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Abstract: The accuracy of multi-frequency (MF) bioelectrical impedance analysis (BIA) to estimate
low muscle mass in older hospitalized patients remains unclear. This study aimed to describe the
ability of MF-BIA to identify low muscle mass as proposed by The Global Leadership Initiative on
Malnutrition (GLIM) and The European Working Group on Sarcopenia in Older People (EWGSOP-2)
and examine the association between muscle mass, dehydration, malnutrition, and poor appetite
in older hospitalized patients. In this prospective exploratory cohort study, low muscle mass was
estimated with MF-BIA against dual-energy X-ray absorptiometry (DXA) in 42 older hospitalized
adults (≥65 years). The primary variable for muscle mass was appendicular skeletal muscle mass
(ASM), and secondary variables were appendicular skeletal muscle mass index (ASMI) and fat-free
mass index (FFMI). Cut-off values for low muscle mass were based on recommendations by GLIM
and EWGSOP-2. MF-BIA was evaluated against DXA on the ability to estimate absolute values of
muscle mass by mean bias, limits of agreement (LOA), and accuracy (5% and 10% levels). Agreement
between MF-BIA and DXA to identify low muscle mass was evaluated with sensitivity, specificity,
negative predictive value (NPV), and positive predictive value (PPV). The association between muscle
mass, dehydration, malnutrition, and poor appetite was visually examined with boxplots. MF-BIA
overestimated absolute values of ASM with a mean bias of 0.63 kg (CI: −0.20:1.46, LOA: −4.61:5.87).
Agreement between MF-BIA and DXA measures of ASM showed a sensitivity of 86%, specificity of
94%, PPV of 75% and NPV of 97%. Boxplots indicate that ASM is lower in patients with malnutrition.
This was not observed in patients with poor appetite. We observed a tendency toward higher ASM in
patients with dehydration. Estimation of absolute ASM values with MF-BIA should be interpreted
with caution, but MF-BIA might identify low muscle mass in older hospitalized patients.
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1. Introduction

Malnutrition is defined as “a state resulting from lack of intake or uptake of nutrition
that leads to altered body composition (decreased fat-free mass (FFM)) and body cell mass
leading to diminished physical and mental function and impaired clinical outcome from
disease” [1]. Sarcopenia is present when low muscle strength and low muscle quantity or
quality are detected [2].

Older patients with malnutrition and sarcopenia often have skeletal muscle wasting,
which is associated with serious outcomes such as loss of independence, reduced quality
of life, increased morbidity, and mortality [2,3]. Older adults admitted to an emergency
department (ED) represent a risk population in relation to malnutrition and sarcopenia [4,5].
Patients admitted to an ED are often discharged without being transferred to another de-
partment, and due to the short stays, some patients will be discharged before interventions
to treat malnutrition and sarcopenia have been initiated [6–8]. Correct identification of
malnutrition and sarcopenia in the ED is therefore of great clinical value because the condi-
tions largely can be treated by adequate nutritional and exercise interventions [9]. Various
criteria to identify malnutrition and sarcopenia have been proposed. Recently, The Global
Leadership Initiative on Malnutrition (GLIM) has published a set of diagnostic criteria for
the diagnosis of malnutrition and recommends the assessment of muscle mass [3]. The
European Working Group on Sarcopenia in Older People (EWGSOP-2) has recommended
that reduced muscle strength should be confirmed by evaluation of low muscle mass for the
diagnosis of sarcopenia [2]. Thus, malnutrition and sarcopenia diagnosis based on GLIM
and EWGSOP-2 require accurate methodologies to detect low muscle mass. As proposed
by GLIM and EWGSOP-2, low muscle mass can be detected via, e.g., appendicular skeletal
muscle mass (ASM), appendicular skeletal muscle mass index (ASMI), or fat-free mass in-
dex (FFMI) [2,3]. Two techniques are commonly used to estimate muscle mass: dual-energy
X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA) [10]. To date, DXA
appears more accurate for estimating muscle mass, and the technique has gained accep-
tance in clinical research and is endorsed by the GLIM and EWGSOP-2 consortium, but it
is not feasible in a clinical setting such as an ED due to short stays and required financial
and personal resources [2,10]. DXA works by sending dual low-dose X-ray beams with
different energy levels through the body, which can differentiate between bone mineral,
lean mass, and fat mass [11]. BIA is also endorsed as a method to estimate muscle mass
and appears more feasible in an ED than DXA as it can be performed bedside and does
not require special training [2,10]. BIA is conceptually based on the electrically conductive
properties of the human body and is performed with single-, dual-, or multi-frequency (MF)
technology. Measures of bioelectrical conductivity are proportional to total body water
and the body compartments with high water contents, such as fat-free mass and skeletal
muscle mass [11]. Body composition is either estimated on whole-body impedance (no
torso measurement) with empirical equations based on factors like age and sex or direct
segmental measurements without using empirical data [11].

