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ABSTRACT
With the recent increase in studies on spatial heterogeneity, geographically weighted (GW) 
models have become an essential set of local techniques, attracting a wide range of users from 
different domains. In this study, we demonstrate a newly developed standalone GW software, 
GWmodelS using a community-level house price data set for Wuhan, China. In detail, a number 
of fundamental GW models are illustrated, including GW descriptive statistics, basic and 
multiscale GW regression, and GW principle component analysis. Additionally, functionality 
in spatial data management and batch mapping are presented as essential supplementary 
activities for GW modeling. The software provides significant advantages in terms of a user- 
friendly graphical user interface, operational efficiency, and accessibility, which facilitate its 
usage for users from a wide range of domains.
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1. Introduction

The principle of spatial heterogeneity (Goodchild  
2004) suggests that geographical variables and their 
relationships frequently present heterogeneous or 
non-stationary patterns. To explore this fundamental 
phenomena, place-based methods and local statistical 
techniques that assume data relationships to be spa
tially variant have been extensively developed 
(Fotheringham and Brunsdon 1999; Goodchild and 
Li 2021). These include the expansion method 
(Casetti 1972), multilevel modeling (Duncan and 
Jones 2000; Jones 1991) and random coefficient mod
eling (Rao 1965; Swamy, Conway, and LeBlanc 1988; 
Swamy, Roger, and Michael 1988). Extending such 
approaches further, geographically weighted regres
sion (GWR) was proposed to incorporate spatial 
weights into local regression model calibrations and 
to highlight spatial heterogeneities in data relation
ships (Brunsdon, Fotheringham, and Charlton 1996; 
Fotheringham, Charlton, and Brunsdon 1998). This 
reflects the principle of spatial dependence proposed 
by Tobler (1970) and a hypothetical “bump of influ
ence” in which observations closer to the location 
being considered are assigned larger weights in the 
estimation of local regression coefficients 
(Fotheringham, Brunsdon, and Charlton 2002).

Utilising this distance-decaying schema, a set of 
place-based techniques, termed geographically 
weighted (GW) models have been developed to 
calculate local parameters and measures, in addi
tion to GWR. These techniques include GW 
descriptive statistics (Brunsdon, Fotheringham, 
and Charlton 2002b; Harris, Charlton, and 
Fotheringham 2010), GW principal components 
analysis (Fotheringham, Brunsdon, and Charlton  
2002; Harris, Brunsdon, and Charlton 2011), GW 
discriminant analysis (Brunsdon, Fotheringham, 
and Charlton 2007; Foley and Demšar 2012), GW 
visualization techniques (Dykes and Brunsdon  
2007) and GW artificial neural network (Du et al.  
2020; Hagenauer and Helbich 2021). These GW 
models form a continually evolving technical fra
mework for identifying spatially non-stationary fea
tures or patterns in a wide range of disciplines or 
fields including geography (Cao et al. 2019; 
Nawrotzki and Bakhtsiyarava 2017; Tu et al.  
2020), the social sciences (Jin, Xu, and Huang  
2019; Li et al. 2009; Yu and Wu 2004), biology 
(Bai et al. 2022; Liu et al. 2019a; Samec et al.  
2020), public health (Xu et al. 2021, 2022; Yin 
et al. 2018) and environment science (Liu et al.  
2019b; Wang et al. 2019; Xiao et al. 2022; Zhan, 
Yang, and Liu 2024).
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The increasing popularity of GW models, particu
larly GWR, has resulted in the development of several 
software packages, standalone programs and toolkits. 
These tools include GWR3.X (Charlton, 
Fotheringham, and Brunsdon 2007), GWR4.0 
(Nakaya et al. 2009), GWR tools in the modeling 
spatial relationships toolset of ArcGIS Pro (ESRI 
Corp 2023) and MGWR (Li et al. 2019) which provide 
standalone and user-friendly software for undertaking 
GWR. A range of R and Python packages have been 
developed to incorporate different GW models, 
including spgwr (Bivand and Yu 2020), mgwrsar 
(Geniaux and Martinetti 2018), GWLelast (Yoneoka, 
Saito, and Nakaoka 2016), spMoran (Murakami  
2017), gwer (Araujo, Cysneiros, and Cysneiros 2020), 
lctools (Kalogirou 2020), gwrr (Wheeler 2013) and 
GWmodel (Gollini et al. 2015; Lu et al. 2014). 
Among these packages, GWmodel provides 
a comprehensive set of GW models (Comber et al.  
2023), including GW summary statistics, GW princi
pal components analysis, GW discriminant analysis 
and a variety of alternative GW regression forms and 
tools. The GWmodel package has been used in 
a number of workshops such as at Spatial Accuracy 
2018 (https://www.spatialaccuracy2018.org/work 
shops) and 7th Channel Network Conference 
(https://biometricsociety.org.uk/events/cnc2019/ 
courses). In the 10 years or so since its first release on 
CRAN (https://CRAN.R-project.org/package= 
GWmodel), the number of downloads of the 
GWmodel package is more than 150, 000 according 
to the results returned by the R package cranlogs 
(Csárdi 2019).

Despite its popularity, fundamental 
R programming skills are required to use the 
GW functionalities in GWmodel. This is not 
always an easy task for researchers, particularly 
for beginners or scholars in different application 
fields. Recently, GWmodel was implemented as 
GWmodelS using C++ and the cross-platform 
software Qt (Lu et al. 2022). GWmodelS is 
a new, free, user-friendly and high-performance 
computational framework to continually integrate 
different and new GW models (Lu et al. 2022). Its 
continuous evolution provides a stable platform 
for the future development of GW models 
together with GWmodel and gwverse, a new tem
plate for GW R packages (Comber et al. 2022). 
GWmodelS is a standalone software and incorpo
rates spatial data management and mapping tools 
as well as the GW model functions. It has a user- 
friendly graphical user interface (GUI) making it 
easier to construct GW models, but no require
ment for any programming skills. In the study by 
Lu et al. (2023), we have briefly summarized the 
background and development design of 
GWmodelS, but with a very simple example of 

applying standard GWR. For further details, in 
this article we will demonstrate the use of 
GWmodelS through a series of typical GW ana
lyzes that undertake GW descriptive statistics 
(GW averages and correlations), GW regression 
(basic and multiscale GWR) and GW principal 
components analysis. It explains the GUI and 
parameter settings in detail, and provides 
a comprehensive illustration and tutorial for 
undertaking GW models with GWmodelS. This 
paper is structured as follows: In Section 2, differ
ent GW models and the training data set (com
munity-level house price data for Wuhan 
(WHHP)) are introduced. Section 3 details the 
operations of GWmodelS in conducting GW ana
lyzes, and Section 4 summarizes this study. Similar 
to the other well-known software for spatial ana
lytics, GeoDa (Anselin, Syabri, and Kho 2010), All 
the analyzes presented in this study can be repro
duced and used in courses or workshops with 
relative ease.

2. Models, software and data

2.1. GW models and GWmodelS

GW models form a branch of spatial statistics, 
including GWR and its extensions, GW descrip
tive statistics, GW principal components analysis 
that address the need for local place-based, local 
models that reflect hypothetical “bump of influ
ence” described above. They form a generic and 
rapidly evolving technical framework that meet 
different tiers of spatial data analysis, i.e. descrip
tive analysis, exploratory analysis, diagnostic ana
lysis, predictive analysis and prescriptive analysis 
(Calzon 2022). To facilitate the usage of such GW 
models, a stand-alone software tool has been 
developed, GWmodelS. It was constructed with 
the C++ programming language based on the 
geospatial data abstraction library (GDAL) 
(GDAL/OGR contributors 2022), QGIS develop
ment libraries (QGIS.org 2022a) and Armadillo 
C++ library (Sanderson and Curtin 2016). In this 
regard, GWmodelS largely inherits some core 
functionalities from QGIS, including spatial data 
overview and cartography tools, which greatly 
facilitates the operations for mutual users from 
this popular open GIS software.

The main interface of GWmodelS is shown in 
Figure 1. The menu bars at the top contain the 
project data/layer management and a number of 
fundamental GW tools: GW summary statistics 
(GWSS, Brunsdon, Fotheringham, and Charlton  
2002b), GWPCA (Harris, Brunsdon, and 
Charlton 2011) and basic GWR (Brunsdon, 
Fotheringham, and Charlton 1996). It also 
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includes a range of extensions applicable to large- 
scale data sets (Murakami et al. 2020), multiscale 
GWR (Lu et al. 2017, 2018, 2019), geographically 
and temporally weighted regression (GTWR) 
(Huang, Wu, and Barry 2010), robust GWR 
(Harris, Fotheringham, and Juggins 2010), locally 
compensated GWR (GWR-LCR), generalized GW 
regression (Nakaya et al. 2005). The plan is that 
this software will continue to be developed and 
augmented to include additional GW tools, e.g. 
GW interaction model (Kordi and Fotheringham  
2016), GW discriminant analysis (Brunsdon, 
Fotheringham, and Charlton 2007) and GW arti
ficial intelligence techniques (Hagenauer and 
Helbich 2021). The key idea behind GWmodelS 
is to provide a comprehensive, usable and free 
platform of local techniques under the GW mod
eling framework for researchers from a wide range 
of fields. Software installation and the use of tools 
for GWSS, GWR, and GWPCA are presented in 
this study with the WHHP data set.

