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A B S T R A C T   

Background and objectives: Predicting glucose levels in individuals with diabetes offers potential improvements in 
glucose control. However, not all patients exhibit predictable glucose dynamics, which may lead to ineffective 
treatment strategies. We sought to investigate the efficacy of a 7-day blinded screening test in identifying dia-
betes patients suitable for glucose forecasting. 
Methods: Participants with type 1 diabetes (T1D) were stratified into high and low initial error groups based on 
screening results (eligible and non-eligible). Long-term glucose predictions (30/60 min lead time) were evalu-
ated among 334 individuals who underwent continuous glucose monitoring (CGM) over a total of 64,460,560 
min. 
Results: A strong correlation was observed between screening accuracy and long-term mean absolute relative 
difference (MARD) (0.661–0.736; p < 0.001), suggesting significant predictability between screening and long- 
term errors. Group analysis revealed a notable reduction in predictions falling within zone D of the Clark Error 
Grid by a factor of three and in zone C by a factor of two. 
Conclusions: The identification of eligible patients for glucose prediction through screening represents a practical 
and effective strategy. Implementation of this approach could lead to a decrease in adverse glucose predictions.   

1. Introduction 

More than 20 million people in the United States have been diag-
nosed with diabetes, and approximately 5–10% of people with diabetes 
have insulin-dependent Type 1 Diabetes (T1D) [1]. Complications 
related to diabetes are a burden for patients and a serious economic 
burden for the healthcare sector [1]. Adequate control of blood glucose 
levels is a key component in the prevention and delay of 
diabetes-associated long- and short-term complications [2]. The stan-
dard approach to diabetes management requires patients to take blood 
glucose measurements several times throughout the day with a finger 
prick test. The introduction of continuous glucose monitoring (CGM) 
devices allows for improved sampling of glucose measurements, which 
enables patients to adhere to stricter glycemic control. CGMs have 
proven successful at reducing glycosylated hemoglobin (HbA1c) levels 
as well as reducing time in hypo- and hyperglycemia [3–5]. 

Additional improvements in glycemic control could be achieved 
through forecasting blood glucose [6]. This approach allows patients to 
take timely action to minimize the incidence of adverse glycemic events 

[7]. The challenges associated with glucose forecasting are related to the 
large inter- and intra-variability in factors that impact glycemic vari-
ability [8]. These factors are associated with disease progression, med-
icine, infections, physical activity, smoking, ingested food, and 
physiological stress [9–11]. In particular, the high variability between 
subjects could lead to imprecise glucose forecasting for some patients 
with diabetes, even though they are monitored under similar conditions 
[7,12,13]. 

We recently published two studies demonstrating how neural 
network models could be used to forecast glucose dynamics in a het-
erogeneous cohort [14,15]. As seen in these two studies, as well as other 
studies related to individual or generalized glucose prediction [7,12,13], 
the algorithms work inadequately for a proportion of the participants. 
For these participants, the use of glucose forecasting could lead to 
deterioration in treatment rather than improvements. Hence, identifying 
these patients before such an algorithm is activated and used to make 
changes to the treatment is highly relevant. One interesting novel 
approach could be to blind test the precision of the forecasting approach 
for each patient for a short duration before unblinding the forecast. 
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However, this approach has not yet been evaluated, and there is un-
certainty regarding the correlation between the precision of the test and 
long-term usage. 

Therefore, the aim of this study was to investigate whether it is 
feasible to identify individuals with diabetes who respond with high or 
low accuracy to continuous glucose monitoring forecasting. 

2. Subjects, materials and methods 

To investigate whether a blinded screening test could help identify 
diabetes patients who have glucose dynamics eligible for glucose fore-
casting, this study combined participants with type 1 diabetes from two 
earlier studies with CGM data. The methods and results of the two 
studies for which data were used in the current analyses have been 
published [16–18]. The first study (Replace Blood glucose, REPLACE-BG 
[16]) aimed to determine whether the use of CGM without confirmatory 
blood glucose monitoring measurements is safe and effective in adults 
with well-controlled T1D. The second study (Wireless Innovations for 
Seniors with Diabetes Mellitus,WISDM [18]) had the objective of 
determining whether CGM is effective at reducing hypoglycemia 
compared with standard blood glucose monitoring in older adults with 
T1D. 

For this study, the inclusion criterion was a suitable CGM wear 
period for a minimum of 30 days with a successful CGM worn≥80%. We 
included a total of 334 participants from the studies (REPLACE-BG, n =
135; WISDM, n = 199). The purpose of using these study cohorts was to 
pool a large heterogeneous cohort that could better reflect the differ-
ences in the general population of T1D patients. 

