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ABSTRACT

This paper concerns an investigation of the effects of nonlinearity of drag loading on offshore struc-
tures excited by 2D wave fields, where the nonlinear term in the Morison equation is replaced by
an equivalent cubic expansion. The equivalent cubic expansion coefficients for the equivalent drag
model are obtained using the least mean square procedure. Numerical results are given. The dis-
placement response and the stress response processes obtained using the above loading model are

compared with simulation results and those obtained from equivalent linearization of the drag term.

1. Introduction

The loading imposed on structural members of an offshore structure subjected to wave
action represents one of the major steps in design of deepwater bottom-supported
structures. The wave loading is normally estimated using the well-known Morison
equation for a member with dimensions such that the presence of the member does
not significantly disturb the wave field.

This paper concerns an investigation of the effects of nonlinearity of drag loading on
offshore structures excited by irregular 2D wave fields, where the nonlinear term in the
Morison equation is replaced by an equivalent cubic expansion. The structural system
is modelled by a linear system with a finite number of degrees of freedom. A system
reduction based on an eigenmode expansion is applied, where the frequency response
matrix of the system is expressed in two terms, corresponding to the quasi-static
contribution and the dynamic contribution, respectively. Besides, the first order
wave theory is applied. The influence of the velocity of the structure is ignored in the
drag term. It is assumed that the sea surface can be considered as a realization of a
stationary zero-mean Gaussian process, which is also homogeneous in the horizontal
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space parameters. The response processes of the system are determined based on
a spectral approach. The equivalent cubic expansion coeflicients for the equivalent
drag model are obtained using the least mean square procedure. The variance of the
displacement response and the stress response processes obtained using the above
loading model are compared with simulation results and with results obtained by
using two different equivalent linearization methods of the drag term, namely by
using the least mean square procedure and by the requirement that the variance of
the original and the equivalent linear drag loading is alike.

2. Short-Term Model of the Sea States

The observed sea elevation, 7(x,t) at the fixed location x = (z,y) at a time ¢, can be
considered as a realization of a non-stationary stochastic process, whose characteristic
parameters vary slowly with time. Further, it is assumed that for short-term periods
(a few hours) the sea surface n(x,t) can be considered as a realisation of a stationary
stochastic process, which is also homogenous in the horizontal space parameters.
This process is assumed to be a zero-mean Gaussian process. A consequence of
these simplifying assumptions is that within the short-term time scale the sea surface
elevatlon is completely defined by the cross-covariance function £, (AX, ), defined
as

kan(A%,7) = Bln(x,1) n(x + Ax,t +7) (1)

where Ax = (z1 — 2,91 — ¥2), T = t1 — ta. (z1,y1) and (z2,y2) are the spatial
coordinates of two points at the sea surface.

In structural analysis it may be more convenient to use spectral densities than corre-
lation functions. Applying linear wave theory and assuming long crested waves the
corresponding spectral density can be obtained as

Son(AX,w) = exp(—tk(w)(Az cosf + Ay sin6)) Syn(w) (2)

where w is the frequency (rad/sec), Az = (z1 — 2), Ay = (y1 — y2). 0 is the
angle from the z-axis to the direction of wave propagation of the 2D sea state in
counter-clockwise direction. i = v/—1 and k(w) is the wave number obtained as

w? = kg tanh(kh) w>0, k>0 (3)

where g is the acceleration of gravity and h is the water depth.

Syn(w) is the double sided auto-spectral density function, and Spn(Ax,w) is the
double sided cross-spectral density of the sea surface. For negative frequencies the
wave number should be defined from the asymmetry condition

K(—w) = —k(w) (4)
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In most practical applications a standard formula involving a few sea state character-
istics is used for Sy,(w). Over the last 30 years many spectral expressions have been
suggested. A common feature of most spectral models is that they are of a unimodal -
form and mainly meant to characterise a pure wind driven sea.

