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RESPONSE OF NON-LINEAR SYSTEMS
TO RENEWAL IMPULSES BY PATH INTEGRATION

S.R.K. Nielsen
Department of Building Technology and Structural Engineering
University of Aalborg, Sohngaardsholmsvej 57, 9000 Aalborg

Denmark,

and R. Iwankiewicz
Institute of Materials Science and Applied Mechanics
Technical University of Wroctaw, Wybrzeze Wyspianskiego 27, 50 370 Wroctaw
Poland

Abstract

The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear
and non-hysteretic systems subjected to random trains of mpulses driven by an ordinary renewal
point process with gamma-distributed integer parameter interarrival times (an Erlang process).
Since the renewal point process has not independent increments the state vector of the system,
consisting of the generalized displacements and velocities, is not a Markov process. Initially it
is shown how the indicated system can be converted to an equivalent Poisson driven system at
the expense of introducing additional discrete-valued state variables for which the stochastic
equations are also formulated. Thereby the original non-Markov system is converted into an
equivalent system which do possesses the Markov property. Next the integro-differential master
equation governing the probability density of the response of the equivalent Markov system is
solved by means of path integration technique. The idea is to consider the transition times of
the resulting Markov chain, for which at most one impulse is likely to arrive. The convection
and lumping of the probability mass is determined by a method devised previously by Koylioglu
and the authors for Poisson driven systems, which has been suitably modified with due account
to the artificial, auxiliary, state variables introduced in the description. The method has been
applied to the Duffing oscillator, and the results for the stationary probability density function
have been compared with those obtained from extensive Monte Carlo simulations.

Key words: non-linear systems, random vibration, random impulses, renewal point pro-
cess, path integration, cell-to-cell mapping

1 Introduction

In some problems of engineering the excitation, or its discontinuous component, may be char-
acterized as a train of pulses arriving at random times.

In the simplest approach such excitations may be regarded as Poisson-distributed trains of
impulses, in which case the impulses occurrence times are generated by the Poisson counting
process. The problem of non-linear dynamical systems subjected to Poisson-distributed ran-
dom impulses was dealt with by Roberts (1972), who proposed a perturbation solution to the




generalized Fokker-Planck-Kolmogorov equation governing the response probability density in
that case. Tylikowski and Marowski (1986) applied the equivalent linearization technique to
such a problem, using the exact moments of the response of the linearized system.

For non-linear systems with cubic non-linearity subjected to Poisson-distributed random
impulses the moment equations technique combined with an ordinary cumulant-neglect closure
technique (Iwankiewicz and Nielsen 1992), or with a modified cumulant-neglect closure tech-
nique (Iwankiewicz et al. 1990) has been developed. In the paper (Iwankiewicz and Nielsen
1994) the technique of moment equations has been extended from a Poisson to a renewal im-
pulse process, with gamma distributed, with k£ = 2, interarrival times of impulses (an Erlang
process with k£ = 2). The renewal impulse process has been recast, with the help of a random
telegraph process, as a transformation of a stationary Poisson counting process. This allowed
to effectively average the differential rule and to derive the equations for moments. In the paper
(Nielsen et al. 1995) the moment equations technique has been further extended, using a differ-
ent technique,-to the whole class of renewal driving processes, with gamma distributed,with an
arbitrary integer parameter k, interarrival times. Suitable (sine and cosine) transformations of
the Poisson counting process, which only assume discrete values, are introduced as extra state
variables. Such an approach allows to recast renewal driven system into an equivalent aug-
mented dynamic system driven by a compound Poisson process. At the expense of augmenting
the state vector by the additional, discrete-valued, variables the original non-Markov problem
has thus been converted to a Markov one.

The main disadvantage, or shortcoming, of the moments equations technique for Poisson
driven problems is that it fails for the trains of impulses with low mean arrival rates (Iwankiewicz
and Nielsen 1992, 1994), (Iwankiewicz et al. 1990), (Nielsen et al. 1995).

Instead, the numerical solution of the generalized Fokker-Planck-Kolmogorov equation gov-
erning the probability of the response may be attempted. For example Cai and Lin (1992)
developed a perturbation technique based on known exact solutions for the case of the Gaus-
sian impulsive noise. Another approach is to solve the integro-differential analogue of the
Kolmogorov backward equation with the help of a Petrov-Galerkin method (Koylioglu et al.
1994a). However the latter approach is also suitable only for relatively dense trains of impulses.

