the yield condition and it is assumed
to be convex. States of the stress where f(7) < 0 are elastic, states where f(7) =0
are plastic and states where f(7) > 0 are impossible.

In the following it is assumed that the elastic strains are zero, i.e. the material is
"a rigid-plastic material and € denotes the plastic strains. The ultimate strength of
the structure can then be estimated using the upper- and lower-bound theorems of
plasticity.

The rate of internal work A’ at a given point on the yield surface can be written as

A =7 | (3.2.1)

where 7 is the state of stress at which the plastic strain velocities é occur. The strain
velocities € = (é1,ég,...,€,) are determined by the so-called associated flow rule
(normality condition) which at a regular point on the yield surface can be written as

. = 9@) -
é& = A 5o, ; =12 00n0 (3.2.2)

where A > 0 is a constant.

As mentioned above the elastic strains are neglected. This implies that the static
and geometric equilibrium equations at the moment of initiation of yield failure can
be formulated in the undeformed state.

Approximate determination of the collapse load using the theory of plasticity can
be performed using the lower-bound theorem of plasticity or the upper-bound of
plasticity.

The lower-bound theorem of plasticity states that a structure will be able to carry a
set of loads if it is possible to find a stress distribution which is safe and statically
admissible.
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A stress distribution is safe if the stresses & at any point in the structure satisfy the
condition f(7) < 0. A stress distribution is statically admissible if static equilibrium
is obtained at all points in the structure.

The upper-bound theorem of plasticity states that a structure will not be able to
carry a set of loads if there exists a kinematically possible displacement rate field
and a corresponding strain rate field, for which the rate of work of the external loads
exceeds the total internal dissipation (rate of internal work) in the structure.

A displacement rate field is kinematically possible if it fulfils the boundary conditions
and if the rate of external work is positive.

The upper- and lower-bound theorems can be used to estimate upper and lower values
of the load-bearing capacity of a structure. If some of the quantities are modelled as
random variables these theorems can be used to estimate lower and upper values of
the probability of failure of the structure.

For structures modelled by plane beam elements and/or truss elements, the gener-
alised stresses and strains are related to the cross-sectional stress effects and the yield
capacities. The effect of the shear forces is neglected in this thesis and it is assumed
that the structural material has the same yield stress in compression and tension.

The structure is modelled by straight elements with constant cross-section and the
loading is assumed to consist of concentrated forces. The plastic deformations take
place in a number of discrete points called yield hinges or failure elements. The pos-
sible yield hinges are placed at the end points of the structural elements or below the
concentrated forces. The following generalised stresses are used (n = 2)

N M ) (3.2.3)

(01,02) = (m, Mr

where

N is the axial force in a yield hinge

Np is the corresponding axial strength capacity
M is the bending moment in a yield hinge

Mp is the corresponding yield moment capacity

The associated generalised strains are

(e1,€2) = (NFua, MFuz) (3.2.4)

where

u; is the mutual axial deformation in a yield hinge
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us is the mutual rotation deformation in a yield hinge

The rate of internal work in a yield hinge is then

w5 N M
A = ~]TF'NFU1 + —ATMFU2 (325)

The yield condition is

N M

fm30) = O (3:26)

and the flow rule (eq.(3.2.2)) gives

Of (e #s
Npiyy = \—2e2 Me - (3.2.7)
o a(#%)
0 ;
Mpig = A—f—(-NL&- (3.2.8)

o(#=)

Combining eq.(3.2.7) and eq.(3.2.8) gives

Npuq _af(NF’MF af(f\l'\ir’MF -
Mris — O(F5) < (317) ) 029

From eq.(3.2.9) it is seen that if the ratio between the generalised stresses in a yield
hinge is known then the ratio between the generalised strains can be determined.
However, this fact is not valid at singular points. In figure 3.2.1 a), b) and c), the
singular points appear where the yield surface intersects the N /N p-axis.

On the other hand, when the ratio between the generalised strains is known the ratio
between the generalised stresses can be determined uniquely, except where the yield
surface is linear, see figure 3.2.1 d) and e).

The yield condition in generalised stresses for a general cross-section will depend on
the material as well as the geometry of the cross-section. In the example 3.2.1 below
the yield condition for four different cross-sections are shown.
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MM

d)

NN

Figure 3.2.1. Yield surfaces (plastic axial/moment interaction curves) for
a) rectangular cross-section, b) I- and box sections, c) thin-walled
tubular section, d) interaction not taken into account, and
e) linear yield surface.

Example 3.2.1

In this example the yield conditions for four different double-symmetric cross-sections,
namely rectangular-, I-, box- and thin-walled tubular sections are stated. A detailed
derivation is given in appendix A. The surfaces are shown in figure 3.2.1.

Rectangular cross-section

N M N\ M
f(TV?’_ATE)__'(J_V?) +|M—F|_1=O (3.2.10)
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I- and box-sections

2
N M a(F) +13EI-1=0 |FI< 4
f('ﬁ—,'ﬁ— = (3.2.11)
F F
ALl 120 14> 4
where
-1
A, [(Ay\? t [A-A,\°
a= (2—;4—— (—Z) +E( 1 ) ) (3.2.12)
Aw
b=1-5= (3.2.13)

and where A is the total cross-sectional area, Ay is the web area, t; is the web
thickness and d is the flange width, see appendix A.

Thin-walled tubular cross-section

N M M T N
f(NF,MF)=|MFI—cos (EJ_VZ) =0 (3.2.14)

Interaction not taken into account

f(m, E) or (3.2.15)

N M {'N%“l:o
I —1=0

Linear yield surface

N M N M
f('N—F,E;I—F') = IN_FI + lml—l—o (3.2.16)
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3.3. Reliability Theory of Ideal Plastic Frame and Truss Structures

Calculation of collapse probabilities for truss and frame structures may be based on
a variety of different idealisations of the load and the structural models. Considering
a structure subjected to a time dependent random load, the possible collapse events
become dependent on the entire load history during the service life and on the ‘ma-
terial properties in a complicated way. The best that can be done at present is to
perform computer simulation studies by which the behaviour of a sample of the struc-
ture is followed step by step through each sample load path, Ditlevsen & Bjerager?
1087. This way to obtain collapse probability estimates of reasonable confidence is
in general very costly in terms of computer time, even for simple structures. There-
fore, a complete analysis based on simulation is far too complicated for practical

applications.

In this thesis the load and the structural models are defined in the following way

e The external loads are assumed to be time independent and are represented by
a finite set of random forces and moments.

o  The structure is discretized (lumped) into a finite set Q of r points of potential
yield hinges. In a yield hinge ¢ the strain rate is € = (€i1,€i2,-- s éin)T, where
n is the number of degrees of freedom in the yield hinge i. This implies that the
structural elements joining these points are infinitely rigid and strong.

e A yield condition

@) =0 (3.3.1)

is associated with each of the points of Q. The yield condition for a given point ¢
in § is given solely in terms of generalised stresses 7; = (04130 igyess oin)T, 1=
1, 2,...,r, and the stochastic properties does not change during the lifetime of
the structure.

o  The yield surface is assumed to be convex and the plastic strain rates are deriv-
able from the yield function through the associated flow rule (the normality
condition).

o  The geometrical quantities of the structure are assumed to be deterministic, and
changes in geometry at plastic collapse are assumed to be insignificant.

e The collapse probability of the structure is estimated by using the upper-bound
theorem of plasticity.

In the following, a frame and truss structure of n, degrees of redundancy subjected
to n, concentrated external random loads, P = (Pl,Pg,...,PnP)T, is considered.
The number of points of potential yield hinge formations is r and by neglecting the
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effect of the shear forces and the torsion moments the yield conditions depend on two
internal forces, namely the bending moments M = (M, M,,..., M,.)T and the axial
forces N = (N1, N, ..., N,)T. Then the yield conditions for the r critical sections
become two-dimensional (i.e. n = 2). Further, plastic deformations of the structure
are described by the set of generalised strain rates

€11 €12

(3.3.2)

ol
Il

€r1  €r2
where ¢;; is the strain rates corresponding to axial deformation rates and é;2 is the

strain rates corresponding to rotational deformation rates in the yield hinge z.

Let Q: C R" be the set of plastic strain rates derived from the complete set of
kinematically admissible velocity fields, which depend only on the geometry of the

structure. _
For a given plastic mechanism with strain rates € €2, an upper-bound safety mar-
gin M* can, by the principle of the virtual work, be written as

M* = Xr:fii = 2‘:,47 (3.3.3)
k=1 1=1

where

;: is the internal work rate for yield hinge no. k

f is the external work rate performed by the concentrated load no. [
T is the number of potential yield hinges
np is the number of concentrated loads.

The internal work rate A}c for yield hinge no. k can be written as

s €k | |éxz]
it = — N — M 3.
B = Ny e g, M (3.3:4)

where

el 45 the mutual axial deformation rate uk; in yield hinge no. &

JA%%L is the mutual rotational deformation rate k2 in yield hinge no. &
k

N is the axial force in yield hinge no. k

Np, is the corresponding axial strength capacity in yield hinge no. k

M, is the bending moment in yield hinge no. k
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Mg, is the corresponding bending moment capacity in yield hinge no. k

The axial strength capacity Np, and the yield moment capacity Mp, in the yield
hinge no. k can be written

'NFk = AkYk

Mp, = kaYk

where Ay is the cross-sectional area, W, is the plastic modulus and Y} is the yield

stress in yield hinge k.
Using the yield condition and the flow rule (see eq.(3.2.6)-eq.(3.2.9)) the internal
work rate A% can be rewritten as

A=Yy (3.3.5)
where cx only depends on éz; and éx; in the yield hinge and the type of cross-section.
The external work rate A‘f for the concentrated load ! can be written as

Af =P (3.3.6)

where v; is the virtual displacement/rotation rate for load I and P; is the magnitude
of load I.
Using eq.(3.3.5) and eq.(3.3.6) the eq.(3.3.3)-can be rewritten as

r np !
M* = chYk — ZU{PI (3.3.7)
k=1 =1

The failure probability Py with respect to plastic collapse is, according to the upper-
bound theorem of plasticity, determined by

pr=P{ |J{(ce Q:) N M*(3) < o} (3.3.8)

all &

The set Q;, which may be determined by a set of geometrical conditions, is a set of
infinity numbers of plastic strain rates ¢é. However, Py can be approximately esti-

mated by a finite number of plastic strain rates €1,€2,+..,6m € . An upper bound
of the reliability is then given by

1—P £ 1=P { O {M*(E,-) < 0}} (3.3.9)
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For the sake of simplicity the yield stresses Yz, k = 1,...,r and the concentrated
loads P, | = 1,...,n, are modelled as Gaussian distributed random variables. All
the remaining parameters (e.g. geometrical quantities) are assumed deterministic.
Generally, the assumption of Gaussian distribution of the loading is an unsatisfactory
approximation. In some cases a more logical assumption will be to use an extreme-
value distribution. In such a case the non-Gaussian distributed stochastic variables
are transformed into Gaussian distributed stochastic variables by e.g. the Rosenblatt
transformation, Sgrensen® 1984.

For a structure of the discrete type the number of plastic mechanisms of one-degree-
of-freedom (ODOF) is finite. For such a structure the equality sign in eq.(3.3.9) is
valid if m is taken as the total number of possible ODOF-mechanisms, and the safety
margin in eq.(3.3.7) for all mechanisms (strain rates) becomes linear. However, even
for relatively simple structures the number may be very large. Instead, a subset of
significant plastic mechanisms can be applied in order to obtain a close upper bound
of the reliability.

When each yield hinge in the structure only has one possible strain rate e.g. rotation,
the multi-degrees-of-freedom (MDOF') -mechanisms will not become significant for
estimation of the reliability. However, when yield hinges have more that one possible
strain rate, e.g. axial elongation and rotation, some of the MDOF-mechanisms can
become significant, and the safety margin in eq.(3.3.7) becomes nonlinear for this
kind of mechanisms. Such MDOF-mechanisms can be divided into a finite number of
ODOF-mechanisms, and all possible strain rates for the MDOF-mechanism can be
described as a linear combination of the ODOF-mechanisms. The most significant
strain rates, which become dependent on the yield condition in the yield hinge, can
be found e.g. by using optimisation.

The corresponding reliability index 8 corresponding to the linear safety margin M*
in eq.(3.3.7) can be estimated by

f = min (“—M—) (3.3.10)

?EQ& oM+
where
T Np
KM = ch HY, — ZUIIJP, (3.3.11)
k=1 =1

=

r o r np Tp 2
oM+ = (chkcnaYkUYnPYkYn + Z Z VIVm TP O P ) (3.3.12)

k=1 n=1 =1 m=1

and where p, o and p is the mean value, the standard deviation, and the coefficient
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of correlation, respectively. For given strain rates ‘e Q,cr, k=1,...,rand v, I =
1,...,n, can be calculated from the relevant yield condition and the corresponding
flow rule.

Example 3.3.1

The plane steel frame shown in figure 3.3.1 and the MDOF-mechanism in figure
3.3.2 is considered. The mechanism can be divided into the 9 independent ODOF-
mechanisms shown in figure 3.3.3. The deformation rates % in the failure elements
and the rotation/displacement rates for the external loads and the reliability indices
for the ODOF-mechanisms are shown in table 3.3.3.

All geometrical quantities are assumed to be deterministic.The yield stress for each
failure element Y;, and the external loads P;, are modelled as Gaussian distributed
stochastic variables. The expected values E[:] and the coefficient of variation V]
for the stochastic variables are shown in table 3.3.1. The yield stresses for all failure
elements are assumed to be fully correlated, i.e. py;y; =1, 4,5 =1,2,...,6 and the
correlation between the external loads is assumed to be 0.3, except for pp p, = 1,
and pp,p, = 1.

i

Stochastic Expected coefficient
variables values of variation
E[] 148
¥ii= lyuiaulb 2.4 -10°kN/m? 0.15
P, 50 kN 0.25
P, 50 kN 0.25
P 250 kN 0.25
P, 50 kN 0.25
Ps 50 kNm 0.25

Table 3.3.1. Expected values and coefficient of variation for the stochastic variables.

The following abbreviations will be used

X failure element (potential location of yield hinge)

¢ failure element fails with rotational displacement

+ failure element fails with axial displacement

4 failure element fails with a combination of axial and rotational displacement

il the reliability index of a mechanism, using the yield condition for I-cross-
sections

B° the reliability index of a mechanism, using the yield condition for thin-walled

tubular sections
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B the reliability index of a mechanism, using the linear yield condition
B9 the reliability index of a mechanism, when the interaction between the axial
force and bending moment is not taken into account ’
Np, axial strength capacity for failure element no. i
Mp, yield moment capacity for failure element no. 2
#;;  the mutual axial deformation rate in the failure element no. 7, which is defined
positive if it gives prolongation
U;2 the mutual rotational deformation rate in failure element no. i, which is
defined to be positive if it gives tension in the lower side of the element
v; the virtual displacement /rotational rate for load no. ¢
Failure Cross-section Plastic section
element 1 area A; (m?) modulus Wp, (m?)
, 1,2,3 3.34.1073 2.85-107*
4,5,6 3.91-1073 3.66-10~*
Failure Type of Web area Web thick- Flange
element ¢ cross-section Aw, (m?) ness t; (m) width d (m)
1,2,3 IPE-220 1.31 1073 0.0059 0.11
4,5,6 IPE-240 1.56 1073 0.0062 0.12

Table 3.3.2. Cross-sectional data for failure elements.

15m

N

1.5m

Figure 3.3.1. Geometry, loading and potential failure elements.
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Figure 3.3.2. MDOF-mechanism.

v

@ 777,

/
7 , 7
| l B .
@ , ® , ©
Figure 3.3.3. ODOF-mechanisms

All possible mutual axial and rotational deformation rates in the yield hinges for the
mechanisms shown in figure 3.3.2 can now be expressed as a linear combination of
the mutual axial and rotational deformation rates in the yield hinges in the ODOF-
mechanisms given in table 3.3.3 as

«\%@

B 11 %12 9 _

T = = > ot (3.3.13)
U1 Us2 =l

T = = Zai o (3.3.14)

Us
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where a;, 1 = 1,...,9 are arbitrary real numbers, ii are the mutual axial and ro-
tational deformation rates and T; are the virtual rotation/displacement rates in the

ODOF-mechanism no. 7, see table 3.3.3.

Mechanism

no. 1 2 3 4 5 6 7 8 9

U11 4

U2 -1 -1 -1 -1
U921 4

1.'422 ' 2

1.131 4

U3z 1 1 1 ) | -1
U4y -1 3
7V
Usy 3

Us9 2

U1 3
Ug2 -1 -1 -1 -1
rot./disp.
rate:
vy oy — 1.5 1.5 1.5 1.5
Vo 3 3 3
V3 4 4 4

N 0.4 0.4 0.4 0.4

vs 1 1 1 1 -1
reliability
indices:
B! 3.78 3.84 3.84 4.00 440 448 6.11 6.11 6.11
B° 3.78 384 384 4.00 440 448 6.11 6.11 6.11
B 3.78 384 384 4.00 440 448 6.11 6.11 6.11
B= 3.84 384 384 4.00 440 448 6.11 6.11 6.11

—
[y
p—t

Table 3.3.3. Mutual axial and rotational deformation rates, rotation/displacement
rates and reliability indices for the ODOF-mechanisms

The choice of a;s which gives the most significant mutual axial and rotational defor-
mation rates can be estimated by using optimisation. The optimisation problem is
formulated as

min f(@)
s.t. gE Q;
(al,...,ag) 75(0,,0)
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Here the so-called "Nelder&Mead” algorithm is used, Kuester & Mize® 1973. The
results of the optimisation are shown in table 3.3.4.

a; 1.288 1073 7.520 10~* 0
as 2.789 1072 2.239 10~% 0
as 5.534 102 4.443 1072 0
ay 9.987 107! 9.997 107! 1
as 1.043 1.041 1
ag 4.241 10~* -1.101 1073 0
ar 7.625 1073 5.991 1073 0
as 1.606 10~° 6.872 1073 0
ag 7.164 10~* 2.065 1073 0
B! 2.02* 2.16 3.31
B° 9.29* 2.28 3.31
C B 2.01 1.71¢ 3.31
pe 3.79 3.78 3.31*

Table 3.3.4. The most significant combination of ODOF-mechanisms for the four
yield conditions, * denote optimum value for a cross-section.

