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H. F. BURCHARTH, M. BRORSEN

1. INTRODUCTION

Although most structures are subjected to dynamic, stochastic loads, it is in fact
seldom that these loads are considered in the design. Normally the design is based
on an equivalent static load, established naturally with due consideration to the
true conditions. This method is often called deterministic, the loading being
described as a specified function of time.

The deterministic method is however, inadequate for many off shore structures.
In the case of gravity platforms for example this is mainly because the wave effects
are the essential forces on the main frame, and these are of a stochastic nature,
since they vary in time without repetition. There is therefore the possibility that
the natural frequency of the structure or some part thereof, may lie in a wave
frequency range with not inconsiderable energy. Resonance and the resulting
amplification of forces and deformation can thus set in. There is nothing to hinder
smaller waves than those chosen for a deterministic design, from causing the
greatest effect. Another relevant condition, a check for fatigue, is not possible
either with a deterministic method since a fatigue analysis requires precise
knowledge of the cycling of the load. Such information is furthermore necessary
for a more accurate determination of the wave forces, the deformation and load
bearing capacity of the sea bottom, since these quantities are influenced by the
response of the structure to the loading.

The purpose of this lecture is to describe a design method which takes into
consideration the stochastic nature of the loading and the structures’ dynamic
sensitivity. The method, which can aptly be called a stochastic, dynamic response
analysis, is based on the »random vibration analysis» which describes the relation
between input and output of a linear, unvariant system, the input of which is
given as a stationary, stochastic process. This theory was developed about 20 years
ago in connection with flight problems.

We shall confine ourselves to considering the gravity platform shown in fig. 1,
consisting of a bottom tank, placed directly on the sea bed, supporting a working

platform by means of one or several legs.

~— ] 1}

|
I
I

Fig. 1. Gravity platform
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DESIGN OF GRAVITY STRUCTURES

Since we shall only deal with wave forces for the sake of simplicity, our system

consists briefly of the following:

a) Input in the form of a stochastic description of the waves.

b) Hlydrodynamic transfer (or response) function which gives the relation be-

tween the waves and the wave loading on the structure.

c¢) Mechanical transfer function, which gives the dynamic amplification of the

wave loading and thereby the final forces.

Only items a and b, i.e. the hydraulic part of the method alone, is discussed in
this lecture. The lecture is furthermore concentrated on the statistic description
of waves, which seems advisable as one must above all ensure reasonable input
data.

Since random vibration analysis is based upon linearity we are limited right from
the start to use linear wave theory as well as limit ourselves to linear wave loads. It
is therefore necessary to reassure ourselves initially that these limitations are accep-
table.

It should also be mentioned that, since most of the audience can only be expect-
ed to have a limited knowledge of the subject, and time is extremely short, there
will be given an overall review of the subject, illustrated with some experimental
results partly from the Hydraulics and Coastal Engineering Laboratory at the

Aalborg University Centre, and partly from laboratories abroad.

2. GENERAL BACKGROUND
2.1 Loads due to waves

As we are discussing gravity platforms in deep water (100 - 200 m), such as in the
North Sea for example, we know that higher order wave theory gives the most
realistic description of storm waves. For example, up to Stokes’ fifth order wave
theory is used in deterministic design of structures in deep water. If we calculate
wave loads in accordance with higher order stokes waves, we find that the differ-
ences in the results are rather small, the biggest jump being when we compare the
linear (1. order or Airy) theory with Stokes’ second order theory. Practice however
showes that linear theory gives quite workable results, which, considering the
uncertainty with which waves and the deformation of the subgrade, for example,
are determined, leads us to the conclusion that the use of linear wave theory is an

acceptable approximation.
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H. F. BURCHARTH, M. BRORSEN

The wave forces on a structure of the type shown in fig. 1 can be divided into

3 classes:

1. Inertia (or pressure) forces, due to acceleration of the surrounding water.

2. Drag forces, consisting of a friction and a form force due to the presencé of

a relative velocity between the structure and the surrounding water.

3. Shock pressure, which only accur in the surface zone with waves break-

ing against the structure.

We shall neglect shock loads, which have no influence on the stability or deflec-
tion of the structure, but which naturally may have a large local influence on the
stresses and deformations. Shock pressure is, incidentally, a typical non-linear
phenomenon, which cannot be described by Airy theory.

If we compare inertia and drag forces we find that drag forces are negible when
the Keulegan - Carpenter number N, < 5, because the diameter of both the base
tank (50 - 100 m) and the legs (10 - 20 m) are not small relative to the horizontal
length of the particle path. We may therefore neglect the drag forces, which is
fortunate, since the principle of superposition does not hold for these forces
which as we know are proportional to the square of water velocity.

We are therefore left only with inertia forces which generally can be calculated
as a Froude - Krylov force multiplied by a coefficient which covers the condition
that the presence of the structure modifies the undisturbed wave motion and
thereby the pressure distribution. When the ratio of structure diameter to wave
length D/L < 0.2 (normally the case for the legs in a storm) the inertia force, per
unit length, is expressed as p%D2 CMI.J, where p is the density of the water,
CM is a factor of about 2 and U is the horizontal acceleration of the particle.
When D/L > 0.2 (normally always the case of a large base tank) inertia forces must
be determined by means of the theory of diffraction or of the fluid finite element
technique.

We must now investigate whether the principles of superposition applies to
inertia forces.

Since linear wave theory has been adopted, the wave surface can be considered .

built up of the sum of Airy waves, the ith being defined as
n, = a, sin(mit-kix+ 5) (1)~

where a, is the amplitude, w = 2af is the angular frequency, t is time, k = 27/L

is the wave number, 6 is the phase angel, see fig. 2.

188



DESIGN OF GRAVITY STRUCTURES

#=-h = 7, 7777777777

Fig. 2. Definition sketch

The deviation from hydrostatic pressure caused by waves at a point (x, z) in the ith
wave is given by

coshki(z + h)

. =ay sin(w.t —k.x) (2)
P % coshk;h ! !

and the Froude - Krylov force on a small area dA about the point then becomes,
Fi = pidA, in other words, the force amplitude is proportional to the wave ampli-
tude.

Since the wave motion can be described as a potential flow, where the velocity
potential is the sum of the potentials of the individual wave components, ¢ = e,
the Froude - Krylov force from alle the wave components is found by insertion
into the linearised Bernoulli’s equation,

F=pdA=—p%fdA=——pdAait}i:\pi=dA>f~p1:%=dA§pi (3)
whereby it can be seen that the principle of superposition holds for forces caused
by overpressures. The same applies to other quantities which are linear dependent
of the velocity potential, including particle velocity and particle acceleration.

The horizontal particle velocities and accelerations for the i.th wave component
at the point (x, z) is given by :

gk; coshk, (z + h)

U =a— —————— i t—k.
x a‘wi coshkih s k) (4)

. coshki(z + h)
Ux =a.gk

; im cos(mit—kix) (5)

i.e. proportional to wave amplitude.
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2.1 Wave energy spectrum

Our first problem is to find a manageable mathematical description of the waves,
apparently impossible at first sight, since wind generated waves are irregular and vary
without periodicity. However, since the relevant wave forces, as seen in par. 2.1 are
proportional to the wave amplitude, the position af the surface, described by a time
and place defined variable vertical coordinate can give a basis for the analysis. If we
measure the variation of the surface level at a fixed point we obtain a wave record-

ing (amplitude signal) as indicated in fig. 3.

