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Preface

This note has been prepared for the course on ”Loads on Offshore Structures” given on
the 9th semester of the M.Sc. study programme on Structural Engineering at Aalborg
University.

The object of the note is to give a generally applicable description of wind load as well as
the response of a structure sensitive to wind load. The description is limited to address
load due to mean wind, transverse fluctuations, vortex shedding and motion induced
load. Therefore, aeroelastic phenomena as galloping and flutter are not included. The
gust factor method based on stochastic oscillation analysis has been applied as a design
tool.

The note assumes fundamental knowledge of the deterministic and stochastic vibration
theory for continuous structures. Further, a certain knowledge of hydrodynamics and
safety and reliability theory is required.

Aalborg University, March 1992.

Kim Mpgrk,

In agreement with Kim Mgrk we have translated the note from Danish to English and
updated it in accordance with the new Danish Code, Code of Practice for Loads for the
Design of Structures (DS410). Further, the note has been extended with a numerical
example.

Aalborg University, November 1999.

Poul Henning Kirkegaard & John Dalsgaard Sgrensen
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Chapter 1

Along-wind load

1.1 Introduction

The along-wind load per unit area g on a structure is normally proportional with the
velocity pressure.

1

1 4
— 1.1
q 2pv (-1}

where p = 1.25 kg/m? is the air density and v is the wind velocity. The along-wind load
per unit area is then found by multiplying g by a shape factor Cbp.

The natural wind field may be assumed to be composed of a mean wind velocity and
turbulence of stochastic nature. Due to the turbulence the wind velocity and thus the
wind load vary with time. In principle the wind load shall therefore be considered a
dynamic and stochastic load.

If the load is varying slowly in relation to the lowest natural frequency of the structure, the
damping and inertia loads of the structure will be negligible compared to being considered
a static load. This will normally be the case for conventional building structures. If, on
the other hand, the natural frequencies of the structure are relatively low, as e.g. in tall,
slender buildings, the dynamic load of the wind is significant.

In accordance with DS 410 [1], the dynamic effects of the wind shall be taken into con-
sideration for structures assumed to vibrate due to wind turbulence.

In the present note a general description of the wind load and the along-wind response of
a vibration dynamic sensitive structure is addressed. Further, across-wind vibration due
to vortex shedding is mentioned and an analysis procedure taking account of the across-
wind vibration due to the movements of the structure, the so-called lock-in phenomenon,
is given. In [2] more details concerning wind loads on structures can be found.
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1.2 Natural wind

For the description of the natural wind field the following assumptions are applied:

e At a sufficient height above terrain, where the conditions are independent of fric-
tion at the ground surface, the flow is assumed to be horizontally homogeneous
(geostrophic wind).

e The terrain is horizontal.
e The terrain roughness is constant.

e The stability is neutral, i.e. the thermal contribution to the turbulence is disregarded
(permissible for wind velocities above 10 m/s, [2]).

e The wind field is considered a weakly stationary process (10 min. observation in-
tervals).

e No change of wind direction with the height above terrain. (Measurements show
that the wind direction is only changed by a few degrees up to a height of 180 m,

BD)-

The above assumptions imply that a horizontally homogeneous boundary layer flow is
assumed.

A coordinate system is introduced with the z-axis in the wind direction, the y-axis per-
pendicular to the wind direction, designated the across-wind direction, and the z-axis
vertically upwards. The wind velocities U,(z,y, 2,t), Uy(z,y, 2,t) and U,(z,y,2,t) at a
given time can be expressed as

Uz(2, 9, 2,t) = v(2) + uz(z,y, 2, 1) (1.2)
Uy(z,y,2,t) =0+ uy(z,y, 2, 1) (1.3)
Uz(m’ y) z’ t) = O+uz($7 y’ z’ t) (1'4)

where v(2) is the mean wind velocity and u,(z,y, 2,t), uy(z,y, 2,t) and u,(z,y, z,t) are
the turbulence of the wind field considered as weakly stationary stochastic processes with
mean value 0. In figure 1.1 an instantaneous picture of the along-wind variation of the
wind field with the height z is shown.

1.3 Wind profiles

An analysis of dimensions shows that the mean velocity of the boundary layer flow may
be expressed by the logarithmic profile
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z, height
4

Us(z,y, 2, 1)

3‘_ v(z)

Mean wind velocity

u,_.(:z:, Y,2, t)
Turbulence component
in the wind direction
— . X
Wind direction

Figure 1.1: Instantaneous picture of the along-wind variation of the wind field with the
height z.

1
v v(z) =v,—1In z (2 < 200 m) (1.5)
K 20
where v, : the rate of friction (friction velocity) in the boundary layer.
k : von Karman’s constant ~ 0.408.
zy : roughness parameter (2o € [107°,10]m).

The mean wind velocity corresponding to the 50 year return period wind is normally
expressed as

Um(2) = vpke In 2 (1.6)
20

where vy, : basic wind velocity.
k; : terrain parameter.

For a 50 year wind the probability of a mean wind velocity larger than vm(z) during one
year is 0.02, i.e. a 2 % exceedence probability.

vy corresponding to the 10 min. mean wind velocity at 10 m height is denoted the basic
wind velocity and is a 50 year wind. The basic wind velocity for Denmark are specified as
24-27 m /s for Denmark in [1] with the highest value for structures close to the west-coast.
In [1] vy is also multiplied by a topograpic factor, a direction factor and a seasonal factor.

Using (1.5) and (1.6) the friction velocity v, may be described by

Ve =K ki Uy (1.7)
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1.4 Gust wind loading

The along-wind load per unit height w at the height z and at the time ¢ for a one-
dimensional structure with height h and diameter d sensitive to vibration can be written

w(z,1) = 5p (v(2) + ez, 8) — (2, )" d(2)Cnl2) (1.9
where v(2) : mean wind velocity.
uz(z,t) : along-wind turbulence.
%(z,t) : velocity of the structure.
d(z) : width of wind exposed structural member.
Cp(z) : shape factor.
p . air density.

The term (v(z) + uz(z, t) — (z,t)) is denoted the relative velocity. Empirically, v(z) >>
uz(z,t) and v(z) >> z(z,t), whereby

(v(2) H ug(2, 1) — 2(2,1))° = v(2)? + 20(2)ug (2, 1) — 2u(2)i (2, 1) (1.9)

Thus, the wind load can be divided into the following contributions

w(z,1) = w,(2) + we(2,t) — wa(2,1) (1.10)
where w,(2) = 1g(2)v(2) : quasi-static load due to v(z).
wi(z,t) = g(2)ug(z,1) : load due to wind turbulence.
we(z,t) = g(2)i(z,1) : aerodynamic damping due to £(z,t).
g(2) = pv(2)d(z)Cp(z) : transition function.

1.5 Load due to wind turbulence

1.5.1 General definitions

In wind analysis the cross-spectrum Sxy (w) is defined for the processes { X (¢), Y (¢),t € T}
by the following version of the Wiener-Khintchine relations, [2]

Sxy(w) = 2/00 lixy(’l‘)e_in dr (111)

—00

KJXY ’7') / Sxy(w)GWT dw (1.12)
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The variance of the process {X (t),t € T'} is found from (1.12)

2 1 o
oy = 57; g Sxx(w) dw (1.13)

The cross-spectrum Sxy(w) is generally complex. On the other hand, the auto-spectrum
Sxx(w), where only positive cyclic frequencies w are applied corresponding to a one-sided
spectrum, is always real. The cross-spectrum can be written as

Sxy(w) = |Sxy(w)|e®x¥®) (1.14)

where |Sxy(w)| and ®xy(w) are designated the cross-amplitude spectrum and the phase
spectrum, respectively. For wind technical analysis a coherence spectrum is often used,
which is defined as

__ISxy(w)?
Goharle) = B (w)Syy(w)

(1.15)

i
The coherence is a measure of the statistical dependence of the processes {X(t), t € T'}
and {Y'(t), t € T}, cf. the analogy for the correlation coefficient between two stochastic
variables.

