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Abstract: This paper proposes an observer-based control design with Disturbance Feedback
Control (DFC) for overhead crane systems. DFC is a technique to improve the disturbance
rejection capabilities of existing control loops. The crane system is modelled with 3D dynamics
and linearized. Payload sway angles are estimated by a Kalman Filter. A state feedback
controller for setpoint tracking and a DFC for disturbance rejection are designed using Linear
Matrix Inequalities. Both simulation and experimental results show that the observer-based
control with DFC can estimate the sway angle and is able to attenuate disturbance inputs
better than the conventional observer-based control. The proposed design can thus achieve
practical angle sensor-less control with a retro-fit modification of an existing control.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

State-of-the-art crane control systems of today are sup-
plied with anti-sway crane control embedded in speed
drives (inverters) and Programmable Logic Controllers
(PLCs) to yield both high performance and usability.
However, such systems are expensive and, like many other
advanced manufacturing industries, crane control man-
ufacturers must find ways to ‘achieve more with less.’
Sensorless systems is one example of providing important
added-value to lower-end crane systems due to compact-
ness and lower cost, both in case of new and retrofitted
crane systems. However, the control scheme must of course
remain able to estimate the sway angle of the payload,
while at the same time maintaining robustness against
disturbances such as wind and (small) collisions without
being able to rely on measurements of the sway angles.

In this paper a sensorless add-on control configuration for
a generic overhead crane control system, known as Distur-
bance Feedback Control (DFC), is discussed. This control
structure utilizes an additional feedback to compensate
for disturbance and model uncertainties, but otherwise
maintains the existing control system as is. From a prac-
titioner’s point of view this step-wise approach is advan-
tageous, since it allows tuning the guiding controller using
standard techniques first, and then adding the disturbance
attenuation feedback later, for instance as a retrofit option.

In a previous study, Kawai et al. (2018), the authors
proposed a robust DFC scheme for 2D Gantry cranes for
shipping applications. Several stability conditions that the
DFC law must satisfy in order to guarantee stable closed-
loop operation were subsequently formulated in Bendtsen
and Kawai (2019). In particular, it was found that the
nominal model of the system must be open-loop stable for
the scheme to have any chance of guaranteeing internal

stability in the face of exogenous disturbances. However,
these results assumed full state feedback; for sensorless
control, it is necessary to consider state estimation as well.

Several results on observer-based control for crane sys-
tems have been published in the literature. An Unscented
Kalman filter was designed to estimate the states of the
motion of the load in Kreuzer et al. (2014). The observer
was validated in a container crane test stand. For distur-
bance estimation, finite-time disturbance observers were
proposed to estimate external disturbances in Jin-Hua She
et al. (2004) and Zhang et al. (2018).

Other results on soft sensor-based control for crane appli-
cations have been presented as alternatives to observer-
based control. For example, a scheme based on artificial
neural networks was proposed in Solihin et al. (2006),
while a soft sensor to estimate the sway angle using dual
microphones was proposed in Nakamoto et al. (2020).

Other control designs for crane systems have focused
on robustness as well; for instance, an optimal robust
controller was designed based on pu-synthesis and DK-
iteration in Moradi and Vossoughi (2015). However, the
authors have not been able to find any combinations of
robust design with retro-fit modification and sensorless
crane control in the literature so far.

In preparation for future implementation on actual over-
head crane systems, this paper proposes a novel robust
anti-sway DFC scheme based on Linear Matrix Inequality-
based (LMI) optimization. A model-based soft sensor pro-
vides a full state estimate based on trolley position and
speed measurements only, which are readily available in
standard overhead crane systems, and employs this full-
state estimate for the additive DFC feedback. Both set
point regulation and disturbance rejection responses are
examined with and without robust DFC through simula-
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tions on a non-linear model as well as through laboratory
tests. Noticeable disturbance rejection performance im-
provements are observed, with no impact on the reference
following capabilities of the existing controller.

The outline of the rest of the paper is as follows. Section 2
first briefly presents the 3D crane model used for simula-
tion along with a linearized version used for conventional
design. Subsequently, an Extended Kalman Filter for the
proposed DFC is introduced in Section 3. Next, Section 4
formulates the robust design problem and the LMIs used
to solve it. After that, numerical examples are presented in
Section 5 and Experimental test in Section 6 are demon-
strated. Finally, conclusions are given in Section 7.

