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Abstract
Governments and public health authorities use seroprevalence studies to guide responses to the COVID-19 
pandemic. Seroprevalence surveys estimate the proportion of individuals who have detectable SARS-CoV-2 
antibodies. However, serologic assays are prone to misclassification error, and non-probability sampling 
may induce selection bias. In this paper, non-parametric and parametric seroprevalence estimators are 
considered that address both challenges by leveraging validation data and assuming equal probabilities of 
sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and 
asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented 
comparing the estimators over a range of scenarios. The methods are used to estimate severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in New York City, Belgium, and North 
Carolina.
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1 Introduction
Estimating the proportion of people who have antibodies to severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is useful for tracking the pandemic’s severity and informing public 
health decisions (Arora et al., 2021). Individuals may have detectable antibodies for different rea
sons, including prior infection or vaccination. Antibody levels within a person are dynamic, typ
ically increasing after an infection or vaccination, and then eventually decreasing (waning) over 
time. Thus, individuals may not have detectable antibodies if never (or very recently) infected 
or vaccinated, or if their antibody levels have waned below the limit of detection of the assay being 
employed. To the extent that antibody levels are associated with protection from infection with 
SARS-CoV-2 or COVID-19 disease (Earle et al., 2021; Khoury et al., 2021), seroprevalence esti
mates may be helpful in modelling the fraction of a population which may be immune or less sus
ceptible to COVID-19. Likewise, cross-sectional seroprevalence estimates, combined with certain 
modelling assumptions and other data, may permit inference about other parameters such as the 
cumulative incidence of previous SARS-CoV-2 infection, infection fatality rate, or attack rate 
(Brazeau et al., 2020; Buss et al., 2021; Perez-Saez et al., 2021; Shioda et al., 2021; Takahashi 
et al., 2021).

Unfortunately, seroprevalence studies often suffer from at least two sources of bias: measure
ment error due to false positives and negatives, and selection bias due to non-probability sampling 
designs. Typically, blood tests for antibodies result in a continuous measure of a particular anti
body response, such as that of immunoglobulin G, M, or A (IgG, IgM, or IgA). Dichotomizing 
antibody responses using a cut-off value almost always produces misclassification bias in the 
form of false positives and false negatives (Bouman et al., 2021). The following example from 
Sempos and Tian (2021) demonstrates how this measurement error can lead to biased seropreva
lence estimates. Suppose that true seroprevalence is 1% and antibody tests are performed using an 
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assay which perfectly identifies true positives as positive, so with 100% sensitivity, and nearly per
fectly identifies true negatives as negative, with 99% specificity. Despite this assay’s high sensitivity 
and specificity, it is straightforward to show that naively using the sample proportion of positive 
test results as a seroprevalence estimator would, in expectation, lead to a seroprevalence estimate 
of nearly 2% rather than 1%. To account for measurement error, sensitivity and specificity can be 
estimated and incorporated into the seroprevalence estimator, e.g. using the method popularized 
by Rogan and Gladen (1978) (see also Levy & Kass, 1970; Marchevsky, 1979).

Many seroprevalence studies are conducted by non-probability sampling methods, which may 
lead to selection bias when characteristics that drive participation in the study are also risk factors 
for SARS-CoV-2 infection. Probability-based sampling studies are ideal because they are represen
tative by design and often lead to less biased estimates than non-probability samples with post-hoc 
statistical adjustments (Accorsi et al., 2021; Shook-Sa et al., 2020). However, probability-based 
sampling may not always be feasible due to time and cost constraints. For this reason, seropreva
lence studies often utilize convenience sampling by, for example, drawing blood samples from rou
tine clinic visitors (e.g. Barzin et al., 2020; Stadlbauer et al., 2021) or using residual sera from 
blood donors (e.g. Uyoga et al., 2021) or commercial laboratories (e.g. Bajema et al., 2021). 
Convenience sample-based estimators often assume that each person in a covariate-defined stra
tum has an equal probability of being in the sample (Elliott & Valliant, 2017). Under this assump
tion, population seroprevalence of SARS-CoV-2 can be estimated with direct standardization 
(Barzin et al., 2020; Cai et al., 2022; Havers et al., 2020), though weighting methods such as cali
bration can be used (e.g. Bajema et al., 2021).