It follows from table 3.3.4 that the reliability index for given mechanism as expected
depends significantly on the cross-section. It is also interesting to note that the most
significant strain rates also depend on the cross-section and that the difference be-
tween the upper bound (interaction not taken into account) and the lower bound

(linear yield surface) is large.
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3.4. Method for Identifying Plastic Collapse Mechanisms

A great variety of methods and techniques for identifying failure modes defined-as
formation of plastic collapse mechanisms, for structural reliability assessment has
been developed in the literature in the last decade. These methods can be classified
in two categories, namely methods based on incremental methods, see e.g. Thoft-
Christensen & Murotsu® 1986, and methods based on a plastic limit analysis, i.e.
methods based on the lower-bound theorem of plasticity (static theorem of admissible
stress fields) which leads to lower reliability bounds, and methods based on the upper-
bound theorem of plasticity theory (kinematic theorem of mechanisms) which leads
to upper reliability bounds, see e.g. Ditlevsen & Bjerager? 1984 or Bjerager’ 1984.

Methods in the first category use a number of elastic analysis of the structure. How-
ever, these methods are not very suitable if the structure is highly redundant. The
reason is that mechanisms are formed after formation of a large number of plastic
hinges and it.can therefore be difficult and expensive to identify the most significant
failure modes.

A central problem for methods based on the plastic limit theory is to find lower relia-
bility bounds, which are reasonably close to the upper reliability bounds. Experience
seems to show that the upper bound calculated from only a few significant mecha-
nisms is often quite close to the exact mathematical reliability calculated using the
total set of possible mechanisms, Ditlevsen & Bjerager? 1987. This experience only
concerns a certain type of the ideal plastic models, i.e. examples of simple structures
where the yield conditions in each yield hinge only depend on the internal force,
e.g. the bending moment or the axial force. On the other hand, even for simple
structures, it turns out to be difficult by systematic analysis methods to find lower
reliability bounds which are close to the exact result, Bjerager® 1984.

In this section a technique for identifying the most significant upper-bound failure
modes for ideal plastic frame and truss structures is presented. It is assumed that
the single members of the structure fail by plastic yielding (yield hinge model). It is
well known that any plastic mechanism for a structure can be described as a linear
combination of a set of independent mechanisms called fundamental mechanisms.
Let n be the number of internal degrees of freedom of the structure, i.e. the number
of potential yield hinges multiplied by the degree of freedom in each yield hinge.
Further, let r be the degree of redundancy of the structure. Then the number of
fundamental mechanisms is

m=n-—r (3.4.1)

Each fundamental mechanism fulfils the compatibility conditions, but does not nec-
essarily have positive external work. A set of fundamental mechanisms can be auto-
matically generated by a method proposed by Watwood? 1979, describing a method
for automatic generation of fundamental mechanisms for plane frame structures with
potential yield hinges of ODOF, namely rotation. This method can easily be extended
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to spatial frame and truss structures and to yield hinges of MDOF'. The presentation
of this method here is based on Watwood? 1979 and Sgrensen, Thoft-Christensen &
Sigurdsson? 1985.

Basically the geometry of the structure determines the set of fundamental mecha-
nisms, but in addition it is necessary to make judgements regarding the locations
and the number of degrees of freedom of the potential plastic yield hinges. It is
well known that the problem of hinge location can be handled, if the loading can be
approximated in the form of concentrated loads and moments, since possible hinges
can be placed at all such load points as well as at member intersections. The net
result is that the structure is modelled as an assembly of beam elements, with po-
tential hinges only at the ends of these elements and where the concentrated loads
are acting. In the following presentation only the mutual rotations and the mutual
axial displacements in each yield hinge are taken into account (shear deformation
and torsion are neglected).

8]

———  :lower side of element

x, v,z local coordinate system

Figure 3.4.1. Definition of generalised coordinates 3 for a space beam element.
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Unless a yield hinge is formed within a member, the member must move as a rigid
body within the mechanism. Therefore it is necessary to formulate equations that can
enforce this requirement. For this purpose a coordinate transformation is introdueed
into the member-generalised coordinates separating the rigid body motion from the
member deformation. For this purpose it is useful to introduce two sets of generalised
coordinates, i.e. a set 3 which describes the motion of the member ends and a set 5
which describes the motion of the members (the member deformation and the rigid
body motion of the members). Further, the transformation between 3’ and 5 will be

described by a transformation matrix T i.e.

3 =T3 (3.4.2)

Consider a space beam element. Definition of the set 3 for the element is shown in
figure 3.4.1. -

The set 3’ can be defined, in terms of the set 3 in the following way (note that member
rotations about ends which give tension in the lower side of the beam are defined as

positiv‘e)

8] = 8¢ — 31 member elongation (displacement of end 2 in relation  to
end 1)

sy, = s5+ %(37 — 82) positive member end rotation of end 1 about the z-axis

8y = —S10+ %(32 — s7) positive member end rotation of end 2 about the z-axis

8y = —ss+ %(38 —s83) positive member end rotation of end 1 about the y-axis

sy = Sg+ 1(s3 — ss) positive member end rotation of end 2 about the y-axis

sy = 81 rigid member translation in the z-direction

sy = 82 rigid member translation in the y-direction

sy = S3 rigid member translation in the z-direction

sy = 1(ss—s3) rigid member rotation about the y-axis from end 1 to
end 2

8y = %(52 —37) rigid member rotation about the z-axis from end 1 to
end 2

where the two last-mentioned rotations are defined positive when the rotation is coun-
terclockwise. These definitions are illustrated in figure 3.4.2. Note that any member
deformation (except axial rotation, which is not included here) can be expressed by
some combinations of s: ,7 = 1,...,5, and any rigid member motion (except axial
rotation) can be expressed by some combination of s}, ¢ =6,...,10.
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Figure 3.4.2. Definition of generalised coordinates 3' for space beam element.

i

Cl O — — — — — —9’—0 —
§ A O—m—————— ——0 Y
7:[ (o o] ‘}——x
1 2 Z
SqoAf O = == ——— — -0 zZ )
L o : W,
1 2
_0
-~ .
—~ "Zy
Os= - = o} X
1 E'S\’rg 2
_0
-~ Yy
Om= St —0 X
1T = 2 ’
== 310 Z

The transformation matrix T can now be expressed as

-1 0 0 0

0 -1)L 0 0

o 1L 0 0

o 0 -1/L -1

= |o o 1L 0
T=11 o 0 0
0o 1 0 0

0o 0 1 0

o 0 =-1/L 0

Lo 1)L 0 0

01 0 0 0 01
10 1)L 0 0 O
00 -1/L 0 0 -1
o0 o0 1L 0 0
00 0 -1/L 1 0
00 0 0 0 0
00 0 0 0 0
00 O 0 0 0
oo 0 1L 0 0
00 -1/L 0 0 0.

23

(3.4.3)

When a mechanism is formed all members of the structure will behave as rigid bod-
ies. Deformation of each member must be prevented by enforcing the deformation
coordinates s},..., s} for each member to remain zero during the mechanisms. To

=1
enforce these constraints formally, we first introduce a constraint matrix C' for the
jth element which is made up of the first five rows of T, i.e.

-1 0 0 0
_ 0 -1)L 0 0
cC =0 1L o0 0
o 0 -1/L -1
o 0 1/L 0

01 0 0 0 0
10 1)L 0 0 0
00 -1)L 0 0 -1
o0 0 1/L 0 0
00 0 =-1/L 1 0
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Let the structural system consist of m elements. The constraint matrix C for the

=j
entire structure is constructed by assembling the C*, j = 1,...,m for the members
as follows '

r—1 = = ™
. € 5 - g
0 C 0 - 0
= 0 0 C 0 0
C = (3.4.5)
—] = : =m
| 0 0 ]

where 0 is a 5 x 10 matrix with only zero components. The C is a 5m x 10m matrix.
The set of deformation generalised coordinated (s},...,s}s) for each element in the
structure is now assembled in a global vector S’ defined by

il
— T
g = (3’11,...,3’51,3’12,...,sgz,...,s’lm,...,s’sm) (3.4.6)

where 's;J_ denotes the deformation generalised coordinate ¢ for the structural element
T,

Likewise, the generalised coordinates (sj,...,S10), for each element in the structure,
are assembled in a global vector S defined by

3'- = (311,.. < 9810755155+ +381023++351 9 ..,Slom)T (347)

where s;; denote the generalised coordinate ¢ for the structural element j.

This provides the relation

Qll

S =CS (3.4.8)
Clearly the components of S are not independent, but restrained so that the struc-
tural elements move in such a way that the compatibility of the assembled structure
are preserved. This can be enforced by introduction of the general compatibility
condition

—%

5* = AF (3.4.9)

where the components of S" are the generalised coordinates of all elements expressed
in the global coordinate system, T is the column matrix of the external degrees of
freedom (in general three per joint in plane structures, and six per joint in spatial
structures, unless constraints are imposed) expressed in the global coordinate system

and finally, A is the compatibility matrix.



Some Aspects of Reliability of Offshore Structures 25

It now remains to introduce the coordinate transformations to link the element coor-
dinates expressed in the local system S, to the element coordinates expressed in the
global system S *. This can be expressed as

$-0% (3.4.10)

where Q is the transformation matrix. -

Combining eqs.(3.4.8),(3.4.9) and (3.4.10) leads to

F=03 (3.4.11)

Qll

where

ol

5 (3.4.12)

all
QII

To find a mechanism, one must find a solution to eq.(3.4.11) so that S’ is zero

7 =0 (3.4.13)

i

Qll

However, unless the structure is already a mechanism no such solution exists. In
fact, C; generally has the dimension 3m x r for plane frames, and for spatial frames,
5m x r (unless constrains are imposed), where m is the number of structural elements
and r is the number of external degrees of freedom.

At this point releases are introduced which will provide the possibility of mechanism
formation. To keep the methods as general as possible five releases per element will
be inserted. The five releases inserted are two rotational possibilities at each end of
each element (about the two local axis) plus detaching (axial only) at end one from
its joint. This is shown for a simple space frame in figure 3.4.3. Insertion of a release
is equivalent to adding an external degree of freedom. By combining eq. (3.4.9) and
eq.(3.4.10) leads to

AF (3.4.14)

@ll

5 =

The releases must be made with respect to the local coordinates 5. In accordance
with the definition of the coordinates shown in figure 3.4.3, the rows of the matrix
Q A are replaced by zeros where they correspond to 1,4, S5, 59,510,511, 514, S15, 519
and sz0. This is equivalent to releasing the corresponding degree of freedom. Also, a
column is added to Q A in which the number one is placed in the row that was zeroed
out earlier. Of course, 7 must be expanded by one component for each column added
to Q A. This modified form of eq.(3.4.14) is then inserted into eq.(3.4.8) resulting in

Cofy = S (3.4.15)
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where ﬁg is C multiplied by the modified form of a—.:A:, and Tps is the matrix of
external degrees of freedom, 7, augmented by the member releases.

Putting S’ = 0 (as before) the following is obtained
CoFm = 0 (3.4.16)

The solution of eq.(3.4.16) defines the fundamental solutions. Note that for plane

structures C» is a 3m X rj matrix, where m is the number of elements, and where
ra is equal to the number of external degrees of freedom plus the number of internal
degrees of freedom. For space structures C, is a bm x rj matrix. The difference
ra — ym (where 7 is equal to 3 or 5) is the number of independent solutions of
eq.(3.4.16) and therefore also the number of fundamental mechanisms.

O . Nodal number
D ! Element number
X, Y, Z . Global system
a) x,y,z : Local system
24 Py, P, Loads
VA Element 1 }ElementZ } Sig
& . ; s S14 s
4 9 ‘Slz * 17 s
\52 S7 U e 77 16

X / iy /SS }‘r

c)

i = Potential axial displacement
e=O== Potential rotational displacement
about the local z-axis

=== Potential rotational displacement
about the y-axis

Figure 3.4.3. Simple space frame example.

When estimating the reliability of the complete structure it is important to be able to
identify the most significant mechanisms, i.e mechanisms that contribute significantly
to the probability of failure of the structure. When each yield hinge in the structure
has only one possible strain rate the MDOF mechanisms will not become significant
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for estimation of the reliability. For this kind of structure a heuristic method used
to identify the most significant mechanisms can be formulated similarly to the S-
unzipping method described in Thoft-Christensen & Murotsu® 1986.

First, the fundamental mechanisms are divided into two groups namely real mecha-
nisms (mechanisms with non-zero external work) and fictitious mechanisms (mech-
anisms with zero external work). The real mechanisms with safety index S indices
in the interval [ﬂ,’;in, ﬂ,{"-n + A;], where ﬂ,{"-n is the smallest safety index of all fun-
damental mechanisms and where A; > 0 is a given constant, are used to define the
starting points for a failure tree. Each of these selected starting mechanisms is in
turn combined with the remaining fundamental mechanisms in such a way that the
new mechanisms fulfil the following condition

o they are real mechanisms with positive external work

e only fundamental mechanisms with at least one common failure element are
combined with the selected mechanisms

The lowest 8 index among the combined mechanisms is called Bmin. The combined
mechanisms with 3 indices in the interval [Bmin, Bmin + A3] , where Ay > 0 is a given
constant then define the branches in the failure tree originating from the fundamental
mechanisms. These combined mechanisms now form the basis of new branches. Each
branch symbolises that the mechanism belonging to the node at the end of the branch
is obtained by combination of a combined mechanism and a fundamental mechanism
using the same conditions as mentioned above.

This procedure is terminated when at least one of the following criteria is fulfilled

e the number of combined fundamental mechanism which form a combined mech-
anisms exceeds a critical number Npqz

o the lowest 3 index calculated in a ramification is greater than { multiplied by
the 3 index for the mechanism which forms the basis, where ¢ is some given real
number, e.g. £ =2

o all new combinations of combined mechanisms and fundamental mechanisms
have been identified before

During the formation of a failure tree some of the identified mechanisms are insignif-
icant (mechanisms with high f indices and mechanisms which are fully correlated
with a mechanism with a lower 3 index). Evaluation of the reliability of the struc-
ture is made by modelling the significant mechanisms as elements in a series system,
and by including only not fully correlated mechanisms with 3 indices in the interval
[B2,ins Bonin + As], where B5,;, is the lowest § index for any mechanism in the failure
tree and Az > 0 is a given constant.

It is seen from this brief description of the above method, that the procedure can be

performed in the following three steps
1. Generation of a set of fundamental mechanisms.

2. Identification of significant mechanisms.
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3. Estimate of the reliability of the structure on the basis of the significant mech-
anisms.

In example 3.4.1, it is illustrated how the method works for a plane 2- storey frame
structure, when each yield hinge in the structure is assumed to have only one possible
strain rate, namely rotational.

It is important to note that this procedure leads to identification of ODOF mecha-
nisms. However, when each yield hinge in the structure has more than one possible
strain rate, the MDOF mechanisms can become significant, see example 3.3.1 in
section 3.3. In section 3.3 it is discussed how the most significant mechanisms for
MDOF mechanisms can be estimated using optimisation. The results of the optimi-
sation problem will often depend strongly on which optimisation algorithm is chosen
and on the starting point in the optimisation problem. An obvious choice of starting
points is the most significant ODOF mechanisms obtained by the above method.

Example 3.4.1

The 2-storey frame structure in figure 3.4.4 is considered in this example. The loading
and locations of potential yield hinges are also shown in figure 3.4.4. This example
have been analysed before by Bjerager’ 1984, but by another method. The structure
is 6 times statically indeterminate, i.e. r = 6. The number of internal degrees of
freedom of the structure is equal to possible locations of potential yield hinges so that
each yield hinge is assumed only to have one possible strain rate, namely rotational
(ODOF yield hinge), i.e. n = 12. The number of fundamental mechanisms then is

m=n—r = 6

The yield moment capacity Mp,,7 =1,...,12 and the external loading P;,z =1,...,4
are assumed to be Gaussian random variables. The expected values and the coefficient
of variation for the stochastic variables are shown in table 3.4.1.

J*
Py
ra —_— L
7 6 % 12 &3
a
|
Pl 5X9 117
+# —m =6 £ i
b ¢
2 10
a
, ¥ 1 &)
7 T AT
b b
/lV /'V /1"

Figure 3.4.4. Geometry, loading and possible location of potential yield hinges (x).
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Variable Expected Coefficient of
value variation
P1 20#}3 0.30
P, 2.5up 0.15
P 1.0up 0.30
Py 1.5up 0.20
Med=15u0.y12 app 0.10

Table 3.4.1. Expected values and coefficient of variation for the stochastic variables
(up is an arbitrary constant and a is defined in figure 3.4.4)

Further, the yield moment capacities are equicorrelated with correlation coefficient
0.5, but are uncorrelated with the loads, and the loads are mutually uncorrelated
except for pp, p, = 1. Finally it is assumed that a = b in figure 3.4.4.

In figure 3.4.5 a set of fundamental mechanisms with the respective safety indices 3 is
shown. On the basis of A; = 10 the fundamental mechanisms 1,2,3 and 4 (see figure
3.4.5) are selected as starting points in the failure tree. In the case of Njpqz = 6 and
A, =1 the failure tree becomes as shown in figure 3.4.6. With Az =1, 6 not fully
correlated ODOF significant mechanisms are identified. The significant mechanisms
with the respective S-indices are shown in figure 3.4.7.

1)

6)

7_77.6 =12.13

Figure 3.4.5. A set of fundamental mechanisms of the frame in figure 3.4.4.
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1 2 3 4
5.590 6.883 8.544 9.206
*)
1+2 2+4 3+2 3+4 3+5
5.466 4.545 8.102 8.110 7.937
1+2+4 2+4+5 3+4+42-2 3+5-6
5.702 262 5.404 218
*) *)
1+2+4+2 2+4+5+42 3+4+2-2+1 3+4+2-2+4 %+6i+2-2—
5.231 4.785 5.307 5.400 T 4.506
| /\ ) .
1+2+4+2 2+4+5+2 2+4+5+2—6 3+4+2-2+1 3+4+2-2+ 3+4+2-2+
+3 +4 =26 4+2 46
4.743 4.934 4211 4.479 5.159 5.124
. *) \
1+2+4+2 2+4+5+2+ 3+4+2:2+ 3+4+2:2+ 3+4+2-2+ 3+4+2-2+
+5-6 4+2 4+2—3+6 4+2+5 4+2—3 4-6+2
4722 4.703 4.881 5.175 5.004 4.906

Figure 3.4.6. Failure tree for the frame in figure 3.4.4, in case of A; = 10 and A; = 1.
3+4+2.2 | denotes a new mechanism obtained by combining one time

5.404 fundamental mechanisms no.3 and no. 4 and two times
fundamental mechanism no. 2 and the safety index § for the new
mechanism becomes equal to 5.404. %) denotes significant mechanism.

B=4.55 774;7 B=4.79

Figure 3.4.7. Significant mechanisms for the frame in figure 3.4.4, in case of A; = 3.