VAN N
AR VAS

Fig. 3. Wave amplitude signal

n(t)

Due to the irregular nature of the signal we naturally look for a probabilistic
description of the waves. Instead of a recording such as in fig. 3 one could imagine
that the water surface level was measured at a given instant in terms of a function
of the horizontal coordinate in the wave direction. Such a wave recording is, how-
ever, difficult and expensive, and as one reckons that the statistic characteristics are
similar for both types of signals, it is usual to use recordings at a fixed point.

With regard to the wave surface, we shall assume that it is an ergodic, stationary,
Gauss-distributed, random process. An ergodic process is a process whereby the
characteristics of the process can be derived by time-averaging on a single sample
function instead of computing ensemble averages at specific instants of time. When
dealing with wind generated waves, ergodicity is an essential prerequisite, as a single
sample function in the form of a wave recording as in fig. 3 is usually the only data
available. A necessary but insufficient condition for the process to be ergodic is
that the process is stationary. With a single sample function we can only ensure that
it is stationary. It can, however, be shown that it is reasonable to assure the process
to be ergodic, if the sample function is stationary. This prerequisite of stationarity
demands a sharp limitation of the length of recording, as at any given location there
are usually quick variations in the wind and wave conditions. This gives in turn
other problems referred to later. i

Concerning the assumption that the surface elevation is Gauss (normally) dis-

tributed, it can be shown that this will be so if linear wave theory is assumed valid
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DESIGN OF GRAVITY STRUCTURES

and the phase shift of the components are taken evenly distributed. Wave recording
analyses show furthermore that the true conditions are in fair agreement with the
assumption.

Although natural waves are three-dimensional, in the following discussion we
assume the waves to be long-crested. There is a short reference to experiments
with three-dimensional short-crested waves later.

It is known from linear theory that the energy of a sinusoidal wave of amplitude
a is %,c»ga2 per unit horizontal area, where p is the density of the water and g is
the acceleration of gravity. If linear theory and the consequent principle of super-
position are valid, the wave energy can be considered made up from the energy of
a series of harmonic waves each with its own frequency. By means of a harmonic
analysis (Fourier or spectral analysis) of the amplitude signal we can distribute the
energy to the frequencies of the various harmonic components, whereby we obtain

a discrete energy spectrum as shown in fig. 4.

w =2x7/T

b3
Aw = ZW/TP

Fig. 4. Discrete wave energy spectrum

One must keep in mind that Fourier analysis really gives both a sine and cosine
component for each frequency but it is usual to combine the two by inserting a
phase angle 6.

bicos(wit - kix) + cisin(w‘.t == kix)

(6)

=a.cos(w.t —kx —6 )
1 1 1 1

c,
where a, = \/bi2 + ¢’ and §. = tan BL
1

191




H. F. BURCHARTH, M. BRORSEN

It is thus a, that is used in wave energy spectra, whereas &, is hardly ever used.
One loses thereby the information that is necessary to rebulld the original wave
pattern, but one can well obtain the correct wave height distribution.

Fourier analysis deals with our wave signal as a periodic signal with period TP,
which is the length of the signal. The frequency increment of the discrete spectrum
will furthermore be Aw = 2"/TP‘

For simplicity we omit in the following the factor pg in the spectrum coordi-
nates, so that these state %ai’. In this plotting, the spectrum is called a variance
spectrum, since the variance of a single cosine wave of amplitude a is —é—ail . The
variance spectrum thus shows the distribution of the signal’s total variance over a
series of frequencies, which are determined by the length of the signal, T .

As T, approaches infinity Aw approaches zero and we approach thereby a
continuous spectrum, as may be seen more easily by following the stepped spec-
trum curve shown in fig. 5. The variance %ai , corresponding to frequency w,,
is assumed evenly distributed over a frequency interval A w and plotted as the area
under the curve.

S(w)(m? -sec)

Fig. 5. Stepped variance spectrum

When Aw approaches zero, the stepped curve becomes a smooth continuous

curve called the continuous variance spectrum.
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S(w)

Fig. 6. Continuous variance spectrum

The area under the curve is the wave signal variance as it was for the stepped
curve. In the following we refer to the continuous variance spectrum simply as
the wave spectrum.

To define the form of the spectrum and it’s location on the w-axis, socalled

moments are used, where the nth order moment is defined as

m_ = Tu}“S(w)dw (7)
n 0

It can be seen that the zero order moment, m_, is equal to the area under the

curve, which is again equal to the signal’s variange. The higher the order of the
moment which is applied, the more we load the higher frequency portion of the
spectrum. A broad spectrum, other things being equal, will therefore give large
values of the higher order moments (for n > 2) which enables the width of the
spectrum to be defined by the moments. M. S. Longuet - Higgins has thus defined

a spectrum width parameter as
m 2
mom,

It is obvious that ¢ will have values close to zero for very narrow spectra and

values close to 1 for very wide spectra. The parameter ¢ is most important on the

probability distribution of waves, as we shall subsequently see.
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2.3 Probability distribution of wave heights

Although the wave spectrum contains much information on the wave signal, it
says nothing about how high the waves are, nor how frequently they occur, and
without such information we cannot obtain a practicable description of the wave
loads.

However it can be shown, as done by D. E. Cartwright and M. J. Longuet -
Higgins (1], that provided the wave surface, plotted by the parameter n, fig. 3,
can be taken as a stationary Grauss-distributed, random process, and provided
that the wave surface can be defined by an infinite sum of cosine or sine oscilla-
tions, whose phase angles are rectangular distributed, then the frequency function
(probability density) of maximum values x of the surface elevation n(t) can be

determined by

e -eh)fe

— 3
+Jl-€e*te e dx 9)

f(£)=\/§; €e

X . . . .
where £ = m- is a dimensionless maximum value.
(1]

For a very narrow spectrum (¢ = 0), (9) becomes

L
f(£)=te 2 (10)

which is the Rayleigh distribution.
For a very wide spectrum (¢ = 1), (9) becomes
1.
2t (11)

€)= 757

which is obviously the normal distribution.

The width parameter ¢ will in most storm wave spectra lie in the range 0,4-0,5.
Inserting these values in (9) we find that Rayleigh distribution is a good approxi-
mation and furthermore conservative, as we obtain slightly larger waves for any

given probability level.
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Inserting x instead of £ in (10) and assuming that the probability level is inde-
pendent of the variable which is adopted, we obtain

f(£)de = f(x)dx

X2

f<x>=,’,‘l—0 e 2m, (12)

Similarly the wave height H = 2x (as linear wave theory is assumed to be valid)

is inserted, obtaining
__H " 8m
f(H) = 4?0 e 0 (13)

The corresponding distribution function for wave heights becomes

w —H
F(H)=P ({H <H' }= [ f(H)dH=1—e %M (14)
0

As can be seen from (13) and (14) with information on the wave signal’s vari-
ance, m,, alone, one can obtain the average wave height for any upper fractile
of the wave recording. Referring to the deviations in [2] only the formula for

average wave height H and significant wave height Hs are stated

H =2 /i

(15)
Hg = 4V/m,

Note that the probability distribution of the waves is fully determined by the
wave spectrum, ref. (9), and thus the spectrum alone is sufficient to describe the
statistics of the wave signal.
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2.4 Hydrodynamic transfer function

Having dealt with the statistics of wave heights we now turn towards the relation
between waves and platform loads.