2.2. House price data of Wuhan

As a training tool to facilitate usage of GWmodelS, the 
WHHP data set is provided. It is located in the soft
ware installation directory. WHHP describes commu
nity-level house prices in Wuhan, the capital of Hubei 
province in the central region of China (Lu et al. 2022). 
As shown in Figure 2, the boundary of the WHHP 
data set is central built-up area of Wuhan, where most 
of the houses for sale are located. The WHHP data set 
contains 9 variables collected in 2015: Annual_AQI, 
Pop_Den, Green_Rate, GDP_per_Land, 

Rev_per_Land, FAI_per_Land, TertI_Rate, Den_POI. 
They are fully described in Table 1.

3. Usage details of GWmodelS

This section details the application of GWmodelS to 
calculate GW summary statistics, GW PCA and GWR 
with the WHHP data. Some data management and 
visualization tools are also introduced.

3.1. Spatial data management

In GWmodelS, several formats of spatial datasets can 
be directly imported, including ESRI Shapefile, 
GeoJSON, OGC GeoPackage (GPKG) and CSV. 
ESRI Shapefile is the most popular format and widely 
compatible with most of the GIS software or plat
forms with a majority of geospatial vector data pro
vided in this format. With the increasing amount of 
spatial data collected from the internet, GeoJSON, 
a text-based format extend from the JSON format is 
a commonly used alternative. However, these two 
formats are inefficient for large-scale data sets, and 
so the GPKG format is included as it is more efficient 
in terms of storage overhead (spatial data sets are 
stored in SQLite databases.). Finally, CSV format is 
incorporated for data interchanges across a range of 
software and platforms.

The WHHP data is provided in two formats: 
GeoPackage (*. Gpkg) and ESRI Shapefile (*. Shp). 
As shown in Figure 3, WHHP data in the GPKG 
format is loaded via the menu “Layer/ 
Data → GPKG” and shown in the map zone 

Figure 1. The main interface of GWmodelS.
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(shown in Figure 4). Alternatively, the ESRI 
Shapefile data set can be imported by clicking the 
menu item “Layer/Data → ESRI Shapefile”.

To examine the imported data set and its attri
butes, the user right clicks on the layer’s name 
(i.e. WHHP here) in the “Features” panel, and 
selects “Property” on the popup menu to display 
summary information about the layer in the prop
erty panel, including feature count, type of geo
metry, coordinates of bounding box, type of each 

field, and the spatial reference, as shown in 
Figure 5.

To examine the attributes, right click a layer’s 
name and select “Attribute Table”. Similar to 
QGIS, all the fields are presented in the pop-up 
window (as shown in Figure 6). With data 
manipulation tools inherited from QGIS, edition, 
pan, selection and calculation tools are also 
available in the top toolbar (see details in 
QGIS.org 2022b).

To visually explore the imported data, click the 
“Symbology” button in the right popup menu, and 
set the style for visualizing the imported layer. 
Symbol, color and geometric types can be set 
accordingly. As shown in Figure 7(a)–(d), 
a choropleth map of the variable, Avg_HP can be 
visualized by setting a “Graduated” blue ramp 
according with naturally separated values. This 
functionality is also essential to produce thematic 
maps of the results of GW models.

Figure 2. Boundary of the WHHP data set.

Table 1. Variable names and descriptions in the WHHP data.
Variable Description

Avg_HP Average house price at the community-level (Yuan/m2)
Annual_AQI Annual air quality index (AQI)
Pop_Den Population density (105/km2)
Green_Rate Percentage of green space (%)
GDP_per_Land GDP per land area (104 Yuan/km2)
Rev_per_Land Revenue per land area (104 Yuan/km2)
FAI_per_Land Fixed assets investment per land area (104 Yuan/km2)
TertI_Rate Percentage of tertiary industry (%)
Den_POI Density of places of interest (POI) (10−2/km2)
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Fundamental functionality for spatial data manipula
tion, exploration and mapping are included in 
GWmodelS as it imports GDAL and QGIS development 
libraries. Other operations can be explored by users, with 
the potential to include additional functionalities avail
able, such as other data formats supported by the GDAL 
library.

3.2. GW models calibration

This section describes four common GW models and 
demonstrates their application with GWmodelS, 
including GW descriptive statistics (i.e. GW averages 
and correlations – see technical details in Brunsdon, 
Fotheringham, and Charlton 2002a), regression 
(basic and multiscale – see technical details in 

Table 2. Options in the GW descriptive statistics configuration windows1.
Option Explanation

Layer name Data layer to be used for calculating GW averages and correlations
→ Candidate Variables Candidate variables available in the data layer and to be selected for GW modelling by clicking the button “>>”.
Weighting Scheme Group of parameters to be set for the weighting scheme.
→ Bandwidth Type Two types of bandwidth: ‘adaptive’ and ‘fixed’ (Lu et al. 2014), - ‘fixed’ is default.
→ Bandwidth Size The Bandwidth size for calculating spatial weights, referring to a constant distance threshold for fixed bandwidth and 

number of nearest neighbours for the adaptive type.
→ → Auto-selection By default, the auto-selection option is ticked, and the bandwidth will be optimized via the golden section search 

procedure utilising the cross-validation (CV) approach (Loader 1999); otherwise, the user-defined value will be used.
→ → User-defined If auto-selection is unticked, a user-defined bandwidth will be used for GW model calibration, and note scaling options are 

also provided here, i.e. �1, �10, �100, and �1000.
→ Kernel Function Kernel function to calibrate GW models, including Gaussian, exponential, bi-squared, tri-cube, and box-car.
Distance Metric Parameters for calculating distance metrics
→ According to CRS If ticked, spatial distance will be calculated according to the coordinate reference system (CRS) of the source data, i.e. 

Euclidean distance for a projected CRS while great circle distance for the a geographic (longitude and latitude-based) CRS.
→ Minkowski distance If ticked, the Minkowski distance function will be used to calculate distance, and it could be expressed as follows (Lu et al.   

2016): dij p; θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ui � uj
� �2

þ vi � vj
� �2

q

sin θþ αð Þj j
p
þ cos θþ αð Þ

p
j jð Þ

1
p , where ui; við Þ and uj; vj

� �
are spatial   

coordinates, α ¼ tan� 1 u1 � u2
v1 � v2

� �
, p is a positive constant and θ is the rotation angle of the CRS.

→ → theta The rotation angle θ.
→ → p The value of p for the Minkowski distance function.
→ Self-defined (*.dmat) If this option is ticked, a self-defined distance matrix provided in a binary file (*.dmat) will be used for weight calculation. 

Note that this distance matrix could be calculated via GWmodelS or customized with an n �m matrix where n is the 
number of observations and m is the number of calibration locations.

→ → Select a distance 
matrix file

File path of the self-defined distance matrix.

Computing configuration Parameters for computational configuration
→ None No computational configuration is specified and the GW modules will be carried out in a stand-alone mode
→ Multithreading If ticked, the GW module will be carried out with open multi-processing (Open-MP).
→ → Threads Number of the parallel threads
Others Further options of the GW average module
→ Quantile If this option is ticked, the GW quantiles will be calculated.

Figure 3. Load the spatial data of the GPKG format into GWmodelS.
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Fotheringham, Yang, and Kang 2017; Lu et al. 2017,  
2019) and PCA techniques (Harris, Brunsdon, and 
Charlton 2011). This section could be used as intro
ductory materials in GW model training with 
GWmodelS. Note that a wide range of GW models 
are available, including a number of GW regression 
extensions applicable to large-scale data set 
(Murakami et al. 2021), spatiotemporal data 
(Huang, Wu, and Barry 2010), outliers (Harris, 

Fotheringham, and Juggins 2010) and local collinear
ity (Wang, Mei, and Yan 2008). These are not 
described in detail here, but their usage can be 
inferred with similar interfaces in GWmodelS (Lu 
et al. 2023).

3.2.1. GW descriptive statistics
GW descriptive statistics are always vital pre-cursors 
to preliminarily explore a spatial data set and provide 

Figure 4. Examine spatial data (WHHP) in the map zone.

