Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tgsi20

©

Taylor & Francis

Taylor & Francis Grou

P

GWmodelS: a standalone software to train
geographically weighted models

Binbin Lu, Yigong Hu, Dongyang Yang, Yong Liu, Guangyu Ou, Paul Harris,
Chris Brunsdon, Alexis Comber & Guanpeng Dong

To cite this article: Binbin Lu, Yigong Hu, Dongyang Yang, Yong Liu, Guangyu Ou, Paul Harris,
Chris Brunsdon, Alexis Comber & Guanpeng Dong (01 May 2024): GWmodelS: a standalone
software to train geographically weighted models, Geo-spatial Information Science, DOI:
10.1080/10095020.2024.2343011

To link to this article: https://doi.org/10.1080/10095020.2024.2343011

a © 2024 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

ﬁ Published online: 01 May 2024.

N
[:J/ Submit your article to this journal &

||I| Article views: 153

A
& View related articles &'

@ View Crossmark data &'

o
=2
5

3

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tgsi20


https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/journals/tgsi20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2024.2343011
https://doi.org/10.1080/10095020.2024.2343011
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2024.2343011?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2024.2343011?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2024.2343011&domain=pdf&date_stamp=01 May 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2024.2343011&domain=pdf&date_stamp=01 May 2024

GEO-SPATIAL INFORMATION SCIENCE
https://doi.org/10.1080/10095020.2024.2343011

Taylor & Francis
Taylor & Francis Group

8 OPEN ACCESS | ™ check forupdstes

GWmodelS: a standalone software to train geographically weighted models

Binbin Lu(®?, Yigong Hu
Alexis Comber

b, Dongyang Yang
f and Guanpeng Dong (»<9h

<, Yong Liu¢, Guangyu Ou?, Paul Harris9, Chris Brunsdon (®¢,

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; *School of Geographical Sciences, University
of Bristol, Bristol, UK; “Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng, China;
dNet Zero and Resilient Farming, Rothamsted Research, North Wyke, UK; ¢National Centre for Geocomputation, Maynooth University,
Maynooth, Ireland; fSchool of Geography, University of Leeds, Leeds, UK; 9Collaborative Innovation Center on Yellow River Civilization
Jointly Built By Henan Province and Ministry of Education, Henan University, Kaifeng, China; "Key Laboratory of Geospatial Technology for
the Middle and Lower Yellow River Regions, Ministry of Education, Kaifeng, China

ABSTRACT

With the recent increase in studies on spatial heterogeneity, geographically weighted (GW)
models have become an essential set of local techniques, attracting a wide range of users from
different domains. In this study, we demonstrate a newly developed standalone GW software,
GWmodelS using a community-level house price data set for Wuhan, China. In detail, a number
of fundamental GW models are illustrated, including GW descriptive statistics, basic and
multiscale GW regression, and GW principle component analysis. Additionally, functionality
in spatial data management and batch mapping are presented as essential supplementary
activities for GW modeling. The software provides significant advantages in terms of a user-
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friendly graphical user interface, operational efficiency, and accessibility, which facilitate its

usage for users from a wide range of domains.

1. Introduction

The principle of spatial heterogeneity (Goodchild
2004) suggests that geographical variables and their
relationships frequently present heterogeneous or
non-stationary patterns. To explore this fundamental
phenomena, place-based methods and local statistical
techniques that assume data relationships to be spa-
tially variant have been extensively developed
(Fotheringham and Brunsdon 1999; Goodchild and
Li 2021). These include the expansion method
(Casetti 1972), multilevel modeling (Duncan and
Jones 2000; Jones 1991) and random coefficient mod-
eling (Rao 1965; Swamy, Conway, and LeBlanc 1988;
Swamy, Roger, and Michael 1988). Extending such
approaches further, geographically weighted regres-
sion (GWR) was proposed to incorporate spatial
weights into local regression model calibrations and
to highlight spatial heterogeneities in data relation-
ships (Brunsdon, Fotheringham, and Charlton 1996;
Fotheringham, Charlton, and Brunsdon 1998). This
reflects the principle of spatial dependence proposed
by Tobler (1970) and a hypothetical “bump of influ-
ence” in which observations closer to the location
being considered are assigned larger weights in the
estimation of local regression coefficients
(Fotheringham, Brunsdon, and Charlton 2002).