Let us consider a system where an input consisting of a wave amplitude signal
n(t) defined by the spectrum S(w) results in an output or respons A(t), which is

the wave force signal, the characteristics of which we require, fig. 7.

Linear
n(t) — > time-invariant = A(t)

system

Fig. 7.

Since we are dealing with forces, as already discussed, which essentially satisfy the
principle of superposition and since we can furthermore reckon that the platform
dimensions will remain unchanged in time, as a close approximation we can assume
that the system is linear and time-invariant.

Such a system is frequency preserving, see [3] for example. An input in the form
of an oscillation of frequency Wy, n(t) = cosw,t, will therefore give an output
A(t) = IH(wi)l(comuit — ﬁi), where H(wi), that states the relation between input and
response at the given frequency, IH(wi)l = A(t)/n(t), is called the frequency
response function. |H(wi)| can be stated as the ratio of output to input amplitudes

2, (w,)
a,(w;)

[H(w,)] =

and lH(wi)l2 is determined from the ratio of the variances,

3l (@) o' (w)

s =
E‘anz (w)) on"'(wi)

|H(w,I* =

We can consider the system now excited by the wave amplitude signal n(t)
defined by the spectrum S(w). We assume furthermore that n(t) is a stationary
random process, a condition that we shall revert to subsequently.

In continuation of our earlier considerations, we now imagine n(t) as a super-

position of many independent processes, each of an infinitesimal band width, A w.
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For any one of these processes, centred about the frequency Wy, the variance is

w; + Awl/2
anz(wi)= S(w)dw = S(wi)Aw
wi—Aw/Q.

Since Aw is infinitesimal, we must expect the ratio between output and input

variances will be the same as for an individual cosine, i.e.,
a)\z (wi) ~ Sh(wi)Aw
H(w)l = TIH(w,)P

o, (w;) = 8 (w)aw = (16)

where S}\(wi) is the value of the response spectrum at frequency w;. In the limit,
when Aw —+ 0, we can expect that (16) can be written as

S, (w)

w)

[H(w)|? = (ea)

n

which states the relation between the input and response spectra. A rigorous
mathematical derivation of this important formula can be found in [3] or [4].
The parameter |H(w)|*> is called the transfer function. Note that the transfer
function does not contain any information on the phase relations.

It is also valid for stationary random processes that are transformed by a linear
time-invariant system, that the response A(t) will be Gauss-distributed, if such is
the input, see for example [5]. Among other things, this means that the maximum
values of the wave force signal, A(t), will have the same distribution as the wave
heights of the wave amplitude signal, n(t), which according to chapter 2.3 means
a Rayleigh-distribution (provided that the wave force spectrum is a narrow spec-
trum).

We shall see later how the transfer function is determined, but first shall we

describe how the wave energy spectrum is obtained in practice.
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3. DETERMINATION OF THE WAVE ENERGY SPECTRUM

An estimate of the wave energy spectrum can be obtained by two methods dif-
ferent in principles.

If one or more representative wave recordings n(t) are available an estimate of
the spectrum can be obtained directly by analysing n(t), for example by the corre-
lation method based on the fact that the variance spectrum is the Fourier trans-
form of the autocorrelation function, or else by the periodogram method, whereby
the spectrum is obtained by means of the Fast Fourier Transform procedure (-FFT)
applied directly to the wave signal n(t).

If wave recordings are not available, the energy spectrum must be estimated

from the so-called standard wave energy spectra.

3.1 Corellogram method

A brief review of the method follows; for a fuller treatment see ref. [3].
The autocorrelation function, R(r), describes the relation between the values

of the function at a time, t, and it’s values at another time, t + r, and it is defined

as follows
1 T
R(7) =lim T J a@)n(t + 7)dt (18)
T — o
0

i.e. each individual plot of the correlation function is found as the product of the
displaced walues of the wave signal, averaged over a period T, with T — . Fig. 8

gives an example of an autocorrelation function.

R(r)
1
1 /‘
/
)
.
P e N | N\ _
<= <’ \\ /[ =
A

Fig. 8. Autocorrelation function
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The wave energy spectrum can now be determined from the Fourier transform
G(f).til R(7), see ref. [3], i.e.

oo

G(f)= [ R(r)ei2™f7 g, (19)

- oo

oo

provided that R(r) is absolutely integrable, [/ |R(7)ldr < <, and that n(t) is statio-

00

nary. From this expression it can be seen that G(f) is the coefficients in a Fourier
series, R(7). The requirement of stationarity, implies that R(7) is an even function,
R(r) = R(- 7), for which reason G(f), that must also be an even function, can be

expressed as

G(f)= [ R(r)cos(2nfr)d+ =2 [ R(r)cos(2nfr)dr (20)
_ oo 0

A Characteristic example of G(f), which because of it’s symmetry about f = 0
is called the two-sided variance spectrum or the two-sided spectral density function,
is shown in fig. 9.

AN
4\ ~ 8(f)
\

Fig. 9. One-sided and two-sided variance spectrums

Since we are dealing with frequencies > 0 in real waves, the wave energy spec-
trum S(f) is defined as the one-sided variance spectrum in the interval 0 < f < o

’

for which the following relation is valid, see fig. 9.
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S(f) = 2G(f) =2 [ R(r)cos(2nfr)dr =4 [ R(r)cos(2nfr)dr (21
— oo 0

Since [ S(f)df = [ S(w)dw, (21) can be written as
o 0

co

S(w) = %2 s % [ Rir)cos(wr)dr
0

When the wave signal n(t) has to be stationary the problem will often arise,
when R(7) is to be determined in practice, that the wave records that can be used
will almost always be of a very limited duration, among other reasons because the
wind in any given location rarely remains constant for long. A period TP of about
20 minutes is characteristic for storm waves signals and if we assume an average
wave period of 10 seconds (North Sea) the signal will only contain 120 waves.

We cannot therefore find R(7) from (18), since T = T, isof a limited duration,

but an estimate, where we shall indeed introduce a bias error, can be obtained

from
. 1 TP-T 1 TP—-r
R(r) = 57— J a@®)n(t+)dt= 57— [ a(t)n(t+r)dt (22)
P 0 P 0

which will give reasonable values if the maximum time displacement, - is small
relative to TP' It is also obvious that the first and second expression in (22) give
unbiased and a biased estimate respectively. When the biased estimate nevertheless
is often used, it is because the mean square error is smaller in this estimate.

We note now, that the time displacement from now on is only defined in the
interval 0 < 7 < 7_, and therefore we cannot directly determine the spectrum

from the expressions (19) - (21), but must try an estimate,

o0

A "m &
S(f)y=2 | R(r)cosznfrdr=2 [ u_ (r)R(r)cos2nfrdr (23)
m

-T -oo
m

in which u_ (r) is a boxcar function, which takes values 1 in the interval
m
T S TS T and is otherwise zero. It is also obvious, that an estimate of the

energy spectrum can be found by the Fourier transform of the function u (T)ﬁ.(‘r )-
m
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Let us for a moment look at the influence of L (r) by comparing the Fourier
m
transform of 2uT (7)R(7) with the Fourier transform of 2R(r), where the latter

according to (21) is S(f).
By means of the convolution theorem we obtain

oo

Siy=2f uTm(T)R(T)e“"”dT =2 [ U(«)G(f - a)da
(24)

-co

oo

= [ U(a)S(f-a)da
0

sin2n7_ f
£ is the Fourier transform of u_ (), and the approxi-
m

where U(f) = 2-rm Dy
m
mation sign in the last term is due to the fact that S(f) is not always zero near f = 0.