The use of muscle mass estimates to diagnose malnutrition and sarcopenia is sparsely
implemented in older adults, primarily due to uncertainty regarding which method to use
to measure muscle mass. A review by Cederholm et al. summarizes 14 publications that
have applied GLIM in older populations and finds that the estimation of muscle mass is
missing in most papers [12]. A review by Barazzoni et al. concludes that the methodological
issues in estimating muscle mass have been a limiting factor in the implementation of the
EWGSOP-2 sarcopenia diagnostic approach [13]. Recent research shows suitable agreement
between MF-BIA and DXA to measure the absolute values of FFM in younger healthy
individuals [14]. But, this was not seen in a study using dual-frequency (DF)-BIA in older
adults [15]. Only a limited number of studies have compared the performance of MF-BIA
against DXA to estimate absolute values of muscle mass in the older population, and
research on the ability of MF-BIA to identify low muscle mass in the older population is
even more scarce [16–20]. Therefore, this study aims to evaluate MF-BIA against DXA
for the direct estimation of low muscle mass in older hospitalized patients. Secondly, the
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study aims to assess the association between muscle mass, dehydration, poor appetite,
and malnutrition.

2. Materials and Methods
2.1. Study Design and Setting

In this protocolized prospective exploratory cohort study, we examined data from
a subpopulation of the randomized clinical trial, OptiNAM, investigating the effect of
optimizing nutrition and medication in acutely admitted older patients registered at Clin-
ical Trials.gov (NTC03741283). A detailed description of the study design can be found
elsewhere [21,22]. Patients were recruited at the ED at Copenhagen University Hospital,
Hvidovre, Denmark. The ED annually handles 12,600 acute admissions. Patients enrolled in
the original study were additionally invited to a sub-study where they received a glomeru-
lar filtration rate measurement (mGFR) and an estimation of muscle mass based on MF-BIA
and DXA measurements. This study is based on data from the above-mentioned sub-study.
The reporting of this study follows the “Strengthening The Reporting of Observational
studies in Epidemiology (STROBE)” guidelines [23].

2.2. Patients and Recruitment

Eligibility was identified through the electronic patient journal. Patients were eligible
for the original study if they were ≥65 years of age, acutely admitted to the ED at Copen-
hagen University Hospital, Hvidovre, Denmark, community-dwelling, and residing in
districts of West or Southwestern Copenhagen.

Patients were excluded from the original study if they were unable to understand
Danish, cooperate physically (e.g., hearing or speech impairment) or cognitively (e.g.,
dementia or unconsciousness), were in an isolation room, were not Caucasian, or were
admitted due to suicide attempt or terminal illness. Additional exclusion criteria for this
study were prior amputation, ascites, lower extremity edema, and pacemaker on the days
of MF-BIA and DXA measurements (hereafter referred to as test days). Patients were
informed that they could decline and withdraw from this sub-study for any reason and
that this would not have any consequences for their regular course of treatment. In this
current study, older hospitalized patients are considered to be patients who have been
admitted to the ED and then either directly discharged from the ED or transferred to
another department, as previously described in detail [22].

2.3. Variables and Data Collection

Data were collected by trained study staff at two time points, in the ED directly after
inclusion in the original study and on test days. Data were entered directly in the electronic
patient records or in electronic case report forms (CRF) in REDCap (Research Electronic
Data Capture, Vanderbilt University, Nashville, TN, USA). If not directly entered, paper
CRFs were double entered and validated in REDCap.

2.3.1. Patient Demographics

Patient characteristics were based on self-report measurements by study staff or
from the medical records and included sex, age, weight, height, admission diagnoses,
length of stay (LOS), readmissions (within 30 days), and mortality (3 months and 1 year).
Admissions diagnoses were determined by the International Classification of Diseases
(ICD-10) diagnosis codes. The Charlson Comorbidity Index (CCI) was used to quantify
disease burden and calculated without age correction [24].