Figure 5. Overview and information of the imported spatial data.
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a localized perspective. GWmodelS incorporates GW 
averages and correlations that locally summarize uni
variate and binary variables. To calculate the GW 
averages, click the menu item “GWSS → GW 
Averages”. As shown in Figure 8, the required para
meters can be configured in the pop-up window, and 
interpreted as in Table. With all the parameters con
figured properly, GW averages (LM) plus standard 
deviations (LSD), variances (LVar), skewness 
(LSkew), and CV (LCV) can be calculated and sum
maries returned in the property panel, as shown in 
Figure 9.

Figure 10 and Table 2 present the configuration win
dow and setting interpretations for calculating bivariate 
GW correlations. Note that there are two groups of 
variables, namely X and Y, referring to two sets of vari
ables, X1;X2; � � � ;Xmf g and Y1;Y2; � � � ;Ynf g. With 
them, the bivariate GW correlations between each pair 
of Xi and Y j (where i ¼ 1; 2; � � � ;m and j ¼ 1; 2; � � � ; n) 
are calculated. By default, all the GW correlations are 
calculated via a uniformly defined kernel function (e.g. 
Gaussian), while bandwidths are optimized specifically 
for each pair of variables. On clicking the text of pair- 
wise variables in the left textbox, the configuration for 
each bivariate GW correlation can be customized indi
vidually, i.e. different kernel function and bandwidth 
settings can be used for each single calculation. In this 
way, it is possible to undertake more elaborate calcula
tions than in GWmodel. The GW correlation coeffi
cients are returned as properties in a new layer and 
summarized in the property panel, as shown in 
Figure 11. Observe that both Pearson and Spearman 
(robust) correlation coefficients can be calculated, as in 
GWmodel (Lu et al. 2014).

3.2.2. Basic GWR
To calibrate a basic GWR model, click the menu 
item “GWR → Basic GWR”, and set the parameters 
in the specific configuration window, as shown in 
Figure 12. Their meanings and options are 
described in Table 3, but note the parameters in 
Table 1 and that the remaining configuration win
dows will not be repeated from here. With all the 
parameters set properly, the status of this dialog in 
the bottom left corner will be changed into “Valid”, 
and the basic GWR model is ready for calibration 
by clicking the “OK” button.

Once the GWR model calibration is achieved, 
a property window with model summarizing informa
tion appears on the right side, as shown in Figure 13.

In the top subpanel, the results from a global 
regression (OLS model) are summarized if the OLS 
option is ticked, including coefficient-wise estimates, 
standard error and t-values, following by its diagnostic 
information, i.e. AIC, AICc, residual sum of squares 
(RSS), R2 and adjusted R2 values.

In the “Results of Geographically Weighted 
Regression” panel, the model calibration information, 
including kernel function, bandwidth size, regression 
locations and distance metric are reported. Each GWR 
coefficient estimate is summarized in a table with 
minimum, quantiles, and maximum. For model per
formance comparison to the OLS model, the diagnos
tic information is also included.

Model specification functionality is incorporated 
through a stepwise procedure as detailed in Lu 
et al. (2014). To view this procedure, a circle view 
and line chart are drawn here. The former plot 
presents the procedure of candidate variables 

Figure 6. View attribute table of the imported layer.
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included into the model in a “forward” direction, 
where the dependent variable located in the center 
of the chart and the independent variables are 
represented as nodes differentiated by shapes and 
colors. The latter line chart presents the 

corresponding AICc values from each candidate 
regression model.

The GWR bandwidth size is optimized via an AICc 
or CV approach. To view this procedure, a dot-line 
chart is provided in the sub-section “Bandwidth 

(a) Click the “Symbology” button 

(b) Choose symbol type                   (c) Modify symbol settings. 

(d) Choropleth map visualization 

Figure 7. Visually explore the spatial data imported.
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Selection View”, in which the horizontal axis refers to 
the bandwidth sizes and vertical axis are the corre
sponding AICc or CV values. All these tree charts can 
be scaled freely, and zoomed into or out of to examine 
details.

For further analysis, the localized coefficient esti
mates and diagnostic information (e.g. residuals, local 
R2 and t-test values) are written into a new layer with 
a suffix, “_GWR”. Similarly, this can be explored using 
the fundamental data management and visualization 
tools, as shown in Figure 14.

3.2.3. Multiscale GWR
Multiscale GWR provides information about the 
different scales of relationships in the data, and 

should always be explored in GWR analyzes 
(Comber et al. 2023). On clicking the menu item 
“GWR → Multiscale GWR”, the configuration win
dow for calibrating a multiscale GWR model is acti
vated, as shown in Figure 15. Its configuration is 
largely similar to that of a basic GWR model, like 
the “Layer Name”, “Dependent Variable”, and 
“Independent Variable”. The key difference between 
calibrating a multiscale GWR and basic GWR model 
is the iteratively back-fitting algorithm adopted for 
the former one (Fotheringham, Yang, and Kang  
2017; Leong and Yue 2017; Lu et al. 2017), and thus 
the “Iteration Configuration” parameters are incor
porated. In GWmodelS, the algorithm is from GWR 
with parameter-specific distance metrics (Lu et al.  

Figure 8. Configuration window of GW descriptive statistics.

Figure 9. Result panel of GW descriptive statistics.
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2017), and thus a subsection namely “Parameter- 
specific Distance Metrics” is available for setting 
the weighting scheme (including both kernel func
tion and bandwidth size) and distance metric for 
each varying coefficient estimate. This algorithm is 
different from the other two multiscale GWR tech
niques in terms of bandwidth optimization strategy 
and convergence criteria (see details in Lu et al. 2018,  
2019). Thus, there could be some discrepancy 
between the results from this tool and the MGWR 

tool (Oshan et al. 2019), and that in ArcGIS Pro, 
where gradient-based optimization is adopted (Zhou 
et al. 2023).

With all the options configured properly, the status 
of this dialog in the bottom left corner appears as 
“Valid”. On clicking the “OK” button, the specific 
multiscale GWR model is calibrated and progress 
indicated through a progress bar. As presented in 
Figure 16, the results of the multiscale GWR model 
are returned in two parts:

Figure 11. Result panel of GW correlations.

Figure 10. Configuration window of GW correlations.
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(1) the results of a global regression, model config
uration parameters and diagnostic information 
are summarized in the property dialog on the 
right side, and

(2) the localized coefficient estimates and diagnos
tic information are written into a new layer 
with a suffix “_MGWR”.

As parameters are specifically configured for each 
coefficient, tree view controls are used which can be 
expanded to check details of settings, e.g. kernel func
tion, bandwidth size and distance metric. The specific 
options for configuring multiscale GWR are shown in 
Table 4.

3.2.4. Gw pca
To activate the GWPCA tool, click the menu item 
“GWPCA → basic GWPCA” and the configuration 

window will pop up, as shown in Figure 17. Most 
of the options are the same as those for the pre
vious GW tools, and so are not repeated here. 
Specific options for GWPCA are indicated in 
Table 5. In the subsection “PCA Settings”, the key 
parameters for calculating GWPCA are collected, 
including the number of retained components, the 
version of the GWPCA (basic or robust) and 
scores. Moreover, a glyph plot tool is provided to 
visualize local loadings of all the variables, and 
a new graphic device is activated if this option is 
ticked.

As shown in Figure 18, the results of the 
GWPCA tool are outlined in the property panel, 
including calculation settings and summarized 
percentages of variance (PV) for each retained 
component. The localized PV and cumulative PV 
are written in a new layer with a suffix 

Figure 12. Configuration window for calibrating a basic GWR model.

Table 3. Options for the basic GWR configuration.
Option Explanation

Layer name Data layer of observations for calibrating the GWR model
Regression Points If ticked, an individual layer should be provided as regression locations.
→ Predict If ticked, predictions will be made at each regression location with observations of the independent variables provided.
Dependent Variable Dependent variable selected for the GWR model.
Independent Variable Independent variables selected for the GWR model.
→ Candidate Variables Candidate variables available in the imported layer to be chosen as the independent variables of the GWR model by 

clicking the button “>>”.
→ Chosen Variables Variables chosen as independent variables.
→ Enable automatic model 

specification
If ticked, a step-wise GWR model specification procedure will be conducted, see details in Lu et al. (2014).

→ AICc Threshold Threshold value set for the step-wise model specification, and in the forward procedure the rest variables will be 
excluded from the model when the reduction of AICc is less than it.

Others Further options for GWR model calibration
→ Hatmatrix If ticked, the hat matrix will be calculated and diagnostic information of the GWR model will be returned.
→ OLS If ticked, result from the ordinary linear square (OLS) approach will be returned.
→ F Test If ticked, F tests of spatial heterogeneity will be conducted according to Leung, Mei, and Zhang (2000).