As the introduction of u_ (7) thus results in a weighting of the spectral values

m
with the function U(f), this function and other functions of a similar use, are

D(f), U(f)

U(f) Box-car

D(f) Hanning

1. . : : P
TN,
\\//\T‘“ e

Fig. 10. Window functions in frequency domain

- ZITm‘
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called weighting or window functions. Since the area under the curve U(f) = 1,
the application of the window function has a smoothing effect on the spectrum.
The window function U(f) is plotted in fig. 10.
Fig. 11 shows how the individual values of the estimate §(f) are arrived at, illu-

strated by the determination of a single value of the function é(fo)v

U(f)
M—uw) —U(f - o)
(AR
AN f
- S B W A\ P .
"\."\J'"VV'VV‘I
w
— ‘ = J
|
S(f) l |
I |
f ())1
| ! Area that contribute to the
' ) value §(f,)
1'0
5(f)

on

8(fy) = [ S()U(fy - a)da

Fig. 11. Smoothing of the spectrum by means of a window function

It is apparent from the expression for the window function U(f) that the greater
the value of i (i.e. the better R(7) is determined) the narrower the main lobe of
U(f) will be, which again gives a greater resolution of the spectrum (less smoothing).
The weakness of U(f) is the relatively large negative values of the second lobe,
which in some cases can cause negative spectral values, socalled leakage. For this

reason, window functions other than those given herein are usually used, but it
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should be noted that any attempt to reduce the negative values results in a wider
main lobe and a loss of resolution.

Since the negative values of the window function are due to the abrupt cut-offs
of the boxcar function uTm(T) at the ends (v = t-rm), one modifies uTm(T) so that
the values ramp out to zero at the ends, see fig. 12, that shows two very commonly
used functions. Fig. 12a gives a window function of the type U? (f) whilst fig. 12b

gives the » Hanning» window function,

=Ly L 1 1 1
D(f) = 4U(f 2rm)+ 2U(f)+ 4U(f + 21m) (25)
which is shown (in frequency domain) in fig. 10.
w_ (7) d_ (v)
m Tm
1,0 d )= 2 + cos ™) A0
"m 2 "m \
W, (r)=1— lr]
m "m 0,5
T o T 0 1
a b

Fig. 12. Examples of window functions in time domain

The calculation of the energy spectrum described, by means of an autocorrella-
tion function can be done purely electronically with an analoge voltage signal
representing the wave surface n(t), by speeding up the tape recorder. The calcu-
lation is most often done by computer, which is why we add some comments
concerning problems which may arise in digital processing.

When selecting the rate of sampling the wave signal, it should be born in mind
that low speeds can cause a distortion of the signal’s frequencies. The phenomenon
known as aliasing is shown in fig. 13, where the wave signal n(t) for simplicity is
shown as a periodic wave with frequency f = 1/T and each sampling interval is
called AT.

As seen in the figure, if the sampling interval AT > T/2 = 1/2f the signal fre-
quencies are sensed smaller than actual. The effect is thus a cut-off of the fre-
quencies above f, = 1/2aT, called the Nyquist or folding frequency. With respect

to the energy spectrum the result is that the spectrum is cut-off at f, and the energy
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n(t) distorted signal
—-/ n(t)

[ ~
AN // L
// \\A /r -
N _
AT AT AT AT AT AT

T/2 l T/2

Fig. 13. Illustration of aliasing problem

of the frequencies above f_ is folded back into frequencies lower than f . i.e. a

folding about £ , see fig. 14.

S(f)
A

,m‘m- -k
;

[

Fig. 14. Aliasing distortion of spectrum due to folding

To avoid this folding, the sampling interval must be AT < 1/2f'd where £ is
the highest frequency that is included in the wave signal. In practice one uses how-
ever a longer sampling interval when the wave energy of the frequencies above f_
is negligible. For example it is usual to use a sampling frequency of 2 sec’! to
analyse storm waves in the North Sea and other large seas. Another method is to
filter the signal before sampling, so that the energy in the frequencies higher than

those of interest is removed, whereupon f_ is selected equal to the cut-off fre-
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quency. It should be noted that, although for economy one should set AT = 1/ 2f,,
it is-usually recommended to use AT =1 /3f

As already discussed, the limited length of the wave signal prevents us from
determining the true energy spectrum; we have only an estimate §(f) of it. The
question is then, how can we calculate the statistical inaccuracy of é(f) and what
means do we have to limit the inaccuracy to an acceptable level.

A measure of the random portion of the estimation error is given by the norma-
lized standard error, € defined as the standard deviation of the estimate divided
by the true value

a[8(f)1
=— 2
D) (%9
It can be shown [3], that the normalized standard error of the estimate of the
energy spectrum can be expressed as

€ = 1/\/1'3:6 27)

r

where T is the total duration of the wave signal and B =1/ [ “ U(f)df is the
effective band width of the window function applied (see [141]), which in fact
works as a filter. From fig. 10 we can see that Be = llrm, whereby

- (28)
€ = V' Tm!T
Since it has further been shown [6] that as a close approximation §(f) is

x? -distributed with n = 2B, T = 2T/r, degrees of freedom (assuming 7, < T) this
means that a (1 — «) confidence interval for S(f) based on the estimate §(f) will be

given by
_nz_S(_t:)_ < S(f) < __;_rﬁ(g)_ where n = 2T/r (29)
Xn,a/2 Xn,1-a/2

(27), (28) and (29) show that a small random error or a large statistical confi-
dence, require that ™m < T. Since for characterisation one can hardly use wave
recordings shorter than the ca. 20 minutes (100-200 waves) commonly used, in

practice, this means that we can only alter T - In other words, one has to select a
suitable small 7, from (28) or (29).
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Unfortunately, the circumstances are such that the smaller one selects Tm? the
poorer the resolution becomes, i.e. more details are lost in the spectrum, see fig.
10 and 11. Generally this means that the distance between the crests and the
troughs in the spectrum is reduced. In addition the spectrum is defined with fewer
points, since the autocorrelation function (22) and hence the spectrum have only
Tm/AT points, where AT is the step interval of the digital wave signal. Taking for
example the sampling interval AT = 1/2fc, where fc is the Nyquist frequency, we
get the spectrum in the range 0 < f < f, defined with an interval Af between points

f
1 (30)

o — =
‘rm/AT 2'rm

Af

Af is called the spectral band width, not to be confused with the previously
mentioned effective band width Be =] /Tm, which refers to the weight function.
Fig. 15 illustrates the effect of reducing Tm*

S(f) S(f)

a%x? - confidence
interval

Aflﬂ_l/.‘Z'rm1 Af = 1/27‘m2

Fig. 15. Illustration of spectrum estimates corresponding to two values of Tm
T =T ©
ml m2

The selection of Ty has thus to be a compromise between the conflicting re-

E]
quirements. Normally a displacement Tm of about 5 - 10% of T is used.
Apart from the purely statistical error, instrument errors (wave sampling and

recording instruments) can of course occur, as well as errors due to non-statio-

narity of the wave signal.
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3.2 Periodogram (FFT) method

Like the correlogram method, the FFT method is designed to calculate an esti-
mate of the energy spectrum from a wave recording, but instead of working
through the correlation function, the estimate is made directly by means of the
socalled Fast Fourier Transform (FFT) algorithm. The idea behind the method,
which is described throroughly in |14] among others, will be described briefly,
whereas the uncertainties of the method will be discussed more thoroughly.