Here, the JONSWAP spectrum is adopted as a model for wind sea. This spectrum
can be written, Hasselmann et al. 1973

\ — 5 w =4 ex — L — 0’2
Smw) = ag®w exp(—1(—) )7 p(~3((&-1)/2)?) )
P

where

a  equilibrium range parameter

w, spectral peak frequency (= 27/T, )
v spectral peak parameter

o spectral peak width parameter

The mean values from the JONSWAP measurements are usually adopted for o, i.e.
o = 0.07 )for w < wp and 0 = 0.09 for w > wy. Here o is chosen as 0.08 for all
frequencies and all sea states. For a sea state with a given value of the significant
wave height H, the remaining parameters (a,+ and w,) are related to each other
through the following equation, Haver 1985

v = exp(3.484(1—0.1975a T1/H?)) (6)

Eq. (5) is expected to be a reasonable spectral model within the so-called JONSWAP
range. In Haver 1985 the JONSWAP range is given by

3.6 /H, < T, <5+/H, (7)

The lower bound corresponds to a = 0.016 and v = 5.0, and the upper bound (cor-
responding to fully developed sea) to a = 0.0081 and v = 1.0, where the JONSWAP
wave spectrum equals the Pierson-Moskowitz wave spectrum. Within the JONSWAP
range « is assumed to vary linearly with T, and H, as follows

a = 0.036 — 0.0056 T,/+/H, (8)

3. Stochastic Modelling of the Wave Loading

In this section we consider the loading on a structural element. It is well known that
the force on a circular cylinder subjected to wave action consists of a drag as well as
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an inertia component. It is assumed that the total wave force per unit length on a
fixed vertical cylinder of the diameter D at position r = (z1, 22, z3) at the time ¢ can
be estimated by using Morison’s equation as, Sarpkaya & Isaacson 1981

Pl(r’t)
p(r,t) = |p2(r,t)| = pp(r,t)+pir(r,t) (9)
pg(l‘,t)
pp(r,t) = Kp(r) [ua(r,t)] un(r,t) (10)
pr(r,t) = Ki(r) an(r,t) (11)
Kp(r) = 1/2Cp(r) pD(r) (12)
Ki(r) = 1/4Cy(r) 7 p D*(r) (13)

where

u,(r,t)  Horizontal water particle velocity vector perpendicular to the cylinder at
position r at the time ¢.

i,(r,t)  Horizontal water particle acceleration vector perpendicular to the cylinder
at position r at the time .

Cp(r) Drag coefficient.
Cum(r) Coefficient of inertia.

p Mass density of water.

The normal vectors u, and U, can be expressed in terms of a unit vector with
directional cosines s = (s1, s, 83) along the cylinder axis as follows

wn(r8) = |t | = S() AG) u(r, ), italrt) = | iin, | = S(6) A(r) i(r, 1)
" " (14)
where
(1— 3%) —38182 —8183
S(r) = (1—s2) —sg83 (15)
symm. (1—s%)
cosf O .
A(r)=|sing 0|, u@my)=|"t, aEt=| (16)
0 1 [u2] [u2]

u(r,t) and u(r,t) signify the velocity and acceleration of a water particle in the 2D
wave field at position r at the time ¢. u; is the horizontal water particle velocity in
the direction of wave propagation and u. is the vertical water particle velocity (in
the z3-direction).
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Using tensor notation and index summation with the free indices ¢ and j taking values
1,2 and 3, and a, 3,7, 6, and p taking values 1 and 2, the components of eq. (9)
can be rewritten as

Pi(r,t) = KDun.'vun,'unj +KIﬂn.'
= KDA,-auM/AjﬂA]-.,u[;u.y + KrA;ota

= fiaUar/EayUBUy + Cialia (17)

where Ajs = Ajp(r), ua = uq(r,t) and ws = tq(r,t) are components of A(r),
u(r,t) and u(r,t) defined by eq. (16). Further

fia(r) = Kp(r)Aia(r) (18)
Cia(r) = K1(r)Aia(r) (19)
eap(r) = Aja(r)A;s(r) (20)

As seen, the drag term of the loading depends non-linearly on the 2D velocity field
uq(r,t). Instead of eq. (17) an equivalent system is considered in which the drag
term is given by a cubic expansion in the velocity field, i.e.

Dijeq(T,t) = bia(T)ta + diapy(T)uaupuy + Cia(T)la (21)

In appendix A it is shown how the coefficients b;, and d;qg, can be obtained using
the least mean square procedure. In what follows the cross-covariance of the loading
will then be analysed based on eq. (21).