Based on (1.14) and (1.15) the cross-spectrum may be written

Sxy (w) = v/Sxx()v/Syy(w)y/Cohxy (w)e**r ™) (1.16)

1.5.2 Load contribution due to wind turbulence

Due to wind turbulence the load can be written as, cf. (1.10)

wi(z,1) = g(2)us(z,t),  9(2) = pv(2)d(2)Cp(2) (1.17)

The turbulence load can be written on spectral form by considering the cross-covariance
function Kuy,uw, (21,22, 7) for the turbulent wind load at the heights z; and 2z, where T is
the time interval (¢ — t;)

K'wtwt(zla 22, T) = E[(wt(zh tl) - .u'wt(zb tl)) (wt(z27 t2) — K, (327 t2))] (118)

Pu, = 0 = po, = 0 =
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’{'wtwt(zl’z%T) = E[g(zl)uz(zhtl)g(ZQ)uz(Z‘Z;t2)]
= g(21)9(22) Ku.u. (21, 22,T) (1.19) -

Applying the Wiener-Khintchine relation (1.11) on both sides of the equation sign,

Swews (31, zz,w) = g(Zl)g(?«'2)5u,,.um (Zla 32:‘”) (1-20)

It is known that the imaginary part of the cross-spectral densities of the load process
do not have any influence on the auto-spectral density of the response process. Applying
(1.16) it is found that the real part of the cross-spectrum Sy,w, (21, 22, w) for the turbulence
load can be written as

Swtwt(z11z2=w) = g(zl)g(ZZ)\/SUx(zlaw)Sux(z27w)\/COhuzux(z1)z2’w) :
cos(Py, . (21, 22,w)) (1.21)

Note that if the points z; and 2; coincide, the auto-spectrum S,,(z,w) is obtained from
(1.21) for the turbulent wind load. Now, only a description of the auto-spectrum S,_(z, w)
for the turbulent wind load component, the coherens-spectrum Cohy_,,_ (21, z2,w) and the
phase-spectrum ®,,_,,_(21, 22, w) remains.

1.5.3 Auto-spectra

Since the response of the structure and along wind load are considered, only along-wind
turbulence is addressed at first. The energy distribution of the turbulence on the different
frequencies is described by an auto-spectrum. From an analysis of dimensions, [8], it is
established that the auto-spectrum is given on the form

(1.22)

where L,(z) is a length scale describing the magnitude of the turbulence vortices. The
parameters o, 3, 0, € and <y are assumed to have different values belonging to the four
most frequently used spectra, given by Davenport, [6], Harris, [3], Simiu, [7] and DS410,
[1,2], respectively. The values of the parameters are given in table 1.1. It should be
noticed that DS410, [1], gives the non-dimensional auto-spectrum Ry(z,w) = w Suglw)

2r o,

It is seen from the table that the spectra proposed by Davenport and Harris are indepen-
dent of height, while Simiu’s spectrum and the spectrum in DS 410 are dependent on the
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a |B] v |el|d Ly(2) ox [vi
Davenport | 4 |[2| 1 [2]3 1200 m 6
Harris 4 1 2 |2 % 1800 m 6.65
Simiu 4 |1 1 |1} 50271z m 6
L(2min) %< Byt
é min min
DS410 |0.851|1|0.098|1]3 {100({6)0_3% N

Table 1.1: Turbulence spectra for velocity fluctuations uz(2).

height z above terrain. From the boundary layer theory it is known that the magnitude
of the vortices grow beyond the boundary layer, causing the length scale expressing the
mean of the turbulent turbulent vortices, to increase with the height. This is not taken
into account in the two spectra that are independent of height. In [4] it is shown that
the difference between the response obtained from different spectra becomes large for
increasing height of the structure.

In the right hand column in table 1.1 the variance o2_ is defined by (1.13) calculated as

|

2 () _1_/°°
o, (2) = o J, Su.(z,w) dw (1.23)

It is noted that all 4 spectra have approximately the same energy characterised by the
variance 02_ normalized with regard to the friction velocity v..

The above-mentioned four spectra Sy_(z,w) as a function of w are shown as a double-
logarithmic curve in figure 1.2. The friction velocity v, is determined corresponding to
the terrain class 2;=0.05.

It is seen from the figure that particularly Simiu’s spectrum contains most energy from
the background turbulence (w < 1). Further, it is seen that the turbulence energy
distribution in the DS410 spectrum is distributed over a relatively wide frequency band.
If the energy distribution is described by the Davenport spectrum it is expected to give the
largest dynamic load contribution resonant with the first eigen-frequency of the structure
w; when w; > 0.1. On the other hand it can be mentioned that the along-wind dynamic
response for tall, lightly damped structures will be considerably reduced if Simiu’s auto-
spectrum is applied instead of one of the others, [8]. The simple spectral form (1.22) gives
an accurate representation of the turbulent fluctuations in the frequency range of interest
for most structures. However, for structures with a very low fundamental frequency, e.g.
offshore structures, a more accurate auto-spectrum should be used. In [5] the following
Hgjstrup auto-spectrum is proposed for the low-frequency part of the spectrum
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5 ;

2 5 ﬁ?;/ p
S (z,w) = £ ( o L ) ! (1.24)

; +
1422 (n&)" - W+3RPP ) oy (Ai)z/ i
{

o
where 7 = 77 and a neutral length scale A; = 3000 m. (1.24) holds well for measure-
ments at 10 m and above. For lower levels [5] gives an expression for the length scale
A; as a function of z. From figure 1.2 it is seen that the energy from the background
turbulence will be underestimated by using the auto-spectra given in table 1.1.
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(c) Turbulence spectrum at the height z=40 m
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(d) Turbulence spectrum at the height z=80 m

Figure 1.2: Turbulence spectra shown for different heights.
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1.5.4 The coherence spectrum

As mentioned, the coherence spectrum describes the statistical dependence between the
turbulence at two points at a given cyclic frequency. This dependence due to the limited
spatial extension of the vortices of the wind field will have to decrease with the distance
|21 — 22| between the two points z; and 2. This decay depends on the magnitude of the
vortex which can be measured by v(2)T, where v(2) = 3(v(21) + v(2)) and T = 27 /w is
the period of the vortices with the cyclic frequency w.

Using a plan perpendicular to the wind direction, Davenport [6] and Shiotani & Iwatani,
[10] have proved by experimental full-scale tests that the vertical coherence spectrum can
be expressed as

wlz—2|
U ) ) — P o 12
Cohyu, (21 _zQ w) = exp ( 2C’27r e (1.25)

where C is a non-dimensional decay constant dependent on the height. Full-scale tests,
(6,8,10] have shown that C' decreases with the height and is moderately dependent on the
terrain roughness and the mean wind velocity. Measurements at Stigsnzes [8] shows that
C ~ 10 for'points located 10-20 m vertically above one another. It is noted that (1.25)
may be subject to some gross uncertainty at large distances | z; — 2, | and small cyclic
frequencies.

1.5.5 The phase spectrum
Based on the above-mentioned full-scale tests, the phase spectrum ®,_,, (21, 22,w) de-

scribed in [10] is estimated to

w (21 — 22)

_ v 3
(I)uxur, (251, 22, w) kQﬂ' ’U(Z) (1 6)

where k is a non-dimensional constant. Empirically, k =~ 7 — 8, [8].

1.6 Aerodynamic damping

The load contribution to the wind load from the movement of the structure (1.10) due
to aerodynamic damping is introduced by adding the aerodynamic damping ratio (&
corresponding to the m’th mode shape to the structural damping of the building ¢3,, i.e.

(= ot o (1.27)
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The contribution from the aerodynamic damping force w,(t) can be written as

wa(2,t) = 9(2)2(2,t) = pv(2)d(z)Cp(2)5 (1) = ca(2)3(2, ) (1.28)

On assumption of fulfillment of the decoupling requirement (1.29)

h
_J0 , M F#n
[ en@a@en@iz={ upe W0 (1.29)
where ®,, : m'th fundamental mode in bending in the in z-direction.
wy @ m'th cyclic eigen-frequency.

M,, : modal mass of the m'th mode shape (defined by (3.4), see chapter 3}.

the along-wind aerodynamic damping of the m’th eigen mode can be determined as

R e L OL AT (1.30)

The aerodynamic damping causes an increased dissipation of mechanical energy and thus
a reduction of the vibration level of the structure.




Chapter 2

Gust factor method

Since the wind loading and the structural response are considered as stochastic processes
a statistical analysis has to be used in a design situation. As a design tool we will use the
expected maximum F[X ., of the maximal value process { Xmax(t), ¢t € T} belonging to
the response process {X(t), t € T'}

1= ) expx o px #0
E[Xax] = { box =0 (2.1)

where @x is the gust factor and k, is the peak factor. The gust factor is defined as the

factor which multiplied by the expected value px of the process {X(¢), ¢t € T} gives the
expected values of the maximal value process

E[-“(max] Ox
= e =14k~ 2.9
Px P ( )

where k, : peak factor.
ox: standard deviation of X.
ux: expected value of X.

