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Abstract 

Temperature plays a significant role in the safety, performance, and lifespan of lithium-ion (Li-ion) batteries. To guarantee the 

safe, efficient, and long-lasting operations of batteries, one of the fundamental tasks of the battery management system (BMS) 

is to monitor battery temperature during operations. Nevertheless, subject to limited onboard temperature sensors, it becomes 

challenging for the BMS to obtain the temperature information of each cell in a battery system. To this end, this paper proposes 

a novel method to estimate the state of temperature (SOT) of batteries in real time based on the electrochemical impedance of 

batteries without the need for temperature sensors. By taking advantage of the smart battery architecture, the battery impedance 

at 5 Hz, which exhibit dependency on battery temperature while independency on the state of charge (SOC), can be obtained 

online via the bypass action. During battery operations, the impedance of the battery can be obtained through periodic bypass 

action and a designed filter. A simple impedance-temperature relationship that is calibrated offline, can be used to estimate and 

track the cell temperature. Experiments on charging show that the online calculated battery impedance has strong correlations 

to battery temperature, indicating its effectiveness in SOT estimation. 

1 Introduction 

Li-ion batteries nowadays are being widely applied to 

electric vehicles (EVs) and grid energy storage systems and 

have become a key enabling technology to reduce carbon 

emissions and facilitate sustainable energy development [1], 

[2], owing to their high energy/power density, high efficiency, 

and long cycle life [3], [4]. With the large-scale deployment of 

Li-ion batteries, the cells in the battery system need to be 

managed meticulously by the BMS in order to ensure safe, 

efficient, and reliable operations, where effective condition 

monitoring and active control are indispensable [5]. 

Temperature is one of the factors which has non-negligible 

impacts on many aspects of Li-ion batteries. For instance, 

when battery temperature exceeds the safety threshold under 

abuse conditions irrespective of the physical origin, battery 

failures such as thermal runaway will occur and cause 

catastrophic events [6]. At low temperatures such as 0 ℃, the 

available energy and power, as well as the charging acceptance 

of batteries decline dramatically, which brings range anxiety 

to many EV drivers and reduces the energy storage efficiency 

in the grid [7]. At both low and high temperatures, side 

reactions inside the battery associated with battery degradation 

become significant. For instance, the lithium plating and 

growth of the solid electrolyte layer (SEI) will cause 

accelerated battery aging [8]. Considering these negative 

effects of temperature on Li-ion batteries, the battery 

temperature needs to be regulated to an optimal range that is 

favorable to battery operations through the thermal 

management system. Therefore, one of the fundamental tasks 

of the BMS is to monitor battery temperature, which serves as 

the basis for active thermal management.  

Nevertheless, in the state-of-the-art battery system, the 

number of temperature sensors is typically limited owing to 

the cost and complexity considerations. It is reported in the 

literature that the average sensor-to-cell ratio in nowadays 

battery systems is close to 1/10 [9]. Without the information 

of those sensor-free cells, it is difficult to achieve high-

performance management of the battery system. For those 

cells without surface-mounted temperature sensors, their 

temperature information can only be estimated based on 

limited measurements such as current and voltage. As such, it 

is imperative to develop sensorless temperature estimation 

methods to obtain the temperature information of most cells in 

a battery system. 

Generally, there are three types of methods to achieve 

sensorless temperature estimation, including impedance-based 

estimation, thermal model-based estimation, and data-driven 

estimation. Impedance-based estimation makes use of the 

relationship between the temperature and the electrochemical 

impedance of batteries, which can be calibrated offline by 

analyzing the electrochemical impedance spectroscopy (EIS) 

[10]. As for thermal model-based estimation, control-oriented 

thermal models which are able to trade off accuracy and low 

computational burdens need to be developed in the first place 

[11]. Then observers should be designed to estimate the battery 

temperature based on the current and voltage feedback [12], 

[13]. Data-driven estimation typically takes advantage of the 

nonlinear mapping capabilities of many machine learning 

algorithms such as neural networks to map the relationship 

between inputs (i.e., current and voltage) and the output such 

as the battery temperature in this case [14], [15]. Nevertheless, 

since the battery voltage is not sensitive to temperature, which 

brings difficulties to the design of the thermal model-based 



2 
 

SOT observer. In terms of data-driven estimations, the weak 

correlation between the input signal and battery temperature 

makes it difficult to develop an effective pure data-driven 

model [15]. Impedance-based estimation, on the other hand, 

can make use of the high sensitivity of battery impedance to 

temperature to estimate the SOT through a simple 

parameterized estimation function. It is simple and easy to 

implement in real-world applications, making it capable of 

being applied in BMS. 