Cell-to-cell mapping technique for the problems of Poisson driven systems has been devised
by Kéylioglu et al. (1994b, 1995). The idea due to Sun and Hsu (1988, 1990) has been used to
discretize the state space and hence to convert the continuous Markov process to a Markov chain
problem, and the transition probability matrix has been constructed based on the assumption
that for sufficiently small transition time interval the approximate transition probability density
may be eavaluated by neglecting the probability of occurrence of more than one impulse in this
time interval. Next the suitable scheme is devised of convecting and diffusing the probability
mass in the state space (Koylioglu et al. 1995). An alternative, more effective version of
the cell-to-cell mapping technique for the problems of Poisson driven systems, was developed
Koyliioglu et al. (1994b), which consists in expanding the convection term as a Taylor series in
the random impulse magnitude. The random waiting time disappears from the equations at the
expense of increasing the number of initial value problems for all Taylor-expansion coeficients,



which must be solved numerically.

In the present paper the renewal driven system is first converted to a Poisson driven one,
using the same approach as in (Nielsen et al. 1995). Next, the cell-to-cell mapping technique
is applied to solve the master equation of the resulting Markov problem. The approach is
basically the same as in (Koylioglu et al. 1994b). However, significant modifications need
to be introduced with due account to the auxiliary state variables. The numerical example
concerns the Duffing oscillator subject to renewal impulses with gamma distributed, with k = 2,

interarrival times.

2 Governing stochastic integro-differential equations for.
a class of renewal driven non-Markov response prob-

lems.

Consider a general multi-degree-of-freedom non-linear dynamical system under a random train
of impulses driven by a renewal point process. The state vector of the system, Z;(¢), consisting
of the generalized displacements and velocities, is governed by the set of equations of motion

i

R(1)

%Zl(t) = C (Zl(t), t) + dl(Zl(t),t) Z P ré (t — ti,R) , t>to,
Zi(to) = 210, (1)

where ¢; (Z1(t),1) is the drift vector, d1(Z1(t),¢) is an analogue of the diffusion vector in white
noise driven problems and z; o denotes the initial values of the structural variables at the initial
time to.

The occurrence times t; g of Dirac delta impulses are distributed according to an ordinary
renewal counting process {R(t),t € [0,00[},Pr{R(0) = 0} = 1. The mark variables P; g
are assumed to be independent, identically distributed, random variables, independent of the
occurrence times t; p and having the distribution as a random variable P. It is obvious that
since the renewal process is not a process with independent increments, the state vector Z;(t)
governed by the equation (1) is not a Markov process.

Let us confine the considerations to a class of Erlang renewal processes, i.e. the ones
for which the interarrival times X, = ¢, — t,_; are independent, gamma distributed random
variables, i.e. X, ~ G(k —1,v), with the probability density function given by

Fxa(t) = v5t* Vexp(—vt)/(k - 1), >0, (2)

where £ = 1,2,3,.... The case k = 1 corresponds to a negative exponential density function,
hence it is the case of a Poisson process. Since the gamma distributed random variable with pa-
rameters (k— 1, v) has the same distribution as the sum of k independent, negative exponential




distributed random variables, with parameter v, the events driven by an Erlang process with
parameter k& can be regarded as every kth Poisson events, taken out of a stationary Poisson
process with the mean arrival rate v, cf. e.g. (Osaki 1992).

The idea is to recast the renewal-driven impulse process, or the excitation term of the
equation (1) in such a way as to obtain a non-zero impulse magnitude for every k, 2k, 3k, ...
i.e. every kth Poisson event and zero magnitudes for all other Poisson events. The Poisson
counting process {N(t),t € [0,00[} is defined as the number of events in the time interval [0, ¢[,
hence the additional assumption is made: Pr{N(0) =0} = 1.

Hence the governing stochastic equations should be converted to the form of

d N(t)

ﬁzl(t) = ¢1 (Z1(1), 1) + di(Z1(2), 1) D p(N (4:))Pi6 (t — 1), (3)

g2

where p (N(t;)) is the required transformation of the Poisson counting process N(t;), such that
p(N(t;)) = 1 for every kth Poisson event and p (N (t;)) = 0 for all other Poisson events, N(t;)
being the number of past Poisson events, not including the one which occurs at the time t,.

The stochastic integro-differential equations governing the system state vector can then be
written as

L) = @ (T, ) d+ (B 0,00 (N() [ pM(dt,t,dp,p) ()

where M(dt,t,dp,p) is a Poisson random measure (Snyder 1975), which gives the random
number of impulses in the time interval [¢, ¢+ dt[ with the random magnitudes from the interval
[p,p + dp[. The expectation of this measure is, in the case of the stationary Poisson process

E[M(dt,t,dp,p)] = vfp(p)dtdp, (5)

where v is the constant mean arrival rate of impulses and fp(p) is the probability density
function of the random impulse magnitude P.

