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Neuromorphic Event-Driven Semantic
Communication in Microgrids

Xiaoguang Diao, Student Member, IEEE, Yubo Song, Member, IEEE, Subham Sahoo, Senior Member, IEEE and
Yuan Li, Student Member, IEEE

Abstract—Synergies between advanced communications, com-
puting and artificial intelligence are unraveling new directions of
coordinated operation and resiliency in microgrids. On one hand,
coordination among sources is facilitated by distributed, privacy-
minded processing at multiple locations, whereas on the other
hand, it also creates exogenous data arrival paths for adversaries
that can lead to cyber-physical attacks amongst other reliability
issues in the communication layer. This long-standing problem
necessitates new intrinsic ways of exchanging information be-
tween converters through power lines to optimize the system’s
control performance. Going beyond the existing power and
data co-transfer technologies that are limited by efficiency and
scalability concerns, this paper proposes neuromorphic learning
to implant communicative features using spiking neural networks
(SNNs) at each node, which is trained collaboratively in an
online manner simply using the power exchanges between the
nodes. As opposed to the conventional neuromorphic sensors
that operate with spiking signals, we employ an event-driven
selective process to collect sparse data for training of SNNs.
Finally, its multi-fold effectiveness and reliable performance is
validated under simulation conditions with different microgrid
topologies and components to establish a new direction in the
sense-actuate-compute cycle for power electronic dominated grids
and microgrids.

Index Terms—Neuromorphic computing, microgrids, hierar-
chical control, spiking neural network, semantic communication.

I. INTRODUCTION

M ICROGRIDS (MGs) have demonstrated their effec-
tiveness in integrating distributed energy sources and

energy storage, such as fuel cells, distributed wind and solar
generations, and microturbines with the operation both in grid-
connected and islanded mode [1]. To achieve proper coordi-
nation and maximum utilization from its components, many
hierarchical control strategies including primary, secondary,
and tertiary controls are utilized to address short and long
term objectives, ranging from system dynamics to economic
optimization in the system. As reviewed in [2], primary
control operates with inner control of distributed generation
(DG) units by adding virtual inertia. However, the lack of
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access to information from other sources makes it deviate
from the nominal operation point [3]. On the other hand,
upon deploying a communication network for information
exchange between converters, secondary controllers compen-
sate for the errors introduced by the primary control layer
and achieve coordinated objectives, such as current sharing,
voltage regulation, and power sharing. Objectives can also
be specially designed as multiple optimization problems in
complex topology as defined in [4] and [5]. The operation
cost can be minimized by optimizing the dispatch of DGs.
Meanwhile, the communication structure is also developed
from the centralized structure to a more resilient distributed
structure. Going beyond the centralized information collection,
distributed control philosophy improves the system robustness
by only requiring the states of adjacent nodes for sparsity
in achieving system-level convergence. To this end, hierar-
chical coordinated control is a unique context of MGs that
is highly dependent on communication. Predictive control in
the secondary level in MGs is an alternative for mitigating
data dropouts and latency by providing latency compensation
and modified adjacency matrix in response to electrical or
communications disturbances [6]. However, communication
networks still expose microgrids to specific challenges, such
as random communication delays [7], cyber attacks [8], and
cyber link outages [9].

Talkative Power Communication (TPC) has emerged as an
innovative solution [10], [11] for co-transfer of power and
information, that transmits messages through power lines by
encoding and superimposing on the respective bus voltages.
Various digital modulation techniques, such as amplitude-shift
keying (ASK), frequency-shift keying (FSK), and phase-shift
keying (PSK), are utilized for overlaying data onto a reference
signal [12]. An alternative approach involves modifying the
carrier during the modulation process [13]. TPC modulations
can also be implemented entirely in the digital domain [14].
However in AC systems, these signals cannot traverse through
transformers due to the absence of a zero-sequence path.
Similarly, in DC systems, these signals are obstructed by solid-
state medium frequency transformers (SSTs) as SST inherently
functions as a DC-DC converter which decouples the input and
output. The encoded signals can also be attenuated by the input
capacitor of solid-state transformers (SSTs). This constraint
restricts the application of TPC in microgrids with different
voltage levels, which thereby encounters significant technical
difficulties when scaling up to high voltage (HV) levels and
number of converters [15]. Apart from the power inefficiency
incurred by TPC, its scalability and evolution beyond the
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Fig. 1. Going beyond traditional communication norms to task-oriented semantic communications in microgrids: (a) conventional cyber-physical control
framework, (b) stages in traditional communication, (c) proposed NSC-based coordinated control framework, (d) simplified and reduced stages in NSC.

request-receive communication protocol still remain a big
question in MGs. This sets up the foundation for innovations
in new co-transfer technologies beyond the state-of-the-art.

In this regard, the development of artificial intelligence (AI)
has opened up unconventional possibilities to go beyond tradi-
tional model-driven norms. AI-based semantic communication
is able to solve the specific challenges of communication in
MGs by eliminating key stages, such as signal modulation and
communication channels. Basically, semantic communication
is a task-oriented approach that does not rely on bit sequences
and allows for the exchange of most significant information
through various forms of transmission [16]. This extends an
astonishing opportunity for the power systems communication
paradigm, as electrical transients inherently contain valuable
information of system dynamics. As a result, the power flows
among the lines is hypothesized to be sufficient to distill
coordination among different converters in MG. However, a
critical requirement is a robust decoder/processor that can
effectively translate the global communicative signatures from
the transients. Although the hierarchical evolution using AI
in distributed optimization tasks, particularly for secondary
control applications [17] has been a promising alternative for
MGs, it is essential to exercise caution considering high en-
ergy requirements, low efficiency, latency and implementation
complexity of many neural network (NN) architectures.

Inspired by the function of biological brains, we explore by
showcasing in DC microgrids the potential of neuromorphic
processors, which exploit Spiking Neural Networks (SNNs) as
a low-energy decoder for converters to communicate between
each other only using the non-modulated power flows between
them. Unlike the next generation artificial neural networks
(ANN), which always utilizes real valued samples for learning
and inferences, SNN simply compute using binary spikes to
excite a change in its corresponding weights by governing
local dynamics [18]. As a result, SNN can be trained online

in a sparse manner corresponding to any physical disturbances
only using local power flow measurements. Consequently,
the proposed inferential mechanism in this paper operates on
an entirely different protocol, namely the publish-subscribe
architecture [19]. From an application perspective, dedicated
spike-based processors, such as Intel’s Loihi 2 and IBM’s
TrueNorth offers several advantages:

• High energy efficiency: Since most neurons in a SNN
remain idle in the absence of events, the spike activity
is sparse. This sparsity leads to energy-efficient compu-
tations as processing binary spikes 1 and 0, requiring
less computational energy compared to the complex op-
erations involving high-precision floating-point numbers
used in ANNs [20].