In this paper, methods are considered which combine standardization and the Rogan–Gladen 
adjustment to account for both measurement error and selection bias. The article is organized 
as follows. Section 2 reviews prevalence estimation under measurement error. Non-parametric 
and parametric standardized prevalence estimators and their large-sample properties are described 
in Section 3. Section 4 presents simulation studies to evaluate the empirical bias and 95% confi
dence interval (CI) coverage of the standardized estimators across a range of assay characteristics 
and bias scenarios. The methods are then applied in Section 5 to three studies that estimate sero
prevalence of SARS-CoV-2 in 2020 among all residents of New York City (NYC), all residents of 
Belgium, and asymptomatic residents of North Carolina. Section 6 concludes with a discussion. 
Proofs are in the appendices in the online supplementary material.

2 Seroprevalence estimation under measurement error
2.1 Problem set-up
Let the true serology status for an individual in the target population be denoted by Y, with Y = 1 if 
the individual has antibodies against SARS-CoV-2 and Y = 0 otherwise. Our goal is to draw infer
ence about the population seroprevalence π = P(Y = 1). Because of error in the serology assay, Y is 
not observed directly. Let the result of the serology assay be denoted by X, with X = 1 if the indi
vidual tests positive (according to the antibody assay used) and X = 0 otherwise. Three key quan
tities are sensitivity, the probability that a true positive tests positive, denoted by 
σe = P(X = 1 ∣ Y = 1); specificity, the probability that a true negative tests negative, denoted by 
σp = P(X = 0 ∣ Y = 0); and the population expectation of the serology assay outcome, denoted 
by ρ = E(X) = P(X = 1). Unless the assay has perfect sensitivity and specificity with σe = σp = 1, 
ρ typically will not equal π and X will be a misclassified version of Y.

The sensitivity and specificity of a diagnostic test are commonly estimated by performing the 
assay on ‘validation’ samples of known true positives and true negatives, respectively. 
Specifically, measurements are taken on n1 independent and identically distributed (iid) units 
from strata of the population where Y = 1 and on n2 iid units from strata where Y = 0. Thus, 
n1 copies of X are observed to estimate sensitivity and n2 copies of X are observed to estimate spe
cificity. In the COVID-19 setting, samples from patients who had a case confirmed with reverse 
transcription polymerase chain reaction (PCR) testing are often assumed to be true positives. 
Remnant blood samples that were drawn in 2019 or earlier are often assumed to be true negatives. 
To estimate seroprevalence in a target population, a ‘main’ study with n3 iid copies of X is then 
conducted, among which true infection status is unknown.

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad068#supplementary-data


Assume, as is realistic in many SARS-CoV-2 studies, that there is no overlap between the units in 
each of the three studies. Let δi be an indicator of which study the ith individual’s sample Xi is 
from, with δi = 1 for the sensitivity study, δi = 2 for the specificity study, and δi = 3 for the main 
study. Note that 

􏽐
I(δi = j) = nj for j = 1, 2, 3, where n = n1 + n2 + n3 and here and throughout

summations are taken from i = 1 to n unless otherwise specified. Assume nj/n→ cj ∈ (0, 1) as 
n→∞.

2.2 Estimators and statistical properties
Let θ = (σe, σp, ρ, π)T. Consider the estimator θ̂ = (σ̂e, σ̂p, ρ̂, π̂RG)T , where σ̂e = n−1

1

􏽐
I(δi = 1)Xi, 

σ̂p = n−1
2

􏽐
I(δi = 2)(1 − Xi), ρ̂ = n−1

3

􏽐
I(δi = 3)Xi, and π̂RG = (ρ̂ + σ̂p − 1)/(σ̂e + σ̂p − 1). The 

prevalence estimator π̂RG is motivated by rearranging the identity that ρ = πσe + (1 − π)(1 − σp) 
and is sometimes referred to as the Rogan–Gladen (1978) estimator. Note the sample proportions 
σ̂e, σ̂p, and ρ̂ are maximum likelihood estimators (MLEs) for σe, σp, and ρ, respectively, so π̂RG is a 
function of the MLE of (σe, σp, ρ) (see online supplementary Appendix A for details).

The estimator θ̂ can be expressed as the solution (for θ) to the estimating equation vector

􏽘
ψ(Xi; δi, θ) =

􏽐
ψe(Xi; δi, θ)

􏽐
ψp(Xi; δi, θ)

􏽐
ψρ(Xi; δi, θ)

ψπ(Xi; δi, θ)

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ =

􏽐
I(δi = 1)(Xi − σe)􏽐
I(δi = 2){(1 − Xi) − σp}

􏽐
I(δi = 3)(Xi − ρ)

(ρ + σp − 1) − π(σe + σp − 1)

