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STOCHASTIC RESPONSE OF ENERGY BALANCED
MODEL FOR VORTEX-INDUCED VIBRATION

S.R.K. Nielsen
Department of Building Technology and Structural Engineering,
Aalborg Universily, Sohngaardsholmsvey 57, DR-9000 Aalborg, Denmark

S. Krenk
Division of Mechanics, Lund Universily, S-22100 Lund, Sweden

ABSTRACT: A double oscillator model for vortex-induced oscillations of structural elements
based on exact power exchange between fluid and structure, recently proposed by the authors,
is extended to include the effect of the turbulent component of the wind. In non-turbulent flow
vortex-induced vibrations of lightly damped structures are found on two branches, with the high-
est amplification on the low-frequency branch. The effect free wind turbulence is to destabilize
the vibrations on the high amplification branch, thereby reducing the oscillation amplitude. The
effect is most pronounced for very lightly damped structures. The character of the structural
vibrations changes with increasing turbulence and damping from nearly regular harmonic oscil-
lation to typical narrow-banded stochastic response, closely resembling observed behaviour in
experiments and full-scale structures.

1 INTRODUCTION

Vortex-induced oscillations play an important role in the design of slender structures ex-
posed to fluid flow. It is commonly observed that if the natural vortex shedding frequency,
determined by the fluid flow velocity via the Strouhals relation and the eigenfrequency
of the structure are close, the structure may develop oscillations that control the vortex
shedding frequency, and this syncronization may lead to large oscillation amplitudes in the
so-called lock-in interval. The resonance amplitude depends on the structural damping,
the free turbulence, and for smooth structural shapes on the Reynolds number. It has
been found experimentally e.g. by van Koten (1984) that in turbulent flow very lightly
damped cylindrical structures may develop amplitudes up to around half the diameter in
nearly harmonic oscillation. With increasing damping the amplitude is decreased and the
response changes gradually towards nearly linear Gaussian response.

Vickery & Basu (1983) have proposed a model equation for the stochastic response during
lock-in. The wind excitation is assumed in the form of a narrow-band Gaussian process,
and the self-limiting amplitude is obtained by assuming that the aerodynamic damping is



negative for small oscillations and increases quadratically with amplitude. This model ha
been fitted to full scale observtions on chimneys by Daly (1986) and is used in simplifie
form in the National Building Code of Canada (1990). An important point is the mode
parameters, and their dependence on Reynolds number and turbulence. In the study b
Daly (1986) only dependence on the Reynolds number was assumed. However, it appear
that structures that have developed severe vortex-induced vibrations may have experience
years of service without vibration problems. The incidents of severe vortex-induced vibra
tions seem to be associated with atmospheric conditions with low turbulence intensity
Dyrbye & Hansen (1997).

The present paper extends a double osciallator model for vortex-induced vibrations, re
cently developed by the authors for non-turbulent free flow, Krenk & Nielsen (1996), t
flow with free turbulence representing e.g. natural wind. The double oscillator model i
based on exact energy exchange between fluid and structure, and it predicts two differen
modes of oscillation in the lock-in regime leading to hysteresis effects when the wind speec
passes up and down through the lock-in interval. This behaviour is also observed in ex
periments e.g. by Feng (1968) and Brika & Laneville (1993). The effect of the turbulenc
is to destabilize the mode with the highest amplification, thereby reducing the respons
amplitude, and for higher turbulence intensity to change the self-excited harmonic respons
to stochastic narrow-banded response with changing amplitude.

2 DOUBLE OSCILLATOR MODEL

Figure 1 shows cylinder of length [ and diameter D suspended by linear springs in ¢
fluid flow with mass density p and total fluid velocity U; = U + u(t), where U is the
undisturbed mean-flow velocity and wu(t) is the turbulent velocity component. The cylinde:
can move in the transverse direction with displacement X (i). The sum of the structura.
and added fluid mass is mg. The structural stiffness is represented via the undampec
circular eigenfrequency of the oscillator wy. The structural damping is modeled as a linea
viscous with the damping ratio (g.

x(t)