2. 3D MODELING OF OVERHEAD CRANE
SYSTEMS

2.1 Crane System Model

Fig. 1 shows the 3D crane model considered in this work;
it was originally derived in Kaneshige et al. (1998). The
model complexity is chosen as a trade-off between accuracy
and feasibility of control design for fast control systems;
more complex mathematical models than presented here
can certainly be derived, but too complex designs cannot
be implemented in industry-standard control devices such
as PLCs, operating with control cycle times on the order
of milliseconds with computational resources.

The motion of the trolley is given by the following

(scalar!) linear differential equations:

1 K,

1. K,
= ——q = 2
=gt (2)

1 K,
z:—iz—kiuz (3)

where z = x(t), y = y(¢) are the coordinates of the position
of the trolley at time ¢ > 0, z = z(t) is the cable extension
length at time ¢, T, T, T, K;, K, and K, are motor
time constants and gains, respectively, and u, = wu.(t),
Uy = uy(t) and u, = u, () are the speed command signals
of each axis.

The coordinates of the payload position (Z(t), g(t), 2(t))
are given by

T=x+zsinfcosy (4)
g =1y+ zsinfsinep (5)
Z = zcosb (6)

where 0 = 0(t) and ¢ = ¢(t) are defined as shown in Fig.
1.

The equations of motion for the payload in the vicinity of
its equilibrium can be derived from Newton’s second law
applied along each coordinate axis:

1 We generally consider real scalar signals by default throughout the
paper and provide dimensions of vectors and matrices unless these
are obvious from the context. We use the notation n, to indicate
the dimension of any vector .
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Fig. 1. Sketch of crane model for control design.

mi = —Fsinf cos g — Do(% — ) (7)
my = —Fsinfsinp — Da(g — 5) (8)
mz =mg — Fcosf (9)

where m is the mass of the payload, F is the cable
tension due to the payload suspension, and D, and Dg
are damping coeflicients.

Combining Equations (4)—(9) thus yields the following
model:

:*inl.

K

m

(11)

(12)

z
m.ﬁ:—Fy;Zy—Dﬁ(yL—z))

. z
mz=mg— F-—
z

and the sway angle of the payload is given by
Y-y
Yy

o = tan? g, B = tan? (13)
T

where « and 3 are projection angles (again, see Fig. 1).

2.2 Crane Model for Control Design

The model above is linearized in an operating point;
0 = ¢ = 0 is chosen for both the conventional design and
the subsequent LMI-based design, resulting in the quasi-
Linear Parameter Varying (quasi-LPV) model

€ = A(2)¢ + Bau, (14)
where ¢ = [z, @, Az, Ad, y, ¥, Ay, Ay, z, 2T is the
state vector, Ax = T —x, Ay = g — vy, Az = Z — z,
u = [ug, uy, u]T, and
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Fig. 2. Block diagram of an existing crane control system
with Kalman Filter (continuous time).
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are the state and input matrices, respectively.

Note that z appears in the matrix A, which means that
(14) is in fact nonlinear; however, inspired by real-world
crane operation it is assumed to remain constant during
operation in the (z,y) plane (when the load is in transit
toward its destination), permitting us to consider it as
a parameter in a quasi-LPV setting. This assumption
is purely for convenience, however, since the design is
deliberately made robust to bounded variations in z.

3. KALMAN ESTIMATOR

This section describes the Kalman estimator introduced
in the existing control system and the control system
augmented with DFC for estimating the sway width of the
pay load. The design is mostly standard; see e.g. Sarkka
(2013) for a more thorough presentation of Kalman estima-
tor/filter theory. Block diagrams depicting observer based
control with KF and with/without DFC are shown in Figs.
2 and 3, respectively. Note that u = [z, @, y, 9, 2, #]T is
a measurement vector of the trolley position and velocity
in 3 dimensions.

Discretizing the crane system model above with a fixed
sample rate and introducing Gaussian noise on states and
measurements results in

Fukiko Kawai et al. / IFAC PapersOnLine 56-2 (2023) 8776-8783

>
wm“"T-'

o)

Fig. 3. Block diagram of an existing crane control system
which is augmented with both Disturbance Feedback
Control and Kalman Filter (continuous time).

§e = P + Tug + wy,
e = C&k + vg
where & € R™¢*"¢ ' € R™*™ are discretized state,
input, and noise gain matrices, w ~ N(0, Q) is process
noise, and vy, ~ N(0, R) is measurement noise, all at time
step k.

(15)

A Kalman filter gain K} € R™*™ can then be introduced
and tuned using the well-known Kalman Filter algorithm.
First the prediction step:
£ = ®E | +Tuy
Pr=®P 9T + Qi1

(16)

where é,; is the state estimate at time step k, and P, is the
predicted covariance estimate at the time step & just before
the measurement y. Note that superscript (7) means that
states and matrices are evaluated at the prediction step.