2.3.2. Muscle Mass Estimations

MF-BIA and DXA technology were used to estimate muscle mass and were performed
at the Department of Clinical Physiology and Nuclear Medicine, Centre for Functional and
Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.
If possible, the estimations were performed during hospitalization (after study recruitment).
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Otherwise, patients were asked to return for estimations as soon as possible. Estimations
were performed at the same time of the day and approx. three hours after breakfast.
Patients were asked to refrain from strenuous physical activity, not to change their eating
habits, and to drink water as usual on the day of the measurement. There was no systematic
bladder voiding. Patients wore their own clothes without shoes, and all metal parts, such
as watches and jewelry, were removed. While MF-BIA and DXA scans were performed,
patients were asked to lay still. Age, height, and weight were recorded on test days and
directly entered into the MF-BIA and DXA devices. Muscle mass variables, ASM (primary),
ASMI, FFMI (secondary), and cut-off values were defined according to the most recent
guidelines launched by GLIM and EWGSOP-2 (Table 1).

Table 1. Muscle mass variables and cut-off points for low muscle mass as recommended by GLIM
and EWGSOP-2.

Muscle Mass Variable Cut-Off Points Female Cut-Off Points Male

Appendicular skeletal muscle mass
(ASM, kg) 1 <15 kg <20 kg

Appendicular skeletal muscle mass
index (ASMI, kg/m2) 1 <5.5 kg/m2 <7 kg/m2

Fat-free mass index (FFMI, kg/m2) 2 <15 kg/m2 <17 kg/m2

1 GLIM and EWGSOP-2 recommendations. 2 GLIM recommendation only.

As a reference method, a whole-body DXA scan (Version 16) was performed before
MF-BIA measurement (GE Lunar Prodigy Primo, GE Healthcare Technologies, Madison,
WI, USA). Patients were positioned on the scanner table in a supine position with straight
legs, feet held together with a Velcro band, and arms close to the body. The software
automatically defined the region of the trunk and appendages, which were then adjusted
manually, and then DXA software (Version 16) calculated whole- and regional body com-
position estimates. The same scanner was used for all measurements, and calibration was
performed throughout the study according to local guidelines [25]. Scans were performed
by designated and trained staff three hours after administration of the radioisotope used
for the mGFR. Each scan had a mean length of five minutes.

Whole-body MF-BIA was performed immediately after DXA measurement with a
portable bedside direct segmental MF-BIA analyzer (InBody S10; Biospace, Seoul, Republic
of Korea), which measures with six different frequencies (1, 5, 50, 250, 500, and 1000 kHz)
at each of five segments (right arm, left arm, trunk, right leg, and left leg). Patients were
placed on a hospital bed for approx. five minutes in a supine position with their arms not
touching the trunk part of their body (approx. 15-degree angle) and legs in shoulder width
position. Contact points on fingers and ankles were cleaned before touch-type electrodes
were placed as described in the manufacturer’s standard protocol. Cases of impedance
reverse were checked and registered if it was not possible to remove. Measurements lasted
for 90 s.

2.3.3. Hydration Assessment (Osmolarity and Medication Review)

Hydration was investigated by calculated plasma osmolarity and a pharmacist-led
medication review.

Osmolarity was calculated using the ESPEN recommended equation: 1.86 × (Na+ +
K+) + 1.15 × glucose + urea + 14. Cut-off: >295 mOsm/L [9]. Plasma isolated from whole
blood was collected on test days prior to muscle mass estimations. P-Na+, P-K+, P-glucose,
and P-urea were analyzed according to standard methods at the Department of Clinical
Biochemistry, Copenhagen University Hospital, Rigshospitalet, Denmark. All measures
were quantified in mmol/L.

A list of medications thought to potentially affect hydration was created by two
pharmacists based on therapeutic indications and well-known side effects (such as edema)
with inspiration from Walther et al. [26]. The following medication classes were considered:
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dehydration: loop-diuretics, thiazides, potassium-sparing diuretics, and renin–angiotensin–
aldosterone system (RAAS) inhibitors; overhydration: calcium antagonists, alpha- and beta-
blockers, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and urinary
tract agents. A pharmacist-led medication review was performed retrospectively in the
electronic patient records by evaluating medication use on test days according to the list.
The list of prescribed medications belonging to the selected medication classes can be found
in the Supplementary Materials Table S1.