For a given reference time interval T' the peak factor k, of a narrow-banded Gaussian
process is given by [11]

by = [2m[ X T (2.3)
A TY 2In[,L 2XT]

2T ox
where vy : Eulers constant = 0.5772.
Ox : standard deviation of X.

T : time interval .

If the response process is not narrow-banded £, is given by other expressions [2,16].

20



Chapter 3

Dynamic response of structures due
to along-wind load

This section will outline how the wind load and dynamic response can be obtained for
1- and 2 dimensional structures based on a stochastic response analysis. Further, the
relationship between the stochastic response analysis and the rules in DS 410, [1], for
dynamic wind load estimation is explained. At last an example is given which presents
results obtained from a stochastic response analysis and the rules in DS410 for a steel
chimney, respectively.

3.1 Basic equations for 1-dimensional models

It is assumed that the structure can be modeled by a 1-dimensional model. The height
of the model is assumed to be h.

3.1.1 Variance functions ¢% and ¢7% for response

The response process {X(t),t € T} is modeled by a modal expansion

X(z1)= Y anlt) Un(2) .)
m=1
where

®,.(2) for the displacement process z(z, ).

. d :

Un(2) = a;-@mi;)@ for the rotation process a(z,t). (3.2)
EI(z) dm2(z) for the bending moment process M (z,1).

2

21
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where gy, : is the m’th modal coordinate.
®n(z) : isthe m’th mode shape.
z : is the height.
3 : is the time.

The mth modal coordinate function gn,(t) is obtained as the solution to the differential
equation

Grn () + 26mWmlm (t) + W2 gm(t) = ——Pn(t) (3.3)

where wp, is the cyclical eigen-frequency for the mth vibration mode and M,, is the modal

mass for the mth vibration mode. M,, is determined from the orthogonality condition

/Of‘ D, (2) p(2)Pr(2)dz = { (J)\/fm : Z ig

where h is the height of the structure and p(2) is the mass per unit height. P, (t) is the
modal load defined by

(3.4)

Bit] = /Oh O, (2)we(z,t)dz (3.5)

1

where w;(z,t) is the wind load.

If the assumptions that the modal coordinates decouple and that the load has lasted for
very long time are fulfilled then the solution to the differential equation (3.3) is given by
the Duhamel integral

t
:/ LY (3.6)
—00
where the impulse response function is given by
0 , 1 <0
hap(t) = 1 X (3.7)

Moo exP(—(mWmt) Sin(wm gt) ,t >0

Wm,q is the damped cyclical eigen-frequency
Wmd = Wny/1 — Cr?n (38)

The auto-spectral density function Sxx(z,w) for the response X (t) is determined from

Sxx(z,w) = ZZ‘I’ 2)Sgman (W) (3.9)

m=1 n=1
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where S, (w) is the cross-spectral density for the modal coordinate process. Using (3.6)
Sgman (W) can be obtained from

Santn () = i) Ho() S, () (3.10)
where
Hm(w) = = 3.11
(w) (w2, — W + Wnwmwi) My, Wi Mp, w2 " (3.11)

is the modal frequency response function (* indicates complex conjugate) and Sp, p, (w)
is the cross-spectral density function for the modal load which is determined using (3.5)

Sp.p.(w // m(21) @ (22) Swyw, (21, 22, w)dz1d2g (3.12)

Swew (21, 22, w) is the cross-spectral density function for the wind load.

The variances of the response X (t) and of the derivative of the response X (t) can then
be calculated from

o%(z ZW;;W (2)T, z)/ H: (w)Hp(w)Sp,.p, (w)dw (3.13)
\ 1 oo 00 0o -
() = 5= 33 Un()Un(2) /0 W2 () Hi () S, p, (0)dw (3.14)

If it also can be assumed that only the N lowest modes contribute significantly to the
response the double summations in (3.13) and (3.14) can be simplified to

2.0~ ZZ (3.15)

Further, if it can be assumed that the eigen-frequencies are well separated then the cross-
terms in (3.13) and (3.14) can be neglected and the variances are determined from

)~ = SR [ | Haw) S () (3.16)
2 4 > 2 00 2 2
o)~ o D W) /O | H(0) 2 o () o (3.17)

m=1
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Further, if it can be assumed that the structure is lightly damped and that the load is
broad-banded then (3.16) and (3.17) can be simplified to .

N

1 SP P 5P P (W)
1112 mim .

2 Yy 1 Al \112 SPum (wm)
oy (2) ~ ¢ >, m(z)c_wW (3.19)
m=1 M m

By the white-noise approximation (3.18) and (3.19) the background turbulence contri-
bution to the response is neglected. But a significant computational simplification is
obtained.

3.1.2 Expected value function py for response
The expected value of the response process X(¢) can be determined as the statically

response of the structure with the statically wind load as load

i

N
DY hon(2)¥n(2) (3.20)
m=1
Since the load is statically ( ¢m = §m = 0) it is seen from (3.3) and (3.5) that
1t
W g, = ———/ P, (s)w,y(s)ds (3.21)
Mp Jo

where w,(z) is the statically wind load. Thus

z) & lelm( e M / s)wy(s)ds (3.22)

m=1

Alternatively, pux (z) can be obtained from
h
px(z) = / ws(8)X1(z, s)ds (3.23)
0

where X;(z,s) is the influence function for the response in height 2z given a unit load in
height s.
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3.1.3 Approximations for N=1 mode shape

If the response can be estimated with sufficient accuracy using only one mode shape, i.e.
N=1 then the variance 0% can be determined from

ok (2)

i

Q

Q

1
2
1

we) [ " |y () 2S i (w)do

27

00 h h
1 g2y /0 |H, ()| /0 /0 0 (Y0 Ll T B T i ) Ll

1 (o 0] h h
%W?(z)lHl (0)[? / / / ®1(21)P1(22)9(21)9(22) Supus (21, 22, w)d21dzodw +
0 0 0

(o] h h
2—17F\Iff(z)/0 |H1(w)12dw/0 /O (I)l(zl)(pl(z2)g(zl)g(z2)5uzuz(zl,Z2aw1)dz_1-d22

1 o2

» 27r‘1l1(z)(w—’f’1wai _/Doo /Oh /Oh‘pl(zl)q’l(zz)g

L 2
é;l'_ 1
(x (2)2Lu(2res))” (o + ki)

where the turbulence intensity I, is defined by

I, = ou(2)

v(z)

Sy, (21,20, W
(21)g(z2) — (012 = )dzlszdw <

©

9 h h
v (z)gﬁu:%—Mf/o /0 D, (21)P1(22)9(21)9(22) Suzus (21, 22, w1)dz1d2

(3.24)

(3.25)

The background factor k, and the resonance factor k, are given by

ky

Q

Q

i 1
°n ( /0 h«xml(z)g(z)dz)

1

h
1+1.5———
L(Zref)

lwl

lwy 1
- ( /0 h@1(z)g(z)dz>

1 7* 1S, (2ref, n1)
2518 o )

u

3 /Oh /Oh ®,(21) @1 (2

*° bk k Suu ) 7
O
0 0 0

u

(3.26)

Su::u: Z !‘z 7w
Va(o)g(an) S22 01) 4

2

Oy

(3.27)
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wq

where n; = o : is the lowest natural (eigen-) frequency.
0s = 2m(y, : is the structural damping coefficient for lowest eigen-frequency.
0o = 2m(1, : is the aerodynamic damping coefficient for lowest eigen-frequency.
Ky(n;) : is the size reduction factor given by,

h ph
/ / D, (21)®1(22)9(21)9(22) v/ Cohy o, (21, 29,11 )d2,dzy
Ks( 0 0

- i (3.28)
( /0 (IJl(z)g(z)dz>

The approximations for k, and k., are used in DS410 and they are obtained based on
a reference height 2.y, see section 3.3. Further, the phase spectrum is on the safe side _
neglected.