The method is based on the common Fourier expansion of a time series x(t),
which in our case is the wave signal n(t) of length Tp. Since the signal is assumed

periodic with a period TP and thereby has a basic frequency f] = 1/TP we get

oo

a
0 v .
x(t) = 5 t 2{ aqcosanflt t bqsm anflt

q=1
where
2 P
B = [ x(t)cos2mgf tdt
P o
q=0,1,2, --- (31)
g P
bq = ri;— J x(t)sin2an1tdt
P oo

For each frequency qf,, we thus have a cosine amplitude a and a sinus ampli-

tude bq, which as discus;ed under wave spectrum, can be combined into a single
amplitude, the half square of which is the variance of the frequency qfl.

Since x(t) is digitalised into N number of discrete points with equal intervals
h = TP/N’ and x(t) is therefore described by x(nh), where n=0,1, 2, - - - - -

(N - 1), becomes the discrete form of (31)

N-1

o
Z|w
b

n
x(nh 2nq—
(nh)cos nqN
h=0

q=0,1,2, (32)
2 . n
i f\} 2 x(nh)smlnqﬁ
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We now found that the determination of the Fourier constants from (32)
will need about N real (non-complex) multiply-adds operations, which in practice
will be of the order of > 10° operations.

The purpose of FFT is to reduce the number of operations by decomposing the
series x(nh) into a number of shorter series and carry out Fourier transforms
over each of these series. If we divide for example the series into two series with N1
and N2 discrete values respectively, the number of operations becomes approxi-
mately Ni + N; < (N1 + N2)2 = N?. The method can be illustrated as follows:

The Fourier coefficients for an infinite series x(t) is given in complex form by

oo

X(f) = [ x(t)exp(-i2nft)dt (33)

- oo

X(f) is called the Fourier transform of x(t).
Since our series is limited to the interval 0 < t < TP’ we define the Fourier
transform now as

Tp

X(f, Tp) = J x(t)exp(-i2nft)dt (34)
0

which in discrete form becomes

N-1
X(f, Tp) = hZ x(nh)exp( -i2fnh) (35)
n=0

where h, n and N are defined in connection with (32).
LetX(f, T, ) be determined by frequency f . given by

k k
£k=—-—=— where k=0,1,2,----,(N-1) (36)
TP Nh
To simplify the notation we introduce X, = X(f , T )/n and X = x(nh)
k k P n
whereby we get
N-1
= ¥ x exp(-i2rkn/N 37
X, = > x exp ) (37)
n=0
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Out of series X wenow create two shorter ones Vo and z given by

n=0,1,2,------ ,(N/2 —1).

yn—XZn’ Zn=x2n01 3 % =y

It can be seen that these two series together contain all the elements of

X, - The Fourier transform of X, (37) is subdivided as follows,

N/2-1 N/2-1
X, = 2 %, exp(-i2nk2n/N) + 2 Koo 4 1 8XP(-i27k(2n+ 1)/N
n=0 n=0
N/2-1 N/2-1
- Z ynexp(—iann/(N/Z))+2 z_exp(-i2n kn/(N/2))exp(-i2nk/N)
n=0 n=0
= Y, + exp(-i2nk/N)Z, (38)

where we have introduced the notations Yk and Zk for the Fourier transform
of y,and z_ respectively and the notation w for the factor of Zk.
(38) shows that Xk will now only be defined in the frequencies correspond-
ing to 0 < k< (N/2 - 1), whereas we want a frequency range of 0 < k< (N - 1).
However, the following can be proved [14]
Z

Y, Y, and Z

k-N/2 ~ Yk k-N/2 - %K
whereby (38) can be rewritten to
Xeinpg = 4 -wZ, where k=0,1,2,----,N/2-1) (39)

Y, and Zk can be split up in a similar manner by setting

n " ¥2n 'a T Yon 410 Yn T Zzn‘vn=Z2n+1;n=0’1’2’_“_’(N/4_1)

etc.
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By selecting the number of data points N = 2% where P is a positive integer,
the calculations can be taken to n = 0, 1, whereby Xk and thereby X(f, TP)
can be easily found.

Let us assume that we have a 20 min. wave recording, sampled at 2 Hz,
giving us about 2400 points. It we select p = 11, N is 2048, which is close
enough to 2400. The Fourier constants X, , and thus the energy spectrum, can
now be found with the FFT process. The resulting estimate of the spectrum
has shortcomings which are explained in the following.

In (33) and (34) we can see that X(f, T, ) can be considered as the transform
of an infinitely long signal y(t) multiplied by a boxcar function, which is defined
only in the interval TP. Changing the interval from (O, TP) to (— TP/Z, TP/2)

for simplicity, we get

T, /2
P oo
X(£, Tp) = [ x(t)exp(-i2nft)dt= [ ug /2(t)y(t)exp(-i27rft)dt (40)
P
-T /2 _oo
P -

where y(t) assumes the same values in the interval (— TP/Z, TP/Z) and where
U /2((:) assumes the value 1 in the interval (— T /2 T /2) and zero elsewhere.
This boxcar function is similar to that discussed in (23) except that the range is

now TP instead of 27 . The Fourier transform of u ) is U (f) =

TP/Z(L TPI2

sinm T

TP( 1rfTP

), that has the first zero crossing at f = 11/TP. This window function
is otherwise quite similar to that of U(f) shown in fig. 10, and we can similarly
have negative values in this approximation of the spectrum. This leakage is
reduced by tapering the values of x(t) at each end of the range (— TP/Z, TP/Z).
Before we do the Fourier transform with FFT, we multiply therefore x(t) by a
window function, the shape of which is illustrated in fig. 16, which shows a
socalled cosine taper window function. The values are thus ramped out over

length T, /10 at each end.

T,/10 1c. W T, /10

1 ] =

/5\
™~
| ~

1
.chlz(t) = —2—(1 -cos(10n t/TP)

Cppp(t) = %(1 + cos(107(t - 0,9T,)/Ty) -/

Fig. 16. Cosine taper data window

210



DESIGN OF GRAVITY STRUCTURES

| Crpra(D

Fig. 17. Window function in frequency domain

Fig. 17 shows the Fourier transform of the cosine taper function and we can
see that the leakage effect is strongly reduced at the expence of a slight increase
in the main lobe width. From the figure it will be noted that the effective band
width can be closely approximated to B, = 1/TP. The use of a cosine taper function
instead of the carbox function results in spectrum estimates which are slightly too
small since the area of the cosine taper function is slightly smaller than that of the
boxcar function. The estimated spectrum values must thus be multiplied by a factor
boxcar/Acostaper =1/0.875.

An estimate of the energy (variance) of each of the frequencies given by (36) can

equal to the ratio of areas A

now be found as

Bomy o L 2 1 41
E(f) = 51 2X (£, Tp)| 0875 (41)

where the complex number Xc(f, TP) is the Fourier transform of x(t)cTP/Z(t).

The factor 2 is due to X(f, TP) referring to the two-sided variance spectrum,
see fig. 9.