The correlation coefficient matrix of the safety margin of the significant failure modes
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(mechanisms) is

r1.00 0.97 0.92 .0.94 0.97 0.997
1.00 0.95 0.93 0.95 0.96
1.00 0.98 0.90 0.91

1.00 0.92 0.93

1.00 0.98

| sym. 1.00 4

Sl
Il

Estimates of the upper bounds of the system reliability index B, are (Ditlevsen
bounds, Ditlevsen? 1979)

411 < B, < 4.14

In Bjerager! 1984 the exact value of the reliability index is found to be between 4.06
and 4.14.
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3.5. Application

In the sections above a method for estimating the probability of failure with respect'to
plastic collapse of truss and frame structures of ideal rigid plastic materials is briefly
described. To make this method applicable a new program package "COLLAPSE”
has been made. The program package which contains approx. 3200 source lines
written in FORTRANTY7, consists of four calculation blocks, namely

1)

2)

3)

4)

AUTOMEK
This program reads the structural data and generates a set of fundamental mech-
anisms by creating and solving eq.(3.4.16)

SIGNMEK
This program uses the method described in section 3.4 to identify the most
significant mechanisms. The parameters Nmaz, A1, Az, Az and £ are defined
by the user.

OPTMEK

This program is only used for MDOF yield hinges. Identification of a new
significant mechanisms is formulated as an optimisation problem as shown in
eq.(3.3.10), with the most significant mechanisms obtained in program SIGN-
MEK as a starting points in the optimisation problem. In example 3.3.1 some
results from OPTMEK are illustrated. The user can choose between two differ-
ent optimisation algorithms namely the NLPQL-algorithm, Schittkowski? 1986,
and the Nelder&Mead-algorithm, Kuester & Mize® 1973.

SERIESYS

This program estimate the system reliability index 8, on the basis of the signif-
icant mechanisms obtained in the programs SIGNMEK and OPTMEK.

The following methods are available in the program

° Ditlevsen bounds, Ditlevsen? 1979

° Hohenbichler approximation, Hohenbichler? 1933

° PNET approximation, Sgrensen’ 1984

° approximation based on the average correlation coeflicient, Sgrensen’

1984

° approximation based on the equivalent correlation coefficient, Sgrensen’
1984

° bound based on min. and max. correlation coefficient, Sgrensen’ 1984

Example 3.5.1

Consider the plane frame shown in figure 3.5.1. It is part of an offshore platform. It
has 15 structural elements which are all tubular beam elements made of steel. Each
yield hinge is assumed to have two types of deformation, namely axial elongation
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and rotation. The loading and yield stresses in potential yield hinges in a structural
element are assumed to be fully correlated, and the coefficient of correlation between
yield stresses in failure elements with the same cross-section is chosen to be 0.7.
Otherwise the yield stresses are uncorrelated. The concentrated loads P; and P,
are uncorrelated. The expected values and the coefficient of variation for the loads
P;,;i = 1,2 and the yield stresses ¥;,7 = 1,...,30 are shown in table 3.5.1. The
geometrical cross-sectional data for the failure elements are shown in table 3.5.2.

28.1m

352 m

39.1m

|74 1’4

Figure 3.5.1. Geometry, loading and possible location of potential yield hinges (x).

Variables Expected Coefficient of
value variation
Yii= lyu:sy90 3.2 10° kN/m? 0.15
Py 4.5 10* kN 0.05
P, 1.0 10® kN 0.30

Table 3.5.1. Expected values and coefficients of variation for the stochastic variables.

With Nppar = 7, A7 = 10, A5 = 0.3 and A3 = 1, three not fully correlated significant
mechanisms are identified. The significant mechanisms and respective reliability in-
dices are shown in figure 3.5.2. The system reliability index, estimated by Ditlevsen
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bounds, are

3.75 < p° < 3.75
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Failure D t A W,
element 1 (m) (m) (m?) (m3)
b= Lywos g L2 2.5 0.042 0.3243 0.2538
1=13,14 2.0 0.034 0.2100 0.1314
t==15,16,19,...522 1.5 0.025 0.1158 0.0544
§=17,18 1.0 0.017 0.0525 0.0164
i =28, ::528 1.2 0.020 0.0741 0.0279
i1 =27,...,30 0.9 0.015 0.0417 0.0133

A : cross-sectional area

A =~ wt(D—1t)
cross-section: D W, : plastic modulus
. W, = t(D — )2
L

Table 3.5.2. Cross-sectional data.

|

Figure 3.5.2. Significant mechanisms.

f=3.88

Example 3.5.2

Consider the model of a steel jacket offshore platform in figure 3.5.3. The structure is
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a 12 times statically indeterminate spatial truss tower, having 43 structural elements.
Each structural element is supposed to have one failure element with one possible
strain rate, namely axial elongation. Therefore, the number of fundamental mecha-
nisms is m = 48 — 12 = 36. The expected values of the axial strength capacities in
tension E[N7 ] for the failure elements are shown in figure 3.5.3.

This example has been analysed before by Sigurdsson, Sgrensen & Thoft-Christensen?
1985 and by Bjerager® 1984, but by different methods. i

The expected values of yield capacities in compression, E[Ng], are

E[Np] = 05 E[NE] i=1,2,...,48

All yield capacities N, are assumed to be equicorrelated with correlation coefficient
0.5, and coefficients of variation equal to 0.15.

The structure is subjected to 4 vertical dead loads each of the magnitude P;, see
figure 3.5.4, and 12 horizontal wave loads all of the magnitude proportional to the
quantity P; and all having the same direction given by the angle 6, see figure 3.5.4.

Further, it is assumed that there is no correlation between resistance and load vari-
ables, and that the constants in the wave load model are

(8,71,72,713) = (30°,1.000,0.667,0.126)

200m

22.5m y

| E[NZ] (kN)

N

67200 :=1,...,
37070 ¢=256,...,8

28.1m

. 103780 i=13,...

370370 i = 25,..
| 23070 i=33,..
13 e 13350 :=41,..
Lo
v 39.1m .

Figure 3.5.3. Spatial truss tower.

16800 i=9,...,12




36
11
6 6
P P
2 |12 2110
9
0 ]
P?. PZ

Y

Y

G. Sigurdsson

E[P;] = 40000 kN V[P,] = 0.05
E[P,] = 278 kN
ppp, =0

V[Py] = 0.30

Figure 3.5.4. Illustration of the wave loading (V[-] denotes coefficient of variation).

With Nmaz = 6, A1 = 1.0, Az = 1.0 and Az = 2.0, 12 not fully correlated significant
mechanisms are identified. The mutual axial and rotational deformation rates for
the failure elements, #;, the displacement rates for the external loads, v;, and the
reliability indices, §; for the significant mechanisms are shown in table 3.5.3.

Mech,

no. 1 2 3 4 5 6 7 8 9 10 11 12
Ug -1.42

U1 -1.42

U12 -1.42

U9 1.4 1.73 1.73 -0.16 0.17 0.17

U292 0.17 -0.02 -0.17
23 |1.56 1.73 1.56 1.57
Uy 1.56 -0.16 1.56 -0.02

41 1.23 0.11 -0.12
U42 0.12 1 0.12 -0.11 0.12

43 1.11 1.11 -0.11
Ugq 0.12 1.23 -0.01 1.11
Ugs 1.11 1.11 1 1.11 -0.01

Ugg 0.12 1.12
Ugr 1.11 1 0.12 1 0.12

48 1.23 -0.11 0.11

disp.

rate:

v1 1.58 0.18 1.58 1.42 1.59 159 159 142 142 0.16 0.16 1.42
V2 2.46 0.27 1.42 2.80 -2.80 -3.44 246 142 -0.16 -0.27 1.58
Bi 2.33 2.33 2.35 2.38 3.49 3.59 3.60 3.65 3.67 3.72 3.74 3.87

Table 3.5.3. The 12 most significant mechanisms.
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The system reliability index, estimated by Ditlevsen bounds are

1.85 < B, < 1.92

The results obtained in this example are very well in accordance with results from
Sigurdsson, Sgrensen & Thoft-Christensen? 1985 and from Bjerager’ 1984, where 3,
was estimated to 1.86 and 1.90, respectively.

3.6. Conclusions

In this chapter a reliability analysis of truss and frame structures of ideal rigid plastic
materials is discussed. Failure modes corresponding to plastic collapse are used.
The reliability analysis is carried out using the upper-bound theorem of plasticity
(kinematic theorem of mechanisms).

A technique for identifying the most significant failure modes is presented. It is shown
that the most significant failure modes depend significantly on the cross-section.

A new program package "COLLAPSE” is presented. The program is illustrated
by two exainples, i.e. two different models of steel jacket offshore platforms. The
second example, example 3.5.2, has been analysed before by Sigurdsson, Sgrensen &
Thoft-Christensen? 1985 and Bjerager® 1984, but by different methods. The results
obtained here are very well in according to their results.
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4. PROBABILISTIC FATIGUE ANALYSIS OF OFFSHORE
STRUCTURES

4.1. Introduction

Offshore structures of all types are generally subjected to cyclic loading from wind,
current, earthquakes and waves acting simultaneously, which cause time-varying _
stress effects in the structure. The environmental quantities are of a random na-
ture and are more or less correlated to each other through the generating and driving
mechanism. Waves and earthquakes are generally considered to be the most impor-
tant sources of the structural excitations. However, earthquake loads are only taken
into account in the analysis of offshore structures close to or in tectonic offshore fields.
For fixed offshore structures in deep water environments wind loads represent a con-
tribution of about 5 % to the environmental loading, Watt? 1978. Current loads are
usually considered to be unimportant in the dynamic analysis of offshore structures,
because their frequencies are not sufficient to excite the structures. A reliability cal-
culation of offshore structures due to a fatigue failure is a difficult task due to the
random nature of the loading, and also due to insufficient information of structural
failure under these conditions. A stochastic assessment of the reliability analysis of
structures is therefore inevitable. Dynamic loads, such as wave loads, produce stress
Auctuations in the structural members and joints and are the primary cause of fatigue
damages. A fatigue analysis of offshore structures can be described in general terms
as a calculation procedure, starting from the waves and perhaps ending with fatigue
damage occurring in the material. The links between the waves and the damage are
formed by mathematical models for the wave forces, the structural behaviour and the
material behaviour. In view of the stochastic and dynamic character of the waves it
is an obvious choice to apply spectral fatigue analysis methods to the fatigue prob-
lem, when the structural system and loading are modelled linear. In this chapter, a
stochastic reliability assessment for jacket type offshore structures subjected to wave
loads in deep water environments is outlined. To estimate statistical measures of
structural stress variations the modal spectral analysis method is applied.

The probabilistic fatigue analysis is divided into four steps:

I  Probabilistic modelling of the sea states

a) short-term modelling of the sea states

b) long-term modelling of the sea states
II Probabilistic modelling of the wave loading
III Structural response analysis (global and local)
IV Stochastic modelling of fatigue failure
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Step I is considered in section 4.2, where the sea surface, for a short-term period,
is assumed to be a realisation of a zero-mean ergodic Gaussian process, and it is
shown how the long-term probability distribution of the sea states can be modelled.
The short-term modelling of the sea state is mainly based on Sigbjgrnsson? 1979,
Sigbjgrnsson & Smith? 1980, Sarpkaya & Isaacson® 1981, Haver? 1985!, Sigbjgrnsson,
Bell & Holand? 1978, Olufsen, Farnes & Fergestad? 1986 and Haver & Moan? 1983.
The long-term modelling of the sea states is mainly based on Haver” 19852, Haver
& Nyhus? 1986 and Haver? 1985%. In section 4.3 it is shown how the wave loading
on structural members can be modelled by using Morison’s equation, and how the
cross-spectral densities of the load process can be obtained. This section is mainly
based on Sarpkaya & Isaacson® 1981, Sigbjgrnsson? 1979, Atalik & Utku? 1976 and
Langen & Sigbjgrnsson® 1979. In section 4.4 it is shown how the cross-spectral
densities of the stresses in the structure can be obtained. And in section 4.5 it
is shown how the probability of fatigue failure can be estimated by three different
damage accumulations models, namely by Miner’s rule combined with the so-called
S-N approach, by using crack growth model (fracture mechanics) and by using a
model introduced by Bogdanoff et al.? 197823, 1980.

In section 4.6 a new computer package "SAOFF” is presented. The program, which
is based on the methods and assumptions described in sections 4.2-4.5, is illustrated
by a single example.
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4.2. Probabilistic Model of the Sea States

Short-Term Sea Model

The observed sea elevation, 7(7,t), at the fixed location 7 at a time ¢, can be con-
sidered as a realisation of a non-stationary stochastic process, whose characteristic
parameters vary slowly with time. Further, it is assumed that for short-term periods
(a few hours) the sea surface 7(7,t) can be considered as a realisation of a stationary
stochastic process. This process is assumed to be a zero-mean ergodic Gaussian pro-
cess. A’ consequence of these simplifying assumptions is that within the short-term
time scale the sea surface elevation is completely defined by the cross correlation
function R, ,,. (AT, 7')

Rnnnm(AF7 T) = E[T’(F1 t) T](F + AF7t 4 T)] (4'2'1)
+o0 T
= / /_emp(e(wr— k™ AT)) 5(3)(k w)dRdw (4.2.2)
—oo Jk
where € = /=1, AT = (T — Tm,Yn —Ym), T = tn — tm, and n and m refer to points

with spatial coordmates (Zn,Yn) and (Tm,Ym), respectlvely in the t1me space, k is
the two-dimensional wave number vector and w is the frequency. S,,n,,m(k w) is the
three-dimensional wave spectral density.

The wave number vector k can be expressed by polar coordinates

k = kcos(d) i+ ksin(6) j (4.2.3)

where 7 and 7 represent the base vectors and « is the wave number.

The correlation function can now be expressed by polar coordinates

+oc0 .9-+1r/2
Ry (AT, T) = / / /Sg%)(n,G,w) ezp(ewt) exp(—ex

6—m/2
(Azcosb + Aysin))dkdfdw (4.2.4)

where Az = Tn—Tm, AY = Yn—Ym and 8 is the average direction of wave propagation.

In structural analysis it is more convenient to use spectral densities than correlation
functions. The corresponding spectral density is defined by the W iener-Khinchine
relation as

1 [T

Snnﬂm(w) = _2-; Rﬂnﬂm(AF7T) efp(—fWT)dT (4:25)
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Substitution of eq.(4.2.4) into eq.(4.2.5) yields

47 /2
Suanm (W) = /_ /Sg%)(n,é,w) exp(—ex(Azcosb + Aysind))dxdd (4.2.6)
-n/2 Jk

_ The existence of one-to-one mapping of the modulus of the wave number & into the
frequency w is assumed. An expression suitable for this purpose is the dispersion
relation known from the Airy wave theory

w? = k g tanh(xd) w>0 ,k20 (4.2.7)

where ¢ is the acceleration of gravity and d is the water depth. Equation (4.2.7)
is based on the small-amplitude wave theory. However, experience indicates that it
may be used with confidence in engineering for waves with moderate amplitudes,
Sigbjgrnsson & Smith? 1980. The spectral density can now be expressed in terms of
the directional frequency spectral density

6+m/2
Snanm (W) = ‘[ ng,)(e,w) exp(—ex(w)(Azcosh + Aysind))dd (4.2.8)

9—m /2

In practical apphcatlon it is commonly assumed that the two- d1men51ona1 wave spec-
tral density S,,,, (6,w) can be written, see Sigbjgrnsson? 1979 -

SP(0,w) = Spalw) $(9) (4.2.9)

where Syp(w) is the one-dimensional wave spectral density and () is the so-called
spreading function, which is assumed frequency independent. By using equations
(4.2.8) and (4.2.9) the following expression for the cross-spectral density of the sea
surface is obtained

0+7r/2
Sonam (W) = Spg(w) / ¥(0) exp(—ex(w)(Azcosh + Aysind))do (4.2.10)

0—m/2

It is seen that the spectral density, eq.(4.2.10), is reduced to the one-dimensional
spectral density of wave elevation when the points n and m coincide. When the
one-dimensional spectral density and the spreading function are known the short-
term properties of the wave field are completely specified in terms of eq.(4.2.10). In
most practical applications a standard formula involving a few sea state character-
istics is usually used for S,,;(w). Over the last 30 years many spectral expressions
have been suggested, Sarpkaya & Isaacson® 1981. A common feature of most spec-
tral models is that they are of a unimodal form and mainly meant to characterise a
pure wind driven sea, but real seas are very often of a combined nature, e.g. com-
prising wind sea and swell components. These two parts will normally correspond
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to different directions of propagation, making the concept of a mean direction of a
questionable value. An accurate description of a general sea state in terms of char-
acteristic parameters will require a large number of parameters. However, for these
purposes a sea state with a given average direction of propagation 9 can reason-
ably well be described by two parameters, namely by the significant wave height Hy,
and the spectral peak period Tp. In other words, it is assumed that the variabil-
ity in the spectral parameter set does not affect the predicted response significantly.
The spectral variability over the H, — T}, space is indicated qualitatively in figure
4.2.1, Haver? 1985'. Within area 2 the sea states can on average be reasonably
well modelled by single peaked model spectra. Beyond this area sea states will typ-
ically be of a combined nature. It is expected that the bulk of extreme sea states
is located within area 2, but for lower and moderate sea states which are of impor-
tance in the present fatigue studies, the percentage of sea states beyond area 2 is
increasing. However, the sea states are assumed to be more or less pure wind sea:

T,

1) Sea states combined by wind sea but significantly influenced by some swell

components.

2) More or less pure wind seas (or, possibly some swell components located well

inside the wind sea frequency band).

3) Sea states more or less dominated by swell but significantly influenced by

wind sea.

Figure 4.2.1 Qualitative indication of spectral variability, Haver? 1985.