The variance cr?-( can similarly be determined by from

1

() = 3G [ WS )

oo h h
= —‘I’f(z)/ol wlel(w)P/O /O D1 (21)@1(22)9(21) 9(22) Sy (21, 22, w)dz1 d2adw

)
3

Q

00 h h
%‘I’f(Z”Hl(O)IZ/ //(1}2(I)1(Zl)@l(Zg)g(zl)g(ZQ)Suzux(Zl,ZQ,U))ledZQdLL)+

o~ Vi(2) / WP | Hy (w) P / / (2) 1 (22)9(21) 9 (22) v (21, 72, w1 )d1d2,
- 27r U2 (2) ——s 2M 50, ”f / / w?®;(21)®1(22)g(21)g(22) u”u“’(;’zz’ )dzldz2dw+

u

‘21“1’ (2 )m/o /0 q’l(zl)q’l(32)9(21)9('22)5%%(Zl,Zz,wl)dzldzz
(ux (2)2Lu (2res))*(K; + K¢) (3.29)

Q

where the factors k; and k; are given by

1 1 ° rhorh Sugue (21, 22,
% = o f / / WPy (21)@1(2)g(21)g(22) “(?2 29) oy
0 0 0 u
([ ®@stara:)
‘ (3.30)
1 3
ke = -t //@ (21)@(22) (zl)g(z)S””u:(f;;zmwl)dzldzg

u

(3.31)
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3.1.4 Approximations for N mode shapes
If N modes shapes are considered 0% can be determined from

ox(z) = ZZ\II (2)Tn( z)/ H: (w

m—l n=1

/ / m(21) @ (22)9(21)9(22) Suou. (21, 22, w)d21dzodw

o LY @ OF [ [ [ el aelaon) S 2 )tz
m=1
1 N
.—?.jlr_ II/?n(Z) | lzdw/ f Zl (1)1(22) (zl)g(zg) uzuz(zl,zg,wm)dzldz
m=1 0
~  (x (2)2L,(zrer))? (ko + ey + - + Ery) (3.32)

where the background factor k, and the resonance factor k;,, are given by

1 1 Su_-,_-u: (z17 22, (.I.))
ky = o~ 5 }:/ / / m(21)®m(22)9(21)9(22) o dz,d:
(Z / @m(z)g(z)dz>
m= 0
1 (3.33)
1 W 1 ux'u.,-,_- (zla 29, wm)
N T m(21)®@m(22)9(21)9(22) p dzydzp
(Z / @m<z)g(z>dz)
m= (3.34)
The variance 0 can be determined similarly.
3.1.5 Equivalent quasi-static wind load
Equivalent quasi-static wind load can be defined by
We(2) = (1 + 2kpLy(2)) /Ko + kiry + - + Erpyws(2) (3.35)

where the static load w,(2) is defined by (1.10).
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3.2 Basic equations for 2-dimensional models

Now, it is assumed that the structure can be modeled by a 2-dimensional model in the
(y, z)-coordinate system where the z-coordinate is the height and the y-coordinate is the
width. The dimensions of the model are assumed to be h and d .

3.2.1 Variance functions ¢% and a?-{ for response

The response process {X (t),t € T'} is modeled by a modal expansion

(z,9,1) z am (1 (3.36)
where g, : is the m’th modal coordinate.
®,.(y,2z) : isthe m’th mode shape.
z © ¢ is the height.
Y : is the width.
The modal coordinate function gy, (¢) is obtained as the solution to the differential equation
. : 1
Gm (£) 1+ 2Cnwmdm () + wiam(t) = 77 Pr(®) (3.37)

where wy, is the cyclical eigen-frequency for the mth vibration mode and M,,, is the modal
mass for the mth vibration mode. M,, is determined from the orthogonality condition

[ [ et ut donts iz ={ §, 2 (339

, M=

p(y, z) is the mass per unit area. Pp,(t) is the modal load defined by

Fa(%) —/ / 2)we(y, z, t)dzdy (3.39)

where w;(y, z,t) is the wind load.

‘The auto-spectral density function Sx x (v, z,w) for the response X (t) in coordinate (y, 2)
is determined from

Sxx(y,z,w) = ZZ@ Y,z Y5 %) S (W) (3.40)

m=1 n=1

where S, ;. (w) is the cross-spectral density for the modal coordinate process. The cross-
spectral density function for the modal load is determined using (3.39)

Spnp, (W //// m (Y1, 21) @n (Y2, 22) Swew, (Y1, 21, Yo, 22, w)d2z1d22dy;dys
(3.41)
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Swew: (Y1, 21, Y2, 22, w) is the cross-spectral density function for the wind load.

The variances of the response X () and of the derivative of the response X (t) can then
be calculated from

= 5}7; S G, 2)8a(v: 2) /0 " H? () Ha(w) S, p, (w)dw (3.42)

m=1 n=1

2 (o, A= ZZ@ v, 2)®n(y, 2) /0 " P HE () Ha(@)Spop (@)dw  (3.43)

m-—l n=1

If it can be assumed that only the N lowest modes contribute significantly to the response
the double summations in (3.42) and (3.43) can be simplified

i i ~ i i (3.44)

Further, if it can be assumed that the eigen-frequencies are well separated then the cross-
terms in in (3.42) and (3.43) can be neglected and the variances determined from

1)~ 5 Y080 [ Hn)Spar (3.4)
2 (4,2) ~ Z@m@,z) / " P H(0) P Sy, () (3.45)

If it also can be assumed that the structure is lightly damped and that the load is broad-
banded then (3.45) and (3.46) can be simplified to

N

]‘ SPum(wm)
= > 1: o7 (v, “—3—1\42 (3.47)
N
1 2 SP P, (wm)
E : mOm \m) 48
~3 Py gmwmw (3.48)

=1

By the white-noise approximation (3.47) and (3.48) the back-ground turbulence con-
tribution to the response is neglected, but a significant computational simplification is
obtained.
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3.2.2 Expected value function py for response

The expected value of the response process X (¢) can be determined as the statically

response of the structure with the statically wind load as load
x(y,2) ~ Zuqm (¥>2)Bm(y, 2)

Since the load is statically ( ¢m = G¢m = 0) it is seen that

W2 P = / / m (Y, 2)ws(y, z)dzdy

where w,(y, z) is the static wind load determined by

ws(Y,2) = gm(2)C(y, 2)

where ¢n(z) : 10 min. mean wind velocity pressure at the height z.

C(y,z) : shape factor at the point (y, 2).
¢m(2) is determined from (3.67). Thus

N

1 h pd
A% Y Onl D) [ [ Bl 2y, sty

m=1

Alternatively, ux(y, z) can be obtained from

b pd
= / / wy(s,t) X1 (y, 2, s, t)dsdt
o Jo

where X7 is the influence function for the response given an unit load.

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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3.2.3 Approximations for N =1 mode shape

If the response can be estimated with sufficient accuracy using only one mode shape, i.e.
N=1 then the variance % can be determined from

@m@=:iVm)/ﬂm<m%mww

- yw[mwﬁ/// (1, 2) 81y 22)

(yl, 21)9(Y2, 22) Suzu. (Y1, 21, Y2, 22, w)d21dzedy  dyadw

wwmﬁffff/@mmwM)

(yh 21)9(?/2, zz)Suxu: Y1, 21, Y2, 22, w)dzldz2dy1dy2dw +

st [T im@ra [ [ [ [ et st

g(yh Zl)g(yz, 22) Up Uz (yl, 21, Y2, 22, wl)dzldz2dy1dy2
(/"‘X (y7 2:)2—[11(‘31'%))2 (kb .y kr) (354)

Q

Q

It should be noticed that the function g(y, 2) = pC(y, z)um(z). The background factor ks
and the resonance factor k, are given by

_ _1— 1 00 h h d pd (L (v 7a)
ky = oo (/ﬂh/od‘b1(y,z)g(y,z)dzdy)2fo /O/OfO/O<I’(y )®1(y2, 22)

S - Z9,W
g(ylazl)g(y27z2) u;u;(yl 12,?/2, 2 )dzldyldzgdygdw

Q

(3.55)

By = ézl (/ / 1(y,2)g(y z)dzdy) /Ohfoh/()d./od(pl(y1721)®l(y2’zz).

u:'u,:c (yla 21, Y2, 22, wl)

9(y1, Zl)g(yz, 22) o2 dzdzodydys
1 7 1Sy, (2refy )
~ - : ! K, 3.56
20, + 0, ol (m1) 5.56)

°

where
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//// 1(y1, 21) @1 (Y2, 22) 9 (Y1, 21) 9 (Y2, 22) / C P, (Y1, 21, Yo, 22, w1 )d21 d2zadyy

( / / B1(y, 2)g( y,z)dzdy)

The variance a?-( can similarly be determined by from

Ky(n

(3.57)