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ = 0 

where here and below 0 denotes a column vector of zeros. Since the samples were selected from 
three different populations, the data X1, . . . , Xn are not identically distributed and care must 
be taken to derive the large-sample properties of θ̂. In the online supplementary Appendix B, 
the estimator θ̂ is shown to be consistent and asymptotically normal. Specifically, as n→∞, 
��
n
√

(θ̂ − θ)→d N (0, A(θ)−1B(θ)A(θ)−T) and 
��
n
√

(π̂ − π)→d N (0, Vπ,RG) assuming σe > 1 − σp (as 
discussed below), where A(θ)−1B(θ)A(θ)−T is a covariance matrix with bottom right element

Vπ,RG =
π2σe(1 − σe)

c1
+

(1 − π)2σp(1 − σp)
c2

+
ρ(1 − ρ)

c3

􏼨 􏼩

(σe + σp − 1)−2. (1) 

The proof of consistency and asymptotic normality is similar to proofs from standard estimating 
equation theory (e.g. Boos & Stefanski, 2013, Equation 7.10), but because the data are not iden
tically distributed the Lindeberg-Feller Central Limit Theorem (CLT) is used in place of the clas
sical Lindeberg-Lévy CLT. Note that the asymptotic variance (1) consists of three components 
corresponding to the sensitivity, specificity, and main studies. In some circumstances, investigators 
may be able to decrease the variance of π̂RG by increasing the sample sizes of the sensitivity or spe
cificity studies compared to the main study (Larremore et al., 2020).

Let V̂π,RG denote the plug-in estimator defined by replacing σe, σp, ρ, π, and cj in Equation (1) 
with σ̂e, σ̂p, ρ̂, π̂RG, and nj/n for j = 1, 2, 3, and note that V̂π,RG/n is the variance estimator pro
posed by Rogan and Gladen (1978). By the continuous mapping theorem, V̂π,RG is consistent 
for the asymptotic variance assuming σe > 1 − σp and can be used to construct Wald-type CIs 
that asymptotically attain nominal coverage probabilities. In finite samples, Wald-type CIs can 
sometimes have erratic coverage properties when estimating a single binomial parameter 
(Brown et al., 2001; Dean & Pagano, 2015). In Section 4, simulations are conducted to assess 
the performance of the Wald-type CIs in seroprevalence estimation scenarios. Alternative ap
proaches for constructing CIs are discussed in Section 6.

2.3 Truncation into [0, 1]
In finite samples, π̂RG sometimes yields estimates outside of [0, 1] when (i) σ̂e < 1 − σ̂p, (ii) 
ρ̂ < 1 − σ̂p, or (iii) ρ̂ > σ̂e. Indeed, (ii) occurred in the ScreenNC study discussed in Section 5.3. 
Estimates are typically truncated to be inside [0, 1] because the true population prevalence must 
exist in [0, 1] (Hilden, 1979). In this article, all point estimates and bounds of interval estimates 
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are so truncated. Note, though, that as the three sample sizes grow large, the estimator π̂RG yields 
estimates inside [0, 1] almost surely unless σe < 1 − σp. In practice, settings where σe < 1 − σp may 
be very unlikely; in such scenarios, the probability of a positive test result is higher for seronegative 
persons than for seropositive persons, so such a measurement instrument performs worse in ex
pectation than random guessing. Throughout this manuscript, it is assumed that σe > 1 − σp.

3 Standardized seroprevalence estimation
3.1 Problem set-up
In some settings it may not be reasonable to assume the n3 copies of X from the main study con
stitute a random sample from the target population. Suppose instead that for each copy of X a vec
tor of discrete covariates Z is observed, with Z taking on k possible values z1, . . . , zk. The 
covariates Z are of interest because seroprevalence may differ between the strata; for instance, 
Z might include demographic variables such as age group, race, or gender. Denote the mean of 
X in the jth stratum as ρj = P(X = 1 ∣ Z = zj) and the sample size for the jth stratum as 
nzj =

􏽐
I(δi = 3, Zi = zj), so 

􏽐k
j=1 nzj = n3.

The distribution of strata in the target population, if known, can be used to standardize esti
mates so they are reflective of the target population [for a review of direct standardization, see 
van Belle et al. (2004, Chapter 15)]. Denote the proportion of the target population comprised 
by the jth stratum as γj = P(Z = zj) and suppose that these stratum proportions are known with 
each γj > 0 and 

􏽐k
j=1 γj = 1. The stratum proportions are commonly treated as known based on

census data or large probability-based surveys (Lohr, 2010, Ch. 4.4; Korn & Graubard, 1999, 
Ch. 2.6). Alternatively, γ1, . . . , γk could be estimated, e.g. from a random sample of the target 
population, and the estimator of the seroprevalence estimator’s variance could be appropriately 
adjusted to reflect the uncertainty in these estimated proportions.