• Low latency: Considering the control application of MGs
in this paper, the overall delay of transmitting information
packets from one end to another is significantly reduced
not only due to information embedding on instantaneous
power but also due to the low latency of SNNs itself.

• Hardware performance: Neuromorphic technology is de-
signed with an asynchronous address event representation
(AER) architecture, which differs from the rest that still
rely on a global clock. This AER architecture aligns well
with the asynchronous operation of SNN, enabling low-
latency and energy-efficient behavior [21], [22].

In the recent literature, SNNs have demonstrated successful
applications in image classification [23] and wireless commu-
nications [24] only using spikes generated from a physical
channel/medium to extract contextual information or mes-
sages. However, its synthesis process including decoding the
spikes to meaningful real-valued information is carried out
by powerful neuromorphic sensors in those applications. On
the other hand, augmentation of a new spiking-based sensing
technology is not a straight-forward mechanism for power
systems today, since their operations are only equipped to
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translate and operate with real-valued measurements.
This is where we propose an elementary method to generate

spikes based on semantic events [25], [26] collected from
the existing measurements in microgrids that consequently
federates the training of SNN at each node. By doing so, not
only the energy consumption can be significantly reduced by
collecting binary data instead of floating point numbers, but
it will also expedite low-power edge processors. This online
training is triggered only when nodal power dynamics exceed
a pre-defined event-detection threshold. Finally, these events
are encoded and decoded as spikes for remote estimation. As
a result, the neuromorphic semantic communication (NSC)
allows us to go beyond the current cyber-physical architecture
of microgrids (as shown in Fig. 1(a) and (b)) to a novel
intrinsic communication principle (as shown in Fig. 1(c) and
(d)) for power electronic converters only using the power flows
between them. The comparison of NSC, TPC and traditional
cyber layer communication (CLC) are presented in Table I.

To sum up, the research contributions of this paper are:
1) A pioneering application of neuromorphic computing in

the coordinated control of MGs is proposed. To ensure
its suitability for coordinated control of microgrids and
prospective extension in larger systems, this paper tailors
spiking neural networks (SNNs) as a grid-edge inference
technology with detailed steps of implementation. By
eliminating the communication infrastructure, the pro-
posed philosophy not only removes exogeneous arrival
paths for cyber-attackers and other reliability issues in
the cyber layer, but also unravels unification of power
and information in general using the publish-subscribe
protocol that can be extended for many applications.

2) Since SNNs operate using the energy-efficient binary
spikes in a sparse and online fashion using spike timing
dependent plasticity (STDP), we employ semantic events
translating the dynamic response of each converters with
respect to the measured power flows as spikes to carry
out online training of NSC.

3) Going beyond TPC that allows co-transfer of power
and data but are limited by electrically isolated stages,
the proposed communication principle is not limited
by such stages that physically block the zero-sequence
path. Its scalability and flexibility for different voltage
levels and system topologies has been investigated in
detail. Moreover, it also promises high computational
energy efficiency during data processing and learning,
that has been bench-marked with respect to binary-
activated recurrent neural networks (RNNs) and ANN.

In this paper, DC MGs have been focused to showcase
the principle behind the proposed NSC, whereas it is also
potentially applicable to AC systems where the data collection
methodology may need to be revised.

II. NEUROMORPHIC COORDINATED CONTROL OF
MICROGRIDS

A. Problem formulation and motivation

The conventional cyber-physical framework of the most
reliable infrastructure, i.e., distributed coordination in a DC

MG is depicted in Fig. 1(a). In this framework, each converter
is locally regulated by the primary controller and globally
by the secondary controller that relies on exchange of real-
time information, including voltage vj and current ij from
the neighboring nodes j ∈ Nk in Fig. 1(a), where Nk

denote the set of neighbors for converter k. It is crucial
to note that the stability and reliability of MGs heavily
rely on the effectiveness of the communication network [8],
[27]. However, as presented in Fig. 1(b), the conventional
communication methods/protocols in MGs include stages such
as, modulation, transmission, and demodulation, which is done
in a timely process that introduces the notion of bandwidth and
consequently suffers from communication delays [7], cyberat-
tack vulnerability [8], and susceptibility to cyber link outages
[9]. These disturbances can range from few milliseconds to
seconds and can negatively impact the dynamic performance
and stability of MGs. Although co-transfer technologies such
as TPC can eliminate the need for conventional communica-
tion infrastructure, it is still susceptible to scalability in high
voltage levels (due to mutual inductance between lines caus-
ing signal interference) and path blockage beyond galvanic
isolation, which can affect communication reliability. As a
result, new intrinsic and scalable means of communication
among converters is needed to overcome the said challenges
and investigate the ongoing digitalization measures in MGs.

This section unravels a novel end-to-end NSC-based coor-
dinated control framework, as depicted in Fig. 1(c), which
comprises of the SNN as its key component. Its protocol
stages are illustrated in Fig. 1(d), where instead of transferring
information from one end to the other, remote information can
be inferred at each end using the spatio-temporal pattern of the
power dynamics corresponding to the physical disturbances.
Using event-driven sampling, meaningful information is fil-
tered and encoded into spikes for initial weight determination
of SNN to be deployed at each bus. Relying on the publish-
subscribe architecture [19] depending on a global update that
can be translated as any disturbance in MGs, SNNs then infer
the information of remote buses by measuring power flows. It
is worth mentioning that the spike timing dependent plasticity
(STDP) feature further allows online training of SNNs only
by measuring power flows to adapt its weights accordingly.

As the proposed framework is significantly different from
the traditional cyber-physical arrangements (in Fig. 1(a)), we
firstly discuss the hierarchical control using conventional com-
munication architecture and then discuss the specific design
and implementation steps for integrating neuromorphic based
semantic coordination into the control of MGs. Building upon
this research in end-to-end low power NSC for MGs, this paper
draws inspiration and adapts the proposed communication
policy only using power flows as the communication channel

TABLE I
COMPARATIVE EVALUATION OF NSC, TPC AND CLC.

Methods Prone to
Delay?

Prone to
Cyberattack?

Prone to
Channel outage?

Prone to
Inefficiency?

CLC [7], [8] Yes Yes Yes No
TPC [10], [11] No No No Yes
NSC No No No No
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for coordinated control of MGs, as shown in Fig. 1(c) and (d).

B. Conventional hierarchical control in MGs

Fig. 1(a) depicts the conventional hierarchical control struc-
ture of a DC MG. The primary control uses local mea-
surements to regulate the output voltage based on a V − I
droop control strategy. Additionally, the local sampling data is
shared with adjacent nodes through the cyber layer, facilitating
coordination and monitoring.