2.3.4. Nutritional Screening

Nutritional screening was performed at inclusion with the Mini Nutritional Assess-
ment Short-Form (MNA®-SF). MNA®-SF is a validated screening tool for older adults in
hospitals consisting of six questions regarding food intake, weight loss, mobility, psycho-
logical stress/acute disease, neuropsychological problems, and BMI [27]. Nutritional status
was defined as normal nutritional status: score = 12–14; risk of malnutrition: score = 8–11;
malnutrition: score = 0–7.

2.3.5. Appetite Assessment

Appetite was assessed at inclusion using the screening tool Simplified Nutritional
Appetite Questionnaire (SNAQ). SNAQ consists of four questions concerning appetite,
fullness, taste, and daily meal frequency [28]. Poor appetite was defined as a SNAQ
score ≤ 14.

2.4. Statistical Methods

Categorical variables are expressed as frequencies and percentages. Continuous
variables are expressed as mean and standard deviation (SD) or median and interquartile
range (IQR) for normally and non-normally distributed data, respectively. Normality
assumptions were evaluated by quantile–quantile plots (QQ plots). Scatterplots were used
to visualize associations between MF-BIA and DXA for absolute values of ASM, ASMI,
and FFMI. Bland–Altman analyses were conducted to evaluate bias, mean difference with
95% confidence intervals (CI), and limits of agreement (LOA) between absolute values
of MF-BIA and DXA estimates. Additionally, the percentage of patients with accurate
predictions within 5% and 10% were estimated. The ability of MF-BIA to identify low
muscle mass according to DXA was estimated by sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), agreement, and Cohen’s Kappa. All estimates
are presented with 95% CI. Additionally, visual representations of the MF-BIA and DXA
muscle mass distribution within dehydration, malnutrition, and poor appetite are presented
as boxplots. Given that this is an exploratory sub-study, there is no separate sample size
calculation. Data were analyzed using R version 4.2.2 [29].

3. Results
3.1. Patient Characteristics

In total, 193 patients were recruited to the original study from October 2018 to April
2021. Of the 193 patients, 120 patients underwent GFR measurement of which 78 patients
did not have both MF-BIA and DXA measurements. Hence, 42 patients were included in
this study (Figure 1). Patient characteristics are shown in Table 2, and details regarding
medication related to hydration can be found in the Supplementary Materials Table S2. The
distribution of mean values for BMI (26.3 vs. 27), age (79.2 vs. 78.9), and sex (females: 58.5 vs.
64.3) in this sub-study was comparable to that of the main study. In total, 64.3% of patients
had their MF-BIA and DXA measurements performed within 2 weeks after discharge.
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Table 2. Patient characteristics.

Total (n = 42) Female (n = 27) Male (n = 15)

Variable
Age, years, mean (SD) 78.9 (6.8) 79.9 (6.7) 76.9 (6.5)
Weight, kg, mean (SD) 75.8 (20.3) 70.7 (20.7) 85.1 (16.4)
Height, cm, mean (SD) 167.6 (7.8) 163.8 (6.6) 174.3 (4.7)

BMI, mean (SD) 27.0 (6.4) 26.4 (7.0) 28.2 (5.0)
Admission diagnosis category 1

Cardiovascular, n (%) 13 (31%) 7 (26%) 6 (40%)
Gastrointestinal, n (%) 3 (7%) 3 (11%) 0 (0%)

Infectious, n (%) 11 (26%) 7 (26%) 4 (27%)
Lab abnormality, n (%) 1 (2%) 1 (4%) 0 (0%)

Mechanical, n (%) 3 (7%) 1 (4%) 2 (13%)
Nervous, n (%) 5 (12%) 4 (15%) 1 (7%)

Respiratory, n (%) 5 (12%) 3 (11%) 2 (13%)
Social, n (%) 1 (2%) 1 (4%) 0 (0%)

CCI = 0 2 25 (63%) 18 (72%) 7 (47%)
CCI = 1 11 (28%) 5 (20%) 6 (40%)
CCI = 2 4 (10%) 2 (8%) 2 (13%)
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Table 2. Cont.