Assume that all persons in a covariate stratum defined by Z have the same probability of inclu
sion in the sample. Then the covariates Z in the main study sample have a multinomial distribution 
with k categories, sample size n3, and an unknown sampling probability vector (s1, . . . , sk)T where 􏽐k

j=1 s j = 1. For j = 1, . . . , k, the probability sj indicates the chance of a sampled individual being 
in stratum j. Note that if the main study were a simple random sample from the target population, 
then the sampling probabilities would be equal to the stratum proportions (with sj = γj for 
j = 1, . . . , k).

3.2 Non-parametric standardization
First, consider a seroprevalence estimator which combines non-parametric standardization and 
the Rogan–Gladen adjustment to account for both selection bias and measurement error. Note 
that ρ is a weighted average of the stratum-conditional means ρj, where each weight is a known 
stratum proportion γj, i.e. ρ =

􏽐k
j=1 ρjγj. A non-parametric standardization estimator for ρ using

the sample stratum-conditional prevalences ρ̂j = n−1
zj

􏽐
I(Zi = zj, δi = 3)Xi for j = 1, . . . , k is

ρ̂SRG =
􏽐k

j=1 ρ̂jγj. A standardized prevalence estimator accounting for measurement error is
π̂SRG = (ρ̂SRG + σ̂p − 1)/(σ̂e + σ̂p − 1), which has been used in SARS-CoV-2 seroprevalence studies 
(Barzin et al., 2020; Cai et al., 2022; Havers et al., 2020).

Let θs = (σe, σp, ρ1, . . . , ρk, ρ, π)T. The estimator θ̂s = (σ̂e, σ̂p, ρ̂1, . . . , ρ̂k, ρ̂SRG, π̂SRG)T solves
the vector 

􏽐
ψ(Xi, Zi; δi, θs) = (

􏽐
ψe,

􏽐
ψp,

􏽐
ψρ, ψρ, ψπ)T = 0 of estimating equations, where􏽐

ψe,
􏽐

ψp, and ψπ are defined in Section 2;
􏽐

ψρ is a k-vector with jth element􏽐
ψρj

=
􏽐

I(Zi = zj, δi = 3)(Xi − ρj); and ψρ =
􏽐k

j=1 ρjγj − ρ. It follows that θ̂s is consistent and
asymptotically normal and that 

��
n
√

(π̂SRG − π)→d N (0, Vπ,SRG) where

Vπ,SRG =
π2σe(1 − σe)

c1
+

(1 − π)2σp(1 − σp)
c2

+
􏽘k

j=1

γ2
j ρj(1 − ρj)

c3s j

􏼨 􏼩

(σe + σp − 1)−2. (2) 

The asymptotic variance Vπ,SRG can be consistently estimated by the plug-in estimator V̂π,SRG 

defined by replacing σe, σp, ρj, sj, π, and cl in Equation (2) with σ̂e, σ̂p, ρ̂j, nzj/n3, π̂SRG, and nl/n 

for j = 1, . . . , k and l = 1, 2, 3. Consistency of V̂π,SRG holds by continuous mapping, and a proof 



of asymptotic normality and justification of Equation (2) are in the online supplementary 
Appendix C.

Standardization requires estimating the stratum-conditional mean of X, ρj = P(X = 1 ∣ Z = zj). 
However, when nzj = 0 for some strata j, the corresponding estimator ρ̂j is undefined, and ρ̂SRG is 
then undefined as well. Values of nzj may equal zero for two reasons. First, the study design may 
exclude these strata (sj = 0), a situation referred to as deterministic or structural non-positivity 
(Westreich & Cole, 2010). Second, even if sj > 0, random non-positivity can occur if no individ
uals with Z = zj are sampled, which may occur if sj is small or if n3 is relatively small. When non- 
positivity arises, an analytical approach often employed entails ‘restriction’ (Westreich & Cole, 
2010), where the target population is redefined to consist only of strata j for which nzj > 0. 
However, this redefined target population may be less relevant from a public health or policy 
perspective.