Next, the Kalman gain K}, state estimate fk, and covari-
ance matrix Pj are updated in a correction step:

Ky, =P ct(CcpP;Cct +R)™! (17)
& =& + Kn(ur — C&) (18)
P, = (I - Ky,CO)P; . (19)

4. DISTURBANCE FEEDBACK CONTROL DESIGN

This section describes a robust DFC design method by
using LMI optimization. The DFC design in this work is
taken from Kawai et al. (2018).

4.1 Control configuration

Fig. 3 shows the closed-loop system with DFC (in contin-
uous time), where 7 is the reference input, v = uk + ur, is
the control input, w is the disturbance, B; is a gain matrix
for w, and A and By are plant model matrices (given
above, with z assumed fixed). The existing controller is
specified by a feedforward term Kpr and a feedback term
Kwg. The DFC comprises a nominal plant model specified
by nominal parameter matrices A and By along with the
disturbance feedback L. The true states of the plant are
denoted &, while £ contains the states of the nominal plant
model. Note that the observer-based control cannot access
the sway width information in the state vector £ of the
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real plant. An online simulator is therefore implemented
in order to compute Az, Az, Ay, Ay in the soft sensor
(SS) block to replace real sensor measurements.

The DFC then makes use of the error between real mea-
surements and the Kalman filter state estimate. Here, we
make use of the soft sensor measurements from the SS
block to provide the missing measurements for construct-
ing the error signal for the DFC.

As noted in the Introduction we stipulate that Kpp
and Kpp remain fixed; thus, the existing controllers are
considered part of the plant in the following robust DFC
design setup.

4.2 Parametric Uncertainty Model

Parametric uncertainties in the crane system model must
be considered in order to achieve a robust design. Let the
true plant be

£ = AL + Bou, (20)
with the plant parameters being affected by polytopic
uncertainties

q
A= A—l— Z(Sa,iAia 6a,i S [—1, 1}.

i=1

(21)

Here, (6a,1;---,0a4,q) are unknown constants multiplied by
known (also constant) matrices A;, see e.g. Carsten Scherer
and Siep Weiland (2004). The design has to guarantee
both stability and performance for all possible values of
the unknown parameters d, ;. >

4.3 State Feedback Control (Ezisting Controller)

The state feedback controller is given as existing controller.
(22)

where Kpp € R™ "¢ is a state feedback gain and e = r—¢,
and

ug = Krge,

E=[zi Az A g5 Ay AYzE]T
is the state vector of the nominal plant model.

4.4 Robust DFC' Design

The DFC is chosen as
uy, = Le, (23)
where L € R™*"¢ is the disturbance feedback gains,

e=¢—¢.

The extended state space representation of the overall
system at the extremal values of the uncertainties can then
be described as follows:

X = Aaug,&X + Baug,lw + Baug,2ul

_ € _ |4s —B:Kpp 0
X = |:£:| ) Aaug,& = |: _BQKFB Al

B B
Baug,l = |: 01:| ’ Baug,Q = |: 02:| )

and w is an input disturbance, the As is any extremal
value of A as stated in (21).

(24)
where

2 Note that z is considered the primary uncertain parameter here,
but the framework allows easy incorporation of other uncertain
parameters such as the payload mass m as well.
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Extremal values of the uncertain closed loop transfer
function T from w to x is then computed as follows:

x = Asx + Bw (25)
where
_ (As — BoKpp — BoL By L| By
(AgB)-( —ByKrg 1 0)' (26)

The robust DFC design is now formulated by using the
dominant region (Boyd et al. (1994)):

20X + AsTX + X As < 0,

_ | X1 Xo
X{XOXJ’ X >0,

(27)

Xo>0. X7>0, Xs5>0,
where
Ax = As — BoKpp — BoL BoL| [ X, Xo
ot = —BsKpp A || Xo X

_ | Asdn AsX
AsXo 1 AsXa o

AsXi1 = (As — BoKpp) X1 + B2 (=Y + V),

AsXy 2 = (As — BoKpp)Xo + Bo(=V + W),

AsXo1 = —BaKpp X1 + AXo,

AsXa o = —BsKppXo + AXs,

V = LXy, Y = LX3, W := LXs5. The subscript-d
notation should be understood as requiring the LMIs to
be satisfied for all extremal points of §, as defined in
(21). That is, the LMIs must be satisfied everywhere on
the convex hull defined by the permissible values of the
uncertainties, implying that one LMIs has to be solved
for every vertex of the hypercube §, € [—1,1]7 in order to
yield one common X. When the LMIs are solved, the DFC
gain L may be found as three different solutions from V,
Y, and W, respectively; either may be chosen, as long as
the DFC stabilizes the closed loop system.