Total (n = 42) Female (n = 27) Male (n = 15)

LOS, days, median (IQR) 3 1.50 (0.00:3.25) 0.50 (0.00:2.75) 3.00 (0.25:4.00)
Readmission, 30 days, n (%) 31 (74%) 20 (74%) 11 (73%)
Mortality, 3 months, n (%) 3 (7%) 1 (4%) 2 (13%)

Mortality, 1 year, n (%) 3 (7%) 1 (4%) 2 (13%)
MNA®-SF score 12–14, n (%) 4 13 (32%) 9 (33%) 4 (29%)

MNA®-SF score 8–11, n (%) 19 (46%) 13 (48%) 6 (41%)
MNA®-SF score 0–7, n (%) 9 (22%) 5 (19%) 4 (29%)

SNAQ score > 15, n (%) 22 (52%) 15 (56%) 7 (47%)
SNAQ score ≤ 14, n (%) 20 (48%) 12 (44%) 8 (53%)

Dehydration > 295 mOsm/L, n (%) 5 12 (32%) 6 (23%) 6 (50%)
Medication, dehydrating effect, n (%) 6 25 (60%) 16 (59%) 9 (60%)

Medication, overhydrating effect, n (%) 7 22 (52%) 12 (44%) 10 (67%)

Abbreviations: SD: standard deviation, BMI: body mass index, CCI: Charlson Comorbidity Index, LOS: length
of stay, IQR: interquartile range, MNA®-SF: Mini Nutritional Assessment Short-Form, SNAQ: Simplified Nu-
tritional Appetite Questionnaire. 1 Patients can have >1 admission diagnosis, 2 CCI values are missing for two
patients, 3 LOS value is missing for one patient, 4 MNA®-SF values are missing for two patients, 5 dehydration
values are missing for four patients, 6,7 patients may be prescribed >1 medications with dehydrating and/or
overhydrating effect.

3.2. The Evaluation of MF-BIA against DXA to Estimate Absolute Values of Muscle Mass

The ability of MF-BIA to estimate absolute values of ASM, ASMI, and FFMI is pre-
sented in Tables 3 and 4. Bland–Altman plots and Scatterplots (Figures 2 and 3) visualize
the agreement between MF-BIA and DXA for absolute values of ASM, ASMI, and FFMI. In
Table 3, the distribution of absolute mean values for muscle mass based on ASM, ASMI,
and FFMI appeared similar for MF-BIA and DXA, whereas this was not the case for the
distribution of low and normal muscle mass based on ASMI and FFMI. Agreement between
absolute values of ASM, ASMI, and FFMI estimated by MF-BIA and DXA as investigated
with Bland–Altman showed that MF-BIA systematically overestimated ASM, ASMI, and
FFMI compared to DXA with a mean bias of 0.63 kg (−0.20:1.46), 0.21 kg/m2 (−0.08:0.50)
and 0.76 kg/m2 (0.31:1.22), respectively. The lower and upper LOAs were as follows for
ASM: −4.61 kg to 5.87 kg; ASMI: −1.62 kg/m2 to 2.04 kg/m2; FFMI: −2.08 kg/m2 to
3.61 kg/m2. The percentages of accurate MF-BIA estimates within 10% of DXA values for
absolute ASM, ASMI, and FFMI were between 62 and 74%.

Table 3. Absolute values of muscle mass and prevalence of low muscle mass according to MF-BIA
and DXA.

All Patients (n = 42)

ASM (kg) ASMI (kg/m2) FFMI (kg/m2)

Absolute values of muscle mass
DXA, mean (SD) 20.5 (5.5) 7.3 (1.6) 17.3 (2.6)

MF-BIA, mean (SD) 21.2 (5.4) 7.5 (1.4) 18.0 (2.3)
Prevalence of low muscle mass

DXA, n (%) 7 (17%) 9 (21%) 13 (31%)
MF-BIA, n (%) 8 (19%) 3 (7%) 4 (10%)

Abbreviations: ASM: appendicular skeletal muscle mass, ASMI: appendicular skeletal muscle mass index, FFMI:
fat-free mass index, DXA: dual-energy X-ray absorptiometry, SD: standard deviation, MF-BIA: multi-frequency
bioelectrical impedance analysis.



J. Clin. Med. 2024, 13, 196 8 of 15

Table 4. Evaluation of MF-BIA against DXA to estimate absolute values of muscle mass and low
muscle mass.