1) Primary control: The primary control layer in converter
k is implemented as:

vref, k(t) = vk(t)−mkik(t) (1)

where, mk is the droop gain, which is calculated using
∆Vk/Ikmax

with ∆Vk and Ikmax
being the maximum voltage

deviation and maximum output current of converter k, respec-
tively. Furthermore, ik and vref,k denote the converter output
current and voltage reference of converter k, respectively.

2) Distributed secondary control: The secondary controller
plays a crucial role in achieving voltage regulation and other
energy management schemes. As distributed secondary control
offers highly reliable and cost-efficient coordination [1], we
consider it as the best candidate for CLC in this paper. With
distributed secondary control, the local voltage set point can
be expressed as:

v∗k(t) = vref, k(t) + δvIk(t) + δvIIk (t) (2)

where, vref, k is the voltage regulation term generated by the
primary controller in (1). The first voltage correction term δvIk
is generated by the voltage observer and further compensated
by the secondary PI controller:

v̄k(t) = vk(t) +

∫ t

0

∑
j∈Nk

akj(v̄j(t)− v̄k(t))dτ (3a)

δvIk(t) = kpU (vref − v̄k(t)) + kiU

∫ t

0

(vref − v̄k(t))dτ

(3b)

where, v̄k(t) is the average voltage observed at bus k, Nk is
the set of nodes that are adjacent to node k in the cyber graph.
In a graph with N nodes, each node represent a converter, that
are communicating among each other using edges through an
associated adjacency matrix, AG = [akj ] ∈ RN×N , where the
communication weight (represented by akj , i.e., from node j
to node k) is formulated as: akj > 0, if (ψk, ψj) ∈ E, where
E represents an edge connecting two different nodes, with ψk

and ψj representing a local node and its neighboring node,
respectively. If the cyber link connecting ψk and ψj is absent,
akj = 0. More modeling preliminaries of the cyber graph
can be obtained from [28]. Furthermore, the second voltage
correction term δvIIk is generated by cooperative regulators for
particular objectives. For current sharing, the regulation term
is calculated by:

λk(t) =
∑
j∈Ni

akj(ij(t)− ik(t)) (4a)

δvIIk (t) = kpIλk(t) + kiI

∫ t

0

λk(t)dτ (4b)

Similarly, for power sharing objective, the regulation term is:

ηk(t) =
∑
j∈Ni

akj(Pj(t)− Pk(t)) (5a)

δvIIk (t) = kpP ηk(t) + kiP

∫ t

0

ηk(t)dτ (5b)

where, kpI , kiI , kpP , and kiP are the proportional and integral
coefficients of PI controllers for current sharing and power
sharing, respectively.

Given that the physical layer of the MG and cascaded con-
trol structure from the primary control loop to the PWM stage
remain the same in both Fig. 1(a) and (c), the key distinction
of incorporating NSC instead of relying on the traditional
CLC lies in how the dynamic measurements from the remote
nodes are efficiently predicted to disregard any exogenous
arrival paths or unreliable cyber scenarios, which is the main
contribution of this paper. In addition to the elimination of
a dedicated communication channel that primarily relies on
the request-receive protocol, we leverage the proposed NSC
framework to infer real-time information using power flows by
deploying SNN at each bus. We firstly cover the background
of the biological neuron modeling for SNNs and then discuss
the offline initial weight determination of SNN at each bus in
the upcoming subsections.

C. Fundamentals of SNN operation

Instead of the summation functions in multilayer perceptron
networks for ANN, SNN employs neuronal dynamics that rely
on the integration process with a framework that triggers action
potential only above a critical voltage [29]. As shown in Fig.
2(b), a biological neuron is basically excited by a current I(t)
as a pulse input coming from the nearby neurons into the axon
of the cell body. Similar to the electrical properties in a RC
circuit (see Fig. 2(a)) with a cell voltage Vr, the current I(t)
will only flow given that the capacitor voltage Vth is more
than Vr. Mathematically, this can be represented by:

I(t) =
Vth(t)− Vr

R
+ C

dVth
dt

(6)

Considering the time constant τm = RC as the leaky integra-
tor, we get:

τm
dVth
dt

= −[Vth(t)− Vr] +RI(t) (7)

Translating the electrical specifications into the neuron cell,
we can then refer Vth to be the membrane potential and
τm to be the membrane time constant of the neuron. Due
to the notion of leakage of charge with a time constant τm
and (7), this neuron model is commonly called as the leaky-
fire and integrate (LIF) model. Approximating the LIF neuron
dynamics in Fig. 2(b) using the Euler method [29], we get:

τm
dVmem

dt
= −(Vmem − Vth) +

Is
g

(8)

where, Vmem is the membrane potential, g is the leaky
conductance, Vth is the threshold, Is is the synaptic current
and τm is the membrane time constant.



5

Cell 

Body

Dendrites

Axon

From other 

neurons

To other 

neurons

R
e
st

 o
f 

th
e
 

n
e
tw

o
rk

P
re

-s
y
n

a
p

ti
c
 

e
v
e
n

ts

P
re

-s
y
n

a
p

ti
c
 

e
v
e
n

ts

P
o

st
-s

y
n

a
p

ti
c 

e
v
e
n

ts

P
o

st
-s

y
n

a
p

ti
c 

e
v
e
n

ts

Bus k
i
in

iflowi

OutputInput

SNN

Local 

controller

Pre-synaptic 

traces

Post-synaptic 

traces

R
C

Vr

Vth

I(t)
O(t)O(t)

I(t)I(t)

VthV VthV

I(t)

O(t)

Vr

Threshold* Convolution

Ni,l

synmem
// tt

t e e


−−= −

ref/t

t e  −=

( 1)

,

l

j tw −

( 1)

1,

l

j tw −

+

( 1)

,

l

N tw −

( 1)

, − l

i t t
S ( )

,

l

i tu

( )

,

l

i t ts 

( )

,

l

i tu

(a) (b) (c)

(d)

(e)

Fig. 2. Initial weight determination of SNN at bus k – Pictorial depiction of
a (b) RC circuit and its structural duality with (b) biological neuron, where
the input current I(t) acts as an excitation signal into both the circuit and the
neuron – its excitation dynamics are then translated into meaningful output
spikes for the learning of NSC using a (c) voltage threshold Vth based criteria,
(d) Similar to the biological neurons in (b), a converter having disturbances
in its input and output can consequently correspond to pre-synaptic and
post-synaptic events, respectively, (e) Information-theoretic learning based
communication using spiking neural networks (SNNs) and the spike response
model (SRM) for simulation of a LIF neuron.

Considering the dynamics in (8) and selection of a corre-
sponding event-triggering criteria [30], the input spikes can
then be determined corresponding to rising or falling edges
in I(t). As shown in Fig. 2(c), the input spikes that manage
to invoke beyond the membrane potential Vth result into a
selective number of output spikes.