Two points r; and ry of the structure are considered. The cross-covariance function
for the equivalent wave loading components can be expressed as

K1) o(2) (r) = b(l) (6(2) E[uu (2)] +d( E[u&l)ug)ug)u?)]

t,eq Jeq

: 1 2 ! 3
+ ¢ Bui) +dl, () Bu@uuPul?)

d(2)

1 2 2 2 1 - (2
@, E[u(l) (1) (1) ( )u&)u(z)] +C§'5) E[us)ug )ug)ug )])

n

+e)) (89 Blaud + g5 B uf uPui®] + 53 Edil’])  (22)
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where E[- -] denotes the expected value, pg ?w = Dj,eq(Tis i), Ua ) - = il T 1) bECz =

bja(ri), dggﬂ,y = djapy(ri), 1 = 1,2 and 7 = ¥, — 12. E,,l) and u( )
be simultaneously Gaussian distributed with zero mean. The cross-spectral densities
between various components of the wave load can be found by deriving the Fourier

transform of the cross-covariance function as follows

are assumed to

S, (w) = Pijap S e (2)(w)+Q:]aﬁ76,\u S MO * S NORO * S uDu®

plcq Jeq

(23)
where

Sugl)ugz) * Sugl)ugz) * Su(;)uf,’) =

lo o] (o o)
/ Su(1)u(z)(w — wl)/ Su(1)u(2)(w1 - wg) Su(1)u(2)(w2) dwodwy (24)
- P B — b ] A H

— 00

1 2 1 2 1),(2 1
Pada = 83 — (D42 — 012) - Do
+ (dgzﬂ)ﬁ + dﬁ)ﬂ d(?yﬂ) (b(l) + zw('( )) Ky@ (2)(0)

+ df,l,%a df;gw dfi)h) (b%) zwc(zﬂ))m ) (1)(0)

+ (a3, +dS)

ipay tapy

)d(&\ﬂfﬁ (1) (1)(0)5 @ (2)(0)+d5i&ad§5)ﬂ“ K, (1)(0)!6 @) (2)(0)

+ (dS\L‘y fi)»,) A58 (0K 2 <2>(0)+d%ad§5)m W,m(0)k,e,(0)

+ df;()x_y dsl)57> dgﬁ))‘“li g1)u£’1)(0)f€u§‘2)uf‘z)(0) + dfﬂsad]ﬂx,"‘aﬂugﬂ(0)5,1;2)“53)(0)
(25)
(1) (2) (2) (2) (2 2) (2)
Qijaprvorn = s (55, + s + gy + gy + digg +d Gors) (26)

'“ug”ug‘)(o) signifies the cross-covariance of u,(r;,t) and us(r;,t).
The cross-spectral densities of the water particle velocities Su(l)u(2)(LU) can be ex-
atp

pressed in terms of the wave spectral density Sy,(w) as




S a,mWw)= Ua(:cgl),w)U;(mgz),w) exp (— i k(w)(Az; cosf + Az, sin 9)) San(w)
«’tg

(27)
where * denotes the complex conjugate and
", cosh(k(w) z3)
Valera ) = i) ) (28)
Us(z3,w) = iwﬂl_(_k_(ﬁ)ﬁ) (29)

sinh(k(w) h)

z3-coordinates are measured form the bottom positive upwards.

4. Structural Response
I

It is assumed that the structure can be modelled as a space frame of three-dimensional
beam elements connected by nodal points. If the structural system is assumed to be
linear the dynamic equations may be written as

Mx+Cx+Kx=p(t) (30)

where

Displacement vector
Structural mass matrix
Structural damping matrix
Stiffness matrix

Load vector

T R Q2 H

In what follows a system reduction is performed based on an expansion of the response
x(t) on a basis made up of the undamped eigenmodes &™)

N
x(t) = Y qm(t) 8™ (31)

N is the number of the degree of freedom in the system. It is assumed that only
the lower-order modes contribute to the global dynamic response. However, the re-
sponse of local elements exposed to wave loading may be dominated by high-frequency
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modes, and hence will be quasi-static in nature. If the number of dynamic modes con-
sidered is M < N, the modal coordinates g, are then determined from the following

equations

M
i . wnMn . 2 _ Pm(t) _
gm +2wm (CQO + ; oo M, Cann) + Wndm = M, m=1,...,M
n¥m
(32)
P
() m=M+1,...,N (33)

wm is the undamped circular eigenfrequency corresponding to the mth eigenmode.
The modal mass M,,, modal loading P,,(t), damping ratio (, and the coupling
coefficents (,,, are defined by '

My = @™ TMa(™ (34)
Pp(t) = 8™ Tp(t) (35)
| (M) TCPH(™
bm = 267 Mo (36)
(M TCP(n)
(37)

Cmn = Iwmwn My M,

Notice that the summation convention has been abolished in the above equations.