All Patients (n = 42)

ASM (kg) ASMI (kg/m2) FFMI (kg/m2)

Mean bias, mean (CI) 1 0.63 (−0.20:1.46) 0.21 (−0.08:0.50) 0.76 (0.31:1.22)
Mean bias, % (CI) 3.9 (0.2:7.6) 3.9 (0.2:7.6) 5.1 (2.4:7.8)
LOA, lower, upper −4.61, 5.87 −1.62, 2.04 −2.08, 3.61

5% accurate estimations, % (CI) 33 (20:50) 33 (20:50) 48 (32:63)
10% accurate estimations, % (CI) 62 (46:76) 62 (46:76) 74 (58:86)
15% accurate estimations, % (CI) 79 (63:89) 79 (63:89) 88 (74:96)

Sensitivity, (CI) 0.86 (0.42:1.00) 0.22 (0.03:0.60) 0.23 (0.05:0.54)
Specificity, (CI) 0.94 (0.81:0.99) 0.97 (0.84:1.00) 0.97 (0.82:1.00)

PPV, (CI) 0.75 (0.35:0.97) 0.67 (0.09:0.99) 0.75 (0.19:0.99)
NPV, (CI) 0.97 (0.85:1.00) 0.82 (0.67:0.92) 0.74 (0.57:0.87)

Kappa, (CI) 0.76 (0.46:1.06) 0.25 (0.00:0.50) 0.24 (0.01:0.48)
Agreement, % (Cl) 93 (79:98) 81 (65:91) 74 (58:86)

Abbreviations: CI: confidence intervals, ASM: appendicular skeletal muscle mass, ASMI: appendicular skeletal
muscle mass index, FFMI: fat-free mass index, LOA: limits of agreement, PPV: positive predictive value, NPV:
negative predictive value. 1 Bias is defined as mean values of MF-BIA—DXA.
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Figure 2. Bland–Altmann plots for agreement between ASM, ASMI, and FFMI estimated by MF-BIA
and DXA (absolute values). Dots show females, and crosses show males. Dashed lines represent the
limits of agreement, and plain lines represent the mean bias. Abbreviations: MF-BIA: multi-frequency
bioelectrical impedance analysis, DXA: dual-energy X-ray absorptiometry, ASM: appendicular skele-
tal muscle mass, ASMI: appendicular skeletal muscle mass index, FFMI: fat-free mass index.
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Figure 3. Scatter plots for agreement between ASM, ASMI, and FFMI estimated by MF-BIA and DXA
(absolute values and low muscle mass). Dots show females, and crosses show males. Solid lines
represent the cut-off values for low muscle mass. Abbreviations: ASM: appendicular skeletal muscle
mass, DXA: dual-energy X-ray absorptiometry, MF-BIA: multi-frequency bioelectrical impedance
analysis, ASMI: appendicular skeletal muscle mass index, FFMI: fat-free mass index.

3.3. Agreement between MF-BIA and DXA to Estimate Low Muscle Mass

In Figure 3, discrepancies between MF-BIA and DXA measures of ASM, ASMI, and
FFMI are visualized. Calculating the number of patients with an ASM value of a maximum
of 1.5 kg more than current ASM cut-off values showed that three female patients were
deemed to have normal muscle mass due to ASM estimates of 15.06 kg, 15.93 kg, and
16.02 kg, respectively, and one male patient due to an ASM estimate of 20.03 kg. The
corresponding values for sensitivity, specificity, NPV, PPV, kappa, and overall agreement
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can be found in Table 4. Sensitivity for detecting low ASM, ASMI, and FFMI using MF-BIA
were 86%, 22%, and 23%, respectively. Further, the PPV for ASM, ASMI, and FFMI were
75%, 67%, and 75%, respectively.

3.4. Associations between Absolute Values of Muscle Mass with Dehydration, Malnutrition, and
Poor Appetite

Figure 4 indicates that patients with dehydration had higher median values of ASM,
ASMI, and FFMI, as measured by MF-BIA and DXA. Further, patients with malnutrition
appeared to have lower median values of ASM, ASMI, and FFMI, as estimated by both
MF-BIA and DXA (Figure 4). Lastly, median values of ASM, ASMI, and FFMI for both
MF-BIA and DXA appeared to be similar regardless of normal or poor appetite (Figure 4).
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Figure 4. Boxplots for associations between absolute values of muscle mass with dehydration, malnu-
trition, and poor appetite. Gray represents DXA measures, and white represents MF-BIA measures.
Abbreviations: ASM: appendicular skeletal muscle mass, DXA: dual-energy X-ray absorptiometry,
MF-BIA: multi-frequency bioelectrical impedance analysis, ASMI: appendicular skeletal muscle mass
index, FFMI: fat-free mass index.
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4. Discussion
4.1. Main Findings