3.3 Parametric standardization
Rather than redefining the target population, an alternative strategy for combatting positivity vio
lations is to fit a parametric model to estimate all stratum-conditional means ρj. Such parametric 
models allow inference to the original target population and, when they are correctly specified, 
typically outperform non-parametric approaches (Petersen et al., 2012; Rudolph et al., 2018; 
Zivich et al., 2022). Assume the binary regression model g(ρj) = βh(zj) holds, where g is an appro
priate link function for a binary outcome like the logit or probit function; β is a row vector of p 
regression coefficients with intercept β1; and h(zj) is a user-specified p-vector function of the jth 
stratum’s covariate values that may include main effects and interaction terms, with lth element 
denoted hl(zj) and h1(zj) set equal to one to correspond to an intercept. Let supp(z) be the covariate 
support in the sample, i.e. supp(z) = {zj : nzj > 0} with dimension dim{supp(z)} =

􏽐k
j=1 I(nzj > 0),

and assume p ≤ dim{supp(z)} ≤ k. (Note that dim{supp(z)} = k only when there is positivity, 
and in that case π̂SRG can be used with no restriction needed.)

Under the assumed binary regression model, each ρj is a function of the parameters β and the 
covariates zj that define the jth stratum, denoted ρj(β, zj) = g−1{βh(zj)}. A model-based standar
dized Rogan–Gladen estimator of π is π̂SRGM = (ρ̂SRGM + σ̂p − 1)/(σ̂e + σ̂p − 1), where ρ̂SRGM =􏽐k

j=1 ρ̂j(β̂, zj)γj and β̂ is the MLE of β. Estimating equation theory can again be used to derive large- 
sample properties by replacing the k equations for ρ1, . . . , ρk from Section 3.2 with p equations for 
β1, . . . , βp corresponding to the score equations from the binary regression.

Let θm = (σe, σp, β1, . . . , βp, ρ, π)T and θ̂m = (σ̂e, σ̂p, β̂1, . . . , β̂p, ρ̂SRGM, π̂SRGM)T. The estimator
θ̂m solves the vector 

􏽐
ψ(Xi, Zi; δi, θm) = (

􏽐
ψe,

􏽐
ψp,

􏽐
ψβ, ψρ, ψπ)T = 0 of estimating

equations, where 
􏽐

ψe,
􏽐

ψp, and ψπ are as in Section 2; 
􏽐

ψβ is a p-vector with jth element􏽐
ψβj

=
􏽐

I(δi = 3)[Xi − g−1{βh(Zi)}]hj(Zi); and ψρ =
􏽐k

j=1 g−1{βh(Zj)}γj − ρ. It follows that θ̂m is
consistent and asymptotically normal and 

��
n
√

(π̂SRGM − π)→d N (0, Vπ,SRGM). The asymptotic 
variance Vπ,SRGM can be consistently estimated by V̂π,SRGM, the lower right element of the empirical 
sandwich variance estimator of the asymptotic variance of θ̂m. A proof of asymptotic normality 
and the empirical sandwich variance estimator are given in the online supplementary Appendix 
D. An R package for computing π̂SRG, π̂SRGM, and their corresponding variance estimators is avail
able at https://github.com/samrosin/rgStandardized.

4 Simulation study
Simulation studies were conducted to compare π̂RG, π̂SRG, and π̂SRGM. Four data generating proc
esses (DGPs) were considered, within which different scenarios were defined through full factorial 
designs that varied simulation parameters π, σe, σp, n1, n2, and n3. These DGPs featured no selec
tion bias (DGP 1), selection bias with two strata (DGP 2), and more realistic selection bias with 40 
strata and 80 strata (DGPs 3 and 4).

For each DGP and set of simulation parameters, sensitivity and specificity validation samples of 
size n1 and n2 were generated with X distributed Bernoulli with a mean of σe or 1 − σp, respectively. 
In DGPs 1 and 2, a main study of size n3 was then generated, where Y was Bernoulli with mean π and 
X ∣ Y was Bernoulli with mean σeY + (1 − σp)(1 − Y); in DGPs 3 and 4, X was generated from the 
distribution of X ∣ Z, as described below. Simulation parameter values were selected based on the 
seroprevalence studies described in Section 5. Sensitivity was varied in σe ∈ {.8, .99}, specificity in 
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σp ∈ {.8, .95, .99}, and prevalence in π ∈ {.01, .02, . . . , .20}. Sample sizes were n1 = 40, n2 = 250, 
and n3 = 2500. The full factorial design led to 120 scenarios per DGP, and within each scenario 
1,000 simulations were conducted unless otherwise specified. Performance was measured by: (a) 
mean bias, computed as the mean of π̂ − π for each estimator π̂; (b) empirical coverage, i.e. whether 
the 95% Wald-type CIs based on each variance estimator V̂π contained the true prevalence; (c) 
mean squared error (MSE), computed as the mean of (π̂ − π)2 for each estimator π̂. R code imple
menting the simulations is available at https://github.com/samrosin/rgStandardized˙ms.