Here, the JONSWAP spectrum is adopted as a model for wind sea. This spectrum
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can be written, Sigbjgrnsson, Bell & Holand? 1978

- o, w —¢ rpl=1((&—=1)/0)?
S() = agueap(= () )y A (¢211)
P

where

w is the frequency (rad/sec)

a s the ec-luilibrium range parameter

g is the acceleration of gravity

w, is the spectral peak frequency (= 27/T} )
w4 is the spectral peak parameter

o is the spectral peak width parameter

Regarding o the mean values from the JONSWAP experiment are usually adopted,
ie. 0 = 0.07 for w < wp and o = 0.09 for w > w,, Haver? 1985'. Here o is chosen
to be 0.08 for all frequencies and all sea states. For a sea state with a given value of
the significant wave height H, the remaining parameters (a,v and wp) are related to
each other through the following equation, Haver? 19851

v = exp(3.484(1—0.1975a T, /H})) (4.2.12)

It should be noted that eq.(4.2.12) can be used as "physically correct” only within
the so-called JONSWAP range, i.e. the subspace of area 2 in figure 4.2.1, where a
JONSWAP formula is expected to be a reasonable spectral model. In Haver? 19851
the JONSWAP range is given by

3.6H, <T,<5vH, (4.2.13)

The lower bound corresponds to a = 0.016 and v = 5.0, and the upper bound (cor-
responding to fully developed sea) to a = 0.0081 and v = 1.0, where the JONSWAP
wave spectrum equals the Pierson-Moskowitz wave spectrum (PM-spectrum). Within
the JONSWAP range a is assumed to vary linearly with T}, at a fixed H, 1.e.

a = 0.036 — 0.0056 T,/+/H, (4.2.14)

Experience seems to indicate that the suggested lower bound for the JONSWAP
range, €q.(4.2.13), is located on the edge of area 1 in figure 4.2.1. A fairly good fit
is obtained with a single peaked spectrum up to T,/+/H, = 6.0 — 6.5. For sea states
located above the JONSWAP range it is assumed that the JONSWAP spectrum
with v = 1 can be used, and for a sea state located below the JONSWAP range it is
assumed that the JONSWAP spectrum with v = 5 can be used.
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In some case it is more convenient to use the expected zero-upcrossing wave period

T, instead of Tj.
T, = 2xy/my[m, (4.2.15)

where
m; =/ W' S (w)dw

and the relation between T, and T can be estimated by, Olufsen, Farnes & Fergestad?

1986

T,
0.43365 + 0.27594 ~0-1842

T, = (4.2.16)

The accuracy in eq.(4.2.16) is rather good. If T, is in the range of 1-20 sec. and if v
is between 1-8 the error will be less than 1 % .

Several analytical expressions have been suggested for the spreading function ().
Normally, a cosine function is used
i

»(8) = {K cos®"(6 — 0) —3<(06-6)<% (4.2.17)

0 elsewhere

where K is a normalisation factor defined so that the integral of the spreading function

between — % and 7 is equal to one

PR i (4.2.18)

T VRT(n+3)

where T is the Gamma function and n is a parameter describing the width of the
distribution. For the limiting case n — oo eq.(4.2.17) approaches the Dirac delta
function corresponding to long crested waves.

Long-Term Sea Model

As mentioned earlier it is assumed that the sea surface elevation at a fixed location
for short-term periods can be accurately modelled by a zero-mean ergodic Gaussian
process. This process is completely characterised by the frequency spectrum Spn(w)
which, for a given average direction of wave propagation 8, can be described by two
parameters, namely by the significant wave height H, and the spectral peak periods
T,. The long-term probability distribution of the sea state , Pyrs (hs,tp,8), is then

given as a joint distribution of 9,H, and T,. It is not possible to derive this distri-
bution theoretically. The distribution has to be estimated from wave observations
in the ocean area concerned or derived applying hidcasting models, i.e. the chosen
analytical model has to fit in the best possible way to the data.
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In most wave observations no information of the mean direction of propagation 0 has
been included. If it is assumed that the joint distribution of H, and T}, is independent
of 8, the joint distribution P, ., (hs,tp,8) can be written as

sTp

HoTps (hsstp,0) = Pu,t, (Rsytp) P (6) ) (4.2.19)

For the present purpose the probability density function py, 1, (hs,tp) is conveniently
written as

pH,T,, (haatp) = pTP|H-' (tp[hs) PH, (ha) (4220)

where p, (hs) is the marginal probability density function for H, and p;, (tplhs)
is the conditional probability density function for T, given H,. pr g, (t |hs) and
pu, (hs) arefitted to the observations separately. The numerical values for Pu,z, (Rss tp)
are obtained by means of eq.(4.2.20). In this thesis p,, (k) is modelled by a log-
normal distribution for h, < v and by a Weibull distribution for Ay > v, i.e.

1 —(in ha_ll'H )2
) e ezp( e hs v
Pa,(he) = { Virom v (4.2.21)
E(2e)" eap(—L) p>0,6>0,hs>v

where p,, and ‘721, are the mean and variance of the variable In (H,), respectively,
and where continuity is required for p, (k) and Py, (hs) at hs = v. The conditional
distribution of T) given H, is modelled by the log-normal distribution, i.e.

2
1 —(Intp, — pr,)
Pryia, (talha) = \,/2_7F0' tp 6$p( 202 }
Ty Tp

) (4.2.22)

where 4, and o2 are the mean and variance of the variable In (T}), respectively.
The long term probablhty distribution of the sea state can also be given by some
other characteristic periods than T}, together with H,, i.e by using the expected zero-
upcrossing wave periods T instead of T}, (see eq.(4.2.16)). The reason for choosing
T, is that these periods are less correlated to the significant wave height H, than
the other periods, Haver? 1985%2. Together with H, it will therefore include some
additional information about a general sea state.

The marginal probability density function p_(G) can be estimated by dividing the
circle into a certain number of sectors and assoc1at1ng each sector with a point prob-
ability p_(0x), &k = 1,...,n where 6 is the midpoint of sector no. k, and n is the
number of sectors.
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4.3. Probabilistic Modelling of the Wave Loading

In chapter 4.2 the statistical nature of the waves themselves was dealt with. Now
consider the consequential loading on a structural element. It is well known that
the force on a vertically placed circular cylinder subjected to wave action consists of
a drag as well as an inertia component, Sarpkaya & Isaacson® 1981. It is generally
assumed that the total wave force per unit length of a fixed vertical cylinder of the
diameter D at position 7, = (z,,¥,,2,) at the time ¢ is

B fz(Ty, 1) _ _
f(Foat) = fy(Foat) = fD(Fovt)'*'fI(Fovt) (4'3'1)
f2(7o, 1)

wher_e
?D(Fo’t) = Kp lE(Fost)I E(Fovt)
7I(Fo7t) = KI E(Fmt)

Kp =1/2Cp pD

K =1/4Cpy 7 p D’

u(7,,1) is the horizontal water particle velocity vector at position 7, at the time
t.

i(r,,t) is the horizontal water particle acceleration vector at position 7, at the
time ¢.

2,952 is the global coordinate system.

Cp is the drag coeflicient.

Cu is the inertia coefficient.

p is the density of water.

Eq.(4.3.1), usually denoted as Morison’s equation, assumes that the cylinder is ver-
tical and fixed and that the velocity % and the acceleration i of the water particles
are horizontal and exactly normal to the vertical cylinder. In real offshore structures
the structural elements are in general not vertical and under dynamic loading they
are not fixed. However, it is assumed in this thesis that the load on the structure can
be calculated without taking into account that the structure is moving, which means
that the response velocity and the acceleration of the structure are assumed to be
much less than the water particle velocity and the acceleration respectively. Further,
it is assumed that Morison’s equation can be applied to a cylindrical member orien-
tated in a random manner as

_ frz(
fn(Foat) = fny(
fas(

S0 S0 S

) _ _
o’tg = an(Fo’t) 5 nt(Fovt) (4'3'2)
ovt
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where

?nD(Foat) = Kp IuTn(Fmt)' uTn(Fovt)

7nI(Fovt) = Kj En(_fo’t)

where the subscript n refers to a direction perpendicular to the cylinder.

The non-linear drag term f, p in eq.(4.3.2) makes the computations for correlations
and spectral densities extremely difficult and intractable. Therefore, a recourse to
linearization of the drag term in eq.(4.3.2) is made. The "minimum square error
linearization method” ,Atalik & UtkuP-1976, is used for this purpose. The linearized
version of the drag term f,p becomes

—_ = i i bw 7:1'71:
fDL (Fo,t) = Kp L un(Fo,t) = Kp |1, L, 123 ’l.iny (4.3.3)
Ly L lis Unz

where the linearization coefficient matrix Tis given in appendix B.
Eq.(4.3.3) can now be written as

‘ fﬂI(Fovt) —
Fa(Tort) = | fay(Fout) | = Kp L Un(Fort) + Kria(7y,t) (4.3.4)
fnz(FO’t)

The normal vectors ¢, and i, in eq.(4.3.4) can be expressed in terms of a unit vector
€ = (cz,¢y,c;) along the cylinder axis as follows (see appendix B)

in = Ex@ xe)T = C&

Qll

)T_

I
all
IsH|

i, = (ex (i x¢) (4.3.5)

where

(1=c%) —cuey —cCgC; o
—cye: | = [{C}, {C}, {C}.]

sym. (1-c?)
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Now eq.(4.3.4) can be rewritten as

nt(FcHt) g p—
Fo(Fort) = | fay(Fort) | = Kp L Cu(7,,t) + Ki C i(7,,t) (4.3.6)
FaelTsl)

Two points in the wave field are considered, i.e. point ! with the coordinates
71 = (z1,y1,21) and point m with the coordinates 7, = (Zm>Ym,Zm)- The point [
belongs to a circular cylindrical element L with the diameter D, and the unit vector
€, = (CzyCyy»Czy ) along the cylinder axis and the point m belongs to a circular cylin-
drical element M with the diameter Dy and the unit vector Ca = (Czars Cyars Conr)
along the cylinder axis. The cross-covariance function for the various combinations of
wave force components at [ and m can now be expressed as a function of the covari-
ance functions of & and %. The cross-spectral densities between various components
can be found by deriving the Fourier transforms of the corresponding cross-covariance
functions. The cross-spectral density between the forces frit and frnim becomes (sub-
scripts nil and njm (i,j = z,vy, z) denotes the force perpendicular to the elements in

the directions ¢ and j in the points [ and m )
i

Sinitfaim(@) = Kpy Kpy[{Bi}; {Bm};] [Sisicra]
+ Kp, Kn,{Bi1}; {Cm};] [Susan]
+ K1, Kpy[{CL}i {Bm};] [Sisim]
+ K1, Kr,[{C1}; {Cm};] [Suan] (4.3.7)

where

By}, (B}, (B}, = LiCs
{Bn}, (Bm}, {Bu}.] = L

s _ _ _ (1- Cf:L) CzrCyr Caxp Czz
Cr = [{Cr}, {C1}, {CL}.] = (1—c) —cyta
sym. 1—c2)
— _ _ _ (1 - Ci,\,) —CepCym  “CzmCam
Cm = [{CM}z {CM}y {CM}z] = (1- wa) —Cyar Czpg
sym. (1-¢c%))

I; and L,, are the linearization coefficient matrices for point [ and point m, respec-
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tively (see appendix B).

[Sivim] = | Siyicen (@) Siyig, (@) Siypits,, (@)
. . S.

( i
[Siiin] = Sﬂy,axmgw) gﬁy,&y,,,(W) Sy iz, (W)

—Sﬁzlu:m (w) Suzluym (LL)) Suzluzm (w)
[Sﬂlum] = Sﬁ“u,m( ) Uy, Uy, ((.U) ullli"zm )
_Sﬁzluzm ) Uz Uy, (LIJ) uzli‘zm( )_

- Sa i (W) S
[Sivim) = | Siy e, (W) Siy iy, (@) Siy, i, @)
Sa s (W) S

1

The notation [...][...] in eq.(4.3.7), and later in eq.(4.3.10), does not denote matrix
multiplications in the conventional sense. They are used here only to denote a row-
to-column multiplication. After one row-to-column multiplication a sum is made and
added to the sum of the second row-to- column multiplication and so on, so that the
final result is only a single term. The cross-spectral densities of the water particle
velocity [Si,4,,] may be expressed in terms of the one- dimensional wave spectral
density Spp(w) by using eq.(4.2.10) as, Sigbjgrnsson? 1979

9+7r/2 _
[Sisitn) nn(w)/ A(w, 21, 2 )0 (8)exp( —ex(w)(Az cosd + Ay sinb))dd
w/2

(4.3.8)
where
K_(w,zz,zm) = Z(E(w),zl)z*T(E(w)Jm)
L 1 cos cosh(k(w)z)
A=) = sinh(x(w)d) [Szgizfzj(h((g)z);)}
* denotes complex conjugated

€ == affe=1]
d is the water depth

Az =2z;— Tm
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Ay =y1— Ym

k(w) is the wave number, defined in eq.(4.2.7)

1(6) is the spreading function, defined in eq.(4.2.17) |

The z-coordinates are measured from bottom positive upwards.

The cross-spectral densities of water particle accelerations [Si,,.], acceleration and
velocity [Ss,4,.] and velocity and acceleration [S;.: ] can be obtained using the prop-
erties of the derived processes. This gives

[Sﬁzﬁm] = [Sfuﬁm]

[Siiim] = ~[Swim] = & [Sii] (4.3.9)

Applying eq.(4.3.9), eq.(4.3.7) can be rewritten as

i

Sfaitfrim(@) = [Kp, KDM({_B-I}i{Em}j)"'wz-KIL -KIM({_C_L}i{UM}j)

+ ew(Kp, K1y ({B1}; {Cu};) = Kr, Koy ({Cr}; {Bm}y) [Sivic] (4.3.10)
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4.4. Structural Response Analysis

It is assumed that the structure can be modelled as a space frame of three-dimensional
beam elements connected by nodal points, where each structural member in the
structure has one or more beam elements. If the structural system is modelled by
a linear system and by a finite number of degrees of freedom then the dynamic
equations may written as -

MZ+€i+Kz=F (4.4.1)
where
is the displacement vector
is the mass matrix
is the damping matrix

is the stiffness matrix

s ) Qll |

is the load vector which varies with time

The matrix equation (4.4.1) represents a finite number of coupled differential equa-
tions. A "modal analysis” is chosen for transforming the coupled system into an
uncoupled system (i.e. it is assumed that the system is slightly damped). The linear
transformation is written as

F=87 (4.4.2)

where the transformation matrix $ is the mode shape matrix, i.e. 3 = [{é,}-
{$,},- .., {#n}], where {¢;} denotes the mode shape vector corresponding to the ith
T

natural frequency. Substituting eq.(4.4.2) into eq.(4.4.1) and pre-multiplying by 3
gives

=T =

T =— =
Kdg=0 F (4.4.3)

T

|

T==_.
C®q+

|

3G+

|
=l

Taking account of the orthogonality of the modes, the mass and stiffness matrices
diagonalise.
& is normalised as

=T== —_
3 Mo=1 (4.4.4)

where T is the unit matrix. Assuming proportional damping, the damping matrix
C will also be diagonalised. The matrix eq.(4.4.3) represents a finite number of
uncoupled differential equations given as

Gi + 2Ciwiqi + wizqi = : 1= 1,00, (4.4.5)
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where m is the number of degrees of freedom, g; is the modal coordinates defined
in eq.(4.4.2), w; is the ith natural frequency and (; is the damping ratio which is
normally prescribed in practical applications, Penzien & Tseng? 1978. The modal
loading f; is obtained from

=% F (4.4.6)

3=T7 (4.4.7)

where the components Tj; in the matrix T indicate the stress at point 7 due to
displacement in mode j, and g is the solution of eq.(4.4.5). From the theory of
vibration, Cronin, Godfrey, Hook & Watt? 1978, it follows that the cross-spectral
density of the stresses at points k and [ may be written as (see eq.(4.4.7))

Sepa(w) = Zi TiT15Sgiq;(w) (4.4.8) -

i=1 j=1
]

where n is the number of mode shapes.

The cross-spectral density of the modal displacements g; and gj, Sg;q; (w)ineq.(4.4.8)
may be found as

Sgig; (w) = H;;f.'(w)Hijj(w)Sfifj (w) (4.4.9)

where * denotes the complex conjugate and where Hy,, is the frequency response
function of the system (in eq.(4.4.5)) defined as

Hefi(w) = — - (4.4.10)

w? — w? + 2eCiww;

The cross-spectral density of the modal loading f; and fj, Sf,5;(w) in eq.(4.4.9) can
be found as (see eq.(4.4.6))

St (W) = D> $ird;sSrF (W) (4.4.11)

r=1 s=1

where ¢;, is the (i,7) element in the mode shape matrix 3.

The cross-spectral density of the load at the nodal points r and s, Sf_F,, may be found
by double integration of eq.(4.3.10) over half the lengths of all elements corresponding
to nodal points r and s.
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Equations (4.4.8) to (4.4.11) yield the cross-spectral density for the stresses in the
structure, which may be summarised as

Sspa(w) = ZZ TxiT1Sqiq; (w) (4.4.12a)

i=1 j=1
where
Sgg; (W) = Hy, g (w)Hy; 13 (w) S5 (w) (4.4.120)
and where
Spf(w) = ii¢ir¢jsSFrF, (w) (4.4.12¢)
r=1 s=1

For an exact solution of eq.(4.4.12a) the number of mode shapes is equal to the num-
ber of degrees of freedom, i.e. n = m. In general it is sufficient to take just a few
mode shapes into account (i.e. the mode shapes with the lowest natural frequencies),
namely n < m.

For the fatigue analysis in section 4.5 the cross-spectral density for the stresses as
a whole is not interesting. However, three characteristics, namely the area m,, the

second moment m, and the fourth moment m, of the auto-spectral density (ie k=1
in eq.(4.4.12)) are of interest. the area of the auto-spectral density can be derived as

my(sk) = 02(sk)=/0m53k3k(w)dw (4.4.13)

and the second and the fourth moment of the auto-spectral density as

m,(sk) = /(;Oowzssksk(w)dw (4.4.14)

oo
m,(sk) = / w8, o, (W)dw (4.4.15)
0
Applying equations (4.4.12a),(4.4.13),(4.4.14) and (4.4.15) the expressions

mo(sk) = Uz(sk) = ZZ TkiTkj/ S(qu_i(w)dw
0

=1 j=1
= > > TuT;Cov(gi,q;) (4.4.16)

=1 j=1
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and
m,(sk) = ZZ Tk,-Tkj/O w? S g q; (w)dw (4.4.17)

i=1 j=1

and

n

my(se) = Y TuiTkj / mw‘*sq,.q,.(w)dw (4.4.18)

i=1 j=1 0

can be derived. They introduce a time saving modification of the computational
procedure.
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4.5. Stochastic Modelling of Fatigue Failure

Fatigue is one of the most common form of failure for structure which are subjected
to time-varying loads of significant like offshore structure. It is also a failure mode
which there is very large uncertainty in the number of load-cycle which will actually
cause failure, and therefore a natural candidate for the using of probabilistic methods.