Utilising this distance-decaying schema, a set of
place-based techniques, termed geographically
weighted (GW) models have been developed to
calculate local parameters and measures, in addi-
tion to GWR. These techniques include GW
descriptive statistics (Brunsdon, Fotheringham,
and Charlton 2002b; Harris, Charlton, and
Fotheringham 2010), GW principal components
analysis (Fotheringham, Brunsdon, and Charlton
2002; Harris, Brunsdon, and Charlton 2011), GW
discriminant analysis (Brunsdon, Fotheringham,
and Charlton 2007; Foley and Dems$ar 2012), GW
visualization techniques (Dykes and Brunsdon
2007) and GW artificial neural network (Du et al.
2020; Hagenauer and Helbich 2021). These GW
models form a continually evolving technical fra-
mework for identifying spatially non-stationary fea-
tures or patterns in a wide range of disciplines or
fields including geography (Cao et al. 2019;
Nawrotzki and Bakhtsiyarava 2017; Tu et al
2020), the social sciences (Jin, Xu, and Huang
2019; Li et al. 2009; Yu and Wu 2004), biology
(Bai et al. 2022; Liu et al. 2019a; Samec et al.
2020), public health (Xu et al. 2021, 2022; Yin
et al. 2018) and environment science (Liu et al.
2019b; Wang et al. 2019; Xiao et al. 2022; Zhan,
Yang, and Liu 2024).
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The increasing popularity of GW models, particu-
larly GWR, has resulted in the development of several
software packages, standalone programs and toolkits.
These tools include GWR3.X (Charlton,
Fotheringham, and Brunsdon 2007), GWR4.0
(Nakaya et al. 2009), GWR tools in the modeling
spatial relationships toolset of ArcGIS Pro (ESRI
Corp 2023) and MGWR (Li et al. 2019) which provide
standalone and user-friendly software for undertaking
GWR. A range of R and Python packages have been
developed to incorporate different GW models,
including spgwr (Bivand and Yu 2020), mgwrsar
(Geniaux and Martinetti 2018), GWLelast (Yoneoka,
Saito, and Nakaoka 2016), spMoran (Murakami
2017), gwer (Araujo, Cysneiros, and Cysneiros 2020),
Ictools (Kalogirou 2020), gwrr (Wheeler 2013) and
GWmodel (Gollini et al. 2015; Lu et al. 2014).
Among these packages, GWmodel provides
a comprehensive set of GW models (Comber et al.
2023), including GW summary statistics, GW princi-
pal components analysis, GW discriminant analysis
and a variety of alternative GW regression forms and
tools. The GWmodel package has been used in
a number of workshops such as at Spatial Accuracy
2018 (https://www.spatialaccuracy2018.org/work
shops) and 7™ Channel Network Conference
(https://biometricsociety.org.uk/events/cnc2019/
courses). In the 10 years or so since its first release on
CRAN (https://CRAN.R-project.org/package=
GWmodel), the number of downloads of the
GWmodel package is more than 150, 000 according
to the results returned by the R package cranlogs
(Csardi 2019).

Despite its popularity, fundamental
R programming skills are required to use the
GW functionalities in GWmodel. This is not
always an easy task for researchers, particularly
for beginners or scholars in different application
fields. Recently, GWmodel was implemented as
GWmodelS using C++ and the cross-platform
software Qt (Lu et al. 2022). GWmodelS is
a new, free, user-friendly and high-performance
computational framework to continually integrate
different and new GW models (Lu et al. 2022). Its
continuous evolution provides a stable platform
for the future development of GW models
together with GWmodel and gwverse, a new tem-
plate for GW R packages (Comber et al. 2022).
GWmodelS is a standalone software and incorpo-
rates spatial data management and mapping tools
as well as the GW model functions. It has a user-
friendly graphical user interface (GUI) making it
easier to construct GW models, but no require-
ment for any programming skills. In the study by
Lu et al. (2023), we have briefly summarized the
background and development design of
GWmodelS, but with a very simple example of

applying standard GWR. For further details, in
this article we will demonstrate the use of
GWmodelS through a series of typical GW ana-
lyzes that undertake GW descriptive statistics
(GW averages and correlations), GW regression
(basic and multiscale GWR) and GW principal
components analysis. It explains the GUI and
parameter settings in detail, and provides
a comprehensive illustration and tutorial for
undertaking GW models with GWmodelS. This
paper is structured as follows: In Section 2, differ-
ent GW models and the training data set (com-
munity-level house price data for Wuhan
(WHHP)) are introduced. Section 3 details the
operations of GWmodelS in conducting GW ana-
lyzes, and Section 4 summarizes this study. Similar
to the other well-known software for spatial ana-
lytics, GeoDa (Anselin, Syabri, and Kho 2010), All
the analyzes presented in this study can be repro-
duced and used in courses or workshops with
relative ease.