2.1. Prediction model 

To forecast future glucose values, we used an artificial neural 
network (ANN) with input from CGM and a lead time prediction horizon 
(PH) of 30 or 60 min. The full details on the network have recently been 
published [15]. The ANN was implemented in MATLAB R2020b (The 
MathWorks, Inc., Natick, Massachusetts) using the Lev-
enberg–Marquardt algorithm. The ANN was constructed with error 
weights. The weights were constructed such that a false prediction error 
<100 mg/dL glucose would be penalized 5/1 and an error in the hy-
poglycemic range <70 mg/dL would be penalized 10/1. The motivation 
for penalizing bias in lower ranges was based on the clinical relevance of 
the precise prediction of low glucose levels. The error weights were 
implemented using the mean square error (MSE) performance function 
used to train the network. Each squared error contributes an equal 
amount, based on the individual error weight we

i , to the performance 
function; see equation (1). 

F =MSE =
1
N

∑N

i=1
we

i (Yi − Ŷ i)
2 Equation 1 

Features for the ANN model were retrospectively obtained in a 120- 
min sliding window for each forecast. The features were presented to the 
ANN as a matrix of readings in the timely order of measurement: 

Features=
[
fi=− 23 ; fi=− 23 ;… fi=0;

]

The results from a previously reported study [15] showed that the 
penalty-weighted ANN had favorable clinical relevance for forecasting 
compared to several other approaches. However, the reporting also 
highlighted that a small percentage of predictions would still be in zone 
C-D according to consensus error grid analysis [19,20]. These pre-
dictions could lead to late or incorrect treatment in some patients. 
Hence, it is highly relevant to assess whether the approach with a 
blinded screening test could be used to identify patients eligible for 
using the ANN. 

2.2. Screening approach 

For each patient, the first seven days of CGM use were used to esti-
mate the screening performance of the ANN for the individual patient. 
The remaining weeks to month of CGM data for each patient were used 
to calculate a long-term performance estimate of the ANN forecast. The 
approach is illustrated in Fig. 1. Metrics from the screening period were 
used to divide the patients into two groups: one potentially eligible for 
screening and one noneligible. Metrics from the remaining data were 
used to evaluate whether there was a long-term clinically relevant dif-
ference in performance between the groups. 

2.3. Performance metrics 

We calculated common performance metrics such as the root mean 
square error (RMSE) and mean absolute relative difference (MARD) – 
equations (2)–(4). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Yi − Ŷ i)

2

√
√
√
√ Equation 2  

ARD= 100
|Yi − Ŷ i|

Yi
Equation 3  

MARD=
1
N

∑N

i=1
ARDi Equation 4 

Common performance metrics (RMSE and MARD) concerning 
glucose forecasting and prediction are frequently reported in studies, 
and these metrics assess the general performance and fit of models. 
Nevertheless, these metrics do not assess performance with a focus on 
clinical relevance. Therefore, we used consensus error grid analysis 
(CEGA) [19,20] to evaluate the performance of the screening approach. 

CEGA can be used to evaluate the precision of glucose forecasting 
compared to a reference standard (the CGM value measured in this 
study). The analysis labels the predicted values into five zones, A, B, C, 
D, or E, depending on the clinical threat of forecasting a glucose value in 
the zone. In brief, forecasting in zone A is considered clinically accurate, 
forecasting in zone B is a benign error, predictions in zone C are char-
acterized as having the potential for overcorrection of treatment, fore-
casting in zone D describes the potential for delayed treatment, and 
forecasting in zone E presents clinical errors. 

We investigated which of the metrics from the screening period were 
the best for identifying diabetes patients with glucose dynamics suitable 
for glucose forecasting. Pearson’s correlation coefficient between the 
screening metric and the full period was calculated. Furthermore, the 
75th percentile of each metric (MARD, RMSE or percentage in zones A +
B) was chosen as a potential cutoff between eligible and noneligible 
patients according to the CGM algorithm. 

3. Results 

A total of 334 participants were included in the analysis cohort. From 
the WISDM study, 199 participants were included; 51% were male, the 
median [25; 75 percentile] age was 68 [64; 70], and the median dura-
tion of diabetes was 36.8 [26; 49]. From the REPLACE-BG study, 135 
participants were included; 50% were male, the median [25; 75 
percentile] age was 38.8 [30; 51], and the median duration of diabetes 
was 18.9 [13; 29]. A total of 64,460,560 min of CGM among the 334 
patients were analyzed in this study. This corresponds to an average of 
134 days of CGM for each patient. 

Table 1 shows the correlation coefficients between the screening and 
the full period for the three metrics. In general, there is a strong to 
moderate correlation between the metric from screening and the metric 
obtained from the full period. The MARD and RMSE seemed to have 
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better correlations than did the CEGA A + B screening. All the correla-
tions are significant, p < 0.001. 

Table 2 shows the results from splitting the participants into CGM 
algorithm-eligible and noneligible patients based on the 75th percentile 
of each metric (MARD, RMSE or CEGA A + B screening). In general, all 
three metrics identified noneligible patients, who had a higher per-
centage of prediction in zone C or D according to the CEGA than did the 
eligible group. For both the analytic cohort (eligible and noneligible) 
and prediction lead time (30 or 60 min), MARD screening seemed to 
have slightly more clinically favorable results than did RMSE screening 
or CEGA A + B screening, e.g., higher percentages in zone A and lower 
percentages in zones C and D. 