The estimate of the continuous energy spectrum, with frequency steps of

1/TP, is now

s B _ 2 , 1
80T - T XTI 57 (42)

To end this chapter we shall now investigate the statistical uncertainty, i.e. the

random error, of the estimate §(f).
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é(f) is proportional to IXc(f, TP)l2 = (ReXc)2 + (ImXc)z, where Re and Im
refer to the real and imaginary parts respectively. Since the wave surface, described
by x(t), is assumed Gauss-distributed, and since the Fourier transform is a linear
process ReX and ImX will also be Gauss-distributed quantities, about which it
can be proved that they are uncorrelated random variables with equal variance and
zero mean.

Every ordinate of é(f) will therefore have a distribution

-~ 2 2 2
Sy _ X2 _ X2 _ X2 (43)
S(f) X5 n 2

where n = 2 is the degree of freedom. Note that an increase in the length of the
wave signal TP does not, in any way, alter the distribution and thereby the random
error either. The only effect is that the spectrum values are determined over more
frequencies.

We will now investigate the random part of the error in é(f) by calculating the

normalised standard error, see (26),
oIS olx,?] J2n

€ = = — = =1 (44)
r S(f) X22 n

since the mean value and standard deviation of x; are n and +/2n respectively,
and n = 2. In other words, the standard deviation of the estimate is of a magnitude
similar to the quantity we are estimating. A random error of this magnitude is not
acceptable, and we must thus use an averaging technique, either by ensample
smoothing or frequency smoothing. As we usually only have a single sample (the
wave recording) at our disposal, the latter solution is the only one possible.
Smoothing can, for example, be done by taking means over a row of continuous
values of é(f). By averaging over 2 m values, (m =1, 2, 3, - - - -) we get the following

improved smoothed estimate of the raw estimate é(f)

S(t) =5 18(E-R) + --- 4 8(0) 4 -+ B+ B (45)
P P

Since each value of é(f) is a x?-variable with two degrees of freedom, we can
conclude by means of the x*-addition theorem for independent variable that the
improved estimate S (f) will be x? -distributed with n = 2x 2m = 4 m degrees of free-
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dom. The normalised standard deviation is then, se (44),

_v2n _8m _ /1
y n dm 2m (46)

which shows, that the random error can be reduced by increasing the number of

points in the averaging.
The effect is illustrated in fig. 18 and we see that the effect of the averaging

is similar to that of a trapeziodal spectral window built up of a number of window
functions shown on fig. 17. An approximate value of the effective band width is

B; = Zm/TP, which with n = 4 m gives the relations

n=2BT, (47)

1
e = (48)
" VBT
/\ . ‘
I m 1 ' 1 m'-l -
i f—m— £ £+ 5 £+
TP TP TP TP
s, 2m
Be~ Tp

Fig. 18. Trapezoidal spectral window after frequency smoothing

A (1 - «) confidence interval for S(f) based on the smooth spectral estimate
S (£) will be given by
nS (f) nS (f)
b

< S(f) < (49)

2

Xn,a/Z xn,l -af2
wheren =2B’T .
e P
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It must be emphasized, that the random error cannot be indiscriminately re-
duced by increasing m (and thereby n), as averaging over many frequencies gives
a poor resolution as well as a chance for bias errors. This is illustrated in fig. 19,
that shows how the estimated S (f) can deviate from S(fo) by averaging over a

frequency interval B;.

S(£)
\

S(r,) —8(f,)

Fig. 19. Bias error introduced by frequency smoothing

In practice m must thus be chosen with due consideration to an acceptable
statistical uncertainty and to a suitable resolution.

In the calculation of the wave spectrum of a 20 min. wave recording from a
large sea, 2m = 16 or 32 will give reasonable results.

To end this chapter, it should be mentioned that the calculation of the spec-
trum by FFT has practically replaced the correlogram method because the FFT
method is simpler (more direct), uses less computer processing time and retains
more information. The latter is due to the fact that the calculation of the auto-

correlation estimate inherently cause a smoothing of the spectra.
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3.3 Standard wave energy spectra

In many locations, wave recordings are not available to give a basis for the calcu-
lation of the energy spectrum. In such cases, from a knowledge (or estimate) of
the wind conditions alone it is possible to calculate characteristic values of wave
height H and period T by empirical data plotted in wave prediction curves (fetch-
diagrams). To determine the spectrum, some assumptions concerning it’s shape
and relation to the parameters H and T must be made. Since a consistent theoretical
derivation of the energy spectrum is not yet available (only the higher freq_uenc;y
part of the energy spectrum function, which follows f°, seems to be theoretically
well founded [7]), our knowledge relies essentially on empirical data. There are
many suggestions for wind generated wave energy spectra, all based on agreement
with wave recordings. We shall here discuss only two spectra, which, apart from
being the most commonly used, are different in principle with respect to the
wave condition they represent. Both spectra belong to the group of one-dimen-
sional spectra, i.e. spectra with energy distributed over a frequency range only. This
is of course a simplification of the true conditions, since wind energy is transferred
to waves propagating in all directions within approx. 45° on either side of the
wind direction. The latter is described by socalled directional spectra, which we
shall however not discuss here.

In 1964, W. J. Pierson and L. Moskowitz put forward, on the basis of a similarity
theory by S. A. Kitaigorodskii [8], some suggestions for deep water spectra for the
sea state referred to as »fully arisen sea» [9]. This wave condition refers to the case
where the waves have reached an equilibrium state in which energy input from the
wind is exactly balanced by energy loss. The only variable is thus the wind velocity,
which thereby determines the wave energy magnitude and distribution over the
frequency range. It is important to emphasize, that spectra of this sort can only
be hold valid, when the fetches are long enough for this equilibrium to be reached.

Out of the three analytical expressions suggested by Pierson and Moskowitz,
the one below was found to give the best agreement with empirical wave data, and
this spectrum is the one commonly known as the Pierson Moskowitz (or simply
P. M.) spectrum

2 £

. S exp(-0.74(f—0)4) (50)

(27)°

S(f) =
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where o« =0.0081

g = acceleration of gravity
fO = g/27rU19'5, U19.5 is the wind velocity at 19.5 m above still water
level.

Instead of wind velocity, it is possible to insert a characteristic wave height and a
characteristic wave period as parameters. If we insert the significant wave height
Hs, and the average zero-crossing period T _, that can be closely approximated by
Hs =~ 4 \/E; and T, = molm1 in terms of the spectrum moments, ref. [7] and [15],
we can transform (50) to

2

S(f) = 0.11 —,l;s— £-5 exp (-0.44(T £)*) (51

4
z
An estimate of the peak-frequency, fm (i.e. the frequency at which the spectral
density is greatest) can be-obtained from the relation f = 0.65 TZ'l ;
Both (50) and (51) can be written in the following general form

S(f) = Af exp(-Bf™) (52)

where A and B are independent of f. All spectra of this form are said to belong
to the class of P. M. spectra.

Fig. 20 shows an example of a P. M. Spectrum for the 50 year storm in the
north-east area of the Arabian Gulf. The spectrum is for a 13 m/sec south-west
wind, in which direction there is a fetch of about 500 km.