In section 4.4 it was shown how the spectral densities for the stresses in a given hot
spot in the structure can be estimated. In this thesis fatigue damage is defined as
a result of cumulative damage because of stress fluctuations (the stress ranges). In
section 4.5.1 it is shown how the distribution of the stress amplitudes for a given
stress spectral density, can be estimated by using the rain-flow-counting method
(RFC-method) and the range-counting method (RC-method). In section 4.5.2 it is
be shown how the probability of fatigue failure can be estimated by three different
damage accumulation models, namely by using Miner’s rule combined with the so-
called S-N approach, by using a crack growth model (fracture mechanics) and by
using a model introduced by Bogdanoff et al.? 1978, 1980.
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4.5.1. Distribution of Stress Amplitudes

For a short-term period the sea state is assumed to be a zero-mean ergodic Gaussian
process, see section 4.2. By using the linearized version of the Morison equation
(see section 4.3), and by modelling the structural system linearly (see section 4.4)
the stress response S becomes a zero-mean ergodic Gaussian process too. In this
section it is shown how the distribution function of stress amplitudes in a stationary
Gaussian random process with a given spectral density can be estimated.

A number of cycles counting algorithms have been proposed. Two of the count-
ing methods, namely the range count method (RC-method) and the rainflow count
method (RFC-method) are generally recognised as the method which produces the
best results, and will be included here. Both methods give the same result for an
ideal narrow-banded stress history, but for wide-banded stress history the result can

be very different.

We consider a stationary Gaussian stochastic process X(t) with mean px, which is
taken for simplicity as zero in the following description, and spectral density Sx(w).
The process is completely determined by the mean value px and the covariance
function Cx (1)

E[X®)] = px = 0 (4.5.1)
Cx(r) = Coo[X(t),X(t+7)]

= /0~°° Sx(w) cos(wr)dw (4.5.2)
The spectral moments m; are defined as
m; = /OooijX(w)dw i=0,1,2,... (4.5.3)
The mean period of upcrossing of the mean level px=0 1s, Lin® 1967

T, = 27,/ =2 (4.5.4)

and the mean period of the peaks (local maxima) is, Lin® 1967

Tap = Zm 4= ' (4.5.5)
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The iregularity factor « is defined as the ratio of the mean period of peaks and the
mean period of upcrossing of the mean level, i.e i is the mean number of peaks
between the upcrossing and following down-crossing of the mean level.

g m,
«a T, == : 0<a< (4.5.6)

If & ~ 1 the process is called narrow banded and if & < 1 the process is called wide-
banded. It can be shown, Lin® 1967, that the peaks u; (local maxima) of stationary
Gaussian processes are distributed according to the Rice distribution, Madsen, Krenk
& Lind® 1986, with following distribution function

au =z

fU(U)=V1—a2¢< T o2 \/_n1_0>+ \/nToez'HO@(——l'\/—_—a'—f—\/TTo) (457)

where the functions ¢(-) and @(-) are the standard Gaussian density and distribution
functions respectively.

For a = 0 U; becomes Gaussian distributed and for @« = 1 U; becomes Rayleigh
distributed.

Our purpose is to approximate the density distribution function, fy(h), for the stress
amplitudes (cycles) H. It will dependent on definition of the amplitudes.

Rain-Flow Counting Method

The rain-flow method can be used to count cycles from a realisation of the ran-
dom process X (t). A realisation of X(t) is converted to a point process of peaks
and troughs as shown in figure 4.5.1. The peaks are identified by the even numbers
and the troughs by the odd numbers. The time series is plotted so that the time
axis is downward vertical, and the lines connecting the peaks and troughs are imag-
ined to be a series of pagoda roofs. The following rules are imposed on rain dripping
on these roofs, so that cycles and half cycles are defined, Wirsching & Shehata? 1977

1) A rain-flow is started at each peak and trough.

2) When a rain-flow part started at a trough comes to a tip of the roof, the flow
stops if the opposite trough is more negative than that at the start of the path
under consideration (e.g. in figure 4.5.1, path[1-8], path[9-10], etc.). For a path
started at a peak, it is stopped by a peak which is more positive than that at
the start of the rain path under consideration (e.g. in figure 4.5.1, path[2-3],
path[4-5] and path[6-T7]).

3) If the rain flowing down a roof intercepts a flow from the previous path, the
present path is stopped, (e.g. in figure 4.5.1, path[3-3a], path[5-5a], etc.)

4) A new path is not started until the path under consideration is stopped.
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Half-cycles of trough-originated range magnitudes h; are projected distances on the
X axis (e.g. in figure 4.5.1, [1-8],(3-3a],[5-5a] etc.). If the realisation of X(t) is
sufficiently long, any trough-originated half-cycle will be followed by another peak-
originated half-cycle of the same range.

Because of the complexity of the rain-flow algorithm, it would be extraordinary dif-
ficult to derive fg(h) from a given spectral density Sx(w). However, fu(h) can be
estimated by simulating X (t) e.g. by using the Monte-Carlo method, and counting
the amplitudes (cycles) by using the above rules.

X(t)

| X(1)

10

11
11 12

9 13 13

Figure 4.5.1. Illustration of the rain-flow cycle counting applied to sample of
X (t), Wirsching & Shehata? 1977.

Range Counting Method

In the range counting method a half-cycle is defined as the difference between two suc-
cessive local extremes (local maxima (peak) and the following local minima (trough)).
The distribution function for the amplitude, fu(k) can be estimated by simulating
realisation of X (¢) and counting the number of half-cycles. Analytical estimation of
the range distribution through the range counting method can be obtained relatively
easily. Figure 4.5.2 illustrates the definition of range h; and the half wave length 7;.

The wave length 7; and the amplitude h; depend strongly upon the peak heights u;.
The joint distribution function of amplitudes H and half wave length 7 is defined by,
Madsen, Krenk & Lind® 1986

foar(u,h,7) =

fo (f__oo —Z1Z2 leXzXlxszf(z(“’ u—~h,0,0,zq, :Eg)d:tl) dio

_ (4.5.8)
I (ffoo —&1%9 %, %, %,%,(0,0; 551,552)déi1> di
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where fX1XzX1Xzf(1)?2 is the joint density function of Xi, Xs, X, , Xg, X, and Xg,
where X; = X(t) and X, = X (¢t + 7).

In order to estimate the density function of the range between two successive extremes
R, it is also necessary to estimate the density function of half the wave length 7, fr ().

X(t) <

Figure 4.5.2. Definition of range h; and half wave length 7; in the RC-method.

This is a first passage problem which cannot generally be solved analytically. A
simple estimate of fr(T) can be obtained by using the upper bound, Sgrensen &
Brincker? 1989

co 0
fT(T) = / (/ —flfig fX1X2}-<1}~(2(0,0,§§1,552)d:'é1) d:l?z ; 0 S T S T1 (459)
0

— 00

where T} is determined from the normalisation condition
T
fr(r)dr =1 (4.5.10)

0

When 7 > Ty, fr(7)=0 is used. From eq.(4.5.8) and eq.(4.5.9) the density function
of the amplitude h, fg(h), can be estimated by

faul(h) = /0 " ( /_ Z Fr(7) fUH|T(u,h,|7-)du> dr (4.5.11)

In appendix C it is shown how eq.(4.5.11) can be calculated.
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4.5.2. Damage Accumulation

It is often convenient to assume a fatigue failure to be a result of the accumulation
of some measure of damage beyond a critical level. This damage measure may have
direct physical meaning e.g. the length of a fatigue crack, maximum deformation,
etc. or it may represent an indicator variable (typically unity at fatigue) whose
growth is unobservable. In any of these cases, it is necessary to formulate empirical
"laws” that govern the damage accumulation process under deterministic loading. A
probabilistic structure in a cumulative damage model can be introduced by starting
with a deterministic model for damage accumulation and then modelling the model
parameters as a random variables or random processes. Alternatively, the evolution-
ary probabilistic structure can be assumed from the start. In the first approach, the
accumulated damage is described as a function of the time, whereas in the second
approach, the probabilistic distribution of the accumulated damage is described as
a function of time. In section 4.5.2.1 the first approach is exemplified in connec-
tion with Miner’s rule and the so-called S-N approach. In section 4.5.2.2 the same
approach is exemplified for crack growth. In section 4.5.2.3 the second approach is
elaborated with a model introduced by Bogdanoff et al.? 1978%:2:3, 1980.

In fatigue analysis of jackets, the analysis will primarily focus on the welded joint
between the members. When considering a fatigue failure in tubular joints the ge-
ometry of the nodal point becomes very important, since stress concentrations will
occur due to the non-uniform stiffness of the chord wall and the brace. The locations,
or points at which the highest stress occurs, are called hot spots. In welded joints
two different hot spots for each brace in the joint are defined, one at the weld toe on
the brace side, the other on the chord side, i.e. for plan K-joints there are four hot
spots. The stress concentration factor (SCF) is defined as the ratio of the hot spot
stress Omag to the nominal stress oy in the brace, i.e.

SCF = 2mes (4.5.12)
ON

The SCF's for a given joint geometry and loads can be estimated either by full-scale
tests of by a FEM-analysis. Here the SCF's are estimated by using some empirical
formulas suggested by Kuang, Almar-Nees (ed.)® 1985, which are based on thin shell
FEM-analysis of different joint-geometries and loads. Two modes of fatigue failure,
called failure elements, are defined to occur for each brace in a tubular joint; cracking
at the hot spot toe of the weld jointing the brace to the chord (brace fatigue) and
cracking at the hot spot in the wall of the chord itself (punching shear fatigue). The
locations in the chord/brace intersection, where the hot spot stresses occur, depend
on the external loads. In Almar-Nas (ed.)? 1985 checking of the 8 points along the
brace/chord intersection is recommended to locate the hot spots, see figure 4.5.3
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S
— chord
1
2
7 0 L brace
6
5 4
\_/Q

Figure 4.5.3. Points in the brace/chord intersection where the stress concentrations

are checked.
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4.5.2.1. Miner’s Rule and S-N Approach

The relationship between the stress fluctuations and the damage can be found by
using Miner’s rule, which states in essence that every stress cycle ¢ results in a degree
of damage D; equal to

1

D; =

(4.5.13)

where N; is the number of cycles to failure, if the same stress cycle is repeated over
and over again. The most commonly used model to determine N; is the so-called
S — N approach

25; - .
N; = (i{?) / (4.5.14)

where S; is the stress amplitude and K and m are assumed for normal design pur-
poses to be constants which can be determined by constant-amplitude tests. The
relationship between S; and N; for a homogeneous regime has a very definite random
character even under the most controlled and uniform test conditions. It is therefore
meaningless to speak of a deterministic relationship between S; and N;. To allow
for the randomness in the relationship, m and K are modelled as random variables.
The value of K can depend on the mean stress in the stress cycles. The effect can
be accounted i.e. by using the Goodman criterion, Madsen, Krenk & Lind® 1986

K = K, (1 - §S_> ' (4.5.15)

where K, is the value of K from tests with zero-mean stress cycles, S,; is the mean
stress in the stress cycle ¢ and S, is the ultimate tensile strength. However, in this
thesis this dependence is assumed to have no effect on the fatigue life. To allow for
the uncertainty in the estimation of the stress amplitude a new random variable B
is introduced. Eq.(4.5.14) then becomes

258\
N; = (T) (4.5.16)

Eq.(4.5.13) can now be rewritten as

25,8\ _
D; = ( i ) (4.5.17)

Under constant amplitude loading failure occurs by definition when the total degree




Some Aspects of Reliability of Offshore Structures 63

of damage Dipt = Zf\; D; attains the value Dy, equal to 1. However, with variable-
amplitude random loading the influences due to the loading history may cause failure
at the value Dy, different from 1. To take into account the uncertainty of the failure
definition, D, will be modelled as a random variable.

Consider a zero-mean ergodic Gaussian stress process Sgs(w), acting in a given
period T. The expected fatigue damage per stress cycle i, given m, K and B,
E[D; | m, K, B] can be determinec as

E[D; | m,K,B] = /OOOD,-(g) ps(3) ds (4.5.18)

where p;(3) is the distribution function of the stress amplitudes. The expected total
damage in the period T given m and B, E [D;o: | m, K, B] is obtained by multiplying
the expected damage per cycle by the number of cycles

' T
E[Di: |m,K,B] = = E[D; | m,K, B] (4.5.19)
mp

where Ty, 'is mean period of a stress cycle in the period T.

For a narrow-banded stress process (o — 1), ps(3) becomes Rayleigh distributed and
E[D; | m, K, B] can be written as

E[D; | m, K, B] —_/ B (B\ 2 (- Vas (4.5.20)

! L i K ag P 20% h
_pm9s_ —_ )
=B % (2\/5) 1+ 5 ) (4.5.21)

where I'(- - -) is the gamma function, g = \/m, and where Tr,, can be estimated as
the expected zero-upcrossing period T;

m
Top~ Ty =27 r_n—z- (4.5.22)

m, and m, are the area and the second moment of the auto-spectral density of the
stress process Ssq(w), see eq.(4.4.12), eq.(4.4.13) and eq.(4.4.14).

For the case in which the stress process is wide-banded, it is much more difficult to
calculate the expected total damage, because the true distribution of wide-banded
stress cycles pg(3) is unknown. The primary reason for this lack of knowledge is
that the true distribution of wide-banded stress cycles depends on the definition of
the stress cycle. The most common methods for estimating pg(s) and Tmp are the
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RFC-method and RC-method, see section 4.5.1. The expected total damage can be
obtained using eq.(4.5.19) and eq.(4.5.20).

Another approach to predict the total damage of the wide-banded problems is’ to
calculate the equivalent narrow-banded damage, which is the damage calculated from
eq.(4.5.19) and eq.(4.5.20) without taking into account to either the correct number of
stress cycles, TZ—P, or their true distribution ps(3), i.e. eq.(4.5.22) is used to estimate
Tynp, and the Rayleigh distribution is used instead of the true distribution of the
stress cycles.

The correct expected number of stress cycles in a wide-banded process, -7%, is greater
than in a narrow-banded process, Tl,7 with the same spectral moments. This tends
to make the wide-banded damage larger than the equivalent narrow-banded damage.
However, the estimation of the true distribution of stress cycles f&(8) is strongly
dependent on the shape of the stress spectrum and the definition of the stress cycles.
Tt does therefore not apply generally that the wide-banded fatigue damage is less
than the narrow-banded damage.

Wirsching & Light? 1980 present a simulation study of estimation of the expected
total damage given m and K, E [Dyo; | m, K] (B was not introduced in their model).
They performed simulations of random processes with various bandwidth parameter
e = VI — a2, where a is defined in eq.(4.5.6), and with four different spectral density
models shown in figure 4.5.4, and for five different values of m.

Sgs(e) Sss(e)

Sgs(w) Sss(e)
w w

Figure 4.5.4. Spectral density models (symbols are used to define spectra in
figure 4.5.5) Wirsching & Light? 1980.

For each simulation they calculated E [Dyot | m, K| by the equivalent narrow-banded
method and by using the RFC-method to estimate pz(3) and Tmp. The ratio of the
expected wide-banded damage E [Dys] and the expected equivalent narrow-banded
damage E [Dys], called the "rainflow damage factor”, Arrc, was calculated for each
simulation as
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E [Dup]

A = 4.5.23) -
RFC E (D] ( )

The results from the simulation study are shown in figure 4.5.5.

To obtain an estimate of Agrc as a function of € and m, :\RFc(e, m), characterising
the relationship, a least square analysis was used. Wirsching and Light determined
the equation

Arrc = a(m) + (1 —a(m))(1 — €)¥™ (4.5.24)

where

a(m) = 0.926 — 0.033m

b(m) = 1.587Tm — 2.323
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Figure 4.5.5. Estimates of Agpc versus € (a) m=3; (b) m=4; (c) m=5; (d) m=6;
(e) m=10 (symbols defined in figure 4.5.4, Wirsching & Light? 1980.

Knowing € the expected wide-banded damage for a given m can now be estimated
by using eq.(4.5.21) and eq.(4.5.24) as
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E[Dus | m, K,B] = Arrc(e,m) E[Dny | m, K, B]

_ 3 m 5. " m
= Srro(e,m) B 2= (2\/?2’) D1+ %) (4.5.25)

Lutes et al.? 1984 suggested that the Agprc might be a function of an adjustable
band-width factor By, defined as

My

By = (4.5.26)

me T2y

where m; is the ¢th moment of the stress spectrum.

Their study found that for given m, b can be optimised to produce a linear relationship
between A\rrc and fy, which fits the data better than eq.(4.5.24). However the
optimum value of b for different values of m is completely unpredictable and therefore
useless for design.

Ortizt, 1985 showed that the distribution of peaks of a stationary Gaussian process
has, approximately, a Rayleigh distribution with the parameter 6, given by

f; = 205 (4.5.27)

Using eq.(4.5.27) the expected total fatigue damage given m (B is not included)
becomes

T 2\/50 o)™
E[Diot | m, K] = T ( Afn ) F(1+%) (4.5.28)
mp

and the corresponding damage factor is

Toia o
Ao, = sz a (4.5.29)

Realising that Trnp/T: = 1, eq.(4.5.29) becomes

dg, = a™! (4.5.30)
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Figure 4.5.6. Normalised stress spectra for a hot spot.
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Figure 4.5.7. Wide-banded damage factor A as a function of m for the spectra shown

in figure 4.5.6.
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Ortiz & Chen? 1987 compared eq.(4.5.30) with the simulation results and found that
the use of \g, gives much too unconservative results. Therefore they suggested a new
parameter 0 instead of §,, given by

0 =2 o5 Br (4.5.31)

where By is an adjustable band-width measure defined by

By = [ T (4.5.32)
Mo Mk42

Analogues to eq.(4.5.29) the corresponding damage factor becomes

Ao, = bE : (4.5.33)

« P

To estimate k as a function of m they re-analysed the simulation results of Wirsching
& Light? 1980, and Lutes et al.? 1984. For a given value of m, the value of k was
determined by minimising the sum of the squared errors. The result was

log(k) = log(2.0) — 0.89 log(m) (4.5.34)

However, due to the small sample size of their simulation study, they recommended
the following convenient and conservative simplification

k== (4.5.35)

The expected wide-banded damage for given m can now be estimated as

E[Dyy | m, K] = Ao, (e,m) E[Dpp | m, K] (4.5.36)

Several other empirical and semi-theoretical predictions of E [Dy | m, K] exist see
e.g. Kam & Dover? 1987.

The above results are based on the assumption that the true distribution of stress
cycles are estimated using the RFC-method.

To evaluate eq.(4.5.24) and eq.(4.5.33) simulation studies similar to those above have
been used. However,the auto-spectral densities of a hot spot of a jacket type offshore
structure are now estimated using eq.(4.4.12). The simulation is carried out for 15
different sea states. In figure 4.5.6 a normalised stress spectrum for the hot spot is
shown (normalised as m, = 1.0). The expected damage for each sea state is estimated
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using eq.(4.5.25), eq.(4.5.36) and eq.(4.5.19) where pg(3) is estimated by simulation
and Tpnp is obtained by eq.(4.5.5), where two methods for counting the stress cycles
are used, namely the RFC-method and RC-method. In figure 4.5.8, an estimation
of ps(3) using the RFC-method, the RC-method and the narrow-banded approach
(Rayleigh distribution) for spectrum no. 8, see figure 4.4.6, is shown The calculation
was carried out for 20 different values of m, namely m=0.5, 1.0, 1.5, ... , 10.0. The
results are shown in figure 4.5.7.