GEO-SPATIAL INFORMATION SCIENCE 11



Figure 13. Property panel of the results of the basic GWR model, with panels highlighted at the bottom of the figure.

Figure 14. Mapping GWR coefficient estimates.
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Figure 15. Configuration window of multiscale GWR.

Figure 16. Results from a multiscale GWR model.
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“_GWPCA”. Note that the localized loadings for 
each component are not retuned as an explicit 
output due to its complex dimensionality, but 
a glyph plot provides a good way to summarize 

its properties and is enabled as an option in the 
configuration window. With the local loadings, 
a new string-type column is added to the output 
layer to indicate the localized winning variable for 

Table 4. Specific options for multiscale GWR configuration.
Option Explanation

Iteration Configuration Options for the back-fitting iteration algorithm.
→ Criterion Criterion of determining convergence, including changing value of RSS (CVR) and a differential version (dCVR) (see 

definitions in Lu et al. 2017)
→ Max Iterations Maximum number of iterations.
→ Converged Threshold Convergence threshold value to terminate the back-fitting iterations.
→ Bandwidth Type Type of bandwidth, i.e. fixed or adaptive.
→ Bandwidth Optimize 

Retry
The bandwidth sizes for each coefficient generally converge fast, and could stop being re-optimized in the following 

iterations. The number of maximum retries in bandwidth optimization is defined here.
→ Minimum Adaptive 

Bandwidth
To avoid risk of over-fitting, the lower bound of an adaptive bandwidth is defined for optimization.

Parameter-specific Distance 
Metrics

Options for setting parameter specific weighting schemes and distance metrics. Switch the target variable by clicking the 
variable label in the left list.

→ Other Further options for coefficient estimates
→ → Predictor 

centralization
Variable will be centralized if ticked (see details in Lu et al. 2019)

Computing Configuration Refer to the “Computing Configuration” part in Table, but note GPU is not supported for this tool.

Figure 17. Configuration window of the GWPCA tool.

Table 5. Specific options for GWPCA configuration.
Options Explanation

Variables z_score normalization If ticked, all the variables will be normalized via z-scores approach, defined by ~x ¼ x� �x
SD xð Þ, where ~x is the normalized 

value, x is the original value, �x is the mean value, SD xð Þ is the standard deviation of x.
PCA Settings Options to control the PCA algorithm.
→ Components Retain Number of retained components and must be less than the number of variables
→ Robust GWPCA If ticked, robust GWPCA will be applied (Lu et al. 2014).
→ Scores on principal components 

be calculated
If ticked, the scores of the supplied data on the principal components will be calculated.

Others
→ Glyph Plot If ticked, a glyph plot will be drawn to visualize local loadings of all the variables.
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Figure 18. Results from the GWPCA tool.

Figure 19. Mapping wining variables from GWPCA results.
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the first principal component. This identifies the 
most important variables across the study area 
and can be used to produce a map, as shown in 
Figure 19. In this case, observe the clear geogra
phical variation in the influence of each variable 

on the first component where in this case, the 
Greem_Rate is clearly dominant along the 
Yangtze River, whilst GDP_per_land and 
Pop_Den dominate the Hankou (east) and 
Wuchang (west) regions, respectively.

(a) Give the layout a title 

(b) Set the cartographical parameters 

Figure 20. Set a layout for mapping.
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3.3. Batch mapping

The key feature of GW models is to generate mappable 
outputs for presenting the localized results from the 
GW models (e.g. Comber et al. 2023; Gollini et al.  
2015; Lu et al. 2014). This is exemplified in 

Figures 20(a)–(b) by clicking the layout button in the 
tool bar to initialize the mapping tool. This function
ality is inherited from QGIS, and for a more detailed 
description the user could refer to its manual (QGIS 
community 2022). Once the layout is prepared, 

(a) Symbol settings for batch mapping 

(b) Customize the symbol setting for a specific variable 

(c) Set the image format for out maps 

Figure 21. Parameter settings and output configurations for batch mapping.
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Table 6. Options for configurating batch mapping.
Option Explanation

Directory Path of the directory for outputs
File Name 

(Template)
File name of the output file, and could be a template if placeholders “%field%” or “%layer%” is used.

+Placeholder Two buttons for quickly add placeholders, the left one refers to “%layer%” whilst the right one refers to “%field%”.
Select Layout Select a template layout.
Select Layer Select target layers by ticking the check box in front of each layer name
Select Fields When a layer in “Select Layer” list view is checked, its fields will be displayed in this list view and enabled for further selection. On 

ticking the check box in front of each field name, they will be accordingly selected for batch mapping.

Figure 22. Legend setting for all the variables with placeholders.

(a) Den_POI (b) GDP_per_Land  (c) Green_Rate 

(d) Intercept (e) Pop_Den (f) Rev_per_Land 

Figure 23. Output maps from the batch mapping tool.
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a single thematic map can be exported to an image file 
in several formats, including PNG, SVG, or PDF. This 
cartographic tool makes it much easier to generate 
mapped outputs from GWmodelS analyzes than its 
twin R package, GWmodel.

However, many maps are usually required to 
describe any given case study, particularly with 
a relatively large number of variables are involved in 
a GW model. Repetitive cartographic jobs can be 
frustrating, and difficult for nonprofessional GIS 
users. In GWmodelS, a batch mapping tool is pro
vided, allowing the user to set all the cartographical 
parameters once, and to create all the maps in high 
quality using a uniform template. This is done by 
clicking the batch mapping button in the toolbar and 
activating the “Layout Batch Processing” window to 
set the corresponding parameters, as shown in 
Figures 21(a)–(c). In Table 6, the options for config
urating batch mapping are described. Notably, two 
placeholders are defined as wildcards, i.e. “%field%” 
and “%layer%”. The former one refers to the name of 
a field, whilst the latter one refers to the name of 
a layer. As shown in Figure 21(a), the selected vari
ables are listed in the “Configure Symbol” area with 
a unified style by default. If the user selects a specific 
item and clicks the button in the middle, a dialog will 
pop-up to customize the symbol setting and value cuts 
for the specific variable. As illustrated in Figure 21(b), 
the symbology type is set as “Graduated” and the blue- 
red color ramp selected for mapping the coefficient 
Pop_Den. Most popular image formats are supported 
for output maps, as shown in Figure 21(c). To use the 
layout template for batch mapping, the placeholder “% 
layer%” should be inserted for legend setting, as shown 
in Figure 22. With the batch mapping tool, large 
numbers of thematic maps can be produced and 
saved as high-quality images as shown in 
Figures 23(a)–(f). The maps of coefficient estimates 
can be easily obtained through the configurations 
described above. In this way, the batch tool greatly 
facilitates the descriptions of GW models in academic 
studies or data science reports, particularly for inter
disciplinary users.

4. Concluding remarks

With the recent rise of research on spatial hetero
geneity (Goodchild and Li 2021), GW models have 
emerged as an essential subset of local techniques, 
attracting a wide range of users. This article 
demonstrates a newly developed software tool, 
GWmodelS, which calibrates a number of funda
mental GW models and statistics, including GW 
descriptive statistics, basic and multiscale GWR 
and GWPCA. It provides significant advantages in 
terms of user-friendly graphical user interface 
(GUI), operational efficiency, and accessibility2 

(Lu et al. 2023). Additionally, tools for spatial 
data management and batch mapping significantly 
facilitate its usage for users from diverse domains, 
such as biology (Zheng et al. 2023), environmental 
science (Mayfield et al. 2018) and social science 
(Marek et al. 2020). As a twin software tool, 
when paired with the R package GWmodel, the 
functionalities of GWmodelS are almost equiva
lent, both having a number of GWR extensions 
available, including robust GWR (Harris, 
Fotheringham, and Juggins 2010), locally compen
sated GWR (Brunsdon, Charlton, and Harris 2012), 
generalized GWR (Nakaya et al. 2005) and scalable 
GWR (Murakami et al. 2021). Their usages are not 
introduced here but can be easily deduced from the 
examples provided in this study.

Notes

1. The symbol “→” means sub-option affiliation, and 
note that the public parameters will be not repeatedly 
interpreted in the following sections.

2. Free download via https://gwmodel-lab.github.io/ 
GWmodelS/

Acknowledgments

We would like to pay tribute to Dr. Martin Charlton for his 
extraordinary contributions in developing the earliest GWR 
software (GWR3.X) and R package GWmodel.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

This study is jointly funded by National Key Research and 
Development Program of China [grant number 
2021YFB3900904], the National Natural Science 
Foundation of China [grant number 42071368, 42001115] 
and the Fundamental Research Funds for the Central 
Universities, China [grant number 2042022dx0001].