2. Models, software and data
2.1. GW models and GWmodelS

GW models form a branch of spatial statistics,
including GWR and its extensions, GW descrip-
tive statistics, GW principal components analysis
that address the need for local place-based, local
models that reflect hypothetical “bump of influ-
ence” described above. They form a generic and
rapidly evolving technical framework that meet
different tiers of spatial data analysis, i.e. descrip-
tive analysis, exploratory analysis, diagnostic ana-
lysis, predictive analysis and prescriptive analysis
(Calzon 2022). To facilitate the usage of such GW
models, a stand-alone software tool has been
developed, GWmodelS. It was constructed with
the C++ programming language based on the
geospatial data abstraction library (GDAL)
(GDAL/OGR contributors 2022), QGIS develop-
ment libraries (QGIS.org 2022a) and Armadillo
C++ library (Sanderson and Curtin 2016). In this
regard, GWmodelS largely inherits some core
functionalities from QGIS, including spatial data
overview and cartography tools, which greatly
facilitates the operations for mutual users from
this popular open GIS software.

The main interface of GWmodelS is shown in
Figure 1. The menu bars at the top contain the
project data/layer management and a number of
fundamental GW tools: GW summary statistics
(GWSS, Brunsdon, Fotheringham, and Charlton
2002b), GWPCA (Harris, Brunsdon, and
Charlton 2011) and basic GWR (Brunsdon,
Fotheringham, and Charlton 1996). It also
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Figure 1. The main interface of GWmodelS.

includes a range of extensions applicable to large-
scale data sets (Murakami et al. 2020), multiscale
GWR (Lu et al. 2017, 2018, 2019), geographically
and temporally weighted regression (GTWR)
(Huang, Wu, and Barry 2010), robust GWR
(Harris, Fotheringham, and Juggins 2010), locally
compensated GWR (GWR-LCR), generalized GW
regression (Nakaya et al. 2005). The plan is that
this software will continue to be developed and
augmented to include additional GW tools, e.g.
GW interaction model (Kordi and Fotheringham
2016), GW discriminant analysis (Brunsdon,
Fotheringham, and Charlton 2007) and GW arti-
ficial intelligence techniques (Hagenauer and
Helbich 2021). The key idea behind GWmodelS
is to provide a comprehensive, usable and free
platform of local techniques under the GW mod-
eling framework for researchers from a wide range
of fields. Software installation and the use of tools
for GWSS, GWR, and GWPCA are presented in
this study with the WHHP data set.

2.2. House price data of Wuhan

As a training tool to facilitate usage of GWmodelS, the
WHHP data set is provided. It is located in the soft-
ware installation directory. WHHP describes commu-
nity-level house prices in Wuhan, the capital of Hubei
province in the central region of China (Lu et al. 2022).
As shown in Figure 2, the boundary of the WHHP
data set is central built-up area of Wuhan, where most
of the houses for sale are located. The WHHP data set
contains 9 variables collected in 2015: Annual AQI,
Pop_Den, Green_Rate, GDP_per_Land,

Rev_per_Land, FAI per_Land, Tertl_Rate, Den_POL
They are fully described in Table 1.

3. Usage details of GWmodelS

This section details the application of GWmodelS to
calculate GW summary statistics, GW PCA and GWR
with the WHHP data. Some data management and
visualization tools are also introduced.

3.1. Spatial data management

In GWmodelsS, several formats of spatial datasets can
be directly imported, including ESRI Shapefile,
GeoJSON, OGC GeoPackage (GPKG) and CSV.
ESRI Shapefile is the most popular format and widely
compatible with most of the GIS software or plat-
forms with a majority of geospatial vector data pro-
vided in this format. With the increasing amount of
spatial data collected from the internet, GeoJSON,
a text-based format extend from the JSON format is
a commonly used alternative. However, these two
formats are inefficient for large-scale data sets, and
so the GPKG format is included as it is more efficient
in terms of storage overhead (spatial data sets are
stored in SQLite databases.). Finally, CSV format is
incorporated for data interchanges across a range of
software and platforms.

The WHHP data is provided in two formats:
GeoPackage (*. Gpkg) and ESRI Shapefile (*. Shp).
As shown in Figure 3, WHHP data in the GPKG
format is loaded via the menu “Layer/
Data — GPKG” and shown in the map zone
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Figure 2. Boundary of the WHHP data set.

Table 1. Variable names and descriptions in the WHHP data.

Variable Description

Avg_HP Average house price at the community-level (Yuan/m?)
Annual_AQl Annual air quality index (AQI)

Pop_Den Population density (105/km?)

Green_Rate Percentage of green space (%)

GDP_per_Land
Rev_per_Land

GDP per land area (10* Yuan/km?)
Revenue per land area (10* Yuan/km?)

FAl_per_Land Fixed assets investment per land area (10* Yuan/km?)
Tertl_Rate Percentage of tertiary industry (%)
Den_POI Density of places of interest (POI) (1072/km?)