It can be seen from figure 4.5.7, that there is a significant difference between damage
estimated from the RFC-method and from the RC-method. This indicates that the
damage accumulation model must be calibrated, depending on the definition of the
stress cycle. '

The results shown in figure 4.5.7 lead to the following comments

o for m > 2 the rainflow damage factor Arrc < 1, (the simulation results), which
indicates that the expected wide-banded damage E[Dyy] is greater than the
expected equivalent narrow-banded damage E [Dns]-

o the use of eq.(4.5.35) instead of eq.(4.5.34) to estimate k in eq.(4.5.32) leads to
a conservative estimate of the damage factor Arpc (not shown in figure 4.5.7).

o eq.(4.5.24) and eq.(4.5.33), where k is obtained from eq.(4.5.34), gives acceptable
results for 2 < m < 4.

o for m > 4, eq.(4.5.24) and eq.(4.5.33) generally give conservative estimates of
ARFc, in some cases much too conservative.

| 25)
1.0 -
0.8 4
0.6 4 \_~ RFC-method (simulation
04 _ _—~ RC-method (simulation)
narrow-banded approach
02 (Rayleigh distribution)
O T T T T T L 18 T T .—A§

1 2 3 4 5 6 7 8

Figure 4.5.8. Estimation of the distribution density function of stress cycles using
the RFC-method, the RC-method and the narrow-banded approach
(the Rayleigh distribution).
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Until now only the expected total damage of one sea state has been considered.
The expected total damage at the failure element in a real offshore jacket structure,
E[D,,] is obtained by summing up the expected damage E [D;] per stress cycle over -
the service life of the structure, taking account of the long-term distribution of the
sea states (see eq.(4.2.21) and eq.(4.2.22) in section 4.2)

2 oo oo
Tr
ot| = T A Di t ,hs,g 8
E[Dt t] A /0‘ ‘/0 Tmp(tpah379) E[ ( ? )] prlHa (tl"h )

Py, (hs) p; (8) dip dh, df (4.5.37)

where p, (h,) is the marginal probability density function for the significant wave
height Hs, pr \a, (tp|hs) is the conditional probability density function for the wave
spectral peak perlods Ty, given H,, p_(G) is the probability density function for the

mean direction of the wave propagation, 9 Ty, is the total service life and Tinp is
mean period of a stress cycle within the sea state.
The fatigue failure mode for the failure element can be described by a safety margin

M, defined as

M ='.Df,“'1 - E[Dtot] (4.5.38)

and the probability of fatigue failure of one failure element Py is
Py = P(M <0) (4.5.39)

For a narrow-banded stress process ps(3) becomes Rayleigh distributed. And the
total degree of damage E[D;o¢| can be written as

27 oo fe’e)
_ T,B™ o (tp, hs,0) m m
E[Dii] = /0 /O /0 eI (2\/5) r(1+3)

(tplhs) pu, (hs) P5(8) ditydhods  (4.5.40)

Prym,

where Ty, can be estimated as shown in eq.(4.5.22).

By using the rainflow damage factor Agrc the total damage can be estimated as
27
TLBm O'm(t h 9) m
E[Diot] ArFc(to, hs, 0 —5—4—(2 2
[ to! / / / mp tpa h379) RFC( 4 ) I{m \/_)

m
1+ —2) Pr, i, (talhs) By, (s) p;(G) dt, dh, df (4.5.41)

P

where for given 8, h, and t, the Agpp¢ can be estimated from eq.(4.5.24).
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4.5.2.2. Fracture Mechanics

Fracture mechanics seek to define the local condition of stress and strain around a
crack, in terms of the global parameters of loads, geometry, etc., under which the
crack will extend. Fracture mechanics can be subdivided into two general categories,
namely linear-elastic and elastic-plastic. Various approaches have been employed in
the analysis of fracture problems, leading to the introduction of various fracture me-
chanics parameters. The most popular among these parameters is the stress intensity
factor K. In fact, a fundamental principle of linear-elastic fracture mechanics is that
the stress field ahead of a sharp crack can be characterised in terms of this single
parameter K.

The stress intensity factor K is computed by linear elastic fracture mechanics and is

expressed as

K =YS 7a (4.5.42)-

where S is the stress applied, Y is a factor depending on geometry, including the
crack geometry and size and a is the current crack or defect size.

It is commonly accepted that the stress intensity factor range, AK, can be used to
describe fatigue crack growth under cyclic loading and the most frequently used law
is the Paris law, Paris & Erdogan? 1963

da

— = C(AK)™ 4.5.43

= = C(AK) (45.43)
where f—]‘ﬁf is the rate of crack growth which is understood as the crack extension of

a crack of a length a during one stress cycle, m and C are experimental constants
depending on such factors as the mean stress, the test environment and the cycling
frequency, etc., and AK = Koz — Kmin 18 the range of the stress intensity factor
defined in eq.(4.5.42)

AK = Y5yma (4.5.44)

where § is the range of the stress (stress cycle) applied.

If eq.(4.5.43) was correct then a plot of log (j%) against log (AK) would show a

straight line. However, a schematic plot of typical fatigue crack growth data shown
in figure 4.5.9 shows that this is not true. Therefore, the fatigue process is divided
into three regions:

Region I where the crack growth rate goes asymptotically towards zero as AL ap-
proaches a threshold value AN, which means that for stress intensity rates be-
low AK,, there is no crack growth, i.e. there is a fatigue limit. Region II where
log (g—;,—)/ log (AK) is constant and Region III where the crack growth rate is ex-
hibiting a rapidly increasing growth rate towards infinity, i.e. ductile tearing and/or

brittle fracture. The agreement between eq.(4.5.43) and the experiments is good
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for Region II, typically 1075 to 1072 mm/cycle, Madsen, Krenk & Lind® 1986. For
higher growth rates, Region III, eq.(4.5.43) underestimates the propagation rate, and
for lower growth rates, Region I, eq.(4.5.43) overestimates the propagation rate. ’

| . da
log 7y
' I
Region } Region II Region III
I
“ = C(AK)™
|
[ I
I
I I
| I
| |
| |
— } log(AK) .
log(AK,,)

Figure 4.5.9. Schematic plot of typical fatigue crack growth data.

Crack growth in Region III is of minor importance for marine structures. The reason
is that the Icycle rate and the stress spectra are of such nature that the final fracture
will be imminent, Almar-Nzs(ed.)® 1985. A commonly used engineering approxi-
mation is using eq.(4.5.43) and the threshold is approximated by cutting-off. The
cut-off model is conservative in the threshold region, and the deviation from a more
accurate model is in many cases negligible in relation to the uncertainty associated
with an assessment of the threshold. The threshold need to be considered for each
case, taking into account residual stresses and mean stresses in particular.

Inserting eq.(4.5.44) into eq.(4.5.43) yields

da m &m m
= cY™ S™ (y/wa) (4.5.45)

Assuming that C and m are independent of S and that AK,, is independent of a,
the solution to eq.(4.5.45) is obtained by separating the variables and integrating

an 1 N R i
— da = §™ dN 4.5.46
/ao cY™ (Vra)" /0 ( )

where ag is the initial crack lenght and ay is the crack length after IV stress cycles.
Let Y, m, C and S be independent of a and N, and by integrating eq.(4.5.46), the

crack lenght can after N cycles, ay, be expressed as

Iaél“%") +CNS™(1- %) Ym”%> ( 2 ) m # 2,AK 2 ARy,
S (4.5.47)

ag exp (CN.?QYZW) m=2AK > AK;,
0 AR < AK;p
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The failure criterion can be written in terms of the crack length ay as

a. —ay <0 (4.5.48)

where a, is a critical crack length, e.g. corresponding to crack growth through the
thickness of an element orsto initiation of a unstable fracture.

One way of defining a damage indicator, D, in terms of the crack lenght is

= ik (4.5.49)

Qe
and the failure criterion can be written as

1-D <O (4.5.50)

Using this definition it follows from eq.(4.5.47) that the damage increases with the
number of stress cycles from 0 to 1.

However, laboratory experiments with the fatigue of samples clearly indicate that ¥
varies considerably with the crack shape and the crack lenght and must be expressed
as Y(a), m is not constant and in most situations the real structural elements, e.g.
joints in jacket structure, are subjected to a number of widely differing stress ranges,
and the initial crack lenght aq can vary significantly, with the result that eq.(4.5.45)
cannot be obtained in a closed form.

Assuming that ao, C, m, N and Y(a) are known and by ignoring possible effect of
the order of succession of the stress cycles, which include that AKqp is assumed to
be equal to zero, ay can be obtained by numerical integration

an 1 N .
/ao CY(a)™ (V7)™ da = ; 5 (4.5.51)

For a reliability analysis, this last assumption can also be relaxed and each of these
variables can be modelled by random variables.

For a given service life the crack lenght ay in a real offshore structure can be de-
termined taking into account the long-term distribution of the stress ranges by (see

section 4.2)

an i 2m co oo TL
— da = _ B £ 1k hy) p- (8
[ awramr @ =l L ] b mm row bl 2002 ©

(/0 Pain . 5 (ltps her6) 57 d) dtpdh,df (4.5.52)
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where p,, (hs) is the marginal probability density function for the significant wave
height H,, Pr, . (tp|hs) is the conditional probability density function for the wave
spectral peak periods T}, given Hy, pF(G) is the probability density function for the
mean direction of the wave propagation, 0, Psm,,g,,;(é‘twhhg) is the conditional

probability density function for the stress ranges given H,, T and 8, Ty, is the total
service life and T, is the mean period of a stress cycle within the sea state.

The fatigue failure mode for the failure element is described by a safety margin M,
defined as

M=1-0D (4.5.53)

and the probability of failure P is

P; = P(M <0) (4.5.54)

It should be underlined that using eq.(4.5.52) to obtain ay, the possible effect of the
order of succession of the sea states and the possible effect of the order of succession
of the stress ranges are ignored.

To evaluaté the sequence effects of the stress ranges for a given sea state, a typical
stress spectrum in a hot spot is considered. The spectrum no. 8 in figure 4.5.6 with
o0s = 80 N/mm? is chosen as stress spectrum. The density function of the stress
cycles p,(3) is estimated by simulating the stress process and using the RC-method
to count the stress cycles (10° simulations with time step At = 0.2 sec). The density
function p,(3) and the corresponding distribution P,(3) are shown in figure 4.5.10.
The initial crack lenght ag is taken as 10 mm, m is taken as 3.0, C is taken as
1.21-1071% and the geometry function Y is modelled as

Y(a) = ezp((:r)%>2> (4.5.55)

where the crack length, a, is measured in mm.
Now the sequence of the stress ranges is obtained by simulation, using P,(3), and
the crack propagation for stress range no. ¢, Aa;, is obtained as

Ag; = CY(ai1) 8™ (Vraic1) (4.5.56)

and the crack lenght after IV stress cycles ay is
N
ay = ag + Z Aa; (4.5.57)
i=1

The simulation is stopped when the crack lenght ay > a., where a. is a critical
crack lenght. The stimulation is carried out 1000 times for five different values of a.,
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namely a.=15, 20, 30, 40 and 50 mm.
Typical crack propagation for a,=50 mm is shown in figure 4.5.11.

p§(s) Pg ()
| \
0.12 105
0.10 . 08 1
0.08 1 06 ]
0.06 -
04
0.04 -
0.02 - 0.2
0 T T = é (N/mmz) 0

100 200 300 400 T100 ' 200 300 400
Figure 4.5.10. Density function p,(3), and the corresponding distribution function
P,(8) of stress cycles.

i

The expected values E[N], the standard deviation on and the coefficient of variation
V[N] for N for the five different values of a. are shown in table 4.5.1. A standardised
density function of N, p,(n) (standardised as E[N] = 0 and oy = 1), for all five
values of a. became identical, and is shown in figure 4.5.12. As it follows from
figure 4.5.12, py (n) follows the Gaussian distribution very well, indicating that 1000
simulations are sufficient.

) a (mm)
60 -
| 2 (mm) 50
60 -
40 -
50 A 30 1
20 -
40 A 10 A
| 04— =N
30 70 74 76 78 X10°
20 A
10 A
0 : ; N

0 | 40 60 80 X 10°
Figure 4.5.11. Typical crack propagation for a.=50 mm.

As it follows from table 4.5.1, the coefficient of variation V[N] is very small, indicating

S (N/mn
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(i

that the effect of the order of succession of the stress cycles have minor influence on
the crack propagation. It will therefore be concluded that eq.(4.5.52) can be used to
estimate ap, without gross error.

el

10

0.5 4

-

—4 -3 -2 -1

Figure 4.5.12. A standardised density function of N, py(n).
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Gaussian distribution

On

a. (mm) E[N] ON V[N]
15 38412 289 0.0075
20' 57634 433 0.0075
30 73564 529 0.0072
40 78282 550 0.0070
50 79554 557 0.0070

Table 4.5.1. The expected values E[N], the standard deviation o and the coefficient

of variation V[N], for the number of stress cycles N, for ay = a, for
five different values of a..
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4.5.2.3. Bogdanoff Model

In sections 4.5.2.1 and 4.5.2.2 it was shown how a probabilistic structure in a cumu-
lative damage model can be introduced using some deterministic models, and then
introducing random variables instead of the model parameters. Another way is to
assume an evolutionary probabilistic structure from the start. In this section the
second approach is elaborated using the model of Bogdanoff et al.” 1978123, 1980,
called B-model, as starting point. The complete development of these models with
examples and applications can be found in Bogdanoff & Kozin® 1985. The presenta-
tion here is mainly based on Bogdanoff & Kozin® 1985.

A basic element in the B-model is a duty cycle (DC) which is a repetitive period
of operation in the life of a component during which damage may accumulate. The
time z is measured in numbers of DCs and is discrete, i.e. £ =0,1,.... The damage
is also assumed to be discrete with the states d = 1,2,...,b, where state b denotes a
state of failure in some sense. It is assumed that the damage accumulation in a DC
is non-negative and that the increment of damage at the end of a DC only depends,
in a probabilistic manner, on the amount of damage present at the start of the DC
and on DC itself, but it is independent of the accumulation of damage up to the start
of the DC. These assumptions are the Markov assumptions and the damage process
is vievyed as a discrete-time, discrete-state Markov process and can be viewed as a
Markov chain. The probability distribution of damage is completely determined by
the transition matrix P = [P;;] for each DC and by the initial damage Py, at = 0.
The element P;; in the transition matrix P denotes the probability of being in state
j after the DC, given that the damage is in state ¢ at the beginning of the DC. As
mentioned before, the damage accumulation in a DC is assumed to be non-negative,
yielding that P;; = 0 for j < 7 and Z?’:i P; = 1,i=12,...,b The transition
matrix then has the form

Py P2 ... Py Py 7
0 Py ... Py Py
P=|: 0o . : : (4.5.58)
: : Py_1p-1 Pp—1p
L O 0 0 1 ]

The corresponding Markov chain is shown in figure 4.5.13.

Figure 4.5.13. Markov chain with transition probabilities.

The presence of variability in the initial quality of components can be handled by
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assigning a probability distribution to the initial state vector p, as
Py = (m1,m2,..., ™) ; T 2 0, Zﬂ'i =1 (4.5.59)

where 7; denotes the probability of being in state : at z = 0.
The state of damage at the time z is given by the vector p, as

) b
P, = (Ps(1),p2(2),---,p2(8)) 5 pe(8) 20, sz(i)=1 (4.5.60)

where p, (i) is the probability that the damage is in state : at the time z.
Then, it follows from the Markov chain theory, Parzen® 1962, that

B, = Bo || P: (4.5.61)
i=1

where P; is the transition matrix for the sth duty cycle.

As follows from eq.(4.5.61) the probability distribution of damage is completely spec-
ified at any time and is calculated by simple matrix operations. Since matrix mul-
tiplication is generally not commutative, it follows from eq.(4.5.61) that the order
of the DCs influences the damage accumulation. If all DCs have the same severity,
eq.(4.5.61) reduces to

z

ol

B, = o (4.5.62)

where P is the common transition matrix.
In the above description the state b corresponded to failure. In many physical situ-
ations it is not possible to give such precise definition of the state that corresponds

to failure. The state b at failure can be randomised, by assigning a probability at
failure to a state as soon as that state is occupied, as

b
p = (P17P27- o 7Pb) ; sz =1 (4-'563)
=1

where p; is the probability of being at failure in state .

Eq.(4.5.62) is still valid when the transition matrix P in eq.(4.5.58) is slightly mod-
ified, see Bogdanoff? 1978% for more details. Effects of inspection and replacement
strategies can easily be incorporated into the B-model, see Bogdanoft? 19782 or Bog-
danoff & Kozin® 1985. A formulation of the B-model consists in filling in the transi-
tion matrix. The number of parameters in the model is dependent on the number of
state jumps from the transient state during a duty cycle. For an increasing number of
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jumps during a duty cycle, the damage will increase, however, the statistical uncer-
tainty resulting from parameter estimation based on a limited number of test results
is consequently increased. Now a unit-jump version of the B-model is considered,
e.g. damage can only increase in a DC from the state occupied at the start of the
DC to the state one unit higher. The elements in the transition matrix P becomes ;
P;=pi, Pij=gqiforj=1+1 and P;j =0 for j <7 and j >i+1,1=1,...,b—1
and j=1,...,b—1li.e.

'p1 @@ 0 ... O 0 7
0 pp @ - 0 0
=1 " b (4.5.64)
0 vee see ees DPb—1 QGb-1
0 ... ... ... O 1
The damage states are discrete and labelled 1,2,..., b, where failure only occurs when

the state b is reached, i.e. py = 1. The probability distribution of various random
variables associated with the damage accumulation process can now be determined.
Let the random variable W denote the time to failure at state b. Thus, the cumulative
distribution function (CDF') of W} is given by

Fw,(z) = P(Wy <z)=p:(b) =5 R e (4.5.65)

The mean value, E[], and the variance, Var[], of the lifetime W} are

E[VVb] = i (1 - Fw, (:L')) (4.5.66)
z=0
VaT[Wb] = 2 i T (1 —_ F;Vb(.’lt)) -+ E[Wb] - .E[I/Vb]2 (4.5.67)

The CDF of the time W; to reach state ¢, Fi,(z), can be found by eq.(4.5.65) where
pz(b) is replaced with Zj’-:ipz(j ), and the mean value and variance of W; can be
found similarly to eq.(4.5.66) and eq.(4.5.67), respectively.