Notes on contributors

Binbin Lu is currently an Associate Professor at School of 
Remote Sensing and Information Engineering, Wuhan 
University. His research interests include geocomputation, 
spatial statistics, geographically weighted (GW) modelling, 
open-source GIS, R coding and spatio-temporal big data 
analysis. He is the main developer and maintainer of the 
R package, namely GWmodel.

Yigong Hu is currently a PhD student with University of 
Bristol, and got his master degree at the School of Remote 
Sensing and Information Engineering, Wuhan University. 
His research interests include spatial statistics, 
geoinformatics.

GEO-SPATIAL INFORMATION SCIENCE 19

https://gwmodel-lab.github.io/GWmodelS/
https://gwmodel-lab.github.io/GWmodelS/


Dongyang Yang is an associate professor at Key Research 
Institute of Yellow River Civilization and Sustainable 
Development, Henan University. His research interests 
include spatio-temporal models and spatial statistics.

Yong Liu is an associate professor at Key Research Institute 
of Yellow River Civilization and Sustainable Development, 
Henan University. His research interests include spatial 
analysis and spatial statistics.

Guangyu Ou is a postgraduate student at Wuhan 
University. His research interests include spatial analysis 
and software development.

Paul Harris is a Professor of Spatial Statistics at Rothamsted 
Research. His research includes methodological develop
ment with applied studies in agriculture and encompasses 
all scales (from the plot and field, to the continent and 
global).

Chris Brunsdon is a Professor of Geocomputation and 
Director of the National Centre for Geocomputation at 
Maynooth University, Ireland. His research interests 
include spatial statistics, data science and spatial analysis.

Alexis Comber is a Professor of Spatial Data Analytics at the 
University of Leeds and Leeds Institute for Data Analytics 
(LIDA). His research activities cover all areas of spatial data: 
remote sensing, land cover/use, demographics, public 
health, agriculture, bio energy and accessibility.

Guanpeng Dong is a professor at Key Research Institute of 
Yellow River Civilization and Sustainable Development, 
Henan University. His research interests include spatial 
statistics and human terrestrial systems simulation.

ORCID

Binbin Lu http://orcid.org/0000-0001-7847-7560
Yigong Hu http://orcid.org/0000-0002-9553-6275
Dongyang Yang http://orcid.org/0000-0002-7182-6323
Chris Brunsdon http://orcid.org/0000-0003-4254-1780
Alexis Comber http://orcid.org/0000-0002-3652-7846
Guanpeng Dong http://orcid.org/0000-0003-0949-1304

Data availability statement

The data that support the findings of this study are available 
with the identifier(s) at the link (https://figshare.com/arti 
cles/dataset/House_Price_Data_of_Wuhan/24619248). 
GWmodelS is freely downloaded from the website https:// 
gwmodel.whu.edu.cn/gwmodels/#/or the Github link 
https://github.com/GWmodel-Lab/GWmodelS.

References

Anselin, L., I. Syabri, and Y. Kho. 2010. “GeoDa: An 
Introduction to Spatial Data Analysis.” In Handbook of 
Applied Spatial Analysis: Software Tools, Methods and 
Applications, edited by M. F. Manfred and A. Getis, 
73–89. Berlin, Heidelberg: Springer Berlin Heidelberg.

Araujo, Y. A., F. J. A. Cysneiros, and A. H. M. A. Cysneiros. 
2020. Gwer: Geographically Weighted Elliptical 
Regression. Brazil: CRAN.

Bai, H., B. Wang, Y. Zhu, S. Kwon, X. Yang, and K. Zhang. 
2022. “Spatiotemporal Change in Livestock Population 
and its Correlation with Meteorological Disasters 
During 2000–2020 across Inner Mongolia.” ISPRS 

International Journal of Geo-Information 11 (10): 520.  
https://doi.org/10.3390/ijgi11100520  .

Bivand, R., and D. Yu. 2020. Package ‘spgwr’. Bergen, 
Norway: CRAN.

Brunsdon, C., M. Charlton, and P. Harris. 2012. “Living 
with Collinearity in Local Regression Models.” Spatial 
Accuracy 2012. Brazil.

Brunsdon, C., A. S. Fotheringham, and M. Charlton. 1996. 
“Geographically Weighted Regression: A Method for 
Exploring Spatial Nonstationarity.” Geographical 
Analysis 28 (4): 281–298. https://doi.org/10.1111/j.1538- 
4632.1996.tb00936.x  .

Brunsdon, C., A. S. Fotheringham, and M. Charlton. 2002a. 
“Geographically Weighted Local Statistics Applied to 
Binary Data.” Lecture Notes in Computer Science 
24 (78): 38–50.

Brunsdon, C., A. S. Fotheringham, and M. Charlton. 
2002b. “Geographically Weighted Summary 
Statistics — a Framework for Localised Exploratory 
Data Analysis.” Computers, Environment and Urban 
Systems 26 (6): 501–524. https://doi.org/10.1016/S0198- 
9715(01)00009-6  .

Brunsdon, C., A. S. Fotheringham, and M. Charlton. 2007. 
“Geographically Weighted Discriminant Analysis.” 
Geographical Analysis 39 (4): 376–396. https://doi.org/ 
10.1111/j.1538-4632.2007.00709.x  .

Calzon, B. 2022. “Your Modern Business Guide to Data 
Analysis Methods and Techniques.” In Chapter in Data 
Analysis, edited by B. Calzon. Berlin, Germany: datapine.

Cao, X., Y. Liu, T. Li, and W. Liao. 2019. “Analysis of Spatial 
Pattern Evolution and Influencing Factors of Regional 
Land Use Efficiency in China Based on ESDA-GWR.” 
Scientific Reports 9 (1): 520. https://doi.org/10.1038/ 
s41598-018-36368-2  .

Casetti, E. 1972. “Generating Models by the Expansion 
Method: Applications to Geographical Research.” 
Geographical Analysis 4 (1): 81–91. https://doi.org/10. 
1111/j.1538-4632.1972.tb00458.x  .

Charlton, M., A. S. Fotheringham, and C. Brunsdon. 2007. 
Geographically Weighted Regression: Software for GWR. 
Maynooth, Ireland: National Centre for 
Geocomputation.

Comber, A., C. Brunsdon, M. Charlton, G. Dong, R. Harris, 
B. Lu, Y. Lü, et al. 2023. “A Route Map for Successful 
Applications of Geographically Weighted Regression.” 
Geographical Analysis 55 (1): 155–178. https://doi.org/ 
10.1111/gean.12316  .

Comber, A., M. Callaghan, P. Harris, B. Lu, N. Malleson, 
and C. Brunsdon. 2022. “Gwverse: A Template for a New 
Generic Geographically Weighted R Package.” 
Geographical Analysis 54 (3): 685–709. https://doi.org/ 
10.1111/gean.12337  .

Csárdi, G. 2019. Cranlogs: Download Logs from the ‘RStudio’ 
‘CRAN’ Mirror. Cambridge, USA: CRAN.

Du, Z., Z. Wang, S. Wu, F. Zhang, and R. Liu. 2020. 
“Geographically Neural Network Weighted Regression 
for the Accurate Estimation of Spatial 
Non-Stationarity.” International Journal of Geographical 
Information Science 34 (7): 1353–1377. https://doi.org/10. 
1080/13658816.2019.1707834  .

Duncan, C., and K. Jones. 2000. “Using Multilevel Models to 
Model Heterogeneity: Potential and Pitfalls.” 
Geographical Analysis 32 (4): 279–305. https://doi.org/ 
10.1111/j.1538-4632.2000.tb00429.x  .

Dykes, J., and C. Brunsdon. 2007. “Geographically Weighted 
Visualisation: Interactive Graphics for Scale-Varying 
Exploratory Analysis.” IEEE Transactions on 

20 B. LU ET AL.

https://figshare.com/articles/dataset/House_Price_Data_of_Wuhan/24619248
https://figshare.com/articles/dataset/House_Price_Data_of_Wuhan/24619248
https://gwmodel.whu.edu.cn/gwmodels/#/or
https://gwmodel.whu.edu.cn/gwmodels/#/or
https://github.com/GWmodel-Lab/GWmodelS
https://doi.org/10.3390/ijgi11100520
https://doi.org/10.3390/ijgi11100520
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1016/S0198-9715(01)00009-6
https://doi.org/10.1016/S0198-9715(01)00009-6
https://doi.org/10.1111/j.1538-4632.2007.00709.x
https://doi.org/10.1111/j.1538-4632.2007.00709.x
https://doi.org/10.1038/s41598-018-36368-2
https://doi.org/10.1038/s41598-018-36368-2
https://doi.org/10.1111/j.1538-4632.1972.tb00458.x
https://doi.org/10.1111/j.1538-4632.1972.tb00458.x
https://doi.org/10.1111/gean.12316
https://doi.org/10.1111/gean.12316
https://doi.org/10.1111/gean.12337
https://doi.org/10.1111/gean.12337
https://doi.org/10.1080/13658816.2019.1707834
https://doi.org/10.1080/13658816.2019.1707834
https://doi.org/10.1111/j.1538-4632.2000.tb00429.x
https://doi.org/10.1111/j.1538-4632.2000.tb00429.x


Visualisation and Computer Graphics 13 (6): 1161–1168.  
https://doi.org/10.1109/TVCG.2007.70558  .