3 Converting the non-Markov problem to a Markov one
by suitable recasting of the excitation process.

The transformation satisfying the required property is found to be

k-1 . k-1
AN = 1 e (e ) 25, )

j=0

by = (eI N D) "

For N(t1) =0,1,2,...,k — 1, U; is the Finite Fourier Transform of the k-dimensional sequence
{0,0,...,0,1}. From the periodicity properties it follows that
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1, for N(t)=k—-1, 2k—1, 3k—1,...
vy ={ 5 > & MO

which means that p(N(t)) =1 as every kth Poissonian impulse arrives.
Seeing that U; = U}_., where * denotes the complex conjugate, the right-hand side of (6)
can be evaluated as

(8)

-3

%(1+U1+...+Uko_1+U,’:D_1+...+U;‘) , for k odd
N = 3 F
E(H—Ul+...+Uk0_1+Uk0+U,:O_1+...+U{) , for k even
1 ko—1
E(1+220j>  for k odd
=3 = (9)
—l;(l +2 Z C; +Cko) , for k even
i=1
where a1
+
[...] being the integer part and
N(#)+1
C;(t) = R(U;) = cos (271']( (k) T )) , 7=1,2,...,ky—1, (11)
Silt) = S{l;) = sin <2WM(ZL*-—Q> , 7=1,2,...,ky—1, (12)

Cio(t) = exp (im(N(2) + 1)) = (=1)V O+ = cos (W(N(t) + 1)), for k& even.  (13)

It should be noticed that these transformations of a Poisson counting process N(t) are
all discrete valued random processes. For example in the case £ = 2, Ck,(t) = Ci(t) =
cos (W(N(t) + 1)) = (—1)N®+ only takes values C;(t) = 1 and Cy(t) = —1.

These transformations will be regarded as additional, auxiliary, state variables. The stochas-
tic equations for these variables are obtained from

N(t +kdt) + 1)) ) exp'(izwj(jv(z;) + 1))

dUJ’(t) = U]-(t—.Ldt)—Uj(t):exp (’LQW’J(

(A o 004 1)
— U(t) (exp (z’Zn%dN(t)) _ 1) | (14)




The increment dN(t) of the regular counting process can be either 0 or 1, with non-vanishing
probabilities. Equation (14) can then be written as

dU;(t) = U;(1) (exp <i27r2—;> - 1) dN(t), 7=1,2,...,ko. (15)

The equivalence of (14) and (15) follows from the fact that the right-hand sides give the same
result for both dN(¢) = 0 and dN(¢) = 1.
Specifically, the equations for the real and imaginary parts become

dCi = <C’j (COS (271'%) - 1) — S;sin <27Tl)> dN(t), 7=1,2,...,ko — 1, (16)

k
ds; = (C'jsin (2%%) +5; (cos (2#%) —1))dN(t), 7=1,2,..., ko — 1, (17)
dCr, = —2Ck,dN(t), for k even. (18)

It is seen that the additional state variables have been introduced:C}, S; and for k even also
Ck,- The state vector augmented by these new variables is governed by the stochastic equations

dZ(t) :c(Z(t),t)dt+/Pd(Z(t),t,p)M(dt,t,dp,p), (19)

(20)
where for k£ even
SR [ Cl<cos(27r%)— ]) — Sysin(2mg) ]
S, Cysin (271) + Sl(cos (27 ) — 1)
Cs Cz(cos (2r2) — l) + Sy sin (272)
52 Cysin (272) + Sz(cos (2r2) — 1)
Z2(t) = ’ d'Z(ZQ(t)) = . ) (21)
gko‘l Chro-1 (cos (27rl‘—'°f—]) - 1) — Sky—18iD (ZWEEkLI)
é?k—] Cho—15in (2rfe=l) 4 Sko_l(cos (2mke=ly — 1)
. i ~2C}, ]




and for k£ odd

C o T [ Cl(cos (271'%) — 1) — S sin (271'%)
S, Cs sin (27r—1k-) + Sl(cos (2rg) — 1)
(% C’z(cos (2%%) - 1) + Sy sin (2%%)
TS Cysin (2r2) + Sz(cos (2r2) — 1)
Zy(t) = c ], da(Z2(2) = ; - (22)
gko‘l C’ko_l(cos (2mfo=ly — 1) — Sko—18in (2rE=L)
- Tkt | Co-15in (2rf=1) 4 Sko_l(cos (2rke=l) — 1) |

The state vector Z(¢), augmented by additional, auxiliary state variables, as governed by
equation (19) is driven by a Poisson process, and hence it is a Markov vector process. The struc-
tural state variables (generalized displacements and velocities) Z;(t) are continuous, whereas
the auxiliary state variables Z,(t) are all discrete.