The other wave spectrum which we shall deal with, is from The Joint North
Sea Wave Project (usually shortened to JONSWAP), that was started in 1967 as
a collaboration among institutes in West Germany, Holland, U.K. and USA [10].
The .objective of the project was originally partly to investigate the growth of
waves under conditions where the wave height is limited by the length of the fetch,
and partly to investigate the change in the wave form as the waves move in from
the sea into areas shallowing gradually. Simultaneous measurements of waves and
wind were taken at stations along a line extending 160 km in a westerly direction
from the island of Sylt in the German Bight.

A typical result of the recordings are given in fig. 21, which shows the spectra
for a number of stations in wind conditions of steady easterly wind, approximately

evenly distributed over the experimental area.
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Fig. 20. Example of the Pierson - Moskowitz spectrum

Here it can be seen that both the maximum spectral density and the peak
frequency are dependent on the length of the fetch. The figure also shows the
socalled overshoot in which the energy at a particular frequency near the peak of
the spectrum is nearly twice as large as the energy at the same frequency in a fully
arisen sea, when an increase in the length of the fetch does not change the energy
density about the frequency in question. Without going deeper into this phenom-
enon, it should be noted that from the study of the energy balance during the
growth of the wave (the project’s main objective) the overshoot phenomenon, as
well as the shift of the peaks towards the lower frequencies, was explained by

non-linear interactions between wave components, an effect which, incidentally,
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Fig. 21. Fetch limited spectra from JONSWAP project

is responsible for about 60% of the energy increase in the low frequency part of
the spectrum.

During the processing of a large number of spectra, all generated under the same
ideal wind condition referred to in the earlier comment to fig. 21, the following
expression, which gives the so-called JONSWAP (or simply J) spectrum, was derived

f-f

2 £ Sl 2 37)
8() = e Frexp(g ()Y P T (53)
where
o« =0.076x%22

x = gFUl';) F is the length of the fetch, U10 is the wind velocity at a

height of 10 m above still water level
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L. = 3.5gx'0‘33 peak frequency

vy =33 (mean value)
0.07 for f < fm
0.09 for £.> fm

By comparison with (50) it is apparent that the Jonswap spectrum, in principle,

is made up of the P.M. spectrum multiplied by the factor

£-f 2
Ty )

1
sxpl oo,
m

v

It is also possible to insert the parameters H_ and T in the Jonswap spectrum,
for example as suggested in [11]'and [12].

After publication of the Jonswap spectrum, a large number of wave spectra
for waves generated in limited fetch under non-stationary and inhomogeneous
wind conditions have been analysed, whereby it has been proved, that these spectra
are also of the Jonswap type. With this background, the Jonswap spectrum is gener-
ally applied to wave conditions of limited fetch (growing waves). It should, how-
ever, be noted that one does not have much knowledge to date of the transition
from the limited fetch to the fully developed balanced conditions, for which the
P. M. spectrum is valid. The Jonswap project — with a maximum fetch of 160 km
— could not clarify these circumstances.

It should further be noted, that experience shows, that the Jonswap spectrum
gives a better agreement with the recorded storm wave conditions in the North Sea,
than the P. M. Spectrum. The Jonswap spectrum is sharper and has a larger concen-
tration of energy about the peak frequency than the P. M. spectrum. One should,
incidentally, be wary of comparing the two spectra directly since they refer to

different wave conditions.

4. DETERMINATION OF THE HYDRODYNAMIC TRANSFER
FUNCTION

In this chapter we shall see how, purely practically, estimates of the transfer func-

tion can be determined.
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In section 2.4 we found the following expression for the transfer function valid

for discrete frequencies,

1
st ) (a2

A =<a\f‘>) oY
Eanz(fi) i

i.e., the value of the transfer function is obtained from the square of the ratio of
the amplitudes of the force and the wave. )

Corresponding values of the two amplitudes can be found

a. either by a deterministic calculation of the wave force amplitude a, , corre-

sponding to a regular wave ancos(wt) for a number of frequencies,

b. or by model tests to measure the force amplitude and wave amplitude for re-
gular waves with a number of frequencies. The wave measurement must be
taken at a point where the wave conditions represent the wave condition
undisturbed by the structure, or else by measuring the waves at the location

before the structure is set in place.

In section 2.4 we also found the following connection between the transfer

function and the spectra of the wave force and wave amplitude

S,(f)

S (565)
S,(f)

=) =

We note here from, that the transfer function can also be determined

¢. by generating irregular waves (not periodic) in a model test and take measure-
ments (preferably simultaneously) of the wave amplitude and force ampli-
tude signals, from which S}\(f) and Sn(f) can be determined, for example by
FFT, see section 3.2. As in alternative b, it is important that the wave ampli-

tude signal represents the wave conditions undisturbed by the structure.

Finally a useful relationship is stated by means of which the gain factor (the
absolute value of the frequency response function H(f) ), which is the square root

of the transfer function, can be determined (for further explanation see [31).

SING)

[H(f)| = —g
8,6

(56)
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Sn?\(f) is the cross-spectral density function defined as the Fourier transform

of the cross-correlation function Rn?\(T) i.e.

oo

S0 = f RM(T)e'iZ"”dT (57)

ey

where

T
; 1
RnA(T)= lT"_]?m T J n(O)A(E + 7)dt
0

From this it follows that the transfer function can furthérmore be determined

d. in model tests, as described in alternative ¢, by measuring wave amplitude and
force amplitude signals, from which Sn)\(f) and Sn(f) can be determined by
correlogram or periodogram methods. Note that the cross-spectral density

function contains information on the phase shift through the system.

Methods ¢ and d enables us to find the confidence limits and thereby to get an
idea of the random error of the transfer function. According to [3] the 1 - « con-

fidence interval for H(f) is given by

[H(f)| - £(f) < [H(D)] < [H(E)| + F(£) (58)
8, (f)
h 2t =t g (1-5 (0] ——
where r? (f) “n-3 Fan-2:0 YA 5 ()
n
n = degrees of freedom of each of the spectral estimates
E, T 100« percentage point of an F distribution with n, = 2 and
n, =n- 2 degrees of freedom
él\(f) = wave force spectrum estimate
én(f) = Wave energy spectrum estimate
;”A 2 () = sample estimate of the cohorence function

IS_, ()
Toa ()= Sn();‘)S (f)
n A
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The confidence interval of the transfer function is found by squaring the
limits in (58). It is obvious that the random error is very dependent on the degrees
of freedom of the spectral estimates. For small values of n, t*(f) is very large and
has a correspondingly large confidence interval. As seen in sections 3.1 and 3.2 the
degrees of freedom will, however, hardly ever be less than 20 in practice. One
should note that the bias error of the transfer function usually is of less conse-
quence than the random error.

As an example of the methods a, b, ¢, and d we shall show the gain factor for
the over all horizontal wave force (in the wave travel direction) on a model gravity

platform, see fig. 22, that shows the platform’s natural dimensions.

30 m
18 m
4 circular legs, —_——
diameter 8 m SWL 3m
-31m

80 x 80 m bottom tank
-51m

Fig. 22. Prototype gravity platform

The calculations and model tests were carried out at the Hydraulics and Coastal
Engineering Laboratories, Aalborg University Center.

The model’s linear scale was 1: 267. Two-dimensional (long crested) waves were
used.

Fig. 23 shows a comparison of the gain factors determined by each of the four
methods described. As can be seen there is a good correlation between the gain
factor values estimated according to the methods b, ¢, and d. The measured values
are also in good agreement with a calculated curve (method a), which has been
found by calculating the horizontal component of the Froude - Krylov force on the
bottom tank and multiplying it with a factor (see [15]), where upon the inertia
forces from the 4 legs (calculated by means of the Morison’s formula) have been
added.