Extending the single neuron structure to a bidirectional
DC/DC converter in Fig. 2(d), the current excitation can either
emanate from the input, such as intermittent generation from
renewable energy sources, or the output, such as load change
or tie-line outage. Since the current flow is in both directions
as compared to the case in Fig. 2(b), we decipher both input as
well as output dynamics to achieve accuracy in the estimation
of information at remote buses. Using multiple data set-points
corresponding to different operational scenarios, semantic data
collection is performed to assign the initial weights of SNN,
which will be discussed later.

D. Network model of SNN

Before discussing the weight initialization strategy for
SNNs to be deployed at each bus, we firstly uncover the un-

derlying theory behind the entire network to be modeled. The
neuron model in Fig. 2(e) is the spike response model (SRM).
It is a widely recognized model that effectively represents the
characteristics of biological neurons while retaining simplicity,
which makes it well-suited for the intended application of the
NSC-based coordinated control framework in MGs [24].

In Fig. 2(e), the neuron Ni,l is connected with its preceding
neurons by different synaptic weights {wj,l−1∥ j ∈ Layer(l−
1)}. The preceding neurons can transmit binary spikes to Ni,l.
The membrane potential ui,l of Ni,l represents an analog state
to describe the contribution of the spikes. When Ni,l receives
a spike, ui,l momentarily increases and decays exponentially
over time. This behavior is described as the second-order
synaptic filter, αt = e−t/τm − e−t/τsyn . Referring to (8),
the decay process is modeled as the first-order feedback filter
β = −e−t/τref with finite positive constants τm, τsyn, τref .
The membrane potential ui,l is computed as the sum of the
filtered contributions from incoming spikes and the neuron’s
own past outputs as follows:

u
(l)
i,t =

N∑
j=1

w
(l−1)
j · (αt ∗ s(l−1)

j,t ) + βt ∗ s(l)i,t (9)

where, ∗ denotes the convolution operator, and s
(l−1)
j,t repre-

sents the spike from layer (l− 1). The spike s(l)i,t is generated
by neuron Ni,l at time step t when its membrane potential u(l)i,l

surpasses the threshold Uthr, using:

s
(l)
i,t = H(u

(l)
i,t − Uthr) (10)

where, H(·) is the Heaviside step function, given by:

H(x) =

{
1 x > 0
0 x ≤ 0

(11)

Remark I: Unmodulated power flows with pub-sub commu-
nication protocol inherently imbibe communicative features
due to the spatio-temporal patterns of voltage V in power
electronic grids, where V = V0e

−a such that a = {t, x} cor-
responding to time and space, respectively. As SNNs are highly
capable of synthesizing these spatio-temporal patterns in an
energy-efficient and online fashion, we underline our proposal
with SNN as an energy-efficient grid-edge intelligence tool for
coordination and health monitoring of future power systems.

E. Data collection and offline design of SNN

It is worth notifying that events in this paper denote the
physical disturbances in the system. Such disturbances either
in the input or output of DC/DC converter in Fig. 2(d) are
essentially formalized by the power dynamics turned events
locally at each bus with the power lines being the propagating
medium itself. Hence, the input dynamics in Fig. 2(d) of
DC/DC converter k associated with the capacitor current iCk
and inductor voltage vLk can be given by:{

iCk (t) = Ck
dvk
dt = ik(t)− dkiink (t)

vLk (t) = Lk
dik
dt = vk(t)− dkvink (t)

(12)

where, dk denotes the voltage amplification ratio between the
input and output end of DC/DC converter k, iink and vink denote
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the input current and voltage of converter k, respectively.
Moreover, Lk and Ck denote the inductor and capacitor in the
DC/DC converter k, respectively. Finally, the corresponding
error signals for both currents and voltages to formalize/trigger
the input events in kth converter (see Fig. 2(d)) are given by:{

Ωi(t) = vLk (t)− eik(t)
Ωv(t) = iCk (t)− evk(t)

(13)

where, eik(t) = iinref,k(t)−iink (t) and evk(t) = vref,k(t)−vk(t).
Since the error values eVk and eik have a low time constant
with respect to the given switching frequency as compared to
the ones using CLC, the physical system semantics is used
to extrapolate the most significant data to be collected for
each converter. Not only this data collection principle allow
collection of qualitative data, it ensures the most significant
information to be distilled for effective training of the provi-
sional SNN.

To scale from the local to global events, remote estimation
using the output dynamics of all the converters in Fig. 2(d)
can be further distilled into a vector representation:

CV̇(t) = JIflow(t)− diin(t) (14)

where, J is a row matrix with binary values, such that
jkl will be 1 only if there is a direct physical connection
between converter k and l, or otherwise. Moreover, Iflow is
a column matrix that comprises the tie-line flow currents into
the connected lines resulting out of the output current ik, such
that ik =

∑
iflow. Furthermore, C,V,d and iin denote k×k

diagonal matrices for Ck, vk, dk and iink . The formalization
of output events can then be carried out using:

Ωo(t) = Ckv̇k(t)− İkflow(t) (15)

Using the spatio-temporal pattern exploration hypothesis in
Remark I, for a given network admittance matrix, each output
current has a given distribution of intrinsic communication
signatures in the form of iflow, that can be estimated using the
following data collection process. Finally, sparse sampling and

Algorithm 1 Input event translation to spikes.
Input: mth sample of voltage v[m], current i[m]

Thresholds of voltage and current variance to trigger
and hold an event σV

th, σI
th

1: V ben[0]← 0, Iben[0]← 0
2: Verify Ωv and Ωi using (16)
3: if Ωv OR Ωi then
4: event[m] starts
5: repeat
6: SNN is activated
7: // Update the benchmarks
8: Update Vben[m]: Vben=1
9: Update Iben[m]: Iben=1

10: m← m+ 1
11: Re-verify Ωv and Ωi by Eq. (16)
12: until NOT (Ωv OR Ωi)
13: event[M ] ends
14: Hold Vben[M ] and Iben[M ] as the steady-state values

data collection is formalized only the semantic event detection
criteria in (13) and (15) exceed a given threshold:

||Ωv(t)|| > σV
th, ||Ωi(t)|| > σI

th, ||Ωo(t)|| > σo
th (16)

where, σV
th, σI

th are the thresholds for input events in (13)
and σo

th denote the threshold for the output event in (15),
respectively. To achieve good resiliency against noise, a state-
dependent threshold can be used [31].

The input events are then translated into spikes using
Algorithm 1 such that SNN exploits the local mea-
surements and their dynamics to estimate remote measure-
ments. The output spikes can also be generated by following
Algorithm 1 for the dynamics in (14) and triggering crite-
ria in (15). Finally using the NSC-based control method, the
remote voltage and current in (3a), (4a) and (5a) are replaced
with the estimated values ◦̂, as follows:

v̄k(t) = vk(t) +

∫ t

0

∑
j∈Nflow

(ˆ̄vj(τ)− v̄k(τ))dτ (17a)

λk(t) =
∑

j∈Nflow

(̂ij(t)− ik(t)) (17b)

ηk(t) =
∑

j∈Nflow

(P̂j(t)− Pk(t)) (17c)

where, P̂j(t) is obtained by P̂j(t) = îj(t)v̂j(t) and Nflow is
the set of nodes that are adjacent to converter k in the physical
tie-line admittance network graph. Having discussed the offline
preliminary design of SNN at each node, we now discuss its
online training based on the spike timing dependent plasticity
(STDP) feature in the next section.