(shown in Figure 4). Alternatively, the ESRI
Shapefile data set can be imported by clicking the
menu item “Layer/Data — ESRI Shapefile”.

To examine the imported data set and its attri-
butes, the user right clicks on the layer’s name
(i.e. WHHP here) in the “Features” panel, and
selects “Property” on the popup menu to display
summary information about the layer in the prop-
erty panel, including feature count, type of geo-
metry, coordinates of bounding box, type of each

field, and the spatial reference, as shown in
Figure 5.

To examine the attributes, right click a layer’s
name and select “Attribute Table”. Similar to
QGIS, all the fields are presented in the pop-up
window (as shown in Figure 6). With data
manipulation tools inherited from QGIS, edition,
pan, selection and calculation tools are also
available in the top toolbar (see details in
QGIS.org 2022b).

To visually explore the imported data, click the
“Symbology” button in the right popup menu, and
set the style for visualizing the imported layer.
Symbol, color and geometric types can be set
accordingly. As shown in Figure 7(a)-(d),
a choropleth map of the variable, Avg HP can be
visualized by setting a “Graduated” blue ramp
according with naturally separated values. This
functionality is also essential to produce thematic
maps of the results of GW models.



GEO-SPATIAL INFORMATION SCIENCE . 5

Table 2. Options in the GW descriptive statistics configuration windows'.

Option

Explanation

Layer name

— Candidate Variables
Weighting Scheme

— Bandwidth Type

— Bandwidth Size

— — Auto-selection
— — User-defined

— Kernel Function
Distance Metric
— According to CRS

— Minkowski distance

— — theta

- —p

— Self-defined (*.dmat)

— — Select a distance
matrix file

Computing configuration

— None

— Multithreading

— — Threads

Data layer to be used for calculating GW averages and correlations

Candidate variables available in the data layer and to be selected for GW modelling by clicking the button “>>".

Group of parameters to be set for the weighting scheme.

Two types of bandwidth: ‘adaptive’ and ‘fixed’ (Lu et al. 2014), - ‘fixed’ is default.

The Bandwidth size for calculating spatial weights, referring to a constant distance threshold for fixed bandwidth and
number of nearest neighbours for the adaptive type.

By default, the auto-selection option is ticked, and the bandwidth will be optimized via the golden section search
procedure utilising the cross-validation (CV) approach (Loader 1999); otherwise, the user-defined value will be used.

If auto-selection is unticked, a user-defined bandwidth will be used for GW model calibration, and note scaling options are
also provided here, i.e. x1, x10, x100, and x 1000.

Kernel function to calibrate GW models, including Gaussian, exponential, bi-squared, tri-cube, and box-car.

Parameters for calculating distance metrics

If ticked, spatial distance will be calculated according to the coordinate reference system (CRS) of the source data, i.e.
Euclidean distance for a projected CRS while great circle distance for the a geographic (longitude and latitude-based) CRS.

If ticked, the Minkowski distance function will be used to calculate distance, and it could be expressed as follows (Lu et al.

2016): dj(p,0) = \/ (ui — uj)2 + (v — vj)z(|sin(9 +a)|” + |cos (6 + a)”\)}’, where (u;,v;) and (u;,v;) are spatial

coordinates, a = tan~"' (“j"”z>, p is a positive constant and 0 is the rotation angle of the CRS.

1—V2

The rotation angle 6.

The value of p for the Minkowski distance function.

If this option is ticked, a self-defined distance matrix provided in a binary file (*.dmat) will be used for weight calculation.
Note that this distance matrix could be calculated via GWmodelS or customized with an n xm matrix where n is the
number of observations and m is the number of calibration locations.

File path of the self-defined distance matrix.

Parameters for computational configuration

No computational configuration is specified and the GW modules will be carried out in a stand-alone mode
If ticked, the GW module will be carried out with open multi-processing (Open-MP).

Number of the parallel threads

Others Further options of the GW average module
— Quantile If this option is ticked, the GW quantiles will be calculated.
| [0 Project - GWmodelS - o X

Project

Vo Lsrushﬁfie - JIOR16

[Ersa] vk owss owech About

Property

> PaperOthers > 2 GWmodelS > Data > WHHP 2015

14/10/2022 15:15 GPKG ¢t

N): WHHP.gpkg

Figure 3. Load the spatial data of the GPKG format into GWmodelS.

Fundamental functionality for spatial data manipula-
tion, exploration and mapping are included in
GWmodelS as it imports GDAL and QGIS development
libraries. Other operations can be explored by users, with
the potential to include additional functionalities avail-
able, such as other data formats supported by the GDAL

library.