The transition probability density q(z)(z, t|zo, to) of the non-diffusive, Poisson driven Markov
vector process Z(t) is governed by the following integro-differential master equation obtained
from the general forward integro-differential Chapman-Kolmogorov equation [see (Snyder 1975)
and (Gardiner 1985)]

0 0
Eqm(z, t|zo, t0) = — Z a—zl_[cz-(z, 1)q4z)(2, t| 2o, to))

1 (23)
+V/ [Q{Z}(a(zapv t)v t[Z07 to)l_j]_ - Q{Z}(Z, tlZo, to)] fP(P)dP,
D
where Bl (a .0
a Z7p7t 7t
jzdet<I+———————), 24
= (24)
and a(z,p,t) defined by
y = a(z,p,t) (25)
is the inverse transformation of
z=y+d(y,p;1) (26)

and aa—;f is the gradient of d(y, p,t) with respect to y.
The joint probability density fiz}(z,1) of the state vector Z(t) is governed by the same
equation, (Iwankiewicz and Nielsen 1995), cf. also (Renger 1979)

%f{Z}(Z7t) = - Z gi_[ci(zﬂt)f{Z}(Z7t] + VP/ [f{Z}(a(z7p7t)’t)—’_}'l' - f{Z}(Z7t) fP(p)dp' (27)

7 3




4 Cell-to-cell mapping technique for the Poisson-driven
problem with the state dependent diffusion vector

Let q?é)}(z, t1]Zo, to) be the transition probability density function of the state vector from the
state Z(tp) = 2o on condition of exact n impulse arrivals in the time interval [to, %[, and let
Piny(n,t1|N(to) = 0) denote the probability function of exactly n arrivals in this time interval.
Using the total probability theorem the unconditional transition probability density function

can then be written as

4(z3(2, t1]20,t0) = 3 Py (n, 1[N (to) = 0)q{3) (2, t1|2o, to)- (28)

n=0

The conditional probability function for the stationary Poisson process is given as

Pwvy(n, 11N (to) = 0) = &n‘!—t@iexp (=iliy = 15)]) s (29)

q?;)}(z, t1|2o, to) describes the purely deterministic drift of the system from the state Z(¢y) =
7o, since the states are conditioned on no impulse arrival. The structural state variables Z;(¢;)
are chahged only because of the eigenvibration of the system. The auxiliary state variables

Z,(t,) remain constant at their initial values Z,(to) = 2z,0, since these variables are only

changed at Poisson impulse arrivals. Then qg}(z,tllzo,to) is given as

q}%(z,tlle,to) = 5(21 - 61(t1|20,to)) - ‘5(Zn - en(tllzmto))a (30)

where e(t1|zo, o) with the components e;(21]2o, t0) denotes the deterministic drift motion of the
system from the initial state zo at the time ¢5. The vector e(t|zo, o) consists of the subvectors
e1(t|z1,0,%0) and ey(t|z2,0,t0) = Z20 corresponding to structural and auxiliary state variables,
respectively. The vector e;(|z1,0,%0) is the solution of the initial value problem originating from

(1)

0
ael(tlzl,mto) = (81(1[21,07?50),1), t > to, ei1(tolz10,t0) = 21,0 (31)

The vector e;(t|z1,0,%0) may be obtained analytically for linear systems depending on a
fundamental basis of solutions can be found. This is the case of linear vibratory systems,
where modal decoupling can be used. For other linear systems and for non-linear systems the
numerical integration of (31) is necessary.

The remaining conditional transition probability density functions, qg%)}(z, t1|Zo, o), n > 1,
are all continuous functions without delta spikes, and of the same order of magnitude. Since
Piny(n, 11| N(to) = 0) = O((UAL‘)”),At = t; — to, it follows, that (28) can be written as

9(2}(2, t1]20, t0) = Po(hIto)qg}(z,izIZo,to)Jr
(32)
(1= Poltalto) ) gl (2 ta]z0, to) + O((vAL)"),
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Po(t1]to) = Povy(N (1) = 0[N (to) = 0) = exp (—v(ts — o)) - (33)

The asymptotic relationship (32) forms the basis for cell-to-cell mapping methods for pulse
excited systems (Koylioglu et al. 1994b, 1995). The specific formulation ensures that upon
chopping the remainder (32), the quality of a genuine (actual) probability density function is
preserved, i.e. the integral of the function over the sample space is exactly equal to one, for
any choice of the transition time interval At = t; — ¢o. Further, it is important to notice that
the remainder depends on the magnitude of the product vAt, rather than of the interval length
At = t; — tg itself. Truncation is permitted if

vAt << 1. (34)