III. SPIKE TIMING DEPENDENT PLASTICITY

A. Online weight adaptation of SNN

After obtaining the preliminary offline design of SNN,
the dynamic weight adaptation corresponding to different
transients/events is carried out using Spike timing dependent
plasticity (STDP) [32]. STDP is a neurobiological concept that
describes how the strength of a synapse in Fig. 2(b), which is
the connection between two neurons, can be modified based
on the precise timing of the spikes from inputs and outputs
or the action potentials in these neurons. It is a fundamental
mechanism that underlies learning and memory in the brain,
which makes it a biology-plausible training method and allows
online adaptation of the weights of SNN. The mathematical
formulation behind the STDP based weight update policy is
as follows:

∆W =

{
A+e

(tpre−tpost)/τ+ (tpost > tpre)
−A−e

−(tpre−tpost)/τ− (tpost < tpre)
(18)

where, ∆W denotes the change in the synaptic weight of
SNN, A+ and A− determine the maximum amount of synaptic
modification (which occurs when the timing difference be-
tween pre-synaptic and post-synaptic spikes in Fig. 2(d) is
close to zero), τ+ and τ− determine the ranges of pre-to-
postsynaptic inter-spike intervals over which synaptic strength-
ening or weakening occurs. As illustrated in Fig. 3(a), tpre
and tpost are the timings of the pre-synaptic and post-synaptic
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spikes, that correspond to the input and output disturbances of
the DC/DC converter in Fig. 3(b), respectively. As illustrated
in Fig. 3(a), if the postsynaptic neuron spikes arrive after the
pre-synaptic neuron, ∆W > 0, or otherwise, ∆W < 0. The
weight update policy and its biological plausibility is explained
by the Hebbian Principle, that is often summarized as “neurons
that fire together wire together”. If a pre-synaptic neuron fires
just before a postsynaptic neuron, the connection between
them is strengthened, often known as long-term potentiation
(LTP) of the synapse [33]. Otherwise, the connection is
weakened, often known as long-term depression (LTD) of the
same synapse.

Based on the abovementioned definitions, it is vital to
analyze the time difference between the pre-synaptic and post-
synaptic spikes, given by:

∆t = tpre − tpost (19)

From a DC/DC converter perspective, this would imply that
the time difference ∆t could either arise depending on the
physical disturbances that is either in the input or output stage,
as illustrated in Fig. 3(b).

B. Calculation of
∑Z

i=1 e
∆ti and

∑Z
i=1 e

−∆ti

Keeping track of the pre-and postsynaptic spikes for the
number of neurons from 1 to Z, a neuron will receive
numerous pre-synaptic spike inputs that needs to be processed
simultaneously by the SNN. The post-synaptic neuron can be
defined by:

τ−
dL

dt
= −Q (20)

and for every postsynaptic neuron spikes, it is updated using:

Q(t) = Q(t)−A− (21)

In this manner, Q(t) tracks the number of postsynaptic spikes
over the given timescale τ−. Similarly, for each pre-synaptic
neuron, we define:

τ+
dR

dt
= −S (22)

and for every spike on the pre-synaptic neuron, it is updated
using:

S(t) = S(t) +A+ (23)

It is worth notifying that the variables Q(t) and S(t) are
quite similar to the notion of synaptic conductance g(t) in
(8), except that they are particularly defined for spike timings
on a much longer timescale. Based on the illustration of ∆W
in Fig. 3(a), S(t) is inherently negative that is used to induce
LTD (

∑N
i=1 e

−∆ti ) and Q(t) is always positive used to induce
LTP (

∑N
i=1 e

∆ti ). The reason behind the negative and positive
signs of S(t) and Q(t) are because they are updated by A−
and A+, respectively. As illustrated in Fig. 3(b), the weight
increment/decrement at tpre and tpost can be given by:

∆W (tpre) = S(tpre)W (tpre) (24)
∆W (tpost) = Q(tpost)W (tpost) (25)

To implement STDP in SNN, based on the pre-synaptic
and post-synaptic timing, update of the variables Q(t) and
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Fig. 3. Online weight update policy of SNN based on the spike-dependent
timing plasticity (STDP): (a) Long-term potentiation (LTP) and depression
(LTD) based on the excitation of the disturbance observed initially either
in the input or the output of the DC/DC converter leading to the trajectory
of weight update as per (18), (b) Update of the variables Q(t) and S(t)
to formalize the SNN weights as per (24)-(25), (c) update of the synaptic
conductance gi (neuronal) and gE (total) corresponding to the LTP and LTD
events.

S(t) vary their synaptic conductance. With the peak synaptic
conductance gi for a synapse i bounded between [0, gmax], it
is modified accordingly based on either LTP or LTD condition
using:

ḡi =

{
ḡi +Q(t)ḡmax if LTP
ḡi + S(t)ḡmax else

(26)

Its update corresponding to the LTD or LTP conditions in
Fig. 3(b) can be seen in Fig. 3(c), that is used to update the
synaptic conductances of the SNN allowing online adaptation
corresponding to any transient in the local measurements. As
illustrated in Fig. 3(c), the total excitatory synaptic conduc-
tance gE(t) for Z pre-synaptic neurons is given by:

gE(t) =

Z∑
i=1

gi(t) (27)

In this way, the online weight update policy subject to
selective spikes update the SNN network weights for every
physical disturbance in the MG.

C. Design of SNN for MGs

To optimize the application of SNN in control for MGs, it
is necessary to tailor the design of the SNN specifically for
this purpose.
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To capture the non-linear dynamics accurately, the deriva-
tives of the typical measurements, bus voltages and output
currents of each converter are considered as inputs for their
respective SNN. To enhance SNN performance, we employ an
input layer of 256 neurons. This allows for a more compre-
hensive representation of the input signals and facilitates the
extraction of relevant features. The number of neurons in the
output layer depends on the number of output signals required.
In this study, each source needs to receive remote voltage
and current information of the remaining buses. For instance,
in a three-bus system in a symmetric ring topology, each
source requires voltage and current data from the rest of the
two sources. For an asymmetric radial topology, the number
of inputs will vary based on the physical admittance matrix
corresponding to each bus. This means that the SNN should
have at least 4 output neurons to provide this information. The
number of hidden layers and neurons in each hidden layer has
been selected after adjudging a significant balance between
accuracy and efficiency. The parameters used for designing
SNNs in this paper can be found in Appendix.