3.2. GW models calibration

This section describes four common GW models and
demonstrates their application with GWmodelS,
including GW descriptive statistics (i.e. GW averages
and correlations - see technical details in Brunsdon,
Fotheringham, and Charlton 2002a), regression
(basic and multiscale - see technical details in
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Figure 5. Overview and information of the imported spatial data.

Fotheringham, Yang, and Kang 2017; Lu et al. 2017,
2019) and PCA techniques (Harris, Brunsdon, and
Charlton 2011). This section could be used as intro-
ductory materials in GW model training with
GWmodelS. Note that a wide range of GW models
are available, including a number of GW regression
extensions applicable to large-scale data set
(Murakami et al. 2021), spatiotemporal data
(Huang, Wu, and Barry 2010), outliers (Harris,

Fotheringham, and Juggins 2010) and local collinear-
ity (Wang, Mei, and Yan 2008). These are not
described in detail here, but their usage can be
inferred with similar interfaces in GWmodelS (Lu
et al. 2023).

3.2.1. GW descriptive statistics
GW descriptive statistics are always vital pre-cursors
to preliminarily explore a spatial data set and provide
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Figure 6. View attribute table of the imported layer.

a localized perspective. GWmodelS incorporates GW
averages and correlations that locally summarize uni-
variate and binary variables. To calculate the GW
averages, click the menu item “GWSS — GW
Averages”. As shown in Figure 8, the required para-
meters can be configured in the pop-up window, and
interpreted as in Table. With all the parameters con-
figured properly, GW averages (LM) plus standard
deviations (LSD), variances (LVar), skewness
(LSkew), and CV (LCV) can be calculated and sum-
maries returned in the property panel, as shown in
Figure 9.

Figure 10 and Table 2 present the configuration win-
dow and setting interpretations for calculating bivariate
GW correlations. Note that there are two groups of
variables, namely X and Y, referring to two sets of vari-
ables, {X1,X5, -, X} and {Y;,Y,,---,Y,}. With
them, the bivariate GW correlations between each pair
of Xjand Y; (wherei =1,2,---,mandj=1,2,---,n)
are calculated. By default, all the GW correlations are
calculated via a uniformly defined kernel function (e.g.
Gaussian), while bandwidths are optimized specifically
for each pair of variables. On clicking the text of pair-
wise variables in the left textbox, the configuration for
each bivariate GW correlation can be customized indi-
vidually, i.e. different kernel function and bandwidth
settings can be used for each single calculation. In this
way, it is possible to undertake more elaborate calcula-
tions than in GWmodel. The GW correlation coeffi-
cients are returned as properties in a new layer and
summarized in the property panel, as shown in
Figure 11. Observe that both Pearson and Spearman
(robust) correlation coefficients can be calculated, as in
GWmodel (Lu et al. 2014).

3.2.2. Basic GWR

To calibrate a basic GWR model, click the menu
item “GWR — Basic GWR?”, and set the parameters
in the specific configuration window, as shown in
Figure 12. Their meanings and options are
described in Table 3, but note the parameters in
Table 1 and that the remaining configuration win-
dows will not be repeated from here. With all the
parameters set properly, the status of this dialog in
the bottom left corner will be changed into “Valid”,
and the basic GWR model is ready for calibration
by clicking the “OK” button.

Once the GWR model calibration is achieved,
a property window with model summarizing informa-
tion appears on the right side, as shown in Figure 13.

In the top subpanel, the results from a global
regression (OLS model) are summarized if the OLS
option is ticked, including coefficient-wise estimates,
standard error and t-values, following by its diagnostic
information, i.e. AIC, AIC,, residual sum of squares
(RSS), R? and adjusted R? values.

In the “Results of Geographically Weighted
Regression” panel, the model calibration information,
including kernel function, bandwidth size, regression
locations and distance metric are reported. Each GWR
coefficient estimate is summarized in a table with
minimum, quantiles, and maximum. For model per-
formance comparison to the OLS model, the diagnos-
tic information is also included.

Model specification functionality is incorporated
through a stepwise procedure as detailed in Lu
et al. (2014). To view this procedure, a circle view
and line chart are drawn here. The former plot
presents the procedure of candidate variables
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included into the model in a “forward” direction,
where the dependent variable located in the center
of the chart and the independent variables are
represented as nodes differentiated by shapes and
colors. The latter line chart presents the

corresponding AICc values from each candidate
regression model.

The GWR bandwidth size is optimized via an AICc
or CV approach. To view this procedure, a dot-line
chart is provided in the sub-section “Bandwidth
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Selection View”, in which the horizontal axis refers to
the bandwidth sizes and vertical axis are the corre-
sponding AICc or CV values. All these tree charts can
be scaled freely, and zoomed into or out of to examine
details.