Inserting eq. (33) and eq. (35) into eq. (31) the response can be written

M M
m - 1 m m
x(t)= Y an(®@™ + (K - gt ”’) pH)  (39)
m=1 m=1" Mo m

Deriving eq. (38) the following expansion of the inverse stiffnes matrix K~! has been
applied (Mercer’s theorem)

N

1

-1 __ m m) T

K=Y ST (™ o™ (39)
m=1 m

Using eq. (32) and eq. (38) the frequency response matrix of the system can then be

written

M
H(w) = Hy(w) + K1 =}

m=1

1

mWw

- (M (m)T (40)




Ho(w) =& (—w2m0 +1weg + ko)_l QT (41) ;
P = [.I,(l) P @(M)] (42)
M, W%Ml
mg = l } : ko = (43)
MM wﬁ,IMM
i 2‘-‘:’1M1<1 2/wiwe My MyCi2 -+ 2\/wiwn My MarCing T

co= | 2VwiwzMiM3(a 2wy M5 (o cer 20/wawpy Mo M Cam

[ 2/wywpr My MpyCann 2v/wowp MaMpyCpre <+ 2wy My Cum
(44)

If the system in eq. (32) decouples in the damping term, i.e. if the coupling constants
Cmn=0, m#n, mmn=1,...,M, eq. (40) reduces to

M
Hw)=K™"'+ ) Hpn(w)d™em™T (45)
X 1
Hn() = Hn(o) = 51— (46)
Ho(w) = . (47)

My (w2, — w? + 1 2(mwnmw)

H,,(w) signifies the frequency response function in the mth mode.

The cross-spectral density of the components z; and z; of the displacement vector
x(t) can be found as

N N
Sziz; (W) = Z ZH:r(w)HjS(w)Sprpa(“-’) (48)

r=1 s=1
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where the components H;, indicate the (i, 7) component of the matrix H and S, p, (w)
is the cross-spectral density of the components p;(t) and p;(t) of the loading vector
p(t). The the variance of the displacement of a given degree of freedom z can be
obtained from

=2 /0 " Saa(w) dw (49)

Finally the cross-spectral density of the stresses s = s(r;,t) and s = s(rz,t) in
two points r; and ry of the structure can be found as

N N
Sywam (@)= > TOTP S, 05 (w) (50)

i=1 j=1

where Ti(l) is the stress in point r; due to displacement zx =1 for k =7 and z =0

for k # 1.

5. Example

The considered model of a steel offshore platform consists of one central column and
three inclined legs, see figure 1. It is assumed that the topside is 20 m above the still
water level and the mean water-depth is 50 m. All structural elements are tubular
beam elements made of steel with modulus of elasticity equal to 0.205 - 10° kN/m?
and mass density equal to 7800 kg/m?. The diameter of the column is 3 m and the
diameter of the legs are 2 m, all with a wall thickness of 0.1 m. The total mass of
the deck is assumed to be 3 - 10° kg.

X1 | X2 | X3
1 | -5 [-289] -50
2 | o] o] -50
3 | 0 [5s77] -50
4 5 [-289] -50

Coordinates for the
support nodes.

All dimensions in m,

ANZ\% /®//®//
Figure 1. Steel offshore platform.
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The number of considered modes in the dynamic analysisis M = 4. Modal decoupling
is assumed, and the damping ratios (,, are taken as 1% for all modes. The four lowest
undamped circular eigenfrequencies are obtained as:

w; = 2.21 rad/sec.
wy = 2.21 rad/sec.
ws = 12.60 rad/sec.
wy = 12.60 rad/sec.

One sea state is considered, namely with significant wave height H, = 15 m and
spectral peak period T, = 20 sec. with direction of wave propagation 6 = 0° (the
z;-direction). The drag coefficient Cp and the coefficient of inertia Cps in Morison’s
equation are taken as 1.3 and 2.0, respectively.

In table 1 the variance and the 4th order central moment of the horizontal displace-
ment of the topside and the nominal stress in node A (see figure 1), obtained by
four different methods. Notice that the 4th order central moment for all methods are
obtained by simulation. For the different approaches the following designation are

applied :

(a) Simulation, with the orginal drag loading,.

(b) Equivalent cubic expansion of the drag loading (see section 3).

(c) Equivalent linear expansion of the drag loading using the least mean square
procedure. Expansion coeffecients b;, are obtained using eq. (A.8) where
digxy is set to zero.