In this paper, we develop a novel method to estimate the 

battery temperature online via the temperature-dependent 

electrochemical impedance of Li-ion batteries. By analyzing 

the EIS of the battery under different SOCs and temperatures, 

a suitable frequency is selected under which the battery 

impedance is sensitive to temperature while insensitive to SOC. 

A smart battery architecture, which introduces switches to 

each cell, enables to bypass action of each cell with a certain 

frequency. The bypass action under the selected frequency can 

be performed periodically, and the impedance of the battery 

can be calculated online through the designed filters. Then the 

battery temperature can be estimated through an impedance-

temperature relationship. 

The remainder of this paper is organized as follows. Section 

2 introduces the methodology for online impedance 

calculation. Section 3 presents the results of our method as 

well as the corresponding discussion. Then the main 

conclusion is provided in Section 4. 

2. Methodology 

2.1 Smart battery architecture with bypass 

Traditionally, batteries in energy storage systems are not 

able to be controlled at the cell level. For instance, only the 

total current flowing through the battery pack can be controlled 

in conventional battery systems. However, the smart battery 

architecture, as illustrated in Fig. 1, enables the cell-level 

control of a battery system by introducing switches to each cell. 

The application of such power electronics to the energy storage 

system provides more control freedoms for the system. In this 

new architecture, a half-bridge circuit with MOSFETs is 

connected to each cell in a series-connected battery pack. A 

slave central processing unit (CPU) is allocated to each cell to 

control the two switches. In this way, the slave CPU can decide 

whether to bypass the cell or not [16]. 

 
Fig. 1. The smart battery architecture [16]. 

Since the smart battery architecture enables the cell-level 

control of batteries, the bypass actions can bring new 

opportunities to the monitoring and control of battery cells in 

an energy storage system. With controlled bypass actions at 

certain frequencies, the pseudo-random sequence can be 

generated and the battery impedance can be obtained 

accordingly without the need for an external excitation source. 

In this way, the battery impedance at any desired frequency 

can be obtained in the context of smart battery architecture.  

2.2 Frequency selection for online impedance acquisition 

For impedance-based SOT estimations, the battery 

impedance needs to be measured online periodically during 

operations. Nevertheless, an EIS curve typically consists of the 

battery impedance from 0.01Hz - 10kHz, and measuring the 

impedance in that wide frequency range could be quite time-

consuming, which makes the BMS unable to monitor battery 

SOT timely. Therefore, only the electrochemical impedance 

under certain frequencies can be measured to meet the demand 

of real-time SOT estimation. 

In this paper, a frequency is selected based on the analysis 

of the EIS result under various SOCs and temperatures. 

Basically, the battery impedance (which denotes Z) depends 

not only on the excitation frequency f and temperature T, but 

also on the SOC. The impedance can be expressed as, 
𝑍 = 𝑔(𝑓, 𝑇, 𝑆𝑂𝐶) (1) 

The battery impedance under the selected frequency 𝑓∗ should 

be dependent on the cell temperature while insensitive to 

battery SOC to avoid the effect of SOC uncertainties on SOT 

estimation. In this regard, the battery impedance under 𝑓∗ can 

be expressed as, 

𝑍∗ = 𝑔(𝑇)|𝑓=𝑓∗ (2) 

2.3 Impedance Extraction 

After selecting the suitable frequency for impedance-based 

SOT estimation, the online impedance calculation should be 

conducted in order to acquire the battery impedance via the 

bypass actions which are performed periodically throughout 

the battery operation. The impedance calculation framework is 

outlined in Fig. 2. The procedure takes the current signal 

during the bypass period and the corresponding voltage 

response as input and gives the calculated impedance 

magnitude as output for the specific target frequency. The 

main steps of the framework include upsampling, filtering, and 

amplitude extraction, which will be elucidated in this sub-

section. 