The probability of damage D, being in state j at the time z is determined by pz(j)
as

p:(j) = P(D=j) ; Jj=12,...,b (4.5.68)

and the CDF of D, is

Fp.(j)=P(D; <j)= Y pe(k) j=12,...,b (4.5.69)
k=1




Some Aspects of Reliability of Offshore Structures 81

The mean value and variance of D, are given by

b

E[D;] = Y ip.(i) | (4.5.70)

i=1

~ b
Var[D;] = Y _ (ip:(3)) — E[D:]” (4.5.71)

i=1
The time T; spent in state i, where 1 = 1,2,...,b — 1, has a geometric distribution

P(T;=z) = q,'p;-:_1 ; w4, 8yasa (4.5.72)
where g; and p; are the elements in the transition matrix defined in eq.(4.5.64).
The results above are all functions of the probability distribution to the initial state
vector P, and the elements in the transition matrix P. In some cases analytical
results can be obtained in a closed form. This is illustrated in Bogdanoff & Kozin®
1985, where the analytical results are obtained by using geometrical transformations,
i.e. for a stationary B-model with unit jumps the mean value and the 2nd, 3rd and
the 4th central moments of W, become

b—-1
EWy] = > (1+m) = pw, (4.5.73)
b—-1
E[(Wy — EWW))?] = Var[W] = Z ri(l4+r) = o, (4.5.74)
b—1

E[(Ws — E[W3])*] = ) ri(1+r:)(1+2r:) (4.5.75)

b—-1

E[(Wb — E[Wb])4] =3 VaT[I/Vb]Z + Z(T‘i(l + T',')(l +2r;)(1 + 3r;))

b—1

+Y ri1+r) (4.5.76)

where r; = p;/q;.

The central moments of W; are found in a similar manner to eq.(4.5.73)-eq.(4.5.76)
Two crucial points for the applicability of the B-model are the possibilities of model
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identification and parameter estimation. These points are not directly solvable since,
from the outset of the model formulation, there is no immediate relation between
damage and measurable physical quantities. The identification and parameter esti-
mation, therefore, rely totally on test data.

Next it will be shown how the B-model can be formulated for fatigue crack data.
Instead of using some given test data, the data are predicted by simulating the crack
growth rate given by eq.(4.5.45) where C, Y and m are modelled as stochastic vari-
ables. The statistical characteristics for the stochastic variables are shown in table
4.5.2.

Variable Distribution Expected Coefficient
value of variation

C LN 1.21.10713 0.20

Y LN 1.12 0.05

m N 3.0 0.01

Table 4.5.2. Statistical characteristics for the stochastic variables.
, (N: normal, LN: log-normal)

The simulation here is carried out 100 times for constant amplitude DCs, namely

~

S = 50N/mm?. The initial crack size, aq, is assumed to be constant, i.e. ag = 10
mm, and failure is defined in terms of the crack size a = 50 mm. The sample functions
(SFs) of the fatigue crack growth for the 100 simulations are shown in figure 4.5.14.

ha (mm)

40 -
30 4

20 4

10 |

0 T T T T T T T > N
0 1000 2000 3000 4000 5000 6000 X 10°

Figure 4.5.14. The sample functions of fatigue crack growth (simulation results).

The empirical distribution function (EDF) of the number of stress cycles N to reach
7 different crack lengths, F(N|a), is shown in figure 4.5.15, and the estimated mean
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value [iy|, and the standard deviation 6|, for the same crack lengths are shown in
table 4.5.3.

| FINla) -
Lo a=12mm/—a 15mm
0.8 | (
0.6 4
a=19mm
04 - a=24mm
a=31mm
0.2 4 a=40mm
a=50mm
0.0 L] T 1 1) 1 T T T _—N
1000 3000 5000 7000 X 10°

Figure 4.5.15. The EDFs of the number of stress cycles to reach 7 different crack

lengths,
namely a=12, 15, 19, 24, 31, 40, 50 mm, (simulation results).

a' (mm) EN|a 103 ON|a 10~3
12 491 141.3
15 1034 298.8
19 1548 449.0
24 1999 582.2
31 2437 712.6
40 2822 828.1
50 3121 918.7

Table 4.5.3. Estimate of the mean value and standard deviation of N for some given
crack lengths (simulation results).

To formulate a B-model to describe the above data, it is necessary to know the
estimates of the mean value and the variance of the number of cycles N to reach a
crack length for at least one value of a. Clearly, 7; = 1, since the initial crack size is
assumed to be constant. Assume a stationary model with unit jumps and r; constant
in blocks.

First, assume that there are only data for N to reach a=50 mm, i.e. one block model,
and take 1 DC as 10° stress cycles. From table 4.5.3 it follows that

/1N|a=50mm = 3121.

&N|a=50mm = 918.7
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All simulations terminate at a=50 mm thus py=1. Using eq.(4.5.73) and eq.(4.5.74),
remembering b must be an integer, it follows

b =13
r;=259.1 ; i=1,2...,b-1

The mean sample function of state versus N is a straight line, which obviously cannot
relate intermediate states to the crack length. However, the EDF of NV to reach a=50
mm, obtained from the test data can be compared with the CDF generated by the
B-model, see figure 4.5.16.

| FIN |a)
1.0
0.8 A
0.6
)
04 -
0.2 -
OO I/- T T T T T T T N
1000 3000 5000 7000 X 103

Figure 4.5.16. Comparison of the EDF of N to reach the crack length a=50 mm
obtained from the predicted test data and CDF generated by the
B-model.

It follows from figure 4.5.16 that the CDF generated from the B-model is very close
the EDF obtained from the predicted test data.

Now assume that there exsist data for N to reach 7 different crack lengths, as shown
in table 4.5.3, i.e. the 7 block model. Still assuming a stationary B-model with unit
jumps, r; constant in each block, pp=1 and 1 DC is taken as 10 stress cycles. The
model parameters b; and r;, for each block can now be obtained using eq.(4.5.73) and
eq.(4.5.74), e.g.

for block 1, 10 mm < a <12 mm
491 = (b — 1)(1 +71)

14132 = (bl - 1)7‘1(1 + 7‘1)
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and for block 2, 12 mm < a £ 15 mm
1034 = (bl L 1)(1 + 7‘1) + (b2 = bl)(l + 7'2)

298.82 = (bl - 1)7‘1(1 + 7‘1) + (bg — bl)T2(1 + 1‘2)

The model states and r; values for the 7 different blocks are shown in table 4.5.4.

states T;
J
1,...,12 39.92
13,...,17 107.60
18,19,20 170.33
21,22 224.50
23 437.00
24 384.00
25 298.00

Table 4.5.4. The model states and r; for the 7 different blocks

Each model state corresponds to a unique value of a. This relationship can be
determined as follows: Each model state ¢ has a mean number of cycles to reach the
state 7. The corresponding crack length a; can be determined by requiring that the
mean number of cycles to reach a; much be the same as the number of cycles to reach
state i. The relations thus obtained are shown in figure 4.5.17.

| @ (mm)
50 -
40
30 -

20 -

10

0 T T T T : T —s= rnodel states
5 10 15 20 25 30

Figure 4.5.17. The relationship of the model states and the crack lengths.

Obviously, each a does not correspond to a model state since the model states are
discrete. Now it is examined how well the model describes the data. Consider first
the mean value and the standard deviation of N to reach a. It follows from figure
4.5.18 that the agreement is rather good. In the B-model the mean values are a little
overestimated and the standard deviation is a little underestimated for a >40 mm.
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Figure 4.5.18. Comparison of the mean values and standard deviations of N to reach
the crack length a

Now compare the EDFs of N to reach a obtained from the data and the corresponding
CDF's obtained from the model. First the 7 values of a used to formulate the model
are considered, see table 4.5.3. The results are shown in figure 4.5.19 a). Then
consider a value of a which was not used to formulate the model, namely a=13 mm
(which corresponds to state no. 15). The result is shown in figure 4.5.19 b). In
all caes the agreement was good in the central and the upper region, but in the
lower region, the CDF's rise too late (unconservative). These features of the CDF's is
due the fact that the higher order central moment are not taken into account. The
higher order moments cannot be taken into account in this model. However, they
can be taken into account by changing from constant r; in each block to variable r;
within blocks. The number of higher order moments is depending on the number of
parameters used to describe r;.

Comparing the results for =50 mm in figure 4.5.16 and figure 4.5.19 a), it follows
that the agreement is better in figure 4.5.16 where only the data on IV to reach a=>50
mm are used.

a) | £IN|a) b) ‘F(Nla=13 mm)
1.0 4 1.0 |
0.8 . 0.8 |
-—— EDF
0.6 06 —— CDF
0.4 1 0.4 -
0.2- } 0.2
0 2 T T T T T T T > N 0 T T N
1000 3000 5000 7000 X 10° 1000 3000 X 103

Figure 4.5.19. Comparison of EDFs and CDF's for 8 different crack lengths.
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Above, it is shown how the stationary version of the B-model can be formulated from
constant amplitude load data. However, in real structures, like offshore structures,
the load (stress) amplitudes are not constant.

In section 4.4 it is shown how, for a given sea state, the stress spectrum in failure
elements (hot spots) can be estimated, and in section 4.5.1 it is shown how the density
function for the stress amplitudes can be estimated for a given stress spectrum. Using
the B-model to predict life behaviour under a spectrum of loads, experimental testing.
under this type of loading is needed, because up to now there has been no satisfactory
analytical method for combining the duty cycles of various severity to obtain reliable
estimates of life behaviour, Bogdanoff & Kozin® 1985. The key problem in this kind
of test is to infer life behaviour under a spectrum of loads, given the constant load
cycles life behaviour for each of the components of the spectrum. The solution of this
problem depends on those aspects of life behaviour concerned and on the generation
of realisations for the test purposes. Next it is described how the spectrum and
how the realisations of the stress cycles for testing might be generated for offshore
structures. Taking into account the long-term distribution of the sea states (see
section 4.2) the lifetime of the components (hot spots) can be divided into a finite
number n of short-term periods with a constant length AT, denoted as sea state L;
with the probability pz,, ¢ = 1,...,n, where the stress process in the components
can be characterised by a spectrum. For a given sea state L; the density function
for the stress amplitudes and the mean period of the peaks (local maxima) Tmp(2)
can be estimated e.g. by using the RC-method, see section 4.5.1. For each L; the
respective density function is discretized into a set l;5, 7 =1,...,m, of single stress
cycles, each having the probability p;;. The experiens suggest that the sea states
and the stress cycles in a given sea state do not come in strictly random order, i.e.
the sea states of similar type are frequently grouping and the stress cycles of the
same size come frequently grouping too. A number of methods exist for generating
SFs having a specified long-term distribution of stress cycles, i.e {Li, pr;, lij; Pi; }.
In Bogdanoff & Kozin® 1985 three methods are measured and can be formulated as

follows

1  Select successive L;s on a random basis using pr,. For each L; the [;;s are
selected successively on a random basis by using p;;; until the number of cycles
is equal to AT /T p(7).

2  Form blocks, each having the same number of sea states L; of just one type. For
each block of L;, form blocks, each having the same number of stress cycles [;;
of just one type. Select successive blocks of L;s on a random basis using pr,;.
For each block of L;, the blocks of /;;s are selected successively on random basis
by using py,; .

3 Form blocks of variable numbers of sea states L; of just one type, where the
numbers of L; in each block is proportional to pr,. For each block of L;, form
blocks of variable number of stress cycles [;j, where the number of [;; in each
block is proportional to py;. Select successive blocks of Lis randomly. For each
block of L; the blocks of I;;s are selected successive randomly.
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Each of the above methods represents the same long-term distribution of stress cycles,
in the sense that, after suitably long time, all L;s will have occurred with relative
frequencies close to or equal to pr, and the relative frequencies of /;;s will be close to
or equal to py;;. In method 1, where the order of stress cycles is completely random,
no characteristic stress cycles versus time patterns for the stress process are produced
while methods 2 and 3 appear to be suitable for providing distinctive stress cycles
versus time patterns, since the stress cycles are grouped, i.e. the blocks of L; and /;;
have a suitable size relative to the lifetime and the total number of stress cycles in
given séa state, respectively. The next point to consider is how the testing is to be
carried out. All specimens can either be subjected to exactly the same realisation of
stress cycles or each specimen can be subjected to randomly selected realisations of
stress cycles. It is clear that the two methods of testing may give different results,
which will be explained later.

Now method 2 for generating sample function of stress cycles using B-model will be
considered.

For each block of L;, the transition matrix P,j is formulated for each block of [;;,
i.e. if the number of sea states in each block is equal to N; and the number of stress
cycles in each block in the sea state is equal to V2 the P;; will be formulated based
on a block size of Ny x N stress cycles.__

Let the {Qk} denote a sequence of the P;; generated by {Liy pr;» lijs P1;}- Thus

each Q ; is independently and randomly selected from P;; jpt=1...,n, 1 =150y
using the pr, and py;, and for each sample load sequence, the {Qk} represents a
specific ordering of the E,J. However, {Qk} may also be regarded as a sequence of
independent random variables, since the each 5,: is independently selected from the

P . with the probability pr; X py;
The state of damage at the time z is then given by (see eq.(4.5.61))

x —
P, = Po || @ (4.5.77)
k=1

where z is the time in block units, where the block size is equal to Ny X N; stress

cycles.
Following eq.(4.5.65) the CDF of the time to failure in state b, Wy, is given by

Fw,(z) = pa(b) (4.5.78)

Since {Q .} is a sequence of random variables , and F, become random functions

of z. However, for a specific sample load sequence {Qk} p, and Fw, become deter-
ministic functions.

Assuming that P, is deterministic, and taking the expectation of eq.(4.5.77) at fixed
but arbitrary z, it follows that

E[p,] = 5o (E[Q)) (4.5.79)
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where

E[Q] = > propi; P;; (4.5.80)

=1 j=1

The expected value and the variance of the CDF of W} can be expressed as

E[Fw,(z)] = Elp(b)] (4.5.81)
Var[Fw,| = E[F§,(2)] - (E[Fw,(2)])? (4.5.82)

where the Var[Fw,] can be estimated by simulation.

The difference between the to different testing methods will then be evaluated. If
all specimens are tested with exactly the same sequence of stress cycles {Q:}, the
EDF of Wj of the specimens will in this case approximate one sample CDF, but the
location of this sample CDF, with respect to all sample CDFs, will in general be
unknown. However, if the variance of Fy,(z) is small this uncertainty will not be
important, ‘while for a large variance the uncertainty can become significant.

If each specimen is tested under a randomly selected sequence of stress cycles {Q b
the EDF of W, of the specimens in this case will approximate the E[Fw,].
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4.6. Application

In the sections above a method for estimating the probability of fatigue failure is
briefly described. To make this method applicable a new computer package "SAOFF”
(Stochastic Analysis Of Fatigue Failure) has been made. The program package which
contains approx. 7000 source lines written in FORTRANT7, consists of five calcula-

tion blocks, namely:

1)

- 2)

3)

4)

5)

STIFFMAS
This program reads the structural data and creates the global stiffness and mass
matrices for the structure.

EIGEN
This program evaluates the n smallest eigenfrequencies and corresponding eigen-
vectors (mode shapes), where n is defined by the user.

MODAL

This prc;gram is the most complex and time-consuming part of the whole pro-
gram package. Here the 0-,2- and 4-moments of the cross-spectral density of
the modal displacements are evaluated, namely (see chapters 3 and 4 for more
details):

0-moment:

[e =]
mo =/ Sgqiq; (w)dw __
0
2-moment:
(e o]
ma =/ w?Sgiq; (w)dw
0
4-moment:
(o o]
my =/ w*Sgig; (w)dw
0

SIGMA

In this program the auto-spectral densities and their moments for the hot spot
stresses in joints defined by the user are evaluated. (Here the SCF's are taken
into account in the calculation of T; and Tk;).

RELIA

In this program the probability of fatigue failure of failure elements in the joints
(which was defined in SIGMA) is estimated. Here the user can choose between
3 different estimates of the distribution of the stress amplitudes pg(3), namely:
1) Rayleigh distribution (narrow-banded approach)

2) Distribution defined by the RFC-method (simulation)

3) Distribution defined by the RC-method (analytical estimation or simulation).
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The user can choose between two different damage accumulation models, namely
the Miner rule described in section 4.5.2.1, where the rainflow damage factor
Arrc defined in eq.(4.5.24) is included and the fracture mechanics models de-
scribed in section 4.5.2.2. The Bogdanoff model described in section 4.5.2.3 has J
not yet been included in the program. The systems probability of fatigue failure
is estimatéd by using Hohenbichler approximation, Hohenbichler? 1983.

Example 4.6.1

Consider the model of a steel jacket offshore platform shown in figure 4.6.1. All struc-
tural elements are tubular beam elements made of steel with modulus of elasticity
E =0.205-10° kN/m? and density p = 7800kg/m?3.

The cross-sectional diameters and thicknesses are shown in table 4.6.1. The founda-
tion is modelled as elastic springs with horizontal stiffness equal to 1.2 - 10°%kN/m,
vertical stiffness equal to 108 kN/m and rotational stiffness equal to 1.2-10°kNm/rad.
The total mass of the deck is assumed to be 4.8 - 10%kg. The service life of the struc-
ture is taken as 25 years.

The calculation is carried out by considering 3 directions of average wave propaga-
tion 8, namely 8; = 0° (z-direction), f; = 45° and §; = 90° (y-direction), where 6 is
defined in figure 4.6.1. All three directions are assumed to have the same probability

p;. =3, 1,=1,2,3. Long crested waves are assumed (n = 0 in eq.(4.2.17)).
T
z
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Figure 4.6.1 Steel jacket' offshore platform.

The parameter in the long-term probability density function of the significant wave
height H,, py, (h), and conditional probability density function of the wave spectral
peak periods T, given Hs, pr 5, (t|h) are estimated by fitting observations from the
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northern part of the North Sea in the period 1980-1983 (8222 observations), see Haver
& Nyhus? 1986 for more details. The parameters are (see eq.(4.2.21) and eq.(4.2.22)):

0'2Ha = 0.376, pr, = 0.836, = 827 1, p = 2.822, £ = 1.547
pr, = 1.59 + 0.42 In(hs +2)

0% =0.005+0.85 exp (—0.13 r1-3%)

Members Diameter (m) Thickness (m)

deck legs 2.00 0.050
jacket legs 1.20 0.016
braces (vertical plane) 1.20 0.016
braces (horizontal plane):

level +5 0.80 0.008

level -10 1.20 0.014

level -30 1.20 0.014

level -30 (diagonal) 1.20 0.016

level -50 1.20 0.014

Table'4.6.1 Cross-sectional data for structural elements.