5. SIMULATION EXAMPLES

This section demonstrates simulation examples for eval-
uating the observer based DFC. First, a state feedback
control Krpg and a DFC L are designed assuming full
state measurements are available, and the poles and zeros
are examined to confirm nominal stability (cf. Bendtsen
and Kawai (2019)). After that, observer-based control
designs with and without DFC are examined in time-
domain simulation. The simulation examples are carried
out with nominal model in rope length [ = 0.9 m, and the
rope length is varying from 0.9 to 0.8 m in Table 2. The
plant and KF model are discretized by the Forward Euler
method with a sampling interval of 5 ms (a common option
for standard PLCs), while the nominal model is simulated
using 4th order Runge-Kutta integration in Matlab. The
simulations are evaluated in terms of robustness against
impulse disturbances along the z- and y-axis.

5.1 Model parameters

Table 1 lists parameter values of the crane system model.
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Table 2. Simulation conditions.
Ttem Value Unit
Control cycle in Matlab 5x 1073 s
Data sampling time 5x 1073 s
Set point of trolley in z- axis 0.8 m
Set point of trolley in y- axis 0.8 m
Set point of rope length in z- axis 0.8 m
Upper limit of trolley velocity 0.3 m/s
Simulation time 60 S
Time of impulse disturbance in z- axis 25 S
Time of impulse disturbance in y- axis 30 s
Pulse width of disturbance 1 S
Pulse amplitude of disturbance 0.1 x10° N

Table 1. Parameter values of the crane system

model.
Parameter Value Unit
m 0.5 kg
Ky 1.0 -
K, 1.0 -
K, 1.0 -
T, 0.11 sec
Ty 0.10 sec
T, 0.05 sec
Dy 0.0264 -
Dg 0.0264 -
l [0.8,1.0) m
g 9.8 m/s?

5.2 Evaluations of DFC design

The DFC gain matrix L is found by solving the LMI
problem (27) using YALMIP and SDP solver SeDuMi-1.3
for Matlab (see Lotberg (2004)).

The Kalman gain was found to converge in about 10 time
steps (corresponding to 0.05 seconds), indicating that it is
likely appropriate to simply use a constant Kalman gain
to estimate the states in most real-life crane system.

The converged Kalman gain is applied to both a simulation
test in next subsection, and a realistic laboratory test in
section 6.

5.8 Simulation Results

Table 2 shows simulation conditions for the time-domain
simulation. 3D tracking control is examined for 25 seconds,
and then an input disturbance is added to both the x-
and y-axis in order to evaluate disturbance rejection. Fig.
4 shows simulation results of observer-based control with
and without DFC. Payload position estimates along the
z- and y-axes are plotted in the third and 7th subfigures,
respectively. The observer-based control with constant
Kalman gain are found to be able to estimate the main
dynamics of the sway in payload in the tracking control.

As can be seen from the responses after the disturbances
are introduced at t = 25 seconds, the observer-based
control without DFC performs considerably poorer in
terms of both payload estimation and anti-sway control
performance. On the other hand, it is seen that the
observer-based control with DFC is able to improve the
disturbance attenuation after input pulse disturbances
along both z- and y-axes.

Fukiko Kawai et al. / IFAC PapersOnLine 56-2 (2023) 8776-8783

Table 3. Maximum and minimum sway width
of the disturbance responses in Matlab simu-
lation.

Conventional method  Proposed method

Sway width (K¥r + K¥B) (Krr + K¥B
[mm)] +DFC) [mm]
Max. along x- axis 63.6 32.8
Min. along x- axis -63.8 -21.2
Max. along y- axis 65.0 32.4
Min. along y- axis -65.2 -21.0
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Fig. 4. Simulation results of observer based control with
DFC in orange line, without DFC in blue line.

Table 3 lists various key values obtained in the simulation
of the disturbance responses. The proposed method im-
proved the maximum and minimum load deviation along
the z-axis by 30.8 and 42.8 mm, respectively, while for
the y-axis load deviation the improvement was 32.6 and
44.2 mm, respectively; a considerable improvement in both
cases. It is thus concluded that the sensorless anti-sway
control works as intended, and that DFC improves (im-
pulse) disturbance rejection.

Fig. 5 shows simulation results of state feedback control
with and without DFC. Both control schemes are able to
attenuate the effects of the input disturbances and make
the sway width converge to 0. However, as shown in Fig. 4,
the observer-based control without DFC has considerably
poorer disturbance rejection disturbance.