For further analysis, the localized coefficient esti-
mates and diagnostic information (e.g. residuals, local
R? and t-test values) are written into a new layer with
a suffix, . GWR”. Similarly, this can be explored using
the fundamental data management and visualization
tools, as shown in Figure 14.

3.2.3. Multiscale GWR
Multiscale GWR provides information about the
different scales of relationships in the data, and

GEO-SPATIAL INFORMATION SCIENCE . 9
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should always be explored in GWR analyzes
(Comber et al. 2023). On clicking the menu item
“GWR — Multiscale GWR?”, the configuration win-
dow for calibrating a multiscale GWR model is acti-
vated, as shown in Figure 15. Its configuration is
largely similar to that of a basic GWR model, like
the “Layer Name”, “Dependent Variable”, and
“Independent Variable”. The key difference between
calibrating a multiscale GWR and basic GWR model
is the iteratively back-fitting algorithm adopted for
the former one (Fotheringham, Yang, and Kang
2017; Leong and Yue 2017; Lu et al. 2017), and thus
the “Iteration Configuration” parameters are incor-
porated. In GWmodelS, the algorithm is from GWR
with parameter-specific distance metrics (Lu et al.
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Figure 11. Result panel of GW correlations.

2017), and thus a subsection namely “Parameter-
specific Distance Metrics” is available for setting
the weighting scheme (including both kernel func-
tion and bandwidth size) and distance metric for
each varying coefficient estimate. This algorithm is
different from the other two multiscale GWR tech-
niques in terms of bandwidth optimization strategy
and convergence criteria (see details in Lu et al. 2018,
2019). Thus, there could be some discrepancy
between the results from this tool and the MGWR

tool (Oshan et al. 2019), and that in ArcGIS Pro,
where gradient-based optimization is adopted (Zhou
et al. 2023).

With all the options configured properly, the status
of this dialog in the bottom left corner appears as
“Valid”. On clicking the “OK” button, the specific
multiscale GWR model is calibrated and progress
indicated through a progress bar. As presented in
Figure 16, the results of the multiscale GWR model
are returned in two parts:
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Table 3. Options for the basic GWR configuration.

Option Explanation

Layer name Data layer of observations for calibrating the GWR model

Regression Points If ticked, an individual layer should be provided as regression locations.

— Predict If ticked, predictions will be made at each regression location with observations of the independent variables provided.
Dependent Variable Dependent variable selected for the GWR model.

Independent Variable
— Candidate Variables

— Chosen Variables

— Enable automatic model
specification

— AlCc Threshold

Others

— Hatmatrix
— OLS

— F Test

Independent variables selected for the GWR model.

Candidate variables available in the imported layer to be chosen as the independent variables of the GWR model by
clicking the button “>>".

Variables chosen as independent variables.

If ticked, a step-wise GWR model specification procedure will be conducted, see details in Lu et al. (2014).

Threshold value set for the step-wise model specification, and in the forward procedure the rest variables will be
excluded from the model when the reduction of AlCc is less than it.

Further options for GWR model calibration

If ticked, the hat matrix will be calculated and diagnostic information of the GWR model will be returned.

If ticked, result from the ordinary linear square (OLS) approach will be returned.

If ticked, F tests of spatial heterogeneity will be conducted according to Leung, Mei, and Zhang (2000).

(1) the results of a global regression, model config-
uration parameters and diagnostic information
are summarized in the property dialog on the

right side, and

(2) the localized coefficient estimates and diagnos-

window will pop up, as shown in Figure 17. Most
of the options are the same as those for the pre-
vious GW tools, and so are not repeated here.
Specific options for GWPCA are indicated in
Table 5. In the subsection “PCA Settings”, the key

tic information are written into a new layer
with a suffix * MGWR”.

As parameters are specifically configured for each
coefficient, tree view controls are used which can be
expanded to check details of settings, e.g. kernel func-
tion, bandwidth size and distance metric. The specific
options for configuring multiscale GWR are shown in
Table 4.

3.2.4. Gw pca
To activate the GWPCA tool, click the menu item
“GWPCA — basic GWPCA” and the configuration

parameters for calculating GWPCA are collected,
including the number of retained components, the
version of the GWPCA (basic or robust) and
scores. Moreover, a glyph plot tool is provided to
visualize local loadings of all the variables, and
a new graphic device is activated if this option is
ticked.

As shown in Figure 18, the results of the
GWPCA tool are outlined in the property panel,
including calculation settings and summarized
percentages of variance (PV) for each retained
component. The localized PV and cumulative PV
are written in a new layer with a suffix
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Table 4. Specific options for multiscale GWR configuration.

Option

Explanation

Iteration Configuration
— Criterion

— Max Iterations

— Converged Threshold

— Bandwidth Type

— Bandwidth Optimize
Retry

— Minimum Adaptive
Bandwidth

Parameter-specific Distance
Metrics

— Other

— — Predictor
centralization

Computing Configuration

Options for the back-fitting iteration algorithm.