To end this section we shall show some results from an investigation of transfer

functions for a surface piercing vertical cylinder, influenced by three-dimensional
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o t t + t t t } fsec”

Fig. 23. Estimates of the hydrodynamic gain factor for over all horizontal wave

forces (in wave travel direction) on a model gravity platform

(short crested) waves, [13]. The investigation was carried out by the Hydraulics
Research Station, Wallingford in England, who have a wave tank fitted with 10
independent wave generators, which together can create a wave field with a given
energy spectrum and a given angular spread of wave energy. Wave conditions that
resemble very closely those existing in nature can thus be created.

The cylinder tested, with a diameter of 60 cm, was exposed to waves partly with
a P. M. spectrum of HS ~ 15 cm and a mean zero crossing periode Tz = 1.5 sec.,
and partly with a sharper spectrum (resembling the Jonswap spectrum) of I-Is =
11.5 cm and Tz = 1.1 sec. The diameter of the cylinder in these circumstances was
so large, relative to the wave lengths in the essential part of the spectra, that the
cylinder modified the wave field. The circumstances were thus those of the diffrac-
tion-inertia regime, where the drag forces can be neglected and where a calculation
of wave forces must be done with due regard to the diffracted waves.

Fig. 24 shows the hydrodynamic gain factor |H(f)| (square root of the transfer
function) for the horizontal wave forces, partly in the main direction of transplan-
tation of the wave energy (in-line) and partly at right angles (transversal). It is
worthy of note that the lateral forces, which neither theoretically nor experimen-
tally can be determined from two-dimensional waves, are about half as large as the

in-line forces.
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The figure incidentally shows an amazingly good agreement between the test re-
sults and the theoretical calculations. The experimentally determined plots are
found by dividing the measured wave load spectrum by the measured wave energy
spectrum, that is to say by method c. Since the proper wave conditions could only
be generated within a limited area, where the presence of the cylinder altered
materially the waves in comparison to the undisturbed waves, it was impossible to
find both spectra by simultaneous measurements. However, the »stochastic» signal
that controls the wave generators can be repeated, enabling the waves to be
measured before the structure was placed, without thereby increasing the statistic
uncertainty.

The theoretical calculation of H(f) was done by means of the theory of diffrac-
tion for three-dimensional waves developed in connection with the investigation
[13].

Hydrodynamic gain factor

[H(D] Nm™

Fig. 25. Hydrodynamic gain factor for the over-all horizontal force on a cylinder

in two-dimensional (long crested) irregular waves.
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For a comparison, the results of corresponding tests with two-dimensional
(long crested) waves are shown in fig. 25. It is apparent that the in-line forces

differ relatively little from each other in the two tests.

5. DETERMINATION OF THE RESPONS SPECTRUM

In the previous section we saw how the wave load spectrum Sw(f) corresponding
to any given wave energy spectrum S(f) can be found by multiplying the energy
spectrum by the hydrodynamic transfer function [H(f)|*.

The wave load is, however, not the final loading on the structure unless this is
infinitely rigid. In practice there will be a dynamic amplification of the wave load,
that can be described by a so called mechanical transfer function M(f), which gives
the relation between the wave load spectrum Sw(f) and the final load spectrum,

called the response spectrum Sr(f). The relation between these spectra is given by

8.(£) = IM()I* S(f) = IM(D)? [H()I* S, (£) (59)

The conversion from wave energy spectrum to response spectrum can be illu-
strated as shown on fig. 26.

As a simple example of a calculation of the response spectrum, we shall consider
the simplest possible approximation to a kinetic system, which represents a gravity
platform.

We thus assume that the bottom of the sea and the base tank are infinitely
rigid, that the tower (or towers) is fixed (encastré) in the base tank, that the dis-
placement under wave action occurs in a plane, and that the combined mass of the

system is concentrated as an equivalent mass at one point, see fig. 27.
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S(I) m?sec

/\ wave cnergy spectrum
1

= f gec’

|[H()]? N?*m™?

/\ hydrodynamic transfer function
1

[ sec”

Sy(h N?sec

/\ wave load spectrum
e 1
;

f sec”

IM(f)]> N2m?

A mechanical transter function

f sec”

S () m?sec

/\}\re-sp(mso spectirum

1 = [ sec’’

Fig. 26. Steps in stochastic response analysis.
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Fig. 27. One degree of freedom idealization

Since we only need a single co-ordinate x to specify the displacement of the sy-
stem, the system has only one degree of freedom. x is the instantaneous position of
the mass relative to the point of fixture. The equilibrium equation for the system is

according to Newton’s law of motion

Mx + cx + kx = F(t) (60)

where M is the equivalent mass of the platform, towers and associated water (hy-
drodynamic mass), c is the sum of the hydraulic damping and the structural dam-
ping, k is the stiffness of the towers and F(t) is the wave load. It must be empha-
sized that in more realistic models than that of fig. 27 the sea bed will also contri-
bute to both damping and stiffness in the terms ¢ and k.

The frequency response function, which is here called the mechanical frequency
response function M(f), is found by substituting F(t) with a periodic function
e 27 and x with M(F)e 2™ We thus get

1
M(f) = — — i 61
W =E i2nfc - m(2nf): e
whereby the mechanical transfer function |M(f)|- can be calculated.
Inserting «w = 2nf, the natural frequency « = Jk/m and the damping ratio
¢ = ¢//4 km we get the well-known expression
M(w ) = = l (62
e N T T T -
n n
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We note from (62) that resonance sets in when w = w_ and the damping is
small.
Concerning systems with more degrees of freedom, refer to [4].

6. DETERMINATION OF THE MAXIMUM LOADS

As mentioned in section 2.4, a Gaussian process which is transformed by a linear
system remains Gaussian. The crests of both the wave force signal and that of the
final response signal will therefore have the same distribution as the wave heights
in the wave amplitude signal, in other words, a Rayleigh distribution.

The most probable maximum value grows with the length of the signal (number
of waves). If we have a recording with N, number of waves, the probability for the
largest wave Hmax is given by

1-F{H_ (63)

-1
ax } b N
where F { Hmax } is the probability that the wave is smaller than Hmax. The distri-
bution function F{H } for Rayleigh distributed wave heights is given by

- Hz
F{H}=1-e ™0 (64)

Inserting (64) in (63) and solving for Hm&x, we get the expected maximum value

T /inN
H o = 2V/2mg /InN = Ho/ == (65)

where m,, is the area under the wave energy (variance) spectrum and where we have
utilized (15).

Since x denotes the amplitude of the structure’s displacement, see fig. 27, we
thus find that the expected maximum value of the amplitude in the course of N

waves is
k.| = Vmgv/2InN (66)

where m,, is now the area under the response spectrum.
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It can be proved, ref. |21, that the probability that the maximum values obtained
by (65) and (66) are exceeded in the course of N, number of waves, is about 63%.

The above extreme statistics refer to a given wave recording, whereby m, (and
thereby HS) are considered constant. We call this statistics, short-term statisties, and
the corresponding distribution function, the short-term distribution. The moment
m, however, varies from one wave recording to another, which is the reason why

we must consider the distribution of m_ in order to determine the long-term distri-

(
bution which is used to determine the maximum loads expected to occur over

some period of time. For further explanation se ref. [16].
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