2.3.1 Upsampling 

In cases where the sampling frequency is not high enough 

to capture the exact current and voltage waveform during the 

bypass action period, an upsampling step is required to 

artificially raise the sampling frequency for further processing. 

In this work, the current signal is a Constant Current (CC) 

charge signal interrupted by bypasses. Thus, a sample-and-

hold strategy will help restore the analog current signal. 

However, limited prior knowledge about the voltage response 

makes it impossible to restore the signal without error. In prior 

testing, it was found that upsampling the voltage signal by 

sample and hold gave an adequate recreation of the analog 

voltage signal while avoiding complex upsampling strategies.  

2.3.2 Filtering 

Since the current and voltage signals during the bypass 

period may contain some components under other frequencies, 
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these components are likely to interfere with the impedance 

extraction process. In our work, only the impedance at the 

selected frequency is needed for SOT estimation. Therefore, to 

avoid the influence of the unwanted signal components, 

filtering is used to extract the signals with target frequency 

from the previous upsampled signals. The filter should be 

designed to have 0 dB gain at the target frequency while 

attenuating all other frequencies. In addition, the filter should 

also be fast enough such that it converges during the bypass 

action period. To this end, a finite impulse response (FIR) 

band-pass filter is implemented with cut-off frequencies of 4 

Hz and 6 Hz. The window method with 40th order Hamming 

window was used in the filter. It should be noted that prior to 

the filtering, the DC component of both signals was removed 

by subtracting their mean. 

2.3.3 Amplitude Extraction & Impedance Calculation 

The amplitudes of the filtered signals contain the impedance 

information of the battery cell under the selected frequency. In 

this work, the peak-to-peak amplitude was used to calculate 

the battery impedance during the bypass action period. Due to 

a large uniformity in the amplitude of both signals, the 

amplitude was extracted by subtracting the minimum signal 

value from the maximum. The impedance magnitude is then 

calculated by dividing the filtered voltage amplitude by the 

filtered current amplitude. 

2.4 Online SOT estimation based on impedance calculations 

Under the selected frequency, the relationship between the 

battery impedance and the temperature can be expressed in Eq. 

(2). The calculated impedance and the measured temperature 

under some operating conditions can be used for 

parameterizing the impedance-temperature relationship. Both 

the Arrhenius equation or 2nd order polynomial can be applied 

to fit the relationship between battery impedance and 

temperature. Then the estimation function can be constructed 

by performing the inverse function of Eq. (2) as, 

𝑇̂ = 𝑔−1(𝑍∗) (3) 

3 Results 

In our work, a 3.7V/50Ah NMC Li-ion battery cell is 

studied by performing the EIS tests and CC charging tests with 

periodic bypass action. The experimental setup used in this 

study includes a battery tester, a thermal chamber, an 

electrochemical workstation, a temperature acquisition 

module, and a host computer. The EIS tests are performed in 

the first place at different ambient temperatures and SOCs 

through the electrochemical workstation to investigate the 

impedance characteristic of the battery. Then a suitable 

frequency is selected according to the EIS to perform the 

bypass actions. Instead of adding MOSFETs to the test cell, 

we merely use the pulse current in an on/off mode to simulate 

the bypass action via the battery tester during the CC charging 

tests, where the temperature is recorded by a temperature 

acquisition module. The results of the online impedance 

calculations and the subsequent impedance-based SOT 

estimations will be introduced in this section. 

3.1 Frequency selection 

The EIS results of the 50-Ah prismatic battery cell under 

different temperatures and SOCs can be shown in the Nyquist 

plot in Fig. 3. It can be seen from Fig. 3(a) that with the 

increase of battery temperature, the EIS shrinks significantly, 

particularly under low-frequency region, indicating the high 

sensitivity of the impedance to temperature. From Fig. 3(b) it 

can be concluded that the battery impedances at different 

SOCs start to converge when the frequency becomes higher. 