According to the MARD screening, the percentage of patients in zone 
C was approximately a factor of two; in zone D, there was an approxi-
mate factor of three between groups. 

4. Discussion 

In this study, we investigated the potential of screening the precision 
of a glucose forecasting algorithm. The results showed that there is a 
moderate to strong correlation between short-term performance and 
long-term performance. The results also indicate that utilizing this 
screening tool could be useful for selecting patients with type 1 diabetes 
who could benefit from using CGM enhanced with forecasting 
algorithms. 

By identifying patients based on screening metrics, it was possible to 
find a group with substantially greater percentages of patients in zones 

C-D via consensus error grid analysis. Even though the absolute differ-
ence may seem small, this approach is clinically valuable. CGM was 
deployed 24 h a day, and sampling every 5 min produced 288 glucose 
readings each day. For example, as seen in this study, a difference in 
zone C of 0.192% (WISDM, 30-min prediction) would yield an addi-
tional forecast in zone C on average approximately every other day. For 
zone D, the difference is 0.006, which would yield an additional forecast 
in zone D on average approximately every other month. The difference is 
even greater if we look at the 60-min forecast. The clinical problem with 
forecasts in zones C-D is that they can lead to overcorrection or delay in 
treatment. These predictions are important for avoiding achieving the 
goal of supporting treatment for better glycemic control, including 
reducing glycemic variability, hypoglycemia, and hyperglycemia. 

The clinical implication of using a forecasting algorithm could be in a 
closed-loop system where accurate glucose forecasting is important to 
deliver the ideal dosage of insulin at the optimal point in time [7]. A 
reliable glucose forecast could be used as an input to an insulin pump 
system that could initiate the suspension of insulin. Furthermore, reli-
able glucose forecasting is also important when considering CGM usage 
alone. Discontinuation of use is a challenge among CGM users due to the 
distress of false alarms and accuracy problems [21–23]. Additionally, 
reliable forecasts could facilitate the detection of hypo-
glycemia/hyperglycemia to initiate rapid treatment changes [12,24,25]. 

To our knowledge, this study is the first to investigate the potential of 
a screening phase to identify people with type 1 diabetes who could 
benefit from glucose forecasting algorithms. From a future perspective, 
it would be interesting to understand why the algorithm seems to 

Fig. 1. Illustrates the approach used for screening. The performance metrics for each patient were calculated for the 7-day screening and for the adjacent long-term 
period. The prediction horizon (PH) is either 30 or 60 min. The performance is used to calculate the correlation between the screening and the long-term perfor-
mance. The screening performance was also assessed by dividing the participants into groups of eligible and noneligible participants for prediction, and the groups 
were compared for performance on the basis of the long-term Continuous Glucose Monitoring (CGM) data. 

Table 1 
Correlations between the screening metrics from the 7-day screening and the long-termn metric. Abbreviations: Replace Blood Glucose study (REPLACE-BG); Wireless 
Innovations for Seniors with Diabetes Mellitus study (WISDM); Root Mean Square Error (RMSE); Consensus Error Grid Analysis (CEGA).   

Metrics 

MARD-screening RMSE-screening CEGA A + B screening 

Correlation Coefficient p value Correlation Coefficient p value Correlation Coefficient p value 

WISDM 
30-min forecasting 0.724 <0.001 0.731 <0.001 0.489 <0.001 
60-min forecasting 0.736 <0.001 0.762 <0.001 0.651 <0.001  

REPLACE-BG 
30-min forecasting 0.661 <0.001 0.656 <0.001 0.531 <0.001 
60-min forecasting 0.736 <0.001 0.762 <0.001 0.651 <0.001  
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perform worse for some patients. The cause could be multifactorial 
related to the progression of the disease and underlying pathophysi-
ology, but it could also be related to the type of medicine/dosage or 
individual behavior that affects blood glucose. Understanding these 
contributing factors could aid in the development of such algorithms. 

4.1. Limitations 

This study has several limitations. We included participants from two 
large randomized controlled trials (RCTs), and these type 1 diabetes 
patients represented a wide section of the population. However, type 1 
diabetes is a heterogeneous condition with high variability between 
patients. The results from this study need to be verified in other sub-
populations before they can be fully transferred and applied. One clear 
limitation is that we cannot generalize the findings to all CGM sensors. 
Many new sensors (CGM) are emerging from various manufacturers. 
These sensors have different properties, precisions and built-in filters, 
which affect the ability of prediction algorithms. The sensors used in the 
included participants were Dexcom. 

G4-G5. Finally, we showed how screening could affect the 

performance of one type of forecasting algorithm. In practice, many 
different algorithms can be utilized, and their properties can affect the 
results of screening. 

5. Conclusion 

In conclusion, we proposed and tested an approach for identifying 
individuals with diabetes who respond well to continuous glucose 
monitoring. The approach is feasible and easy to apply. From a future 
perspective, it would be relevant to investigate which factor contributes 
to reduced predictability in a proportion of patients. 
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