ESRI Corp. 2023. ArcGIS Pro: Release 3.1. Redlands, CA: 
Environmental Systems Research Institute.

Foley, P., and U. Demšar. 2012. “Using Geovisual Analytics 
to Compare the Performance of Geographically 
Weighted Discriminant Analysis versus its Global 
Counterpart, Linear Discriminant Analysis.” 
International Journal of Geographical Information 
Science 27 (4): 633–661. https://doi.org/10.1080/ 
13658816.2012.722638  .

Fotheringham, A. S., and C. Brunsdon. 1999. “Local Forms 
of Spatial Analysis.” Geographical Analysis 31 (4): 
340–358. https://doi.org/10.1111/j.1538-4632.1999. 
tb00989.x  .

Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002. 
Geographically Weighted Regression: The Analysis of 
Spatially Varying Relationships. Chichester: Wiley.

Fotheringham, A. S., M. E. Charlton, and C. Brunsdon. 
1998. “Geographically Weighted Regression: A Natural 
Evolution of the Expansion Method for Spatial Data 
Analysis.” Environment and Planning A 30 (11): 
1905–1927. https://doi.org/10.1068/a301905  .

Fotheringham, A. S., W. Yang, and W. Kang. 2017. 
“Multiscale Geographically Weighted Regression 
(MGWR).” Annals of the American Association of 
Geographers 107 (6): 1247–1265. https://doi.org/10. 
1080/24694452.2017.1352480  .

GDAL/OGR contributors. 2022. “GDAL/OGR Geospatial 
Data Abstraction Software Library.” Open Source 
Geospatial Foundation.

Geniaux, G., and D. Martinetti. 2018. “A New Method for 
Dealing Simultaneously with Spatial Autocorrelation and 
Spatial Heterogeneity in Regression Models.” Regional 
Science and Urban Economics 72:74–85. https://doi.org/ 
10.1016/j.regsciurbeco.2017.04.001  .

Gollini, I., B. Lu, M. Charlton, C. Brunsdon, and P. Harris. 
2015. “GWmodel: An R Package for Exploring Spatial 
Heterogeneity Using Geographically Weighted Models.” 
Journal of Statistical Software 63 (17): 1–50. https://doi. 
org/10.18637/jss.v063.i17  .

Goodchild, M. F. 2004. “The Validity and Usefulness of 
Laws in Geographic Information Science and 
Geography.” Annals of the Association of American 
Geographers 94 (2): 300–303. https://doi.org/10.1111/j. 
1467-8306.2004.09402008.x  .

Goodchild, M. F., and W. Li. 2021. “Replication Across 
Space and Time must be Weak in the Social and 
Environmental Sciences.” Proceedings of the National 
Academy of Sciences 118 (35): 1–8. https://doi.org/10. 
1073/pnas.2015759118  .

Hagenauer, J., and M. Helbich. 2021. “A Geographically 
Weighted Artificial Neural Network.” International 
Journal of Geographical Information Science 1–21.  
https://doi.org/10.1080/13658816.2021.1871618  .

Harris, P., C. Brunsdon, and M. Charlton. 2011. 
“Geographically Weighted Principal Components 
Analysis.” International Journal of Geographical 
Information Science 25 (10): 1717–1736. https://doi.org/ 
10.1080/13658816.2011.554838  .

Harris, P., M. Charlton, and A. S. Fotheringham. 2010. 
“Moving Window Kriging with Geographically 
Weighted Variograms.” Stochastic Environmental 
Research and Risk Assessment 24 (8): 1193–1209. https:// 
doi.org/10.1007/s00477-010-0391-2  .

Harris, P., A. S. Fotheringham, and S. Juggins. 2010. “Robust 
Geographically Weighted Regression: A Technique for 

Quantifying Spatial Relationships between Freshwater 
Acidification Critical Loads and Catchment Attributes.” 
Annals of the Association of American Geographers 
100 (2): 286–306. https://doi.org/10.1080/ 
00045600903550378  .

Huang, B., B. Wu, and M. Barry. 2010. “Geographically and 
Temporally Weighted Regression for Modeling 
Spatio-Temporal Variation in House Prices.” 
International Journal of Geographical Information 
Science 24 (3): 383–401. https://doi.org/10.1080/ 
13658810802672469  .

Jin, C., J. Xu, and Z. Huang. 2019. “Spatiotemporal Analysis 
of Regional Tourism Development: A Semiparametric 
Geographically Weighted Regression Model Approach.” 
Habitat International 87:1–10. https://doi.org/10.1016/j. 
habitatint.2019.03.011  .

Jones, K. 1991. “Specifying and Estimating Multi-Level 
Models for Geographical Research.” Transactions of the 
Institute of British Geographers 16 (2): 148–159. https:// 
doi.org/10.2307/622610  .

Kalogirou, S. 2020. Lctools: Local Correlation, Spatial 
Inequalities, Geographically Weighted Regression and 
Other Tools. In: CRAN.

Kordi, M., and A. S. Fotheringham. 2016. “Spatially 
Weighted Interaction Models (SWIM).” Annals of the 
American Association of Geographers 106 (5): 990–1012.  
https://doi.org/10.1080/24694452.2016.1191990  .

Leong, Y. Y., and J. C. Yue. 2017. “A Modification to 
Geographically Weighted Regression.” International 
Journal of Health Geographics 16 (1): 11. https://doi.org/ 
10.1186/s12942-017-0085-9  .

Leung, Y., C. L. Mei, and W. X. Zhang. 2000. “Statistical 
Tests for Spatial Nonstationarity based on the 
Geographically Weighted Regression Model.” 
Environment and Planning A 32 (1): 9–32. https://doi. 
org/10.1068/a3162  .

Li, T., J. Corcoran, D. Pullar, A. Robson, and R. Stimson. 
2009. “A Geographically Weighted Regression Method to 
Spatially Disaggregate Regional Employment Forecasts 
for South East Queensland.” Applied Spatial Analysis 
and Policy 2 (2): 147–175. https://doi.org/10.1007/ 
s12061-008-9015-3  .

Li, Z., T. Oshan, S. Fotheringham, W. Kang, L. Wolf, H. Yu, 
and W. Luo. 2019. “MGWR 1.0 User Manual.” In edited 
by S. Fotheringham, 1–26. Tempe, USA: Arizona State 
University.

Liu, S., Y. Dong, Y. Sun, J. Li, Y. An, and F. Shi. 2019a. 
“Modelling the Spatial Pattern of Biodiversity Utilizing 
the High-Resolution Tree Cover Data at Large Scale: Case 
Study in Yunnan Province, Southwest China.” Ecological 
engineering 134:1–8. https://doi.org/10.1016/j.ecoleng. 
2019.05.001  .

Liu, Y., N. Zhao, J. K. Vanos, and G. Cao. 2019b. “Revisiting 
the Estimations of PM2.5-Attributable Mortality with 
Advancements in PM2.5 Mapping and Mortality 
Statistics.” Science of the Total Environment 
666:499–507. https://doi.org/10.1016/j.scitotenv.2019.02. 
269  .

Loader, C. R. 1999. “Bandwidth Selection: Classical or 
Plug-In?” The Annals of Statistics 27 (2): 415–438.  
https://doi.org/10.1214/aos/1018031201  .

Lu, B., C. Brunsdon, M. Charlton, and P. Harris. 2017. 
“Geographically Weighted Regression with 
Parameter-Specific Distance Metrics.” International 
Journal of Geographical Information Science 31 (5): 
982–998. https://doi.org/10.1080/13658816.2016. 
1263731  .