) = @%%>/w2mmnsm«mw

= y,z)/ w2 Hy( w)|2/ / / / w?®, (y1,21) @1 (y2, 22) -

g(ylz Zl)g(y:z, zZ)Suxu,; yla 21, Y2, 22, W dzleZdyl dysdw

@2 (y,z)|Hi O)|2/ //// 1(y1,21) @1 (ye, 22) -

g(yh zl y27 z2)Sumu: (yl, 21,Y2, 22, W dzleQdyl dyzdw <}

Lot [ miotas [ [ [ oo

(yl, zl)g(yz, Zz)SumuI (yl: 21, Y2, 22, W) dzldzgdyldyz
~  (ux (Y, 2)2Lu(2re))(Ky + k) (3.58)

Q

where the factors k; and k; are given by

o i oohhddwg)ll,z'llmzz.
ky o (/h/d@l(y,z)g(y,z)dzdy)z/0. /0 ./0 /o /o P, 2} (g2, )

9(y1, 21)9(y2, 22) Suate (1 le, 2 0) dz dzydy: dyadw

u

(3.59)

o 1u.)1 1, 21)®1 (va, 20
kTSQU@mMme//// ez

0

u_-c'u.,-.; 7z ) 7z ,(JJ
(y1,21)g(y2722) (yl ;2 v 22 l)dzldz2dyldy2 (3-60)

u
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3.2.4 General approximations for N mode shapes
If the response is estimated using N mode shapes 0% can be determined by

409 = 5 2 Sttt [ [ [ [e

m=1 n=1

g(yl, Zl)g(yZ’ 22)5'11,._113c U1, 21, Y2, 22, w)dzldzgdyldygdw

Q

g(yl, 21)9(Y2, 22) Suaue (Y1, 21, Y2, 22, w)dz1d22dY 1 dy2dw +

& Sowamor [ [ [/ [ nin

yla zl y?a 29

__Zq)z y,z)/ | Hp (w |2dw////¢’1(y1521 1(y2, 22) -

g(y17 zl) (yZ, zz)SUmua: (yl) 21,Y2, 22, wm)dzldz2d’y1dy2
(NX(?/: Z)QIu(zref))2(kb + krl + ...+ kTN)

&

where the background factor k, and the resonance factor k., are given by

1

s S TELL

7z 7z
o, 21) g, 2g) ez 21s ¥ 22 )t

Ou

1wm h h pd pd
- b L L Lo
0 0 0 0

S ( [ o y,z>dzdy)

VA 29, W
g(yl)zl)g(yZ, ZZ) 'U'::'Uv:c(yli ].,2:‘/27 2 m) dZ1dedy1dy2

Oy

The variance a?-{ can be determined similarly.

3.2.5 Equivalent quasi-static wind load

Equivalent quasi-static wind load can be defined by

we(y,z) = (1 + 2kau(z))\/7€b +kpy + et ey ws(y, 2)

(3.61)

yl,zl)q) y:z,Zz:

(3.62)

m('y2; Z2) )

(3.63)

(3.64)
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3.3 DS410, Along-wind load

The following section outlines the rules for calculation of the dynamic along-wind load in
the Danish code for loads on structures (DS410), [1].

The characteristic along-wind load F,, on a structure with a given reference area Arey, see
section 6.2 in [1], can be estimated according to DS410 if the following assumptions are
fulfilled:

e The structure should correspond to the one of the standardized cases shown in figure
3.1.

e The along-wind load is determined from the undisturbed wind field.
e Only one eigen-mode is important, namely the one with the lowest eigen-frequency.
e The along-wind eigen-mode is decoupled from the other eigen-modes.

e The structure behaves in a linear-elastic manner with viscous damping.

) Q h

i h
/V / "
Erer i et ' '
Zrcf zref
7= 0,6h z,,,= 0,6k 2= b, + 0,5k

Figure 3.1: The reference height z.¢5 for structures considered in [1].

The characteristic along-wind load F,, is given as for a structure with the reference area
Are f

Fy(2) = Gmaz(2)cacrAres (3.65)
where c; is the shape factor. The maximal characteristic wind pressure is
Ias(2) = (L+T0())an(s) (3.66)
The mean wind pressure is given by
1

m(2) = 5p0%(2) (3.67)
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where the mean wind velocity follows from

Vm(2) = voke ln(%) (3.68)

The turbulence intensity I,(z) is given by

1
I(z) = — (3.69
In(—) )

20

cq is the dynamic coefficient

_ 1+ 2kp I (zref) Vo + kr
14+ 7Iv(z,ef)

Cd (3.70)
which is defined as the ratio between the dynamic value of the response due the turbulence

load and the quasi-static load, respectively. Therefore c, is proportional to the gust factor
¢x defined in (2.2). In DS410 the peak factor k, is given by

ky =+/2In(vT) + e ,T =600s (3.71)
21In(vT)

I
The mean up-crossing rate v used in (3.71) is estimated by

2
L 1oy niky + nik,

= — ~ 3.72
2w ox ky + kr (3.72)

where 7 is an estimate of the mean up-crossing rate for a structure where dynamic effects
are negligible, i.e. outcrossing due to quasi-static wind induced response. 7, is the first
natural frequency. ng is estimated by

VUm (Zref) Vhd
Vhd L(zref)

The length scale L is given by

ng = 0.3 for ng < 0.42Hz and mny < ny (3.73)

z \03
L(z) = 100 (E) for 2 2 Zmin
L(z) = L(zmin) for 2 < Zuin (3.74)

The background response factor k; and the resonance response factor k, used in D5410
follows from (3.55) and (3.56), i.e

1
L+ 3‘/(%10) * (L(L)Y " (L(in L(L)Y

ky = (3.75)
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and
1 7T2 7'L1Su (Z,-ef,n1)
ky = = = K 3.76
28, + 8 o2 s(m) (3.76)
wy ; ;
where n; = o is the eigen-frequency.
™
0s = 2w(y, : is the structural damping coefficient for lowest eigen-frequency.
0o = 2m(y, : 1is the aerodynamic damping coefficient for lowest eigen-frequency.
Ky(ny) : is the size reduction factor given by.

The size reduction factor follows from (3.57)

//// y1>z1 yz,zz) (ylazl)g(y2722) (’y1,21,y2,22, )dz1dzzdy1dy2_

//// ?/1,21 y2,32)@ (ylazl) (yz,22)dzldy1dzzdyz

Assuming g¢(y, z) = g,(v)g.(2z) implies that K,(n) can be approximately estimated by
1

2
1+ \/ (Gt + (et +  26,0,6.0: )

where Gy = G in table 3.1 with g,(y) x go() and a=y/h
G, = G in table 3.1 with g,(2) o< g4(@) and a=z/d
by = cybn/vm(zres), =10
¢, = C;dn /vy (2res), c,= 10

(3.77)

Ky(n) = (3.78)

go () : 1 a o? sin(7c)
e 172 3/18 5/18 i/r?

Table 3.1: Gy and G,.

DS410 [1] specifies for two points (21, y1) and (22, y2) on a surface the following normalized
co-spectrum

o T
2T 1/2(v(z1) + v(22))
(3.79)

K(zla 22,Y1, 92, UJ) = \/COh"uxu;; (yh 21, Y2, 22, wl) = €xp (—

where ¢, = ¢,=10. In accordance with [1], the phase-spectrum is on the safe side neglected
in estimation of the dynamic response due to wind turbulence.
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The aerodynamic damping is given by the logarithmic decrement

5, = CPUm(Zres) (3.80)
211 tref

where the reference mass pres for the structure is

» h b
/ f u(y, 2)@3(y, 2)dydz
_ JO 0

Href = Y (381)
| [ @it 2z
0o Jo
The structural damping given as a logarithmic decrement is obtained from
53 =ain; + b1 2 Jmin i S 3Hz (382)

where a;, b; and 6y, is given in table 3.2

Type of Structure a1s] by Do
concrete structure 0.045 0.05 0.10
" | steel structure 0.045 0 0.05
concrete chimney 0.075 0 0.03
steel chimney 0 0.015 0

Table 3.2: Structural damping coefficients.

3.4 Example 1: Along-wind load on chimney

The following example demonstrates the application of the rules in DS410 [1] for calcu-
lation of the dynamic along-wind load on a steel chimney. The maximal displacement
Zmaz(2 = h) and the maximal moment My,,;(z = 0) will be compared with results ob-
tained from the stochastic response analysis equations in section 3.1.

The structural data [2] for the steel chimney are as follows

height : h =50 m

external diameter : b=1m

total mass per unit height : p = 3498 kg/m

1st natural frequency : n; = 0.34 Hz.