IV. RESULTS AND DISCUSSIONS

A. Simulation results

To assess the effectiveness and versatility of the proposed
NSC-based coordinated control across various voltage levels,
topologies, control objectives, and its robustness against the
SST and line outages, we consider four test cases (shown in
Fig. 4) and an IEEE 14 bus system in MATLAB/Simulink
environment. The training process was carried out using
Python, and the model was saved for integration into Simulink
for implementation of NSC based control. The description
of each disturbance has been categorized into time windows,
also termed as “stages”, can be found in Table II. The
system parameters specific to each scenario, starting from
Case I to Case V, are provided in Table III. For all the
case studies, it should be noted that estimated values from
SNN are depicted as ◦̂, whereas the measured values as ◦
for voltage, current and power. For simplicity, the dataset
only includes disturbances, such as load step changes and line
outages for a preliminary investigation of secondary controller.
More dynamic disturbances will be considered as a future
scope of work to investigate the sensitivity and stability of
its performance using a high-performance SNN.

TABLE II
DESCRIPTION OF THE STAGES IN SIMULATION STUDIES.

Cases Stage I
(t1-2)

Stage II
(t2-3)

Stage III
(t3-4)

Stage IV
(t4-end)

Case I Load increase Load decrease Line outage –
Case II Load increase Line outage Line outage Load decrease
Case III Load increase Load decrease Line outage –
Case IV Load increase Load decrease Line outage Load decrease
Case V PV power decrease PV power increase Load decrease –

1) Case I: Two-Bus DC microgrid: The secondary control
objective of Case I is proportionate current sharing. At time
t1 in Fig. 5(a), a step increase in the load from 64 W to 160
W occurs in stage I. As a result of NSC-based coordinated
control, i1 and i2 rise simultaneously and reach the same

TABLE III
SYSTEM PARAMETERS OF DIFFERENT SIMULATION CASES.

Parameter Symbol Specification
Rated voltage Vn 48 V

Case I Rated power P1=P2 300 W
Line resistance R12 1.5 Ω
Line inductance L12 50 µH
Rated voltage Vn 400 V

Case II Rated power P1=P2=P3 10 kW
Line resistance R1, R2, R3 1.5 Ω, 1.8 Ω, 2 Ω
Line inductance L1, L2, L3 50 µH, 60 µH, 66 µH
Rated voltage Vn 48 V/400 V

Case III Rated power P1=P2 10 kW
Line resistance R12 3 Ω
Line inductance L12 1.5 mH
Rated voltage Vn 400 V

Case IV Rated power P1=P2=P3 10 kW
Line resistance R1, R2, R3 2.4 Ω, 1.2 Ω, 2.8 Ω
Line inductance L1, L2, L3 1 mH, 0.5 mH, 0.75 mH
Rated voltage Vn 400 V

Case V Rated power P1=P2=P3 15 kW
ES voltage VES1-4 96 V

MPPT voltage VMPPT 245.6 V

steady value, thereby fulfilling the secondary control objective.
This is made possible by the NSC-based coordinated control
in (17b) that provides the estimated values î2 and v̂2 after
decoding from SNN during dynamic processes shown in Fig.
5(b). Furthermore, v1 decreases due to the V −I droop control
described in (1), while v2 increases to provide additional
power from converter II for current sharing. Similarly at the
instant t2, when the system load decreases to 64 W, both i1
and i2 decrease together and reach the same steady value,
confirming the effectiveness of the current sharing control.

At time t3 (stage III), a line outage occurs between the
converters, resulting in islanded operation of both converters.
Consequently, the entire secondary control loop, including the
SNN represented by the dotted lines, becomes inactive.

In Fig. 5(c), we present the spikes corresponding to N =
256 neurons between the output layer and the hidden layer
during the time interval [1, 1.4] s. As depicted in Fig. 5(a)
and (b), during [1, 1.2] s, the currents and voltages undergo
dynamic changes, and after 1.2 s, their variations become less
pronounced. Accordingly, the spikes in Fig. 5(c) also exhibit
more dynamic behavior during the initial phase and become
relatively stable as the steady state is reached.

The spikes from various neurons are depicted in Fig.
5(d), generated in correspondence with the events obtained
using (16) illustrated in Fig. 5(c). The computational energy
consumption, shown in Fig. 5(e), dynamically changes in
tandem with the events. The energy efficiency of the operation
of SNN is calculated in comparison with that of a binary
recurrent neural network (RNN) based on a hard sigmoid
activation function [34] and ANN. The energy consumption
of the neural network includes the consumption of synaptic
operations and neuron operations, which is defined by the
well-known energy analysis tool KerasSpiking for neural net-
works. In the synaptic operations, the output from the front
layer is multiplied by the weight of each synapse. It should be
noted that the overall energy consumption is not only affected
by the abovementioned software operations but also by the
hardware accelerators and its specifications. Neuromorphic
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computing with fully parallel crossbar array based processors
with an inherent asynchronous address event representation
(AER) architecture run only in the spiking domain for its
inputs/outputs, that lowers the energy consumption. On the
other hand, the clock based GPU processors for ANN only
accept floating points as the data format, which increases
the operations and computational power. Furthermore, SNN
also uses the notion of leakage, which not only restrict its
operation during events, but also limit the number of neurons

in operation due to the Hebbian learning principle. However,
ANN and binary-activated RNN are always in operation,
which thereby increases the computation power. Hence, the
energy efficiency in this paper only accounts the data format
and asynchronous event based operation as the comparative
aspects based on the benchmarking of SNN against ANN and
binary-activated RNN.

The number of accumulations (ACC) and multiplication
accumulations (MAC) in synaptic and neuron operations are
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the fundamental energy consumption units that need to be
considered for energy consumption [35]. The number of ACC
and MAC for SNN, binary RNN and ANN is summarized
in Table IV, where NANN

ACC , NANN
MAC , NRNN

ACC , NRNN
MAC , NSNN

ACC

and NSNN
MAC are the number of ACC and MAC of the three

said NNs. Nin, Nout are the number of neurons of the pre-
synaptic and post-synaptic layer. Nspk in the number of spikes
in SNN and binary RNN. Then the energy consumption can
be estimated by (28a)-(28c).

ESNN (t) = EACC ·NSNN
ACC (t) + EMAC ·NSNN

MAC(t) (28a)

ERNN (t) = EACC ·NRNN
ACC (t) + EMAC ·NRNN

MAC (t) (28b)

EANN (t) = EACC ·NANN
ACC (t) + EMAC ·NANN

MAC (t) (28c)

where, EACC and EMAC are the energy cost of single addi-
tions and multiplications respectively, which are respectively
0.1 pJ and 3.1 pJ [36]. The total energy consumption of
SNN and binary RNN from the integration of their power
consumptions are also plotted in Fig. 5(e). The final energy
consumption is presented in Table V. With SNN staying
idle/consuming no energy when there is no spike, the hard
sigmoid activation function for binary-activated RNN may
still generate spikes, which makes it less energy efficient than
SNN. As for ANN, it is always on with real floating values,
consequently consuming much more energy than SNN and
binary RNN.