The total damage calculation for each failure element is carried out by consider-
ing 45 sea states (15 sea states for each direction 8, see table 4.6.2).

H, (m) P(H,) T, (sec) P(Tp|Hs)
5.8 0.366318

0.8 0.30924 7.9 0.442132
11.5 0.191550

7.1 0.306097

2.5 0.42741 9.2 0.447116
12.6 0.246787

8.9 0.331933

4.3 0.22634 10.6 0.439235
14.0 0.228832

11.2 0.293697

79 0.03621 12.8 0.432785
14.9 0.273518

13.6 0.312393

12.0 0.00080 14.9 0.452909
16.7 0.234698

Table 4.6.2. The sea states under consideration and their probabilities.
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In figure 4.6.1 two joints in the structure are considered, namely joints I and J (two
T K -joints with 12 failure elements). Detailed data and numbering of failure elements
for the joints under consideration are shown in figure 4.6.2. The location of failure
elements in the chord/brace intersection is determined by checking 8 points along the
chord/brace intersection, see figure 4.5.3.

The Miner rule is used for damage accumulation (see section 4.5.2.1). The stochastic
variables Dy,;; and B are assumed to be uncorrelated, but they are assumed to be
fully correlated between failure elements and with the same statistical characteristics,
respectively..m and log K are assumed to have correlation coefficient equal to -0.44
for each failure element, but uncorrelated between failure elements. The statistical
characteristics for the stochastic variables are shown in table 4.6.3.

Basic variable Variable Distri- Expected Standard
buted value deviation
Xi Dy¢ait N 1.0 0.1
X, B LN 1.0 0.2
P Xia K,,... K, LN 6400N/mm2 1024N/mm2
X15,...X26 mi,...M12 N 3.8 0.095

Table 4.6.3. Statistical characteristics for the stochastic variables
' (N: normal, LN: log-normal).

Joint [ Joint J

04m

04 m

04m

Figure 4.6.2. Detailed data and location of failure elements for joints under
consideration (e means failure element).

The drag coefficient Cp in Morison’s equation is taken as 1.3, but the coefficient of
inertia Cjy is assumed to vary as, Karadeniz? 1985 :

2 for0<z<0.6
2(1.65 ezp(—0.8974 z)) for 0.6 <z < 2.0
2(0.798/v/z% ) for z > 2.0

Cu =
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where z = % w? in which D denotes a member diameter, g denotes the acceleration

of gravity and w is the frequency.

The number of eigenfrequencies (and mode shapes) in the modal analysis is taken
as 3 and the damping ratio ( is taken as 1 % for all mode shapes. The significant
failure elements are defined as the failure elements which have safety indices less than
Bmin + 1.5, where fmin is the lowest safety index for the failure elements. The three
lowest eigenfrequencies are obtained as:

wy = 3.01 rad/sec
wy = 3.01 rad/sec
w3 = 6.48 rad/sec

A run of the program SIGMA showed that the irregularity factor, & (=%, where

m; is the sth moment of the stress spectra), of the stress spectra in the failure elements
is 0.37-0.6 for most of the sea states which means wide-banded stress spectra.

In figure 4.5.6 the normalised stress spectrum (normalised as m, = 1.0) for failure
element no. 1, for the 15 different sea states, shown in table 4.6.2, for § = 0°, is

shown.

The distribution of stress amplitudes is estimated by :
1 : Rayleigh distribution.

2 : Distribution defined by the RFC-method.

3 : Distribution defined by the RC-method.

Four not fully correlated significant failure elements are identified. They are given in
table 4.6.4

Failure ele- System relia-
ment ¢ 1 7 12 11 bility index 5°
Rayleigh B; 2.08 2.69 3.31 3.39 2.03
Rayleigh* f; 2.32 2.83 3.54 3.63 2.27
RFC 5; 2.32 2.78 3.59 3.74 2.25
RC B; 2.77 3.09 4.14 4.25 2.67

Table 4.6.4. Safety indices for the significant failure elements and Hohenbichler
approximation of the system reliability index. (Rayleigh* B denote the
reliability indices where the rainflow damage factor ArFc is used).
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The correlation coefficient matrix of the linearized safety margins of the significant
failure elements is:

1.0 0.65 0.65 0.65

= 1.0 0.65 0.65
P = | sym. 1.0 0.65
1.0

As it can be seen from table 4.6.4, there are significant differences between the safety
indices of a failure element dependent on the estimate of the distribution of the stress
amplitudes. The safety indices obtained by using the Rayleigh distribution combined
with the rain flow damage factor Arrc give a good estimation of the safety indices
obtained by the RFC-method. The same results for the RC j3; were obtained by
estimate the probability density functions of the stress cycles by simulation and by
using the estimate given by eq.(4.5.11). In figure 4.6.3 a typical probability density
function of the stress cycles, for a given sea state, in a failure element, estimated by
the above methods is shown.

pg(s)
08 4
" I —— « — RFC-method (simulation)
0.6 l\\ —— « = = RC-method (simulation)
} — — — — RC-method (eq. (4.5.11))
Y § Rayleigh distribution

= -
0 T T T ! ] E T S[O‘S]

Figure 4.6.4 Estimation of the distribution density function of the stress amplitude,
in a failure element, for a given sea state.
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4.7. Conclusions

In this chapter a method to estimate the reliability of offshore structures subjected to
wave loads in deep water environments is discussed. Failure modes corresponding to
fatigue failure are considered. The reliability is estimated using a first-order reliability
method and failure of the structure is defined as the event that one of the failure
clements fails. To estimate statistical values of structural stress variations the modal
spectral analysis method is applied.

Two methods to estimate the distribution of the stress cycles for a given stress spectral
density are presented, namely the rain-flow-counting (RFC) method and the range-
counting (RC) method. Three different models to estimate the damage in the failure
elements are presented. Two deterministic models, where the uncertainties are taken
into account by introducing random variables instead of the model parameters and
one model where an evolutionary probabilistic structure is assumed from the start.

A new program package "SAOFF” (Stochastic Analysis Of Fatigue Failure) is pre-
sented. As an example a jacket structure is considered. The distribution function of
the stress amplitudes, for a given sea state, is estimated by the Rayleigh distribution,
a distribution obtained by the RFC method and a distribution obtained by the RC
method. For most of the sea states under consideration the stress processes became
broad-banded. Therefore, the results by using the Rayleigh distribution to estimate
the distribution of the stress cycles cannot be expected to give satisfactory results.
However, by taking into account the so-called rainflow damage factor, the results
obtained using the Rayleigh distribution become very close to the results obtained
using the RFC method. By comparing the results obtained using the RFC and the
RC methods it is shown that the method used to define a stress cycle has significant
influence on the results. This means that the definition of the stress cycles must be
taken into account in the calibration of the model parameters and in the evaluation
of the results. For this purpose more experimental and theoretical work are needed.
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5. CONCLUSIONS

The development of some applicable methods for evaluating the reliability of offshore
structure is studied.

Two different definitions of system failure modes of the structure are used, namely a
failure mode due to formation of a mechanism (collapse), and failure mode due to a
fatigue failure.

In chapter 2 a brief introduction of the reliability theory relevant in the thesis on
structural reliability analysis is given.

In chapter 3 a system reliability analysis, with respect to plastic collapse, of truss and
frame structures of ideal rigid-plastic materials, is discussed. Section 3.2 contains a
general theory of plasticity for frame and truss structures. The reliability analysis is
carried out using the upper-bound theorem of plasticity (kinematic theorem of mech-
anisms). A technique for identifying the most significant failure modes is presented.
It is shown that the most significant failure modes depend significantly on the type
of the cross-section. A new program package "COLLAPSE”, which is based on the
methods and assumptions described in sections 3.2 - 3.4, is presented. The program
package is illustrated by two example, i.e. two different models of steel jacket off-
shore platforms. One of the examples has been analysed before in the literature, but
a different method was used. The results obtained here are well in accordance with
the results found in the literature.

Chapter 4 contains a reliability analysis of offshore structures, subjected to wave
loads, with respect to fatigue failure. In section 4.2 a probabilistic modelling of the
sea states is described, and both short-term and long-term modelling are considered.
Section 4.3 contains a probabilistic modelling of the wave loading acting on the struc-
tural element, for a given sea state. In section 4.4 a structural response is considered.
Section 4.5 contains stochastic modelling of fatigue failure. Two methods to estimate
the distribution of the stress cycles for a given stress spectral density are described,
namely the rain-flow-counting (RFC) method and the range-counting (RC) method.
Three different models to estimate the damage in the failure elements are discussed.
Two deterministic models, where the uncertainties are taken into account by intro-
ducing random variables instead of the model parameters, and one model where an
evolutionary probability structure is assumed from the start. A new program package
"SAOFF” (Stochastic Analysis Of Fatigue Failure), which is based on the methods
and assumptions described in sections 4.2 - 4.5, is presented. As an example a jacket
structure is considered. The distribution function of the stress amplitudes, for a given
sea state, is estimated by the Rayleigh distribution, a distribution obtained by the
RFC method and a distribution obtained by the RC method. For most of the sea
states under consideration the stress processes became broad-banded. Therefore, the
use of Rayleigh distribution to estimate the distribution of the stress cycles cannot be
expected to give satisfactory results. However, by taking into account the so-called
rainflow damage factor, the results obtained using the Rayleigh distribution become
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very close to the results obtained using the RFC method. By comparing the results
obtained using the RFC and the RC methods it is shown that the method used to
define a stress cycle has significant influence on the results. This means that the def-
inition of the stress cycles must be taken into account in the calibration of the model
parameters and in the evaluation of the results. For this purpose more experimental
and theoretical work are needed.

No examples have been found in the literature to compare the results obtained by

"SAOFF”.
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APPENDIX A

In this appendix yield conditions for four different cross-sections are shown.

I-Section
d
o
T
ho|. ¢ —=
2 1
N —_— e
axisof —— A — — || — — —_ = —_— - = —_— - 4 - — 4+ —
symmetry e
neutral — 2 | — — | T T\ T |y~ — - - - = - =
axis Iy M - -
A4 B
cross-section Y Y Y Y Y
J—diry F— P L ]
fully plastic stress distribution distribution for
stress distribution for normal moment M
force N

Figure Al. Stress distribution for I-section.

N/Np = 2et1/A and M/Mp = 1—te*/W, when e < (h/2—t;). Therefore,

M N\%? 42
My T (NF> 4, W, (41)

where the plastic modulus W), is

W, = %Ztgd(h —t) + %(h — 2t,)(h — 2t5) (A2)

Eq.(A1) can therefore be rewritten for N/Np < (h — 2t2)t1/A = Aw /A, where 4,
is the web area

N\* M
a(Yv—F—)-i-'M;:l (A3)

where

o= (e (BB (A2)) (49

Likewise, for N/Np > A, /A the yield condition is

N M
— 4+ b= =1 A5
o+ U3 (45)
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where
A
h o= 1——2%
- (4
Box-Section

The yield condition for box-section shown in figure A2 can be derived as for I-section

by using simple transformation as shown in figure A2

z t2 t2
A
L |
271 T 4

L .

7 b=
d d
K Y K 1
A A A— A

Figure A2. Transformation of box-section to an I-section.

Rectangular Section

74
—
axis of h N -
spmmetry- |'—| — — — —| —\——— s, e = 2| == |— 4+ — —|— =
neutral M
axis -\l " — =\ |\ — | = - - - = - -
- e
A
d Y Y Y Y Y
o o
cross-section fully plastic stress distribution distribution
distribution for normal for moment M
force N
a) b) c) d)
Figure A3. Stress distribution for a rectangular section.
With the notation in figure A3 the following is derived
N 2ed 2e
= = =2 = = (AT)

Nge A h
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M 1 de? (48)
Mr W, ,
where W, = dh?/4.
The yield condition can therefore be written
2
M N
—4+(=) =1 A9
Mp Np (49)
Thin-Walled Tubular Section
—
axis of
symmetry =
= — —_ - = = ==
neutral axis
——
Y Y Y Y
V4 I v 2 72
‘po A A A A A A Pl
fully plastic stress distribution distribution
D distribution for normal for moment M
- — force N
cross-section b) c) d)
a)

Figure A4. Stress distribution in a thin-walled tubular section.

With the notation shown in figure A4 it is easy to show that (t < D)

M = 4Ytr? singg

and
N = 4Y7'(-7—2r- — ®0)

The plastic modulus is approximately
W, = 4tr?

With Mg = W,Y and Nr = AY the yield condition 1s

(A10)

(A11)

(A12)

(A13)
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APPENDIX B

This appendix deals with three-dimensional linearization of drag forces by the "min-
imum mean square error linearization method”, Atalik & UtkuP 1976. A circular
cylinder as shown in figure B1 is considered, and it is assumed that Morison’s equa-
tion may be applied to a cylindrical member in a random manner. The non-linear
term in Morison’s equation may be written as

_ sz _ ) S g x1 l.bna:
fp-= |foy| = Kb [in| tn = Kp (g + Upy +Upz)? | Uny (B1)
sz Unz
where
_ Ung e T 1—c2 —cgey —czc: Uy _
B = |ty | = (ex @ x9) = 1—c2 —cye: | |y | (B2)
Unz sym. 1-¢2 U,
t = (czycys€:2)
=T . . .
U = (Ug, Uy, Us)

g, ty and U, are components of the water particle velocity in the z, y and z-
direction, respectively, and € is a unit vector along the cylinder axis.

Figure B1. 7, j and ¥ represent the base vectors in the z, y, z-coordinate system.

The linearized version of equation (B1) is

for = KEp L, (B3)
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The error introduced using equation (B3) instead of equation (B1) is defined as

e = (Lin — g(un)) (B4)
where
- gz(gn) .9 . 9 .9 1 i.tnz
—g(un) = gy(uTn) = (unz: + uny + Up, 2 %Lﬂy
gz(un) Unz

The criterion that the mean square value of the error € is at a minimum is expressed
as

E[ €¥] — minimum

where E[- -] denotes the expected value.

The coefficients [;; in the linearization matrix I may be written as, Atalik & Utku?
1976

L ='E 3%’5”")] (B5)

The matrix L may now be expressed as

Y. . 2 ) g 3 L. -
2ug +un, Ffug,

n _ny uniunx Upnglng
itn itn 2n|
L = E nzx _ny nz n_z-i ny — E[]VI]
[in] [tn]
sy dn. 205, +ig,
i : Tl ]

where [i,| = (42, + ul, + u%z)%

When the water particle velocity is assumed to be a zero-mean Gaussian process then
the following expression is obtained

/ / / M3(0; S, )dipdi,di, (B6)

where ¢3(0; 5 .i,i,) is a three-dimensional Gaussian density function defined by

1l—7=-1 =
€$P(—§12T2a=a,,az u)

_ = 1
0; i a,u,) = =
ol Ty RRTYE
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where the covariance matrix Yy, 4,4, is defined by

fooo Sﬁ:ﬁz_ (w)dw fooo S,‘lzi,_y(W)dw fooo Sﬁ:i‘z (w)dw

o4l

I3 Siyi. (w)dw I Sayu, (w)dw I Sayi, (w)dw

I3 Sii, (w)dw 157 S, u, (w)dw I Sasa, (w)dw

Siu;(w) is the cross-spectral density of the water particle velocity u; and ¢; (4,7 =
z,y,2).

For example,

-2 <2
+uny +unz

! E[mai] / ] / ] / = 1
rz = m = = =
H —00 J—00 v —O0 lunl (ZW)S/Z(det(Eﬁzﬁy&z ))1/2

_r=-1 i
ezp(—%aTzﬁzﬂyaz ) dipdi it

where 'tnz, Uny and tn; can be expressed as functions of uz, uy and . (see eq.

(B2)).
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APPENDIX C

The density function of the range h between two successive extremes can be estimated

by (see eq.(4.5.11))

fu(h) = /OTl (/_0:0 fr(r) fumr(w, h|7')du> dr (C1)

where

o) {f;’" (S 8182 Fi 5,5, (0,0, 1, 82)ddn ) diz 0 <7 <Th
T(T) =

0 T>T1

(C2)

fOoo (f—oo —I1T2 leXzf(ngle(z(u’ U~ h, 0, 0, Ty, xg)dl‘l) dxg

fooo (ffoo —ili2fxlx2.’21}?2(0’ 0551:'17&:'2)(115&1) Cl:ltg

fUHT(U-, h, T) =

(C3)

where X; = X(t) and X = X(¢ + 7) and where T; is determined from the nor-
malisation condition

T
fr(r)ydr=1 (C4)

0

Using eq.(C1)-eq.(C3), fu(h) can be written as

Th poo oo 0
fH(h) = / / (/ / —12‘15132 fX1X2X1X2X1X2(U,U - h,0,0,fi‘l,(iQ)dﬁfldfi'z) dudTt
0 —o0 0 —oco

Tl o0 o0 0
= / / (/ / —:.151-;1.:2 ¢6(U7U - h,0,0,"'IEl,."L:2 ;ﬁ)d(l;ldx2> dudr (05)
0 —0c0 0 —co

where ¢,(+;p) is the n-dimensional Gaussian density function of n variables having
the correlation coefficient matrix p written as

rp(0)  p(T) 0 pl(r)y | p'0)  p(7)
p(0) —p'(7) o | p'(r)  p"0)
B —p"(0) —p"(1) | 0 =p"(r) 5 S
5= 0 1w o[ = ]2 22] e
| pIIII(O) pllII(T)
| sym. | p""(0) |
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where
p(T) = /000 Sx(w) cos(wt) dw
p'(r) = /0’00 —wSx(w) sin(wT) dw
p'(r) = /0‘00 —w?Sx(w) cos(wr) dw
p )= /000 w3Sx(w) sin(wt) dw
p"'(t) = /000 wtSx(w) cos(wt) dw

Eq.(C5) can then be written

T1 (o] oo 0 —_
fu(h) = / / belit,u — £,0,0;5,,) / / 58y ba(Er — py B2 — iz 3 R)dEy dipdudr
0 —co 0 —o0

1

T — —l
- / / ¢a(u,u — h,0,0; i P11) Mde(Po(=— 1)‘1’ ( )+ (I’( )@( 2)

+ Ak / (k — k) (0,0 ; R(k)) dk ) dudr (CT)

where
u
_ _[m] _=r=1|u=nh
U [NZ] P12 P11 0
0
= = =T =—1 = A2 KA1 A
R(k) = P23 — P12 P11 P12 = [K/\II/\2 /\lg 2}

Vi(z) = —4(z) — 28(z)

Ty(z) = $(a) — 28(~2)

where ®(-) is the standard Gaussian distribution function.
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