~D/2S

Fi1G. 1. Vortex-induced vibrations of cylinder in cross-flow.
The oscillating fluid in the near wake of the cvlinder is modelled phenomenologically as a
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single degree of freedom non-linear oscillator of the van der Pol type, where the sign of the
damping term, which serves as the power supply to the integrated system, is controlled
by the mechanical energy of the fluid as proposed by Hartlen & Currie (1970). Several
proposals have been made for the form of coupling between the solid an fluid oscillator,
e.g. Iwan & Blevins (1974). Recently the authors proposed a model in which the coupling
is prescribed such that the energy exchange between the two oscillators is balanced at
all times, Krenk & Nielsen (1996). The governing equations for non-turbulent flow were
derived from dimensional analysis in the form

mo{j\;Jrz(,-owu/\"-l-ng] = %pUzDI%", (1)
2 r2 2 s

ma[ W — 2C,w,(1 —W+TM)W+W3W] = —%pU""Dl%'y (2)

o

~ is a non-dimensional coupling parameter, and the quantity yW /U’ may be considered as
a time-dependent lift-coefficient. The velocities X and W are normalized with respect to
the wind velocity U. my is a generalized mass proportional to the fluid mass density p and
the volume of the cylinder. The proportionality factor can be absorbed in W and 7, so the
equivalent mass can be set to m, = pD?l. The natural frequency of the cylinder is defined
as the circular Strouhals frequency w, = 2xSU/D, where S ~ 0.2 is the Strouhals number,
indicating the circular shedding frequency on a fixed cylinder in laminar flow. In this case
the exact solution to the fluid oscillator equation is W(1) = wpgsin(w,t + ), with the ar-
bitrary phase ¥. Hence wyg is the amplitude of the fluid oscillations on a fixed cylinder in
Jaminar flow. The power supplied to the mechanical oscillator becomes %prDlWX'y/[L
which exactly balance the power extracted from the fluid oscillator. Previous double oscil-
lator models have not met this power flow condition.

2.1 FEquations for turbulent flow

The effect of the turbulence is to modify the right-hand side of the equations by introduction
of the instantaneous wind pressure $pU? and by evaluating the Strouhals frequency in the
fluid oscillator stiffness term by use of the instantaneous wind velocity {/;, whereby the
fluid ‘stiffness’ takes the form w?(1 + u(t)/U/))?. The fluid damping term was devised to
supply a typical rate of energy and is not known in sufficient detail to warrant more detail.
The equations including turbulence then are

. . t i/
mo[ X 4 20owo X + wiX] = 1pU’DI(1 + %)2%7 (3)
- ¢! T 5 P 2
my[W —2Cw,(1 — W%W)sz(l % ”((—f)}"wl = —LpUDI(1 + El(,i})z%v (4)
0 / J



The following non-dimensional variables are introduced for the structural and fiuid dis
placement.

X W
Y = = \ V= — 5
D W (&
The equations (3)-(4) can then be written
Vo 20w +wlY = peews(l + RV (6
V= 2w 1 = V2 = (Vw2 ]V + (1 + RUNV = —o32ew,(] + RV (7)
with the lollowing non-dimensional quantitics
wy my ph?il
My = — Ity = =
D 1 i ()
wy Y w(l)
= — — Rt) = 2—=
D AnS i) {

its 18 Lhe mass ratio, and e is a rescaled coupling cocellicient proportional to the amplitude
of the lift coeflicient. Tu (6)-(7) the turbulence intensity is assumed sulliciently small to
justify the omission of quadratic terms in w(f), and the turbulence is therefore represented
by the non-dimensional stochastic process [2(1).

2.2 Harmonic respounse for non-lurbulent flow

In the absence of turbulence, i.e. for w(l) = 0, the response can be represented by the
harmonic approximation

y = Asin(wl) : v = [sin{wl) ("

The lrequecy ol oscillation w is determined by the Strouhals frequency w,. The inverse
relation giving wy as [unction of w is, Krenk & Nielsen (1996),
Wo

Wy g w)?
[;:):(w_u) W N e B AT W,
(1= ) + 1= () (1= (299)
Wa ] Uy wy wa
The amplitudes can then he found as

2 - B
B (1 ke “’) (1)

(1= 1)+ aqy

(10)

w? + Jw? T Cw, wd — w?
Jhs € Bt 9. 5
A = Wy Wy (12)
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Fic. 2. Response [requency branches.

Representative values of the maodel parameters are ¢ ~ 0.10 and ¢ ~ 0.010. Figure 2 shows
typical lrequency branches for a very lightly damped system with g = 0.05, ¢ = 0.0005,
and vy, = 0.26. The corresponding amplitude curves arve shown in Fig. 3.