2nd natural frequency : ng = 1.91 Hz.
structural damping : 0, = 0.015.

shape factor : cs = 0.733 (DS410)

The chimney is assumed to be located in an area with a roughness length 2,=0.05 m and
a terrain factor k:=0.19. Further, the basic wind velocity for this area is chosen as vp=27




CHAPTER 3. DYNAMIC RESPONSE OF STRUCTURES DUE TO ALONG-WIND38

m/s and the air density is p=1.25 kg/m3. Tables 3.3 and 3.4 show the results based on

the rules in DS410 and from a stochastic response analysis where N = 1 and N = 2 have"
been considered. It is seen that the estimated values based on DS410 correspond very

well to the results from the stochastic response analysis. DS410 gives conservative results.

Further, it is seen from table 3.4 that the main part of the response is due to the first

mode. This is also seen from figure 3.2 where the auto-spectral density function Sxx(w)

for displacement response at z = 50 m is shown as a function of cyclic frequency w.

Variable N=1
Aref 50 TI’L2
L(Z,-ef) 139 m
R %, 14s) 0.099
ks 0.649
Ky(ny) 0.409
s ] 0.015
0 0.012
ks 7.508
o 0.314 H=.
v 0.338 Hz.
Ky 3.437
I, 0.156
Cd 1.943
©x 4.061
F, 1.051 - 10°N/m?
B 0.211m
M 2.642 - 10°Nm

Table 3.3: Along-wind response obtained using rules in DS410 [1].



CHAPTER 3. DYNAMIC RESPONSE OF STRUCTURES DUE TO ALONG-WIND39

Variable N=1 N =
B 0.047 m 0.047 m
ky 0.591 —

k. 7.503 —
Oz 0.041m 0.041 m
kp 3.431 —

Tynaz 0.186 m 0.188 m
py | 6.051-10° Nm | 6.441-10° Nm
oM 5.193-10° Nm | 5.495-10° Nm
Ky, 3.431 —

M |2.389-10° Nm | 2.546 - 10° Nm

Table 3.4: Along-wind response obtained using stochastic response analysis.

Figure 3.2: Auto-spectral density function SxX (w) for displacement response at z = 50

m.

o s




Chapter 4

Across-wind load

The preceding chapters described the models for along-wind load and response caused by
the natural turbulence in the wind flow. However, the structure itself may change the
wind flow pattern and thereby response due to the changed wind flow can be obtained. Of
these, the most important phenomenon is vibrations generated by the vortex shedding.
Slender structures such as chimneys, towers, electrical transmission lines or bridge-decks
can have a formation of vortices in the wake flow which in rare cases causes significant
vibrations of the structure.

In this chapter vortex induced vibrations of one-dimensional slender structures will be
considered with a coordinate system with the z-axis in the along-wind direction, the y
axis perpendicular to the wind direction, designated the across-wind direction, and the
z-axis in the longitudinal direction of the structure. The structure will vibrate due to the
turbulence components u,(2,t) and u,(2,t). In the across-wind direction the structure
will be excitated by a force caused of the u,(z,t) and a force due to vortex shedding which
generates a across-wind force [14]. When the dominant frequency of the vortex shedding
is equal to the lowest natural frequency of the structure significant across-wind vibrations
can be produced. Normally the vibrations due to vortex shedding occur for a mean wind
velocity lower than the mean wind velocity which is significant for the quasi-static design
wind load. The vortex induced vibrations can cause fatigue failure of e.g. a steel chimney.

Generally, the across-wind loading can be divided into the following three groups:

e Wind load due to the turbulence component u,(z,1).
e Wind load due to vortex shedding.

e Wind induced vibration load.

In the following sections the physical reasons for these different type of across-wind load
will be described and calculation models for the load and related response will be pre-
sented.

40
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4.1 Across-wind response

When a slender structure vibrates with the velocities z(z,%) and y(z,t), the following
relative velocity is obtained, see figure 4.1,

V2 (2, 1) = (v(2) + ug(z,t) — (2, t))2 + (uy(z,t) — g}(z,t))2 (4.1)
where v(2) :  the mean wind velocity in the along-wind direction.
ug(z,t) : the turbulence component in the along-wind direction.
t(2,t) : the velocity of the structure in the along-wind direction.
uy(z,t) : the turbulence component in the across-wind direction.
7(z,t) : the velocity of the structure in the along-wind direction.

By using the same assumption as in the Davenport wind load model for quasi-static
aerodynamic, the wind load per unit length p;(z,t) can is given by, [8]

po(z,t) = %pC'D(z)d(z)vfel (z,t) cos @
_ %pC’D(z)d(z)vre,(z, 1)(0(2) + ua(z, 1) — (1)) (4.2)

I

1 .
py(t) = 5Cp(2)d(2)lu(z1)sind

- épC’D(z)d(z)vrel(z,t)(uy(z,t) — (1)) (4.3)

where sin 6 and cosf is given in figure 4.1

uy(‘z7 t) — 'y(z7 t)

sinf =
'Ure[(z,t)
cos — v(2) + ug(z,t) — &(2,1) (4.4)
Urel(z7 t)

Assuming that the mean wind velocity v(z) is the most significant component the wind
load in the z-direction can be written following (1.10)

pz(z,t) = pi(2) + pa(2,t) — p(2,1) (4.5)
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y .

. uy(2,t) — g(z,t)
)\
vrel(z) t)

9 >
v(z) ¥ us(z,t) _}(z7 t) i

Figure 4.1: Definition of 6.

where pi(2) = 3g9(2)v(z) :  quasi-static load from v(z).
pi(z,t) = g(2)ug(z,1) :  wind load in the along-wind direction. _
pi(z,t) = g(2)(z,1) : aerodynamic wind load in the along-wind direction.
g(z) = pv(z)d(2)Cp(z) : transfer function.

and in the y-direction
py(z,}f) = pZ(Z, t) - pz(z7 t) (4'6)

where pl(z,t) = g(z)uy(z,t) : turbulence wind load in the across-wind direction.

pi(z,t) = 1g(2)y(z,t) : aerodynamic wind load in the across-wind direction.

From (4.6) it is seen that the aerodynamic component in the y-direction has half the
intensity as the corresponding component in the z-direction. The aerodynamic damping
ratio in the across-wind direction for the m’th eigen mode is then given as (cf. (1.30))

1

=i | PAEICo()E (e (@.7)

@, is the m’th mode shape belonging to bending vibrations in the across-wind direction.
The aerodynamic loading per unit length is taking into account as a part of the total
damping.

The total wind loading per unit length in the y-direction is
y(2,1) = py(2,1) +p;(z,t) (4.8)

where the vortex induced wind load per unit length is given as p’;(z, t). The component
py(z,t) is broad-banded while the component p?(z,¢) is narrow-banded. The two com-
ponents can normally be modelled as independent Gaussian processes implying that the
cross-spectral density is obtained as

SPyPu (zl’ %2 w) = SPﬁPZ (zh 22, w) + Sp’,}p{} (Zl, 232, U)) (49)
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For a height 100-200 m over a homogeneous terrain the standard deviations of the turbu-
lence components are estimated as [2] '

1
Ou, = Av,, Ou, = %Av*, Ty, = EA'U*, A=x25 (4.10)

which means that the auto-spectral densities of the components u, and u, are given by

Sy, (2,w) & (0.75)2S,, (z,w) (4.11)
Sy, (z,w) = (0.50)2S,_(2,w) (4.12)

The estimation of the structural response due to u, and u, can be done similar to
the response estimation due to the mean along-wind load if the cross-spectral density
Suewe (21, 22,w) is changed to the cross-spectral density Spypy (21, 22,w), given by

Spupy (21, 22, W) =~ (0.375)2Sw,w, (21, 22, w) (4.13)

It sHould be noticed that [8] points out that the structural response due to u, and u,
normally will be smaller than the the structural response due to vortex shedding. In
chapter 5 Spaph (21, 22, w) will be considered.

4.2 Vortex shedding at stationary cylinder

The across-wind load introduced for flow past a cylinder can be divided into whether
the cylinder is stationary or moving. In this section flow around a stationary cylinder is
considered while flow around a moving cylinder is considered in the following section.

Flow around a cylinder generates a boundary layer due to the viscosity of the air. For
increasing values of the Reynolds number Re, given by (4.14) the boundary layer changes
characteristics and break away at the separation points at the surface of the cylinder.

- d
Re=2% (4.14)
v
where v is the kinematic viscosity. Figure 4.2 shows the flow around a stationary cylinder

for increasing values of the Reynolds number.
0 < Re < 5 : Flow like a potential flow since no boundary layer will be developed at such
a low flow velocity.