GEO-SPATIAL INFORMATION SCIENCE 21

https://doi.org/10.1109/TVCG.2007.70558
https://doi.org/10.1109/TVCG.2007.70558
https://doi.org/10.1080/13658816.2012.722638
https://doi.org/10.1080/13658816.2012.722638
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1068/a301905
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.1016/j.regsciurbeco.2017.04.001
https://doi.org/10.1016/j.regsciurbeco.2017.04.001
https://doi.org/10.18637/jss.v063.i17
https://doi.org/10.18637/jss.v063.i17
https://doi.org/10.1111/j.1467-8306.2004.09402008.x
https://doi.org/10.1111/j.1467-8306.2004.09402008.x
https://doi.org/10.1073/pnas.2015759118
https://doi.org/10.1073/pnas.2015759118
https://doi.org/10.1080/13658816.2021.1871618
https://doi.org/10.1080/13658816.2021.1871618
https://doi.org/10.1080/13658816.2011.554838
https://doi.org/10.1080/13658816.2011.554838
https://doi.org/10.1007/s00477-010-0391-2
https://doi.org/10.1007/s00477-010-0391-2
https://doi.org/10.1080/00045600903550378
https://doi.org/10.1080/00045600903550378
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1016/j.habitatint.2019.03.011
https://doi.org/10.1016/j.habitatint.2019.03.011
https://doi.org/10.2307/622610
https://doi.org/10.2307/622610
https://doi.org/10.1080/24694452.2016.1191990
https://doi.org/10.1080/24694452.2016.1191990
https://doi.org/10.1186/s12942-017-0085-9
https://doi.org/10.1186/s12942-017-0085-9
https://doi.org/10.1068/a3162
https://doi.org/10.1068/a3162
https://doi.org/10.1007/s12061-008-9015-3
https://doi.org/10.1007/s12061-008-9015-3
https://doi.org/10.1016/j.ecoleng.2019.05.001
https://doi.org/10.1016/j.ecoleng.2019.05.001
https://doi.org/10.1016/j.scitotenv.2019.02.269
https://doi.org/10.1016/j.scitotenv.2019.02.269
https://doi.org/10.1214/aos/1018031201
https://doi.org/10.1214/aos/1018031201
https://doi.org/10.1080/13658816.2016.1263731
https://doi.org/10.1080/13658816.2016.1263731


Lu, B., C. Brunsdon, M. Charlton, and P. Harris. 2019. 
“A Response to ‘A Comment on Geographically 
Weighted Regression with Parameter-Specific Distance 
metrics’.” International Journal of Geographical 
Information Science 33 (7): 1300–1312. https://doi.org/ 
10.1080/13658816.2019.1585541  .

Lu, B., M. Charlton, C. Brunsdon, and P. Harris. 2016. “The 
Minkowski Approach for Choosing the Distance Metric 
in Geographically Weighted Regression.” International 
Journal of Geographical Information Science 30 (2): 
351–368. https://doi.org/10.1080/13658816.2015. 
1087001  .

Lu, B., M. Charlton, P. Harris, and A. S. Fotheringham. 
2014. “Geographically Weighted Regression with a 
Non-Euclidean Distance Metric: A Case Study Using 
Hedonic House Price Data.” International Journal of 
Geographical Information Science 28 (4): 660–681.  
https://doi.org/10.1080/13658816.2013.865739  .

Lu, B., Y. Ge, Y. Shi, J. Zheng, and P. Harris. 2022. 
“Uncovering Drivers of Community-Level House Price 
Dynamics Through Multiscale Geographically Weighted 
Regression: A Case Study of Wuhan, China.” Spatial 
Statistics 100723. https://doi.org/10.1016/j.spasta.2022. 
100723  .

Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014. “The 
GWmodel R Package: Further Topics for Exploring 
Spatial Heterogeneity Using Geographically Weighted 
Models.” Geo-Spatial Information Science 17 (2): 
85–101. https://doi.org/10.1080/10095020.2014.917453  .

Lu, B., Y. Hu, D. Murakami, C. Brunsdon, A. Comber, 
M. Charlton, and P. Harris. 2022. “High-Performance 
Solutions of Geographically Weighted Regression in R.” 
Geo-Spatial Information Science 25 (4): 536–549. https:// 
doi.org/10.1080/10095020.2022.2064244  .

Lu, B., Y. Hu, D. Yang, Y. Liu, L. Liao, Z. Yin, T. Xia, et al. 
2022. “GWmodelS: A Software for Geographically 
Weighted Models.” SSRN Electronic Journal. doi https:// 
doi.org/10.2139/ssrn.4213470  .

Lu, B., Y. Hu, D. Yang, Y. Liu, L. Liao, Z. Yin, T. Xia, et al. 
2023. “GWmodelS: A Software for Geographically 
Weighted Models.” SoftwareX 21:101291. https://doi. 
org/10.1016/j.softx.2022.101291  .

Lu, B., W. Yang, Y. Ge, and P. Harris. 2018. “Improvements 
to the Calibration of a Geographically Weighted 
Regression with Parameter-Specific Distance Metrics 
and Bandwidths.” Computers, Environment and Urban 
Systems 71:41–57. https://doi.org/10.1016/j.compen 
vurbsys.2018.03.012  .

Marek, L., M. Hobbs, J. McCarthy, J. Wiki, M. Tomintz, 
M. Campbell, and S. Kingham. 2020. “Investigating 
Spatial Variation and Change (2006–2017) in 
Childhood Immunisation Coverage in New Zealand.” 
Social Science & Medicine 264:113292. https://doi.org/ 
10.1016/j.socscimed.2020.113292  .

Mayfield, H. J., J. H. Lowry, C. H. Watson, M. Kama, 
E. J. Nilles, and C. L. Lau. 2018. “Use of Geographically 
Weighted Logistic Regression to Quantify Spatial 
Variation in the Environmental and Sociodemographic 
Drivers of Leptospirosis in Fiji: A Modelling Study.” The 
Lancet Planetary Health 2 (5): e223–e232. https://doi.org/ 
10.1016/S2542-5196(18)30066-4  .

Murakami, D. 2017. “Spmoran: An R Package for Moran’s 
Eigenvector-Based Spatial Regression Analysis.” arXiv 
1703.04467v3 1–48. https://doi.org/10.48550/arXiv.1703. 
04467 .

Murakami, D., N. Tsutsumida, T. Yoshida, T. Nakaya, and 
B. Lu. 2020. “Scalable GWR: A Linear-Time Algorithm 

for Large-Scale Geographically Weighted Regression with 
Polynomial Kernels.” Annals of the American Association 
of Geographers 1–22. https://doi.org/10.1080/24694452. 
2020.1774350  .

Murakami, D., N. Tsutsumida, T. Yoshida, T. Nakaya, and 
B. Lu. 2021. “Scalable GWR: A Linear-Time Algorithm 
for Large-Scale Geographically Weighted Regression with 
Polynomial Kernels.” Annals of the American Association 
of Geographers 111 (2): 459–480. https://doi.org/10.1080/ 
24694452.2020.1774350  .

Nakaya, T., M. Charlton, S. Fotheringham, and 
C. Brunsdon. 2009. How to Use SGWRWIN (GWR4.0). 
Maynooth, Ireland: National Centre for 
Geocomputation.

Nakaya, T., A. S. Fotheringham, C. Brunsdon, and 
M. Charlton. 2005. “Geographically Weighted Poisson 
Regression for Disease Association Mapping.” Statistics 
in Medicine 24 (17): 2695–2717. https://doi.org/10.1002/ 
sim.2129  .

Nawrotzki, R. J., and M. Bakhtsiyarava. 2017. “International 
Climate Migration: Evidence for the Climate Inhibitor 
Mechanism and the Agricultural Pathway.” Population, 
Space and Place 23 (4): e2033. https://doi.org/10.1002/ 
psp.2033  .

Oshan, M. T., Z. Li, W. Kang, J. L. Wolf, and 
S. A. Fotheringham. 2019. “MGWR: A Python 
Implementation of Multiscale Geographically Weighted 
Regression for Investigating Process Spatial 
Heterogeneity and Scale.” ISPRS International Journal of 
Geo-Information 8 (6): 1–31. https://doi.org/10.3390/ 
ijgi8060269  .

QGIS community. “QGIS User Guide.” Accessed December, 
13 2022. https://docs.qgis.org/3.28/en/docs/user_man 
ual/index.html .

QGIS.org. 2022a. QGIS 3.22. Geographic Information System 
Developers Manual. Berne, Switzerland: QGIS 
Association.

QGIS.org. 2022b. QGIS User Guide. Berne, Switzerland: 
QGIS Association.

Rao, C. R. 1965. “The Theory of Least Squares When the 
Parameters Are Stochastic and its Application to the 
Analysis of Growth Curves.” Biometrika 52 (3/4): 
447–458. https://doi.org/10.1093/biomet/52.3-4.447  .

Samec, P., M. Zapl, P. Lukeš, P. Rotter. 2020. “Spatial Lag 
Effect of Aridity and Nitrogen Deposition on Scots Pine 
(Pinus Sylvestris L.) Damage.” Environmental Pollution 
265:114352. https://doi.org/10.1016/j.envpol.2020. 
114352  .