In our study, we investigated the accuracy of MF-BIA to estimate low muscle mass
following recommendations by GLIM and EWGSOP-2 in older hospitalized patients. We
observed that MF-BIA overestimated absolute values of ASM, ASMI, and FFMI compared
to DXA in this study sample. However, based on the CI values, the degree of bias could
not be determined for ASM and ASMI, whereas the CI values for FFMI indicate clear bias.
ASM estimated by MF-BIA was superior in detecting low muscle mass compared to ASMI
and FFMI when evaluated against DXA. Additionally, patients with dehydration appeared
to have higher median values of ASM, ASMI, and FFMI compared to patients without
dehydration. We observed lower median values of ASM, ASMI, and FFMI in malnourished
patients compared to well-nourished patients. This was not the case for patients with poor
appetite compared to patients with normal appetite.

4.2. Comparison to Other Studies

The present study showed bias and wide CI values for muscle mass estimated with
MF-BIA against DXA. This indicates that the individual differences between muscle mass
estimated by MF-BIA and DXA are subject to great variability, and thereby, it may be an
issue when MF-BIA is used to assess muscle mass. No studies were comparable to ours
regarding the device used and our patient population. Similar to our findings, two studies
have reported wide LOAs for different body composition variables when DF-BIA and
MF-BIA were compared with DXA in older patients [15,16]. Contradicting our results,
Jayanama et al. found that InbodyS10, similar to our device, had high correlations of FFMI
compared with DXA in maintenance hemodialysis Thai patients [17]. This inconsistency
in our findings could be explained by ethnic differences in body composition [30]. In line
with our results, Buckinx et al. reported poor agreement between InBodyS10 and DXA in
a subgroup analysis of healthy older patients [18]. The degree of accuracy in estimating
muscle mass with BIA in older adults is inconsistent both in terms of methods and results.
Therefore, it is difficult to evaluate the clinical implication of the differences in the muscle
mass estimates between the studies. Research dedicated to improving the techniques for
estimating muscle mass in clinical practice appears highly relevant.

To the best of our knowledge, few studies have dealt with the ability of MF-BIA
against DXA to identify low muscle mass as proposed by GLIM and EWGSOP-2 in older
adults [19,20,31–33]. We found a reasonable sensitivity and specificity for ASM, and current
results mostly support our findings. Three studies have found reasonable sensitivity and
specificity to identify older adults with low ASM using different frequency technology and
predictive equations (MF-BIA, single-frequency (SF)-BIA, and SF-BIA with three different
equations) [19,31,33]. In contrast, two studies have reported that SF-BIA and MF-BIA
(InbodyS10) misclassified older adults as non-sarcopenic compared to DXA [20,32]. The
discrepancies between these findings and our findings may be attributed to differences in
the characteristics of the study sample and the technical specifications of the BIA devices.
This addresses a significant shortfall in the diagnosis of malnutrition and sarcopenia. The
use of BIA may be a suitable substitute for DXA to identify trends for muscle mass in
clinical practice, taking its feasibility into consideration. However, a thorough clinical
evaluation should be performed if low muscle mass is suspected. To better understand
MF-BIA performance, we are assessing muscle mass using both MF-BIA and DXA in our
ongoing and upcoming studies with older hospitalized patients [34]

We assessed edema as a physical examination and calculated plasma osmolarity
as recommended by ESPEN. Munk et al. have previously shown that the osmolarity
equation recommended by ESPEN accurately determines water-loss dehydration in older
hospitalized patients [35]. According to the ESPEN osmolarity equation, 32% of our study
sample was dehydrated. A similar prevalence of 37% was found in a study with older
adults admitted to an ED, although their study was based on measured osmolarity (cut-off
>300 mOsm/kg) [36].
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Contrary to common assumptions, we observed that patients being dehydrated had
higher muscle mass estimates [10]. These results must be interpreted with great caution due
to the sample size. Further, we conducted a pharmacist-led medication review to evaluate
whether patients were prescribed medication affecting hydration. The pharmacist identified
that 60% of the study sample were prescribed medication that may cause dehydration, and
52% had been prescribed medication that may cause overhydration. One-third of the study
sample had both types of medication. The findings above may suggest that muscle mass
estimates might be biased by hydration status. Therefore, future work should conduct
an in-depth evaluation of how hydration status may affect the validity of muscle mass
estimates in a larger sample of older patients.