Criterion of determining convergence, including changing value of RSS (CVR) and a differential version (dCVR) (see
definitions in Lu et al. 2017)

Maximum number of iterations.

Convergence threshold value to terminate the back-fitting iterations.

Type of bandwidth, i.e. fixed or adaptive.

The bandwidth sizes for each coefficient generally converge fast, and could stop being re-optimized in the following
iterations. The number of maximum retries in bandwidth optimization is defined here.

To avoid risk of over-fitting, the lower bound of an adaptive bandwidth is defined for optimization.

Options for setting parameter specific weighting schemes and distance metrics. Switch the target variable by clicking the
variable label in the left list.

Further options for coefficient estimates

Variable will be centralized if ticked (see details in Lu et al. 2019)

Refer to the “Computing Configuration” part in Table, but note GPU is not supported for this tool.
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Figure 17. Configuration window of the GWPCA tool.
Table 5. Specific options for GWPCA configuration.
Options Explanation

Variables z_score normalization

PCA Settings
— Components Retain
— Robust GWPCA

— Scores on principal components

be calculated
Others
— Glyph Plot

If ticked, all the variables will be normalized via z-scores approach, defined by x = SX’&‘), where X is the normalized
value, x is the original value, X is the mean value, SD(x) is the standard deviation of x.

Options to control the PCA algorithm.

Number of retained components and must be less than the number of variables

If ticked, robust GWPCA will be applied (Lu et al. 2014).

If ticked, the scores of the supplied data on the principal components will be calculated.

If ticked, a glyph plot will be drawn to visualize local loadings of all the variables.

“_GWPCA”. Note that the localized loadings for
each component are not retuned as an explicit
output due to its complex dimensionality, but
a glyph plot provides a good way to summarize

its properties and is enabled as an option in the
configuration window. With the local loadings,
a new string-type column is added to the output
layer to indicate the localized winning variable for
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13 42.783467154... 19.857525966... 62.640993120... Green Rate
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Figure 18. Results from the GWPCA tool.

10, 000 m

Figure 19. Mapping wining variables from GWPCA results.

Property
wie_Garc [

Model Calibration Infornstion

Kernel function:  Bisquare

GEO-SPATIAL INFORMATION SCIENCE 15

WO _GLyphPLot(1)_onrca £

Msptive 835 (umber of nearest neighbours)

Distance metric
Principle conponents 2

Summary of GHECA infornation

Local vari snce.

Edelidesn distance metric is used

Name
1 Comp.1

2 Comp.2

0.851

0.647

1stQu
1.695

Median
2.067

1135

3rdQu
2.696

1.278

Max
2951

1615

Local Proportion of Variance:

Name
1 Comp.1
2 Comp.2

3 Cumulative

23.023

17.717

44.417

1stQu
32330

19.131

52771

Median
38427

19.675

58.442

3rdQu
43.083

20.159

62.445

45.437
25.670

63.485

Bandeidth Seleotion View

4, 400
4, 300
4, 200
4,100
4, 000
3, 900

3. 800

T
400

Save

T
500

T
600

T
800

Winner Variable

B FAL per Land
3 GDP_per_Land
[ Green Rate
[ Pop Den

[ Rev per Land
(=



16 (&) B.LUETAL

=

Vi%BRB A0/ HPP w4 [
Features.

RO

v @ @ WHHP

) @ Origin
B 09 WHHP_MGWR

B create print layout Title

Sater o wiges rint lweet title
G title rill be antanatioally cenerated if left eapty) P

(a) Give the layout a title

[ *WHHP_MGWR _Coef2
Layout Edit View Items Addltem Atlas Settings

BRCRER D HH5h5E6 o

}9}9@8% BB Qa9 ';v‘l‘v"\'v*L (‘DKH ¢
o0 0k P oy o et TR e et e

linices

iz

9375\ s B EHIE vEE B

5 10,000 m
= [ —]

/v Export layout to PNG, SVG, and PDF files.

LT L

o L2

R[4 L O Fem 0 [ e 2 2 L P e e e e e

T |
‘i’ap_Den
[ 008 --0027
H -0.027 - 0014
[1-0014-0.002
[ 0.002- 0028

{9 0.008 - 0.069 |

x 378.03 mm y:

(b) Set the cartographical parameters

Figure 20. Set a layout for mapping.

the first principal component. This identifies the
most important variables across the study area
and can be used to produce a map, as shown in
Figure 19. In this case, observe the clear geogra-
phical variation in the influence of each variable

on the first component where in this case, the
Greem_Rate is clearly dominant along the
Yangtze River, whilst GDP_per_land and
Pop_Den dominate the Hankou (east) and
Wuchang (west) regions, respectively.
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Figure 21. Parameter settings and output configurations for batch mapping.