5 < Re < 50 : A laminar boundary layer is developed. The gradient of the pressure along
the flow direction has a magnitude corresponding to a shed of symmetrical vortices.
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E‘“igure 4.2: Vortez shedding for flow past a stationary cylinder, [14].

90 < Re < 200 : Separation points are located at the front of the cylinder. Vortices are
shed alternately from one side then the other. The dominant frequency of the vortex
shedding is given by

n__St"U
T d

(4.15)

where S; is the non-dimensional Strouhal number, (S; ~ 0.2). The vortices create a
pattern in their wake often referred to as the von Karman trail. The vortices are laminar
and harmonically varying.

200 < Re < 2-10° : A subcritical region where the wake and each vortex now are tur-
bulent while the boundary layer is laminar and the vortex shedding is still harmonically
varying.

2-10° < Re < 3-10° : A supercritical region with a turbulent boundary layer and a non-
harmonically varying vortex shedding.

3-10° < Re . A transcritical region with a turbulent boundary layer and now a nearly
harmonically varying vortex shedding.

Vortex shedding will give rise to a lift or across-wind force with a shedding frequency
ng. Normally, high chimneys with a circular cross section are in the supercritical or
transcritical regions, see figure 4.3.
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Figure 4.3: Diagram for determining of the flow type around a structure with a circular
cross section, [8].

4.3 Vortex shedding at moving cylinder

|

For a cylinder with a smooth surface the vortex induced wind loading per unit length is
approximately given by

(1) = 5P (2)d(z) a1 (4.16)

where C}, is a so-called lift coefficient

Cr = Cr(M,,S.,V;,Re,Y/D, turbulensintensity) (4.17)
where M, = 5’—‘55 : the reduced mass ratio.
S. = 4nM.( : the Scruton number.
Vi = pe the reduced velocity.

Lte is a measure of the structural mass per unit height, ny is the natural frequency of
the structural system , and D is a typical diameter. Y is the vibration amplitude and
therefore is Y/D named the vibration level. M, is a measure of the ratio between the
structural mass and the mass of the displaced medium S, is a non-dimensional measure
of the structural internal damping.
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g / ny 51=0.198

14+

*Lock-in"-range
o8t

v/(n1D)

A 5 6 7

Figure 4.4: Lock-in effect for moving cylinder, [2].

Based on experiments the following can be stated [12,13,14,17,18]:

e For V. < 4.75 the vibration level is small and vortex shedding occurs at the Strouhals
frequency, (see figure 4.4).

e From V; ~ 4.75 and up to V; ~ 8 vortex shedding occurs at the natural frequency
no. Resonance in this region generates vibration of the cylinder which influences on
the wind field. For increasing amplitude a more pronounced effect will be seen and
the natural frequency of the cylinder dictates the the frequency of vortex shedding.
'This phenomenon is referred to as a lock-in because the shedding frequency is locked
into the natural frequency of the structure. The lock-in continues over a frequency
band followed by frequency region where the Strouhal relation (4.15) again applies
for V; larger than ~ 8. (see figure 4.4).

e The lock-in interval depends on the structural damping.

e The motion of the cylinder causes a synchronizing of the vortex shedding along
the length of the cylinder. The correlation length of the vortex induced loading is
significantly increased with the vibration level. Therefore the lock-in phenomenon
has a self induced effect and explains the increase in wind load magnitude at lock-
in [18]. In figure 4.5 the correlation coefficient Pptph between the lift force per unit
length at two cross sections with the distance [ defined by (4.18) shown as a function
of the vibration level.

Bl B+ D)
Pplpl 0y (2) ops (2 + 1)

(4.18)

e At a vibration level Y/D = 0.5 the wind loading may be fully correlated along the
cylinder. For an increasing vibration level the lift coefficient starts to decrease and
will be disappeared for Y/D ~ 1.5 — 2. This happens because the vortex shedding
becomes irregular and more than two vortices are shed for each vibration period.
Therefore the vortex induced vibrations are self-limited, [12].
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e The vibration level decreases when the Scruton number increases. Scruton developed
a simple method which can be used to evaluate the response for lock-in of structures
with a cylindrical cross section, [2]

for S, > 20 : no risk for lock-in.
S. < 10 : risk for lock-in.
10 < S, < 20 : transition region where lock-in can occur.

Q

10t M

08}

—
0.6 ~ - TS t—~-=y/D =008
o )
distance S~ .
=~ y/D =0,04
0.4 — .
S stationary

02} Re=085-10° 1y/D

distance measured
6 in diameters

0 1 2 3 4 5

Figure 4.5: Correlation as a function of the distance between two points for different
vibration levels , [12].

4.3.1 Vortex shedding in natural wind

Due to the turbulence in the natural wind the across-wind load has more than one fre-
quency mn,. Turbulence with vortex extent larger than 10 - D is defined as ' and can
be considered as a slowly variation of the mean wind velocity. If this turbulence term
is taken into account in the Strouhal relation (4.15) it is seen that vortex shedding at a
stationary cylinder occurs in the frequency band n, + =

S+ (v i
Tig + Tl; = : ( d+ U) (419)
The turbulence also has the effect that the auto-spectra of the across-wind force includes
two peaks; one from the vortex shedding and one from the resonance with the structural
frequency. For a vortex shedding frequency close to the structural frequency only one

peak will be seen in the auto-spectrum due to the lock-in phenomenon (see figure 4.6).
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Spectrum for acrosswind force

frequency

Figure 4.6: Auto-spectrum for across-wind force as a function of the shedding frequency
and the natural frequency, [13].



Chapter 5

Dynamic response of structures due
to across-wind load

The following section outlines a stochastic model for estimation of the vortex induced
wind load.

5.1 Stochastic model for vortex induced wind load

The across-wind load due to vortex shedding can be written

Ph(at) = v (2)d(=)Ca (1) = h(z)Ca(s1) 6.)

The lift coefficient Cy, is a non-dimensional stochastic process with mean value 0. The
cross-spectral density then becomes

Sphph (21, 22, w) = h(z1)h(22)Sc,c, (21, 22, W) (5.2)

where

SC'LCL(zla 22, UJ) =V SCL (zl: w)\/SCL (Zz, w) \/COh'CL, (Zla 29, w) COS((DCL (zla 22, Lt))) )
(5.3

From experiments made in the subcritical region of Re the following expression has been
proposed for the auto-spectral density of the lift coefficient, [20].

()

49

2no2 (2
Sou(erw) = —eul) o

VT B(2)ws
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where o¢, : standard deviation of the lift coefficient .
B(z): spectral width.
wy : cyclic vortex shedding frequency.

It should be noticed that the auto-spectrum may be is approximated by a Gaussian
spectrum since the wind velocity v(z) 4+ u,(z,t) in the wind direction is approximately
Gaussian with mean value v(z).

The spectral width B(2) = +/2(0,(2)/v(2)) is a measure of the relative width of the
peak in the spectrum around w, and states the band of frequencies where vortex shedding
occurs. B(z) is proportional to the intensity of turbulence o, (z)/v(z). Since the spectrum
of the lift coefficient Cf in a laminar flow (i.e. 0,(2) — 0) has a final width the spectral
width becomes, [19]

B*(2) = B; +2 (%)2 where By = (0,05 — 0, 1] (5.5)

The standard deviation of the wind velocity o, is generally given by, see table 1.1

Oy ~'V6v, = V6upks ks (5.6)

where £ : the von Karmann constant = 0.408.
v, : the basic wind velocity
k; : terrain parameter.
v, : friction velocity.

The coherence Coh¢, and the phase ®¢, spectra are only important around the spectral
peak and can be estimated as, [20]

Cohg, (21, 23, w) = [exp (—GTZ)]2 (6.7)

@C'L (Zl, 22, (.L)) = br (58)
where

I . (5.9)

"7 () + d(z)

and a = 1/9, alternative proposes [8] pp.95, a = 1/8.
b = 2/3, alternative proposes [8] pp.95, b = 0.13.
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In the literature there is a disagreement about the values a and b since they have been
obtained from measurements on different structures.

Normally, a correlation length A is defined as

A=f \/Cohg, (21, z2,w) cos(Dc, (21, 22, w))dr (5.10)
0

where 7 is given by (5.9). A is typically 1-2.

It should be noticed that the above model is based on a stationary cylinder while measure-
ments were made on a moving cylinder. Therefore the influence of the size of the structure
and coherence are ignored, i.e. the lock-in phenomenon is not taken into account.

The model can be used for reinforced concrete structures. However, care should be taken
for lightly damped structure such as steel chimneys, [15], [20].