Our study sample consisted of a limited number of patients with low muscle mass
according to GLIM and EWGSOP-2 definitions (10–31%). However, we observed a high
prevalence of malnutrition and risk of malnutrition (68%), which may contradict the
assumption that malnutrition and low muscle mass are closely intercorrelated [3]. The
prevalence of malnutrition and risk of malnutrition in this study is comparable to the
prevalence reported in the literature [6,37]. Like the general assumption, we observed that
patients being malnourished or at risk of malnutrition had lower absolute muscle mass
estimates compared to well-nourished patients. Further, when applying ASM estimated
with MF-BIA, more patients were identified with low muscle mass compared to the height-
adjusted ASMI variable, indicating that the prevalence of low muscle mass is dependent
on the applied muscle mass variable. This tendency was also observed in the study by
Sousa-Santo et al. [33]. The rather dense distribution of patients near the ASM cut-off
values, as seen in Figure 3, may contribute to uncertainties about the validity of current
cut-off values. We could observe that for multiple cases of discrepancies, the values were
quite close to the cut-off points. The four patients, with an ASM value of a maximum of
1.5 kg more than current ASM cut-off values, were malnourished or at risk of malnutrition,
and three had poor appetite. These findings raise the question about the most appropriate
muscle mass variable and the validity of current cut-off point to identify low muscle mass
in older patients. Therefore, we believe further prospective studies evaluating which cut-off
point is best at identifying adverse clinical outcomes are urgently needed.

4.3. Strengths and Limitations

A strength of our study is that MF-BIA and DXA measurements were performed by
trained personnel on the same day immediately after each other. Another strength of our
study is the comparison of three different muscle mass estimates within hydration groups
since abnormal hydration status may contribute to measurement errors [10].

Some study limitations are important to mention: Firstly, the sample size was limited
and based on specific inclusion and exclusion criteria from the main study, potentially
compromising external validation. Furthermore, potential selection bias may have been
introduced as some patients declined to participate without providing a reason, and a
skewed sex distribution was observed. In total, 36% of our sample were male. As the study
is exploratory and not based on a sample size calculation, it can be challenging to interpret
the significance of the study results. Wide CI was observed for sensitivity, specificity,
PPV, and NPV, reflecting a large uncertainty of the estimates. Therefore, these results
need to be interpreted with caution. Another limitation of our study is the lack of a strict
standardization protocol. However, we aimed to design a feasible study reflecting clinical
practice where strict standardization protocols are not always possible, e.g., in busy patient
wards such as an ED and due to ethical aspects of demanding fasting in malnourished
patients. A systematic review of seven studies evaluating the utility of BIA in the diagnosis
of sarcopenia reports that only one study had described a fasting protocol [38]. However,
Lozano-Nieto and Turner and Gibson et al. have shown that orthostatic fluid shifts may
bias the body composition estimates in healthy younger male adults [39,40].

In this study, the gold standards for non-invasive estimates of muscle mass (Mag-
netic Resonance Imaging (MRI) and computed tomography scans) were not performed.



J. Clin. Med. 2024, 13, 196 13 of 15

Instead, we used the DXA-based approach as a reference method [2]. DXA holds method-
ological problems and uncertainties. Firstly, studies show substantial variation in muscle
mass estimates when comparing different DXA devices, software, or different models
from the same manufacturer [41]. Secondly, the major concern with the estimation of
muscle mass with DXA is the influence of abnormal hydration, which is highly preva-
lent in older adults [2,41,42]. Two studies found that, in older adults, DXA estimated
total muscle mass higher than creatinine-based measurements and whole-body MRI scans
and concluded that extracellular fluid accumulation may be an important contributor to
this inconsistency [43,44]. Together, the errors of measurements in this study might have
influenced both MF-BIA and DXA.

5. Conclusions

In this exploratory study, our results indicate that the estimation of absolute values
of muscle mass with MF-BIA in older hospitalized patients should be interpreted with
caution and that the two techniques cannot be applied interchangeably. MF-BIA appeared
reasonable for identifying low muscle mass, taking its feasibility into consideration, but
future studies with larger study samples are urgently needed to provide more precise and
reliable muscle mass estimates.

Researchers should carefully interpret results from both BIA and DXA in the diagnosis
of malnutrition and sarcopenia. Indeed, inappropriate measures can lead to over- or
underestimation of low muscle mass, ultimately affecting the accuracy in the diagnostics of
malnutrition and sarcopenia in older hospitalized patients.
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