For any finite transition interval (34) is more easily fulfilled for sparse pulse trains (v << 1)
than for the dense pulse trains, hence in contrast to the moment equations method for Poisson
and renewal driven impulses (Iwankiewicz and Nielsen 1992, 1994), (Iwankiewicz et al. 1990),
(Nielsen et al. 1995) and the Petrov-Galerkin finite element formulation (Koylioglu et al.
1994a), which both work well for rather dense pulse trains and run into numerical instability
for sparse pulses, the cell-to-cell mapping technique appears to be especially effective for sparse
pulses and less effective for dense ones (K&ylioglu et al. 1994b, 1995). On the other hand the
coarse size of the mesh sets lower bounds for the admissibility of the transition time interval,
At. This is so, because the distribution of the convected probability masses to the adjacent
nodes in the mesh cannot be done accurately, if At = t; — £y is too small.

At the determination of qilz)}(z,tﬂzo,to) the state is conditioned on exactly one impulse
arrival in [to,?1][. The arrival time (waiting time) T', of this impulse is uniformly distributed in
the interval [to,1[, and hence it has the probability density function, (Osaki 1992)

fr(r) to < T <. (35)

Cti—t

Assume that the impulse arrives at the time 7' = 7 and has the strength P = p. Up to
the time 7 the system has been performing eigenvibrations in the structural state variables
from the initial state z; o at the time ¢y and the auxiliary state variables are kept constant at
their initial values 2,0, hence p(N(7)) = p(N(to)). Then the state at the time 7~ is given by
Z1(77) = e1(7|z10,%0) and Zy(77) = 230. At the time 7 a discontinuous change of the state of
magnitude given by AZ;(7) = p(N(to))d1(e1(7]21,0,%0), 7)p and AZy(7) = dy(z2,) takes place,
so the state at the time 7% becomes Z;(71) = e1(7]21,0,%0) + p(N(t0))d1(e1(7|21,0,%0), T)p and
Zy(t%) = 230 + d2(22p0). This implies a discontinuity in the generalized velocities and in
the auxiliary variables, whereas the generalized displacements remain inaffected. Succeedingly,
during the time interval |7, ;] the auxiliary variables are kept constant at the value z, o+d3(22,0)
whereas the system continues performing eigenvibrations in the structural state variables with
the initial values Z;(7%), so the state at the time #; is

Z1i(t1) = evi(talea(r]21,0,t0) + p(N (to))d1(es(7 |20, t0), T)p, 7). (36)




Obviously the following identity can be formulated for the structural components of the
deterministic drift, for any 7 € [to, ¢1]

el(tl‘el(rlzl,o,to),r) =e; (h]zl,o,to)- (37)

The left- and right-hand side of (37) just state that the oscillator arrives at the same position
at the time t, if it starts on the very same trajectory at the place e;(7|21,0,%0) at the time 7 or
at the place e;(to|21,0,%0) = Z1,0 at the time . Assume that d;(z:(t),t) can be assumed to be
constant in the interval [to, ¢;[ at its initial value d; = d1(21,0, to) with sufficient accuracy. Using
(37) the following Taylor expansion in the diffusion vector p(N(to))d1(21,0(t1),1))P dependent
on the random time 7 then prevails, (Koylioglu et al. 1994b,1995)

€1 (tl'el(ﬂzl,o, to) + p(N(to))dlp, T) =

- 2n QJeq (t1|e1(7|2z1,0,t0), T
81(t1|31(TlZ1,0,t0),7‘)+p(N(tO))PlZ: ( ‘ (] ),7)

ex (o0 6) + o (N ()P Y Be (e to)
=1

p?2n 2n Hley tll_zl,OatO
3 35 Zelilnn o)

l=1 =1

e (tllzl,o,to) + p(N(to))egl)(tlizl,o, to)P ¥ p(N(to))e§2)(t1‘z1,0,to) P4 ..

dlyl-f—...:

0z 0,1

d (38)
) 1t

dl [d] m + cee =
azl,O,lazl,O,m

2n 8e1 (tl |Z1,0, tg)

egl) (t1’Z1,0,to) = g aZLO’l dlyl(Zlyo,to) (39)
1 2n 2n 0% (t1]z1,0, t0
egz) (t1lzl,o,to) — 52 Z 821(016Zl0m dl,l(zl,oatO)dl,m(Zl,O,to) (40)