3.3. Batch mapping

The key feature of GW models is to generate mappable
outputs for presenting the localized results from the
GW models (e.g. Comber et al. 2023; Gollini et al.
2015; Lu et al. 2014). This is exemplified in

Figures 20(a)-(b) by clicking the layout button in the
tool bar to initialize the mapping tool. This function-
ality is inherited from QGIS, and for a more detailed
description the user could refer to its manual (QGIS
community 2022). Once the layout is prepared,
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Table 6. Options for configurating batch mapping.

Option Explanation
Directory Path of the directory for outputs
File Name File name of the output file, and could be a template if placeholders “%field%" or “%layer%” is used.
(Template)
+Placeholder Two buttons for quickly add placeholders, the left one refers to “%layer%” whilst the right one refers to “%field%".
Select Layout Select a template layout.
Select Layer Select target layers by ticking the check box in front of each layer name
Select Fields When a layer in “Select Layer” list view is checked, its fields will be displayed in this list view and enabled for further selection. On

ticking the check box in front of each field name, they will be accordingly selected for batch mapping.
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Figure 23. Output maps from the batch mapping tool.



a single thematic map can be exported to an image file
in several formats, including PNG, SVG, or PDF. This
cartographic tool makes it much easier to generate
mapped outputs from GWmodelS analyzes than its
twin R package, GWmodel.

However, many maps are usually required to
describe any given case study, particularly with
a relatively large number of variables are involved in
a GW model. Repetitive cartographic jobs can be
frustrating, and difficult for nonprofessional GIS
users. In GWmodelS, a batch mapping tool is pro-
vided, allowing the user to set all the cartographical
parameters once, and to create all the maps in high
quality using a uniform template. This is done by
clicking the batch mapping button in the toolbar and
activating the “Layout Batch Processing” window to
set the corresponding parameters, as shown in
Figures 21(a)-(c). In Table 6, the options for config-
urating batch mapping are described. Notably, two
placeholders are defined as wildcards, i.e. “%field%”
and “%layer%”. The former one refers to the name of
a field, whilst the latter one refers to the name of
a layer. As shown in Figure 21(a), the selected vari-
ables are listed in the “Configure Symbol” area with
a unified style by default. If the user selects a specific
item and clicks the button in the middle, a dialog will
pop-up to customize the symbol setting and value cuts
for the specific variable. As illustrated in Figure 21(b),
the symbology type is set as “Graduated” and the blue-
red color ramp selected for mapping the coefficient
Pop_Den. Most popular image formats are supported
for output maps, as shown in Figure 21(c). To use the
layout template for batch mapping, the placeholder “%
layer%” should be inserted for legend setting, as shown
in Figure 22. With the batch mapping tool, large
numbers of thematic maps can be produced and
saved as high-quality images as shown in
Figures 23(a)-(f). The maps of coefficient estimates
can be easily obtained through the configurations
described above. In this way, the batch tool greatly
facilitates the descriptions of GW models in academic
studies or data science reports, particularly for inter-
disciplinary users.

4, Concluding remarks

With the recent rise of research on spatial hetero-
geneity (Goodchild and Li 2021), GW models have
emerged as an essential subset of local techniques,
attracting a wide range of users. This article
demonstrates a newly developed software tool,
GWmodelS, which calibrates a number of funda-
mental GW models and statistics, including GW
descriptive statistics, basic and multiscale GWR
and GWPCA. It provides significant advantages in
terms of user-friendly graphical user interface
(GUI), operational efficiency, and accessibility2

GEO-SPATIAL INFORMATION SCIENCE . 19

(Lu et al. 2023). Additionally, tools for spatial
data management and batch mapping significantly
facilitate its usage for users from diverse domains,
such as biology (Zheng et al. 2023), environmental
science (Mayfield et al. 2018) and social science
(Marek et al. 2020). As a twin software tool,
when paired with the R package GWmodel, the
functionalities of GWmodelS are almost equiva-
lent, both having a number of GWR extensions
available, including robust GWR (Harris,
Fotheringham, and Juggins 2010), locally compen-
sated GWR (Brunsdon, Charlton, and Harris 2012),
generalized GWR (Nakaya et al. 2005) and scalable
GWR (Murakami et al. 2021). Their usages are not
introduced here but can be easily deduced from the
examples provided in this study.

Notes

1. The symbol “—” means sub-option affiliation, and
note that the public parameters will be not repeatedly
interpreted in the following sections.

2. Free download via https://gwmodel-lab.github.io/
GWmodelS/
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