TABLE IV
ACCS AND MACS IN SNN AND ANN.

Synaptic operations Neuron update
NANN

ACC 0 2Nout

NANN
MAC Nin ×Nout 3Nout

NRNN
ACC Nspk ×Nout Nout (active) 0 (idle)

NRNN
MAC 0 Nout

NSNN
ACC Nspk ×Nout 2Nout (active) 0 (idle)

NSNN
MAC 0 Nout

2) Case II: Three-bus DC microgrid in ring topology:
As depicted in the three-bus system in Fig. 4(b), the same
control objective in Case I is re-tested with more number
of converters (with increased dimension of input data for
training of SNN) and another topology. In Fig. 6(a) and (b), we
compare the estimated currents and sampled currents, as well
as the estimated voltages and sampled voltages. In that case,
î
(k)
j represents the estimated ij by converter k. With increase

in load current at t1, the current sharing control objective
is successfully met, since the estimated currents from SNN
comply with the dynamic variations incurred by the remote
measurements.

At the instant t3, the voltage and current dynamics of the
three buses are influenced by a line outage. Since the SNN has
been trained using data that includes line outage scenarios,
it is capable of recognizing the line outage and estimating
the voltage and current of other converters. Consequently, v1,
v2, and v3 are regulated to re-distribute the power flow in
the network, while i1, i2, and i3 remain equal, demonstrating
the capability of NSC-based control to operate under line
outage conditions. At the time t4, Converter III becomes
completely disconnected, leading to the secondary control loop
in Converter III ceasing its operation, as indicated by the
dotted line. However, Converter I and Converter II continue
to function and maintain current sharing.

With the outage of converter III in stage IV, the estimated
currents î(k)j and voltages v̂(k)j in Fig. 6(a) and (b) closely

TABLE V
COMPARATIVE EVALUATION OF THE COMPUTATIONAL ENERGY.

Case I (t1-2) Case II (t1-2)

ESNN (mJ) 0.921 0.788
ERNN (mJ) 1.057 0.991
EANN (mJ) 168.47 168.47∑t2
t1

NSNN (t) 8.795×106 3.585×106∑t2
t1

NRNN (t) 14.894×106 12.342×106∑t2
t1

NANN (t) 1.065×108 1.065×108
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match the corresponding measured values, demonstrating the
effectiveness of NSC-based control in this case.

Events in Fig. 6(c) arise from the dynamic process, and the
corresponding spikes in Fig. 6(d) are generated in tandem with
these events. The calculation of power consumption by SNN,
RNN, and ANN (Fig. 6(e)) follows the same procedure as in
Case I. The total energy consumption of SNN and binary RNN
is detailed in Table V.

3) Case III: Two-bus DC microgrid with an intermediate
solid-state transformer (SST): In this scenario in Fig. 4 (c),
all the values of Converter II are referred to the primary side of
the SST as a reference for comparison with a control objective
on power sharing between converters. In Fig. 7(a) and (b), we
compare the estimated currents î1, î2 with the sampled currents
i1 and i2, as well as the estimated voltages v̂1, v̂2 with the
sampled voltages v1 and v2 during dynamic disturbances.

It can be seen in Fig. 7 that in both Stage I and Stage II,
the estimated values î2 and v̂2 by Converter I closely match
the sampled values i2 and v2 during dynamic processes, and
vice versa. This results in equal power reference P1 and P2,
which lead to real output powers P1 and P2 following their
respective references to reach an equal steady state in Fig. 7(c).
Beyond the governing limitations of TPC, we establish that
NSC-based control is not limited by galvanic isolation along
the transmission lines even at heterogeneous voltage levels.

4) Case IV: Three-bus DC microgrid in star topology:
Considering a secondary control objective of power-sharing
for a three-bus microgrid in a star topology in Fig. 4(d), when
the load changes from 6.4 kW to 14.4 kW at Converter I
at instant t1, the power-sharing control is successfully met in
Fig. 8 following the same principle as in Case III. At t3, a line
outage occurs, resulting in voltage regulation to redistribute the
power flow. This leads to equal power references, as shown
in Fig. 8(c). At t4, Converter III is disconnected, causing the
secondary control loop in Converter I to isolate, as indicated
by the dotted line. However, Converters I and II still resort to
power sharing.

Despite the isolation of Converter III in Stage IV, the
estimated currents îj and voltages v̂j in Fig. 8(a) and (b)
closely match the measured values, respectively. Consequently,
P1, P2, and P3 are equal, resulting in accurate estimation of
remote measurements and signals using the proposed NSC-
based coordination.

5) Case V: A modified IEEE 14-bus system: To better
validate the scalability of the proposed method in a large
system, tests are also conducted in a modified IEEE 14-bus
system in Fig. 9, of which the network structure is identical
to the standard IEEE 14-bus system but with scaled down DC
interconnection network and sources.

The DERs are working at their maximum power point
and only controlled by respective local controllers. The en-
ergy storage (ES) converters connected to batteries need to
collaborate with each other to support the dynamic change
of generated power from the DERs. The coordinated control
objectives of secondary control are average voltage regulation
and proportionate power sharing. The average voltage is
regulated at a rated voltage of 400 V. The power between

#1

#2

#5

#6

#13 #14

#3

#4

#8

#12 #11 #10 #9

#7

Utility Grid

Line Impedances

Loads Converters for Energy Storage

Converters for Distributed 

Energy Resources (DERs)

Fig. 9. Case V: Modified IEEE 14-bus DC system with energy storages and
distributed energy resources (DERs).

the ES based converters is shared in a ratio of their respective
state-of-charge (SOC) values, given by:

γ =
PES1

∆SOC1
=

PES2

∆SOC2
=

PES3

∆SOC3
=

PES4

∆SOC4
(29)

such that

∆SOCi =

{
SOCmax − SOCi when charging
SOCi − SOCmin when discharging (30)

where, SOCmax and SOCmin are the maximum and mini-
mum SOC limits of the batteries. The real-time SOC of each
ES can be estimated by the following equation,

SOC(t) = SOCinitial −
1

C

∫
ibat(t)dt (31)

The current ibat can be estimated by SNN, so the SOC of each
ES can be known by the adjacent converters.