Unless the battery is operating at very low SOC (e.g., 10%), 

the effect of SOC on battery impedance is not as significant as 

the temperature does under the mid-high frequency region. 

Therefore, we select the 5 Hz as the bypass frequency, which 

is the maximum bypass frequency the battery tester can 

simulate. 

 

(a) 

 

(b) 

Fig. 3. EIS of the 50-Ah CALB battery under different 

temperatures and SOCs. (a) EIS at different temperatures when 

battery SOC is kept at 50%, (b) EIS at different SOCs when 

the battery temperature is kept at 25 ℃. 

 

Fig. 2. Framework for the online impedance calculation during bypass action period. 
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3.2 Impedance extraction 

After selecting the bypass frequency, the bypass action is 

performed during the CC charging process. Take the 1C 

charging process as an example, as illustrated in Fig. 4. The 

bypass action takes place in the last 5 s of every half minute. 

When the cell is bypassed, the current flowing through the cell 

becomes 0, and while the cell is inserted the current is equal to 

the charging current. 

 
(a) 

 
(b) 

Fig. 4. Current, voltage, and temperature of the tested battery 

during 1C charging process with 5-s bypass actions every 30 

seconds. (a) Measured data during the whole charging period. 

(b) Zoom of the measured data in one bypass action period. 

Before the impedance calculation, both the current and 

voltage signals during the bypass period were upsampled by a 

factor of 10, giving a new sampling frequency of 95 Hz. Then 

these two signals are filtered via the designed band-pass filter, 

the result can be shown in Fig. 5. The filtered bypass signal 

becomes stable merely after 2 pulse cycles, indicating the 

effectiveness of the designed filter. 

 

Fig. 5. Filtering result from the resampled current and voltage 

signals. 

The relationship between the calculated impedance and the 

battery temperature during 1C charging can be illustrated as 

the solid blue dots in Fig. 6. The impedance-temperature 

relationship under 2C charging with 5-s bypass and 1C 

charging with 1-s bypass can also be shown in Fig. 6. Basically, 

the extracted impedance exhibits a nonlinear relationship with 

the battery temperature. As temperature increases, the 

impedance decreases. A 2nd order polynomial is used in our 

work to construct the estimation function based on the 1C 

charging scenario. Afterward, the battery temperature can be 

estimated via the estimation function, as shown in Fig. 7. 

Although the impedance-temperature relationship will vary 

with the operating conditions, future work can be conducted to 

develop an estimation function dependent on the current rate. 

 
Fig. 6. Scatter plot of the Impedance vs. battery temperature 

under different charging rates and bypass periods. 

 
Fig. 7. Estimated battery temperature via the constructed 

impedance-temperature relationship and the online impedance 

measurement under 1C charging. 

4 Conclusion 

In this paper, we propose an online impedance measurement 

method to estimate the battery temperature in a sensorless 

manner, which is enabled by the smart battery architecture. 

Traditionally, battery impedance can only be measured under 

an equilibrium state using bulky impedance measurement 

instruments, or alternatively adding an extra excitation source 

to the battery system, which is not feasible in real-world 

applications if battery impedance needs to be measured online. 

The smart battery architecture allows the bypass action to be 
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performed at a certain frequency so that the impedance can be 

extracted at the cell level online by processing the current and 

voltage signals during the bypass actions. In this way, the 

impedance measurement can be conducted when batteries are 

operating, without the need for any extra excitation source. We 

select 5 Hz to be the bypass frequency and propose a 

framework for online impedance calculation using the 

measured signals in the bypass period. This online impedance 

acquisition method has been applied to the CC charging 

process of batteries and a nonlinear relationship between the 

battery impedance and temperature can be observed. With the 

constructed estimation function, the battery temperature can be 

well estimated during the charging process. In addition, future 

work will focus on the implementation and validation of the 

proposed method in a real prototype. 
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