=1 m=1
where it has been taken into account that p(N(to)) = p*(N(to)) = p*(N(to)), for any s, because
p(N (o)) can only assume values 0 or 1. The state of auxiliary state variables at the time %,
determines which of the two values is attained. Hence p(N(tp)) is merely a function of z; .
Equation (38) is basically a Taylor expansion in the impulse magnitude P for the change
of the structural state variables. At the same time the auxiliary state variables have changed
from z o to Z20+ d2(2z20). 1t is remarkable that the random time 7 at the left-hand side of (38)
has totally disappeared at the right-hand side. Instead the unknown Taylor expansion vectors
el,eg ,... appear. Differential equations for these quantities can be derived upon multiple
partial differentiations of (31) with respect to z; and subsequent contractions with respect to
di(z10,1%0) as follows

10



Kl <8e1(tlzl,o,to)) 3 ocy (el(t‘zl,o,to),t) ael(t’zlyo,to) Oeq (tolzl,o,fo)

at 0z1, B ozT 0z1, ’ 0z, L=
0 (1) 8c1 (el(tlZ1,07t0),t) (1) (1)
a—tel (tlZLO,tO) = azf €4 <t‘Z1,o,to) , €4 (tOIZLO’tO) = dl(zl,07t0),
'aa—tegz) (t’Zlyo, to) = 8(: (EI (tgzzl,llg, tO)’ t) egz) (t‘Zl,o, to) + (41)
1
%820(e;3(:'TZ81;q:t0),t) egl)(t'zl,o,to)egl)<t'Z1,o,to) e (to'zl,o,to) o,
1 1

where the partial differentiation with respect to the forward state z; concerns the drift vec-
tor ¢;(z1,t). Relationships (31) and (41) represent a coupled system of 2n 4+ 2n + 2n + ...
non-linear 1st order differential equations for the determination of e; (tlzl,o, to) , egl) (t‘zl,o, to),

el (t|z1,0,t0) - - -

For a linear system the drift vector is a linear function of the state vector, hence —azl—ggz—Tcl (z1,1)
= 0. Due to the homogeneous initial values e§2) (toIZ1,0, to) = 0, then (41) provide the solution
egz) (t'zl,o,to) = 0. Generally, it can be shown, that egN)(tlzlvg,to) =0, N > 1, in this case.
Consequently, the Taylor expansion (38) becomes linear in P for linear systems.

At small transition time intervals c;(z1(t),?) can be approximated by a locally linear func-
tion. Since this approach works well even for rather large time steps in case of white noise
driven systems, (Koylioglu et al. 1994b), (Sun and Hsu 1990), it will also do so in the present
case of compound Poisson driven systems. Consequently, it can be concluded that one can
chop all terms higher than the 1st power in P in the expansion (38) with pretty good accuracy
independently of the magnitude of P.

In case of cell-to-cell mapping technique the state space of the structural state variables
Z,(t) is discretized using a rectangular mesh with a grid width Az, (Az11 = Ay, Az 5 = Ag),
as shown in fig.1. The auxiliary variables are already discrete as mentioned, hence their state
space it is just a discrete set of specific values, which can be simultaneously assumed by different
auxiliary state variables. Consequently the entire state space can be represented as a set of
phase hyperplanes, one for each combination of the additional state variables. For example
in the case k = 2 the auxiliary state variable only assumes values —1 and +1 and the entire
state space consists of two phase hyperplanes. In the case of k = 3 there is a set of three pairs
of values assumed independently by two auxiliary state variables, hence there will be 3 such
hyperplanes.
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Fig. 1. Discretization of the state space for the case £ = 2. Convection and lumping of the
probability mass.

The convection and diffusion of the probability mass is illustrated in fig. 1 for the case
k = 2. The particle is localized in the structural variables state space (hyperplane) at the
nodal point z; x, either at the hyperplane Ci(tp) = +1 or C;(fg) = —1. Assume a probability
mass 7r,(co) is present at the node z;. The probability mass Po(t1]to)m} () is then convected
to the position ej(t1|z1k,%0) at the hyperplane Ci(#o) and redistributed to the neighbouring

grid points according to their distances. The remaining probability mass (1 - Po(t1|t0)) w,(co)
moves to the other hyperplane —Ci(to) corresponding to a Poisson arrival. If Ci(to) = —1,

then p(N (%)) = 0, and the probability mass (1 - Po(tllto))wl(co) at the position e;(t1]|21k,%0) at
the hyperplane Cy(to) = +1 is just redistributed to the adjacent nodes. If Ci(to) = +1, then
p(N(to)) = 1, and the remaining probability mass (1 - Po(t1|t0)) 7r,(c0) is distributed along the
line eq(t1|z1k,%0) + el (t1{21 k,to)p, p € R, at the hyperplane Ci(tp) = —1 according to the
probability density function fp(p) of the impulse magnitude. Impulses of the magnitude from
the interval [p,p + Ap[ take place with the probability fp(p)Ap. Hence, a probability mass of
magnitude (1 — Po(t1|t0)) (@ fp( )Ap is displaced to ey (1|21 k, to) + egl (t1]21,k, to)p, see fig. 1.
Again this probability mass is redistributed to the adjacent grid points of the mesh.
If it is set 7r( ) = 1, the resulting probability mass at the node j, denoted as @i, is the
element in the Jth row and kth column of the transition probability matrix Q. The probability
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7rJ(-i+1) of being in the jth cell Az; at the time ¢;,, is then given by -

it = E:Qm , j=1,...,N. (42)