5.2 Motion induced across-wind load

From measurements it is found that lock-in and the correlation is related to the across-
wind load due to across-wind vibrations, [2]. The across-wind load per unit length includes
an inertia load which is out of phase with the acceleration of the structure, and a negative
aerodynarnlc damping component which is in phase with the velocity of the structure.
For most structures this negative damping component —(* causes a negative effect on
the damping and thereby an increased response.

In Vickery & Basu, [12,13] a negative damping model was proposed which assumes that
the vortex shedding induced load has two terms. One term from a stationary cylinder
and one term from vortex shedding at a moving cylinder. The motion induced increase
in force due to lock-in is then included as an aerodynamic negative damping term. The
damping ratio in the across-wind direction for the mth eigen mode is hereby given as

Co = 2+ C& — (2 (5.11)

By a modal analysis the response in the across-wind direction can be written

= Z Qm(t)ém(z) (5'12)

where ¢, . m’th modal coordinate in y-direction.
" ®,(z) : m’th bending mode shape in y-direction.

The negative aerodynamic damping ratio for the m’th mode shape is assumed to be

na 1 h 2
o == 2mem/0 Cna(2) @5, (2)d2 (5.13)
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where M, is the modal mass for the bending mode shape in the across-wind direction
defined by (3.4). The requirement for the negative aerodynamic damping constant ¢,, has.
to be that the vibration level increases when one of the natural frequencies of the structure
controls the vortex shedding frequency, i.e at lock-in (** is relative large. Further, the
response has to be limited, i.e. that (J}* has to decrease for increasing vibration level.

In figure 5.1 experimental negative aerodynamic damping results are shown as function
of the Reynolds number Re.

r T 7~ Schmidt (1965) 0.30-0.75x 106
) T~ Szechenyi & Loiseau (1975) 08-3x 105
§ 104 : Szechenyi & Loiseau (1975) 0.8-3x 108
- Yano & Takahara (1971) 4.0-9.0x10*

g I Nakamura et al. (1971) 0.7-4.0x10*
_5 08 .
E
g \ N
g 06 \ o
2 \\\ \\
?0.4 \\ : \\
g 02 ] X~ \\:::“
= ' \‘
g / \\\\\'\\\. B
g 0 = 1| : ~ T >

8. ~~_ //10 12 14> 16 -

e X
BN T US/mD)
-02 4 \\\\// \}{

Figure 5.1: Variation of (* normalized so the mazimal value is 1, [2]

The negative aerodynamic damping constant cp, is then proposed to be following non-
linear function

Oyl 2 Y
Cna(2) = 2wmpd(2)?Crao(2) (1 = (L()—) ) (5.14)

0y, (2)

where Crgo is an experimental estimated non-dimensional damping constant for small
vibration levels. oy (z) is the standard deviation of the response as function of the height
z obtained from (5.12)

0X(z) = Z or (1)92,(z) (5.15)

assuming well separated natural frequencies.

oyr is the standard deviation of the limited response, i.e. the maximal response which
can be obtained before the vortex shedding will decrease. Therefore, the limiting effect
of the response is included in the model by oy, and the factor 3, which is a measure of
the decay of (*. In [12,13] B = 2 which will be used in the following. The value 1 in
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(5.14) corresponds to an assumption of initial maximal negative aerodynamic damping
independent of the natural frequency and Re. '

It is assumed, that the expression for the standard deviation of the limit response is a
linear function of the diameter of the cylinder d(z)

_ oy, (2)
=4 (5.16)

From (5.14), (5.15) and substitution of (5.16) into (5.13) it is found that

(o = Am — Bmoy,, — i Crn0e, (5.17)
n=1 .
where
Am=—i/hmmafwwm (5.18)
" B = ma2 / Crao(2) @2 (2)dz (5.19)
Con = 77 / Couo(2)BL(2)B2(2)dz, n#m (5.20)

By using a white noise approximation the standard deviation of the modal coordinate
process follows in the same way as (3.16)

o _ Spypy(Wm) + Spaps (Wm)

g- = 5.21
in = Bl (Co+ G — (o0 M, (5:21)

where Spy py (W) and Spsps (wm) are auto-spectra for the modal load for turbulence
components and vortex induced components, respectively

Spv Py, wm / / Z2)S vpy (Zl, 29, wm)dzlsz (522)

Sph Ph (.Um / f Zl)(I) )Sp#p# (Zl, 29, wm)dzl de (523)

2

Og, 18 estlma.ted by iteration since o, is included in the equation for determination

(na- Normally o2 is analytically estlmated from a solution of the second order equation

2
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Re<2-10°[2-10°< Re<6-10° [6-10°< Re<3-10° | 3-10° < Re | All

1 9 37 17 64

oc, - - 0.17 0.25 0.20
o 1.3 0.8 0.41 0.20 0.70
Chrao 2.1 0.6 0.41 0.32 0.30

Table 5.1: Standard deviation of the lift coefficient oc,, ¢, and Creo as a function of Re
[21].

obtained from (5.21) and (5.17) since it is assumed that only one eigén—mode has to be
taken into account. The total variance of the response is given by (5.15).

The parameters o¢,, o and Cygg, relies on experience-based data. In [21] the parameters
are estimated from experimental data from 64 chimneys for different values of Re. From
table 5.1 it is seen that o¢, approximately is equal to 0.2 for all flow regions. The ratio
a between the standard deviation of the limit response and the diameter of the cylinder
is in [13] given as 0.4. In [21] a the relationship between Re and « is given where « is
found to be in the interval [0.2 - 0.4].

5.3 DS 410, Vortex shedding

The following section presents the rules for calculation of the vortex shedding load used in
the Danish code for loads on structures (DS410), [1]. These rules are based on a stochastic
response model.

The characteristic vortex shedding load per unit length F, on a structure is given by

Fy = m(w1)*®;(2)Ymaz (5.24)
where m : Inass per unit length.
w1 :  1st eigen-frequency.
Umaz : characteristic maximal deflection at the point with largest deflection.
®(z) : 1st bending mode shape in y-direction, normalized to 1

at the point with largest deflection.

The characteristic maximal deflection at the point with largest deflection Y., follows
from

Yeion = Oy (5.25)

where o, : standard deviation of deflection.
k, : peak factor.

If it can be assumed that the structure has an uniform distribution of mass, stiffness and
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width the standard deviation o, can be estimated from

Oy 1 Ca pb® [b '
i gl 5.26
Cs - KaB— (1 - (—‘y_> )
m baL
where C, : aerodynamic constant.
K, : aerodynamic damping constant.
a; : constant which limits the deflections for light damped structures.
¢, : structural damping ratio &, = 2m(,, see (3.82).
l : length or height of structure.
The largest standard deviation o, is found for C; = Cymas given in table 5.2. The

standard deviation o, can be obtained from

(%)2 =c1+4/G+c (5.27)

where

2
; ay, (G m
= e 1 _—_——
“ 2 ( K, pbz)

a ot L b

_ o pb Gy 2
e K, m Sl (5.28)

For non uniform distribution of mass m and width b the values at the point deflection
at the point with largest deflection should be used. If the estimated standard deviation
oy is smaller than 2 % of the width of the cross section the peak-factor k, is given by
(3.71) where the value of the eigen-frequency is used for v. If o, is larger than 20 % of
the cross-section diameter the peak-factor is equal to \/2. Between these two values the
peak-factor is assumed to vary linearly.

The aerodynamic damping constant K, is given by
Ko (I,) = Komach(Iy) (5.29)

where K, mq is given in table 5.2. Values of the function h follows from h(I,) =1 — 31l
for 0 < I, < 0.25 and h(I,) = 0.25 for I, > 0.25. The turbulence intensity I, should be
estimated at the point with largest deflection.

For a circular cylinder and for a quadratic section the constants Cumazy Kooz 80d ar
are given in table 5.2. For Reynolds numbers between 10° and 10° a linear variation of
the constants are assumed as a function of the logarithm to the Reynolds number.

It should be noticed that [1] also has simplified rules for calculation of the fatigue load
due to vortex shedding if the characteristic vortex shedding load is less than 10 % of the
width of the cross section.
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constant | circular circular circular | quadratic
cylinder cylinder cylinder section
Re < 10° | Re=5-10° | Re > 106 -
Co,maz 0.02 0.005 0.01 0.04
Ko mas 2 0.5 1 6
ar, 04 0.4 0.4 0.4

Table 5.2: Constants to be used for vortez shedding calculations.
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