Sanderson, C., and R. Curtin. 2016. “Armadillo: A 
Template-Based C++ Library for Linear Algebra.” The 
Journal of Open Source Software 1 (2): 1–26. https://doi. 
org/10.21105/joss.00026  .

Swamy, P. A. V. B., R. K. Conway, and M. R. LeBlanc. 1988. 
The Stochastic Coefficients Approach to Econometric 
Modeling, Part 1: A Critique of Fixed Coefficients 
Models. Board of Governors of the Federal Reserve 
System (U.S.).

Swamy, P. A. V. B., K. C. Roger, and R. L. Michael. 1988. The 
Stochastic Coefficients Approach to Econometric Modeling, 
Part II: Description and Motivation. Board of Governors 
of the Federal Reserve System (U.S.).

Tobler, W. R. 1970. “A Computer Movie Simulating Urban 
Growth in the Detroit Region.” Economic Geography 
46 (2): 234–240. https://doi.org/10.2307/143141  .

Tu, W., T. Zhu, J. Xia, Y. Zhou, Y. Lai, J. Jiang, and Q. Li. 
2020. “Portraying the Spatial Dynamics of Urban 
Vibrancy Using Multisource Urban Big Data.” 

22 B. LU ET AL.

https://doi.org/10.1080/13658816.2019.1585541
https://doi.org/10.1080/13658816.2019.1585541
https://doi.org/10.1080/13658816.2015.1087001
https://doi.org/10.1080/13658816.2015.1087001
https://doi.org/10.1080/13658816.2013.865739
https://doi.org/10.1080/13658816.2013.865739
https://doi.org/10.1016/j.spasta.2022.100723
https://doi.org/10.1016/j.spasta.2022.100723
https://doi.org/10.1080/10095020.2014.917453
https://doi.org/10.1080/10095020.2022.2064244
https://doi.org/10.1080/10095020.2022.2064244
https://doi.org/10.2139/ssrn.4213470
https://doi.org/10.2139/ssrn.4213470
https://doi.org/10.1016/j.softx.2022.101291
https://doi.org/10.1016/j.softx.2022.101291
https://doi.org/10.1016/j.compenvurbsys.2018.03.012
https://doi.org/10.1016/j.compenvurbsys.2018.03.012
https://doi.org/10.1016/j.socscimed.2020.113292
https://doi.org/10.1016/j.socscimed.2020.113292
https://doi.org/10.1016/S2542-5196(18)30066-4
https://doi.org/10.1016/S2542-5196(18)30066-4
https://doi.org/10.48550/arXiv.1703.04467
https://doi.org/10.48550/arXiv.1703.04467
https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.1002/sim.2129
https://doi.org/10.1002/sim.2129
https://doi.org/10.1002/psp.2033
https://doi.org/10.1002/psp.2033
https://doi.org/10.3390/ijgi8060269
https://doi.org/10.3390/ijgi8060269
https://docs.qgis.org/3.28/en/docs/user_manual/index.html
https://docs.qgis.org/3.28/en/docs/user_manual/index.html
https://doi.org/10.1093/biomet/52.3-4.447
https://doi.org/10.1016/j.envpol.2020.114352
https://doi.org/10.1016/j.envpol.2020.114352
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://doi.org/10.2307/143141


Computers, Environment and Urban Systems 80:101428.  
https://doi.org/10.1016/j.compenvurbsys.2019.101428  .

Wang, N., C. L. Mei, and X. D. Yan. 2008. “Local Linear 
Estimation of Spatially Varying Coefficient Models: An 
Improvement on the Geographically Weighted 
Regression Technique.” Environment and Planning A 
40 (4): 986–1005. https://doi.org/10.1068/a3941  .

Wang, S., Y. Liu, C. Zhao, and H. Pu. 2019. “Residential 
Energy Consumption and Its Linkages with Life 
Expectancy in Mainland China: A Geographically 
Weighted Regression Approach and Energy-Ladder- 
Based Perspective.” Energy 177:347–357. https://doi.org/ 
10.1016/j.energy.2019.04.099  .

Wheeler, D. 2013. “Gwrr: Fits Geographically Weighted 
Regression Models with Diagnostic Tools.” R package 
version 0.2-1.

Xiao, R., W. Cao, Y. Liu, and B. Lu. 2022. “The Impacts of 
Landscape Patterns Spatio-Temporal Changes on Land 
Surface Temperature from a Multi-Scale Perspective: 
A Case Study of the Yangtze River Delta.” Science of the 
Total Environment 821:153381. https://doi.org/10.1016/j. 
scitotenv.2022.153381  .

Xu, G., Y. Jiang, S. Wang, K. Qin, J. Ding, Y. Liu, and B. Lu. 
2021. “Spatial Disparities of Self-Reported COVID-19 
Cases and Influencing Factors in Wuhan, China.” 
Sustainable Cities and Society 103485. https://doi.org/10. 
1016/j.scs.2021.103485  .

Xu, G., W. Wang, D. Lu, B. Lu, K. Qin, and L. Jiao. 2022. 
“Geographically Varying Relationships Between 
Population Flows from Wuhan and COVID-19 Cases in 
Chinese Cities.” Geo-Spatial Information Science 25 (2): 
121–131. https://doi.org/10.1080/10095020.2021.1977093  .

Yin, C., Q. He, Y. Liu, W. Chen, and Y. Gao. 2018. 
“Inequality of Public Health and its Role in Spatial 
Accessibility to Medical Facilities in China.” Applied 
Geography 92:50–62. https://doi.org/10.1016/j.apgeog. 
2018.01.011  .

Yoneoka, D., E. Saito, and S. Nakaoka. 2016. “New 
Algorithm for Constructing Area-Based Index with 
Geographical Heterogeneities and Variable Selection: 
An Application to Gastric Cancer Screening.” Scientific 
Reports 6 (1): 26582. https://doi.org/10.1038/srep26582  .

Yu, D., and C. Wu. 2004. “Understanding Population 
Segregation from Landsat ETM+ Imagery: 
A Geographically Weighted Regression Approach.” 
GIScience & Remote Sensing 41 (3): 187–206. https://doi. 
org/10.2747/1548-1603.41.3.187  .

Zhan, Q., C. Yang, and H. Liu. 2024. “How Do Greenspace 
Landscapes Affect PM2.5 Exposure in Wuhan? Linking 
Spatial-Nonstationary, Annual Varying, and Multiscale 
Perspectives.” Geo-Spatial Information Science 27 (1): 
95–110.

Zheng, Y., F. Carrillo-Perez, M. Pizurica, D. H. Heiland, 
and O. Gevaert. 2023. “Spatial Cellular Architecture 
Predicts Prognosis in Glioblastoma.” Nature 
Communications 14 (1): 4122. https://doi.org/10.1038/ 
s41467-023-39933-0  .

Zhou, X., R. Assunção, H. Shao, C.-C. Huang, M. Janikas, 
and H. Asefaw. 2023. “Gradient-Based Optimization for 
Multi-Scale Geographically Weighted Regression.” 
International Journal of Geographical Information 
Science 37 (10): 2101–2128. https://doi.org/10.1080/ 
13658816.2023.2246154.

GEO-SPATIAL INFORMATION SCIENCE 23

https://doi.org/10.1016/j.compenvurbsys.2019.101428
https://doi.org/10.1016/j.compenvurbsys.2019.101428
https://doi.org/10.1068/a3941
https://doi.org/10.1016/j.energy.2019.04.099
https://doi.org/10.1016/j.energy.2019.04.099
https://doi.org/10.1016/j.scitotenv.2022.153381
https://doi.org/10.1016/j.scitotenv.2022.153381
https://doi.org/10.1016/j.scs.2021.103485
https://doi.org/10.1016/j.scs.2021.103485
https://doi.org/10.1080/10095020.2021.1977093
https://doi.org/10.1016/j.apgeog.2018.01.011
https://doi.org/10.1016/j.apgeog.2018.01.011
https://doi.org/10.1038/srep26582
https://doi.org/10.2747/1548-1603.41.3.187
https://doi.org/10.2747/1548-1603.41.3.187
https://doi.org/10.1038/s41467-023-39933-0
https://doi.org/10.1038/s41467-023-39933-0
https://doi.org/10.1080/13658816.2023.2246154
https://doi.org/10.1080/13658816.2023.2246154

	Abstract
	1. Introduction
	2. Models, software and data
	2.1. GW models and GWmodelS
	2.2. House price data of Wuhan

	3. Usage details of GWmodelS
	3.1. Spatial data management
	3.2. GW models calibration
	3.2.1. GW descriptive statistics
	3.2.2. Basic GWR
	3.2.3. Multiscale GWR
	3.2.4. Gw pca

	3.3. Batch mapping

	4. Concluding remarks
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