4.1 No selection bias
For DGP 1, 10,000 simulations were conducted to assess the performance of π̂RG when no selection 
bias was present. The estimator π̂RG was generally unbiased, as seen in the online supplementary 
Figure 1. Performance improved as σe and σp tended toward 1, with σp being a stronger determinant 
of bias. An exception to these results occurred when π ≤ 0.05 and σp ≤ 0.95, in which case π̂RG 

overestimated the true prevalence. The Rogan–Gladen estimator without truncation was also eval
uated in this DGP to determine if truncation caused the bias. While the non-truncated estimator was 
slightly biased, the magnitude of the bias was <0.002 in all scenarios, suggesting the bias of π̂RG in 
low prevalence, low specificity settings is due largely to truncation.

Wald CIs based on V̂π,RG attained nominal coverage in almost every scenario, as seen in the 
online supplementary Figure 2. However, when some parameters were near their boundaries, 
coverage did not reach the nominal level. For instance, when π was 0.01 and σp was 0.99, 95% 
CIs covered in 90% and 91% of simulations for two values of σe. These variable CI coverage re
sults concord with previous simulation studies evaluating V̂π,RG (Lang & Reiczigel, 2014). The 
MSE of π̂RG, shown in the online supplementary Figure 3, tended to increase with π and decrease 
as σe and σp approached 1.

4.2 Low-dimensional selection bias
In DGP 2, the target population was comprised of two strata defined by a covariate Z ∈ {z1, z2} 
with proportions γ1 = γ2 = .5. Within the main study, Z was generated from a binomial distribu
tion of sample size n3 and sampling probabilities (.2, .8). Individuals’ serostatuses were generated 
from the conditional distribution Y ∣ Z, which was such that P(Y = 1 ∣ Z = z1) = 1.5π and P(Y =
1 ∣ Z = z2) = 0.5π for each value of π. In each simulation, π̂RG and π̂SRG and their corresponding 
95% CIs were computed.

The non-parametric standardized estimator π̂SRG was empirically unbiased for true prevalences 
π ≥ 0.05, as seen in the online supplementary Figure 4, and 95% CIs based on V̂π,SRG attained 
nominal coverage in almost every scenario, as seen in the online supplementary Figure 5. As 
with π̂RG in DGP 1, CI coverage for π̂SRG was slightly less than the nominal level for very low π 
and for σp near the boundary, e.g. coverage was 91% for π = .01 and σe = σp = .99. MSE trends 
for π̂SRG were similar to those of π̂RG in DGP 1, as seen in the online supplementary Figure 6. 
Online supplementary Figures 4, 5, and 6 show that π̂RG performed poorly under selection bias, 
with large negative bias, CI coverage far less than the nominal level in most cases, and much great
er MSE than π̂SRG.

4.3 More realistic selection bias

4.3.1 DGP 3
DGPs 3 and 4 compared π̂SRG and π̂SRGM in scenarios with larger numbers of strata. In DGP 3, 
three covariates were defined as Z1 ∈ {z10, z11}, Z2 ∈ {z20, z21, z22, z23}, and 
Z3 ∈ {z30, z31, z32, z33, z34}, leading to k = 40 strata with proportions (γ1, . . . , γ40). Within the 
main study, Z was generated as multinomial with size n3 and known sampling probabilities. 
Figure 1a shows the structure of selection bias in DGP 3 by comparing the stratum proportions 
and sampling probabilities. Some low-prevalence strata that frequently occur in the population 
were oversampled, while most remaining strata were undersampled. Individuals’ test results 
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were generated from the conditional distribution X ∣ Z, where

logit{P(X = 1 ∣ Z)} = β0 + β1I(Z1 = z11) + β2I(Z2 = z20) + β3I(Z2 = z21)

+ β4I(Z3 = z30) + β5I(Z3 = z31).

The parameters β1 = −1, β2 = −.6, β3 = .8, β4 = .6, and β5 = .4 were set to reflect differential prev
alences by stratum, while a ‘balancing intercept’ β0 (Rudolph et al., 2021) was set to different values 
so that π equalled (approximately) {.01, .02, . . . , .20}. The non-parametric estimator π̂SRG and cor
responding CI were computed using a restricted target population when random non-positivity 
arose; the values of π used to compute bias and coverage were based on the total (unrestricted) popu
lation, which is the parameter of interest. The parametric estimator π̂SRGM was computed with a cor
rectly specified logistic regression model, with parameters estimated using maximum likelihood.