Let Az; i be the volume of the mesh element centered at the structural state variables Z1 k.
The joint probability density function of the state variables then becomes

fay (e t) Az, =3 7. (43)
J

The sum of probabilities at the right-hand side of (43) is extended over all states in all
hyperplanes with the same structural state variables z; 4.
The transition of states (42) can be represented by the matrix equation

7 = Qa®) = Qi) (44)

where Q' = Q - - - Q (Q multiplied by itself 7 times), () is an N-dimensional vector of the state
probabilities 1r§:) after ith transition, and 7(®) denotes the initial distribution at the time t,.
Since the'considered stationary Markov chain is irreducible, positive recurrent and aperiodic,
the stationary distribution () may be obtained after 1nﬁn1te many transitions as ¢ — 0o, [see

e.g. (Osaki 1992)].

5 Example problem: Duffing oscillator driven by re-
newal impulses with gamma distributed, with k£ = 2,
interarrival times

Consider a Duffing oscillator, with displacement Y (¢) and velocity Y(t), where Z1(t), ¢1 (Z4(t),1)
and d;(Z(t),t) of equation (1) are given by

Zt) = [ Vo ] &1 (Bal8).1) = [ —20uweY (1) _é@( £) — ewdY(1) } ool = [ (1) } e

where ( is the damping ratio, wy is the circular eigenfrequency of the corresponding linear
oscillator and € is the non-linearity parameter.

The data assumed for the Duffing oscillator is: wp = 1s™, ¢ = 0.01, € = 0.5. With this
value of the parameter ¢ the non-linearity should be regarded as quite strong, since the mean
value and the variance of the response of the Duffing oscillator to the Poisson train of impulses
are then substantially different from the statistics of the response of a linear oscillator, [cf.
(Iwankiewicz and Nielsen 1994)].

13




Three different values of the parameter v have been assumed: v = 0.02, v = 0.2 and v = 2.

In order for the different cases of the renewal impulse proceses with different v to be comparable,

the data for the random variable P is assumed in such a way that vE[P?] is the same for all

those cases. The reason for doing so is that the variance of the stationary response of a linear

oscillator to a comparative Poissonian train of impulses, with the mean arrival rate £, as given
Y [P

9 vE

UY,O - 9 4<-w8 : (46)

is then the same. Moreover the data is assumed in such a way that o, as given by (46) has

a unit value, hence vE[P?] = 0.08 in all the considered cases. The impulses magnitudes have

been assumed to be non-zero mean, Gaussian-distributed random variables, P ~ N(op,0),

with the density function

1 ( P 47
fP(p) - omop exp 20_}23) ’ ( )
where op = 1/0.08/v, because for a Gaussian distributed random variable E[P?] = 0.

The stationary distributions have been evaluated after 60 transitions of eq. (44). The length
At of a transition time interval has been determined by inspection for different values of v. The
best choice is At = Ty, At = 0.2T,, At = 0.05Tp, for v = 0.02, » = 0.2 and v = 2, respectively,
where Ty = 27 /wy is the eigenperiod of a corresponding linear oscillator. A uniform 44 x 44 mesh
has been applied with the limits [—50y, 50v] % [—50y, 5oy ]. The stationary marginal probability
densities of the displacement and velocity response of the Duffing oscillator evaluated for three
different cases of v are given in figures 2, 4 and 6. In order to show better the behaviour of
the probability density tails the results are also given in the logarithmic scale. In addition the
results of the investigations on the suitable choice of the transition time length At are given in
figures 3, 5 and 7 for the displacement and velocity response probability densities represented
in logarithmic scale.

The ergodic sampling technique has been used for the simulations. The interarrival times
of renewal driven impulses with k = 2 are generated as the sum of two independent negative
exponential distributed random variables. The response sample curve is next obtained by
numerical integration, with the help of 4th order Runge-Kutta technique, of the homogeneous
governing equation of motion (1) between the impulses arrival times, whereas at every second
Poisson arrival the velocity is increased by a jump, which gives the updated initial condition
for the next interarrival time interval. The response sample function of a length of 40000007
has been generated, sampled with an interval At = Tp/40, which is also the time step for the
numerical integration. The same mesh was applied for the simulations as for the cell-to-cell
mapping technique.