The simulation results thus indicate that DFC yields the
same control performance, regardless of whether it is used
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Fig. 5. Simulation results of state feedback control with
DFC in orange line, without DFC in blue line.

with observer-based control or state feedback control. It is
furthermore confirmed that the sensorless control method
does not exhibit performance deterioration.

6. EXPERIMENTAL RESULTS

This section shows experimental verification of the observer-
based control with and without DFC on an overhead crane
laboratory setup.

6.1 Ezperimental Setup

The laboratory test setup in Fig. 6 is a scaled-down
version of a realistic overhead crane system. The system
parameters of the crane model is the same as simulation
condition in Table 1. The test conditions in Table 4 are
designed based on the simulation results in section 5. Note
that the Kalman gain is kept constant in the laboratory
test, since the update algorithm requires a matrix inverse
calculation, and this calculation is too heavy to implement
on the PLC used in the test setup. The constant Kalman
gain is chosen as the value of K 30 seconds into the
simulation with tracking and disturbance responses.

6.2 Test Results

Fig. 7 shows experimental results of observer-based con-
trol with and without DFC. Payload position estimates
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Table 4. Test conditions.

Item Value Unit
Control cycle in PLC 5x 1073 s
Data sampling time 1x 101 s
Set point of trolley in z- axis 0.8 m
Set point of trolley in y- axis 0.8 m
Set point of rope length in z- axis 0.8 m
Upper limit of trolley velocity 0.2 m/s
Test time 60 s
Time of impulse disturbance in x- axis 25 s
Time of impulse disturbance in y- axis 30 s
Pulse width of disturbance 1 S
Pulse amplitude of disturbance 0.1 x10° N

Table 5. Maximum and minimum sway width
of the disturbance responses in experimental
results.

Conventional method  Proposed method

Sway width (Krr + KrB) (Kpr + K¥B
[mm)] +DFC) [mm)]
Max. along x- axis 36.53 16.79
Min. along x- axis -27.78 -13.19
Max. along y- axis 45.90 26.88
Min. along y- axis -47.84 -21.93

Fig. 6. Overhead crane systems setup.

along the z- and y-axes are plotted in the third and 7th
subfigures, respectively. The observer-based control with
constant Kalman gain are found to be able to estimate
the main dynamics of the sway in payload in the tracking
control. As can be seen from the responses after the dis-
turbances are introduced at ¢ = 25 seconds, the observer-
based control without DFC performs considerably poorer
in terms of both payload estimation and anti-sway con-
trol performance. On the other hand, it is seen that the
observer-based control with DFC is able to improve the
disturbance attenuation after input pulse disturbances
along both z- and y-axes.

Table 5 lists various key values obtained in the simulation
of the disturbance responses. The proposed method im-
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Fig. 7. Experimental results of observer based control with
DFC in orange line, without DFC in blue line.

proved the maximum and minimum load deviation along
the z-axis by 19.74 and 14.59 mm, respectively, and by
19.03 and 25.91 mm along the y-axis, respectively. It is
thus concluded that the sensorless anti-sway control works
as intended, and that DFC improves (impulse) disturbance
rejection.

2D plots of the trolley positions and 3D plots of the
payload positions with and without DFC are shown in Fig.
8. It is seen that both control schemes are eventually able
to position the payload at the target position (indicated
by a red square marker (J), but the DFC scheme uses the
trolley more actively to attenuate the oscillations in the
payload.

On a side note, it is observed in the laboratory tests that
the proposed method with DFC tends to attenuate rota-
tion of the payload as well, which although not technically
a part of the design, certainly is a desirable feature in
shipping applications.

7. CONCLUSION

This paper proposes an observer based control scheme with
Disturbance Feedback Control (DFC) for overhead crane
systems. The crane system is modelled with 3D dynamics
and linearized to obtain a quasi-LPV system. Sway an-
gles of pay load are estimated by a Kalman Filter. The
control gains are designed using an LMI-based approach
to achieve robustness toward known parameter variations,
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most notably the rope length. Simulation results show that
observer based control with DFC can estimate the sway
angle and improve disturbance rejection compared to the
baseline design, conventional observer based control de-
sign. The design was further verified on a laboratory-scale
overhead crane setup under more realistic circumstances,
such as implementation on industry-standard PLCs etc.

Future work will consider the stability conditions of the
proposed method with Kalman state estimation, as well
as LPV-style designs that can incorporate the rope length
directly in the DFC design.
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