Both π̂SRG and π̂SRGM performed well in this scenario. Figure 2 shows that the estimators were 
generally empirically unbiased, though modest bias occurred when σp = 0.8 and π was low. As in 
DGP 2, π̂RG exhibited substantial bias and the CIs based on π̂RG did not attain nominal coverage. 
Online supplementary Figure 7 shows 95% CIs based on either V̂π,SRG or V̂π,SRGM attained nom
inal coverage, with slight under-coverage for π < 0.05, similar to the results from DGPs 1 and 
2. For π = .01 and σp = .99, coverage was 92% and 90% based on V̂π,SRG and 91% and 90% based
on V̂π,SRGM for σe ∈ {.8, .99}, respectively. The two standardized estimators had roughly equiva
lent MSE (online supplementary Figure 8). On average across all 120 scenarios, positivity was pre
sent in 89% (range of 86%–92%) of simulated data sets, i.e. these data sets included all strata in
the target population.

(a)

(b)

Figure 1. Panels (a) and (b) represent selection bias in the simulation studies of data generating processes 3 and 4, 
described in Sections 4.3.1 and 4.3.2, respectively. Circle size is proportional to prevalence. Points are jittered 
slightly for legibility, and the diagonal lines denote equality between γj (stratum proportion) and sj (sampling 
probability).
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4.3.2 DGP 4
Data were generated as in DGP 3, but the inclusion of a fourth covariate Z4 ∈ {z40, z41} led to 80 
strata. The conditional distribution X ∣ Z was such that logit{P(X = 1 ∣ Z)} = νh(Z), where h(Z) 
here contains the same terms as in DGP 3 plus a main effect for I(Z4 = z41) with corresponding 
coefficient ν6. Regression parameters were a balancing intercept ν0, ν1 = −1, ν2 = 3.25, ν3 = .8, 
ν4 = .6, ν5 = .4, and ν6 = .1. The larger value for ν2, as compared to β2, led to a stronger relation
ship between X and Z than was present in DGP 3. Figure 1b displays selection bias in DGP 4. Some 
of the highest-prevalence and most commonly occurring strata were undersampled to a greater de
gree than occurred in DGP 3, so in this sense there was more selection bias in DGP 4. The para
metric estimator π̂SRGM was again computed with a correctly specified logistic regression model 
using maximum likelihood for parameter estimation.

Results for the DGP 4 simulations are shown in Figure 3 and online supplementary Figures 
9–11. Figure 3 shows that only π̂SRGM was generally unbiased under DGP 4, although there was 
positive bias when σp = .8 and π < .1. The non-parametric π̂SRG typically had a moderately nega
tive bias. Non-positivity almost always occurred (in either all or all but one of the simulations, for 
each of the 120 scenarios). The worse bias of π̂SRG may be explained by restriction leading to bias 
under non-positivity. CIs based on V̂π,SRGM typically attained nominal or close-to-nominal cover
age, unlike those based on V̂π,SRG or V̂π,RG, as seen in the online supplementary Figure 9. For in
stance, when σp = 0.8, the lowest coverage for CIs based on V̂π,SRGM was 92% across all 40 
combinations of σe and π. However, the V̂π,SRGM-based CIs exhibited under-coverage when σp =
.99 and prevalence π was low. For example, coverage of these CIs was only 59% when π = 0.01 
and σe = σp = .99; online supplementary Figure 10 shows this undercoverage is due to 39% of 
the π̂SRGM estimates being truncated to 0 with corresponding CIs which were overly narrow. 
Note that V̂π,SRGM was negative for two simulations in a single scenario, and these ‘Heywood 

Figure 2. Empirical bias of the Rogan–Gladen (π̂RG ), non-parametric standardized (π̂SRG), and logistic regression 
standardized (π̂SRGM ) estimators from simulation study for data generating process 3, described in Section 4.3.1. The 
six facets correspond to a given combination of sensitivity (‘Sens’) and specificity (‘Spec’).
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cases’ (Kolenikov & Bollen, 2012) were ignored in the coverage calculation for that scenario. The 
MSE of π̂SRGM tended to be less than that of π̂SRG (online supplementary Figure 11).

In summary, both the non-parametric and parametric standardized estimators π̂SRG and π̂SRGM had 
low empirical bias and close-to-nominal 95% CI coverage when there was positivity or near positivity. 
As the number of covariates, amount of selection bias, and potential for non-positivity increased, the 
(correctly specified) parametric π̂SRGM generally maintained its performance, while π̂SRG had greater 
empirical bias and the intervals based on V̂π,SRG did not attain nominal coverage levels.