In table 1 the standard deviations oy, oy of the stationary displacement and velocity
responses are shown, obtained by simulation and by the numerical technique (cell-to-cell map-

ping).
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v At/ T, .Y .oy

sim. num. sim. num.
0.02 1.0 0.69938 0.70703 | 0.99768 1.00295
0.2 0.2 0.75587 0.79073 | 1.00138 1.06577

2.0 0.05 0.76174 0.64546 | 1.00151 0.80115

Table 1. The standard deviations oy, oy of the stationary displacement and velocity
responses, for the considered values of v.

It is seen in the table 1 that the predictions of the stationary response standard deviations,
obtained from the numerical technique developed, are very good in the case of the lowest value
of v, i.e. v =0.02, they are still quite good for » = 0.2, but they are no more satisfactory for
v=2.

Stationary response probability densities obtained with the help of the cell-to-cell mapping
technique devised in the present paper are in a very good agreement with the results of simu-
lations for a very low value of v, i.e. v = 0.02, (hence for a very sparse train of impulses) as
it is seen in the figure 2. For v = 0.2 this agreement is also good (figure 4), but it is becomes
very bad for v = 2 (figure 6).

The optimal value of the length At of the transition time interval is determined in the case
v =0.02 as At = T (figure 4), hence vAt = 0.02T. In the case v = 0.2 it is At = 0.27 (figure
5), giving vAt = 0.04T,, which is higher than in the previous case. Finally for v = 2, for the
length of the transition time interval assumed as At = 0.027, (which also gives vAt = 0.04)
the results are very inaccurate (figure 7). An improvement is attained by increasing At up
to At = 0.05Tp, which gives vAt = 0.1T,. The value ¥ = 2 seems to be the limit of the
applicability of the cell-to-cell mapping technique developed, which performs very good for
very sparse trains of impulses, i.e. for very low values of v, cf. (K&yliioglu et al. 1994b).

6 Concluding remarks

The cell-to-cell mapping technique has been devised for MDOF non-linear and non-hysteretic
systems subjected to random trains of mpulses driven by an ordinary renewal point process with
gamma-distributed integer parameter interarrival times. A crucial, initial step is converting the
original renewal driven and hence non-Markov problem to a Poisson driven, Markov one. This is
done by introducing additional discrete-valued state variables for which the stochastic equations
are also formulated. The state vector of the system is thereby suitably augmented. The cell-to-
cell mapping technique devised for the augmented Markov system is based on considering the
transition time intervals, for which at most one impulse is likely to arrive. Next, the convection
and lumping of the probability mass is determined with due account to the artificial, auxiliary,
state variables introduced in the description. The method has been applied to the Duffing
oscillator subjected to a renewal driven train of impulses with gamma distributed with k = 2,
interarrival times. Three different values of parameter v corresponding to low arrival rates
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Fig. 2. Case v = 0.02. Stationary marginal probability densities of the response of Duffing

oscillator driven by the renewal impulse process. a) Stationary probability density function
fy (y) of the displacement response. b) Stationary probability density function fy () of the
velocity response. c) Stationary probability density function of the displacement response,

logarithmic scale. d) Stationary probability density function of the velocity response,

logarithmic scale. (- - ): cell-to-cell mapping results, (
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): simulation results, At = Tp.




In(fy (y))

In(fy (9))

1OE

-1
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time interval. a) Stationary probability density function of the displacement response, in
logarithmic scale. b) Stationary probability density function of the velocity response, in
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Fig. 4. Case v = 0.2. Stationary marginal probability densities of the response of
Duffing oscillator driven by the renewal impulse process. a) Stationary probability
density function fy(y) of the displacement response. b) Stationary probability density
function fy () of the velocity response. c) Stationary probability density function of the
displacement response, logarithmic scale. d) Stationary probability density function of
the velocity response, logarithmic scale. (- - ): cell-to-cell mapping results,

( ): simulation results, At = 0.2Tg.
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Fig. 6. Case v = 2.0. Stationary marginal probability densities of the response of
Duffing oscillator driven by the renewal impulse process. a) Stationary probability

density function fy(y) of the displacement response. b) Stationary probability density
function fy (9) of the velocity response. c)Stationary probability density function of the
displacement response, logarithmic scale. d) Stationary probability density function of
the velocity response, logarithmic scale. (- - ): cell-to-cell mapping results,

(

): simulation results, At = 0.05Tp.
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of impulses have been taken into account. Comparison of the obtained stationary response
probability densities with those from extensive Monte Carlo simulations shows the validity and
high accuracy of the cell-to-cell mapping technique developed.
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