As we compare the estimated currents and voltages with the
sampled values during dynamic disturbances, it can be seen
in Fig. 10(a) and (b) that in Stage I, Stage II, and Stage III,
the estimated values closely match the sampled values, which
results in the power-sharing results shown in Fig. 10(c) and
(d). They are aiming to be shared by the ratio of ∆SOC. As
shown in Fig. 10(d), the ratio γ (Pi/∆SOC) is always equal,
which indicates that the power P1 - P4 can always be shared
according to the ratio of ∆SOC in (29).

B. Experiment results

A two-bus system illustrated in Fig. 11(b) has been em-
ployed for experimental validations, with the single-line dia-
gram and other parametric details presented in Fig. 11(a). It
comprises two DC/DC buck converters managing equal load
current sharing. Dynamic events, such as load change and line
outage are considered to check the efficacy of NSC under real-
time conditions. The experimental parameters can be found in
Table VI. The offline design of SNN and its corresponding
parameters can be found in Appendix.

1) Load change: In Fig. 12(a), before the load change,
currents i1 and i2 are equal. When the load transitions from
115 Ω to 75 Ωat t=0.2 s, a dynamic process is formalized
leading to generation of output events, such that i1 and
i2 maintain equal sharing. The voltage variables v1 and v2
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Fig. 10. Simulation results of the ES converters: (a) comparison of estimated currents and respective measured values, (b) comparison of estimated voltages
and respective measured values, (c) output powers, and (d) γ (Pi/SOC ratio) of the ES converters.
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Fig. 11. Experimental setup: (a) Single-line diagram of the two DC/DC
converters tied to each other via a common resistive load, (b) picture of the
prototype.

TABLE VI
EXPERIMENTAL PARAMETERS.

Parameter Symbol Specification
Rated voltage Vn 40 V
Rated power P1=P2 50 W

Filter inductance Lf1=Lf2 1.5 mH
Filter capacitance Cf1=Cf2 700 µF

Line resistance R1, R2 1.5 Ω, 3.6 Ω
Load resistance Rload 115 Ω

experience a sag due to increased load, reaching two new
steady states. In Fig. 12(b), i2 is compared with its estimated
value î2 by Converter I, ensuring accurate current sharing.
During the dynamic process, events are generated, as depicted
in Fig. 12(c), leading to corresponding spikes in the hidden
layer of SNN, presented in Fig. 12(d).

Fig. 12(e) illustrates the load recovery from 75 Ω to 115
Ω, with both i1 and i2 decreasing and sharing the load
equally after a dynamic process. Voltage variables v1 and
v2 increase and return to their initial steady states. Control
system variables for Converter I in this scenario are shown in
Fig. 12(f) and (g). As seen in Fig. 12(f), the estimated value
î2 accurately matches i2, ensuring precise current sharing.
During the dynamic process, events are generated in (g), and
corresponding spikes in the hidden layer of SNN are generated
in Fig. 12(h) synchronized with the events.

2) Line outage: In Fig. 13(a), before the line outage, i1
and i2 share an equal load. When Converter II is disconnected
due to a line outage, both v1 and vbus sag due to power droop
control. In Fig. 13(b), i2 is compared with its estimated value
î2 by Converter I, enabling Converter I to be aware of the
states of Converter II. As Converter I operates in islanded
mode, NSC based secondary control becomes inactive. During
the dynamic process, events are generated, as depicted in (c),
leading to corresponding spikes presented in Fig. 13(d).

Fig. 13(e) illustrates the scenario when Converter II is
reconnected to the system at t = 2 s, with i1 and i2 returning
to an equal state. This occurs because SNN is activated by
local dynamics, allowing it to estimate i2 again, as shown in
Fig. 13(f). During the dynamic process, the SNN is activated
by the events in Fig. 13(g), with corresponding spikes shown
in Fig. 13(h).

V. CONCLUSIONS AND FUTURE SCOPE OF WORK

This paper explores a low-power neuromorphic inference
based application for the first time in the realm of microgrids
and power systems. We firstly leverage the deterministic
features of information-theoretic learning using the highly
energy-efficient spiking neural networks (SNNs) at each bus
to estimate the remote measurements only using the unmod-
ulated power flows as the information carrier to enable co-
transfer of power and information. Secondly, we explore its
application for the hierarchical control of microgrids as its
application by leveraging the publish-subscribe architecture as
a novel communication protocol for power electronic systems.
Thirdly, since SNNs are trained using spikes based binary
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Fig. 13. Experimental results: (a) voltage and current when Converter II quits, (b) current of Converter II and its estimated value by Converter I when
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data, we translate an event-driven sampling process to reflect
on the most significant communicative signatures from the
remote ends that are further converted to spikes for online
training and inferences from SNNs, that is updated with every
system transients. By doing so, we not only eliminate the
communication infrastructure and their associated reliability
and security concerns, but also clearly demonstrate the com-
putational advantages, energy efficiency and feasibility behind
using SNN over other data and computational-intensive neural
networks. The proposed framework also eliminates the cyber
layer vulnerabilities to restrict any exogenous path arrivals
for the cyber attackers. Furthermore, it doesn’t suffer from
the inefficiency and scalability issues that other co-transfer

technologies such as Talkative Power Communication will
incur.

In the future, we plan to expand this philosophy to facilitate
smarter integration or start-up of distributed energy sources
and regional microgrids. The proposed scheme still needs
to be validated on fully parallel memristor crossbar array
circuits based processors with a specific focus on accuracy
and versatility for different noise levels.

APPENDIX

A. SNN Parameters – Simulation Studies
Number of hidden layers = 2, Number of neurons in

encoding and hidden layer = 256, Number of neurons in
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decoding layer = 4, σV
th = 0.01, σI

th = 0.002, σI
th = 0.0039.

Dataset dimensions for the inputs and outputs in Case I and
III : Din,800×4 = {vi,800×1, ii,800×1, v̇i,800×1, i̇i,800×1},
Dout,800×2 = {v̂(i)

j,800×1, î
(i)
j,800×1, }, ∀ i, j ∈ {1, 2}, i ̸= j.

Dataset dimensions for the inputs and outputs in Case II and
IV : Din,800×4 = {vi,800×1, ii,800×1, v̇i,800×1, i̇i,800×1},
Dout,800×4 = {v̂(i)

j,800×1, î
(i)
j,800×1, v̂

(i)
k,800×1, î

(i)
k,800×1},

∀ i, j, k ∈ {1, 2, 3}, i ̸= j ̸= k.

B. SNN Parameters – Experimental Studies

Number of hidden layers = 2, Number of neurons in encod-
ing and hidden layer = 64, Number of neurons in decoding
layer = 4, σV

th = 0.41, σI
th = 0.0063, σI

th = 0.024.
Dataset dimensions for the inputs and outputs:

Din,4000×4 = {vi,4000×1, ii,4000×1, v̇i,4000×1, i̇i,4000×1},
Dout,4000×2 = {v̂(i)

j,4000×1, î
(i)
j,800×1, }, ∀ i, j ∈ {1, 2}, i ̸= j.
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