(d) Equivalent linear expansion of the drag loading. Expansion coefficients b;,
are obtained by the requirement that the variance of the original and the
equivalent linear drag loading are alike, see eq. (A.10).

Displacement: Stress:

Method Variance 4th order Variance 4th order

moment moment
(m?) (m*) ((N/m?)?) ((N/m?)?)

(a) 5.08-10~* 9.75-10~" 1.74 - 104 9.75-10%8
(b) 5.10-10~* 10.19-10~7 1.79- 10 10.13 - 1028
(c) 4.62-107* 6.42-10~° 1.50 - 104 6.75 - 1028
(d) 4.84-107* 7.03-1077 1.53- 10 7.02-10%8

Table 1. Variance and the 4th order central moment of the horizontal
displacement of the topside and the nominal stress in node A,
obtained by four different methods.
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As seen, it is possible, using the equivalent cubic expansion of the drag term to
estimate the variance as well as the 4th order moment for the displacement and
the stress response with very little error. Both methods of equivalent linearization
underestimates the variance as well as the 4th order moment of the response. The best
linear approximation is obtained, when the equivalent linear expansion coefficients
are calibrated to give the same variance as for the original drag loading. The 4th
order moments of both methods of equivalent linearization are equal to 3 times the
squared variances, as expected for Gaussian responses. Notice, that the considered
example has been chosen to provide drag dominated loading. However, the considered
wave climate and the dimensions of the structure are realistic. If the time needed for
performing a calculation using equivalent linear expansion is set to 1, the calculation
time for an equivalent cubic expansion is 7 and 112 for performing a simulation
analysis. The convolution integrals in eq. (23) is calculated numerically by using
Fast-Fourier-Transform (FFT) technique. These convolution integrals are the main
reason for the increased calculation time of the cubic expansion technique.

6. Conclusions

A me‘thod to evaluate the variance response for displacements and stresses of offshore
structures is described. The technique is based on an equivalent cubic expansion of
the non-linear drag loadnig. One numerical example is given, where the loading
is drag dominated. Analytical results obtained using this method are compared
with those obtained by simulation where the original drag loding is used and with
analytical results obtained by using two different equivalent linearization methods. It
is shown that the equivalent cubic expansion method is able to estimate the variance
as well as the 4th order moment for the displacement and the stress response with very
little error. Both methods of equivalent linearization underestimates significantly the
variance as well as the 4th order moment of the response. An equivalent linearization
technique in which the equivalent linear expansion coeffecients of the drag term are
obtained by the requirement that the variance of the orginal and the equivalent drag
loading are alike, is shown to be superiour to the conventional least mean square
procedure.
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Appendix A : Determination of equivalent polynomial expansion
coeflicients

A circular cylindér with directional cosines s = (s;, 32, 83) along the cylinder axis as
shown in figure A1l is considered.

Direction of @\

T1  wave propagation

~N

Figure Al. i, j and k represent the base vectors in the z;, =2, 3-coordinate system.

The difference between the orginal loading (eq. (17)) and the equivalent loading (eq.
(21)) is given by the error vector ¢;, i.e.

€ = Pi — Dieg

= fiauaveﬂVUﬂu')’ — bia ue — diaﬁ~/ UgUBU~ (A.1)

The least mean square criterion leads to the following conditions for the determination
of the expansion coefficients

0

T Eleiei] =0 (A.2)

E[e,-e,-] =0 (A.3)

0
Odiagy
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resulting in the following system of two linear equations

bix taa + dirgy Papva = fix Elhaua]

bin trapy + dirpy Eapvapy = fix E[hatatgu,]

where

ho = ha(r,t) = ualr,t)y/exn(r) ua(r,u(r,)

Hra = .U/\oz(r) = E[UA(I‘,t) ua(r7t)]
The solution to eq. (A.4) and eq. (A.5) can be obtained as, Mgrk 1989

big = fix Elhauu] ppg — 3digan g

1 -1 -1 -
digys = 'éfiA (E[h,\uuu,,un],uu; #u-i Hocs

— E[hAuu] (.u;,(:il ”:7—61 + u;‘i “551 + 'ul_‘-‘sl F‘quf))

(4.4)

(A.5)

(4.6)

(A7)

(A.8)

(A.9)

Equivalent linear expansion coefficients b;g, requiring that the variance of the orignial
and the equivalent linear drag loading are alike, can be obtained from the equations

bia bjsg tap = fia fip Elhq hg]

(A.10)