The ligures show two solutions with distinetive resonance when the Strouhals [requency
is close to Lthe natural structural freqency. The solutions are limited by the condition
132 > 0. A stability analysis carried oul in Krenk & Nielsen (1996) shows that the low
frequency branch is only stable for [requencies lower than an upper limit approximately
equal 1o the peal amplitude frequency. Similarly the high frequency branch is only stable
[or frequencies above a frequencey corvesponding approximately to the peak amplitude of
this branch.

3 THE TURBULENCE PROCESS

The non-dimensional turbulence process R(1) is here used to represent. the rapidly fluctu-

ating part of the natural turbulence. This is the part of the turbulence that leads to a

maodilied stationary rsponse, while low {requency components may lead to transients when

entering and leaving lock-in intervals of limited length. The turbulence process 12(1) is

introduced in the form of an Ornstein-Uhlenbeck process with the stationary covariance
7|

nn(7) = Ufl.(‘xp - (13)

s

[unetion

where oy is the standard deviation and 7. the correlation time scale. The turbulence
= : - i 1
intensity is defined by f, = o, /U = 300

The response analysis is based on Monte Carlo simulation. The broad-banded turbulence
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FiG. 3. Harmonic amplitude versus frequency.

process R(t) is simulated from the [t6-differential equation

dR(t) = VTLR(t)rlt + \/Tzog dW (t) (14)

where dWW(t) is the increment of a unit intensity Wiener process.

The reference time is the ‘Strouhals period’ T, = 2w /w,, representing a typical oscilla-
tion period. The correlation time 7. is chosen to be ‘short’ relative to 75, 7. = T,/50.
The simulation interval At of the process dW(t) was At = T,/250, corresponding to
At= %'rf, and the simulated points connected by a broken line as suggested by Clough
& Penzien (1975). The response was obtained by introducing the state space veclor
[Y(t],)"’(t),V(t),f/{t),R(t)] and integrating the differential equations (6), (7) and (14)
with a 4th order Runge-Kutta scheme using the time-step Af. By this integration scheme
the response to rapid fluctutions are represented with good accuracy. The probability den-
sity fy(y) and the standard deviation oy are obtained from ergodic sampling over a Lime
interval of length 10°T}, following an initial interval of length 3 - 107} to allow for decay
of transients due to initial conditions. The probability density function was sampled with
301 classes of equal length covering the interval [—4oy, 40y ] for an estimated value of oy

4 RESPONSE CHARACTERISTICS

In the absense of turbulence two near-harmonic solutions exist in the frequency interval
between the peaks of the amplitude curves in Fig. 3. The effect of turbulence is illustrated
in Figs. 4 and 5, showing the simulated probability density function fy(y) at mean wind
speeds corresponding to the Strouhals frequencies w,/wy = 0.9,0.95,1.0,1.05,1.1,1.15 for
turbulene intensities o, /U = 0.02 and 0.10, respecively. At low turbulence intensity the
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F1a. 4. Probability densities, {, = 0.0005, o, /U = 0.02.

response retains a nearly harmonic character and around the resonance frequecy two so-
lutions exist, as in the non-turbulent case. In the imulation study the two solutions arc
obtained by using the initial conditions Y (0) = V(0) = V(0) = 0 together with either
Y(0) = 1 or 0. Segments of the corresponding time histories are shown in Figs. 6a and
6b for ws/wp = 1.05. The mean amplitudes correspond closely to the deterministic val-
ues predicted by Fig. 3. The resonant solution remains most regular. This confirms the
experiental observaion of Goswami et al. (1993), who found only little effect of turbu-
lence of this low intensity. When the turbulence intenity is increased the upper branch
is destabilized and the response changes character from slightly perturbed harmonic to
narrow-banded stochastic response containing also very small amplitudes as shown in the
probability density functions fy(y) in Fig. 5 and the time history show in Fig. 6c.
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5 CONCLUSIONS

A recently developed energy balanced double oscillator model has been used to investigate
the effect of turbulence. Two effects were identified: turbulence tends to decrease the re-
sponse by destabilising the most resonant branch, and with increasing turbulence intensity
the response changes to typical stochastic narrow-banded with varying amplitudes.
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