4.4 Model misspecification
The performance of π̂SRGM was assessed in scenarios similar to DGPs 3 and 4, but under model 
misspecification. Here, the true conditional distributions of Y ∣ Z were logit{P(Y = 1 ∣ 
Z)} = βh(Z) and logit{P(Y = 1 ∣ Z)} = νh(Z), where βh(Z) and νh(Z) are the specifications used 
in the models for logit{P(X = 1 ∣ Z)} in DGPs 3 and 4, respectively. The test results X were gener
ated from X ∣ Y as in DGPs 1 and 2. The results shown in the online supplementary Figures 12–17
demonstrate that, in terms of bias, 95% CI coverage, and MSE, inferences based on π̂SRGM were 
generally robust to this misspecification. For DGP 3, the true X ∣ Z distribution was 
Pr(X = 1 ∣ Z) = [logit−1{βh(Z)} + σp − 1]/[σe + σp − 1], while the model-based estimator incor
rectly assumed Pr(X = 1 ∣ Z) = logit−1{βh(Z)}, and likewise for DGP 4 with νh(Z) replacing 
βh(Z). Thus, the degree of misspecification was determined by σe and σp, with values farther 
from 1 leading to greater misspecification. For all simulation scenarios σe ≥ 0.8 and σp ≥ 0.8 
such that the overall degree of misspecification was generally mild, potentially explaining the ro
bustness of π̂SRGM to model misspecification in these simulations.

Robustness of the model-based estimator π̂SRGM was also assessed when the model was misspe
cified by omitting a variable. Under DGP 3, π̂SRGM was estimated based on three misspecified lo
gistic regression models, each omitting one of the three variables Z1, Z2, or Z3 (i.e. omitting all 
indicator variables that included the variable). Results displayed in the online supplementary 

Figure 3. Bias results from simulation study on data generating process 4, described in Section 4.3.2. Figure layout 
is as in Figure 2.
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Figure 18 show the empirical bias of π̂SRGM depended on which variable was omitted, with sub
stantial bias when Z2 was not included in the model. These results demonstrate that π̂SRGM may 
not be robust to model misspecification due to variable omission.

5 Applications
5.1 NYC seroprevalence study
The methods were applied to a seroprevalence study in NYC that sampled patients at Mount Sinai 
Hospital from 9 February to 5 July 2020 (Stadlbauer et al., 2021). Patients were sampled from two 
groups: (a) a ‘routine care’ group visiting the hospital for reasons unrelated to COVID-19, includ
ing obstetric, gynaecologic, oncologic, surgical, outpatient, cardiologic, and other regular visits; 
(b) an ‘urgent care’ group of patients seen in the emergency department or admitted to the hospital
for urgent care. Analyses were stratified by these two care groups. The urgent care group may have
included individuals seeking care for moderate-to-severe COVID-19 (Stadlbauer et al., 2021); this
would potentially violate the assumption of equal sampling probabilities within strata, but stand
ardized analysis of the urgent care group is included here to demonstrate the methods. The routine
care group was thought to be more similar to the general population (Stadlbauer et al., 2021).
Serostatus was assessed using a two-step enzyme-linked immunosorbent assay (ELISA) with esti
mated sensitivity of σ̂e = 0.95 from n1 = 40 PCR-confirmed positive samples and estimated speci
ficity of σ̂p = 1 from n2 = 74 negative controls, 56 of which were pre-pandemic and 18 of which did
not have confirmed SARS-CoV-2 infection.

In this analysis, the samples were grouped into five collection rounds of approximately equal 
length of time. The demographics considered were sex, age group, and race. Sex was categorized 
as male/female, with one individual of indeterminate sex excluded. Five age groups were 
[0, 20), [20, 40), [40, 60), [60, 80), and [80, 103]. Race was coded as Asian, Black or 
African-American, Other, and White, with 446 individuals of unknown race excluded. After ex
clusions, the sample size ranged from n3 = 937 to 1,576 in the routine care group and n3 = 622 to 
955 in the urgent care group across the collection rounds. The target population for standardiza
tion was NYC (8,336,044 persons), with stratum proportions and population size obtained from 
the 2019 American Community Survey (US Census Bureau, 2019). Table 1 compares the distribu
tions of sex, age group, and race in the routine and urgent care groups to the NYC population. 
Women were over-represented in the routine care group relative to the general population of 
NYC. Persons aged 0–19 were under-represented in both groups, and persons aged 60 and older 
were over-represented. Persons with race classified as Other were over-represented in both groups 
relative to the NYC population. There was slight non-positivity in four of the five collection 
rounds for the routine group and five of the five rounds for the urgent care group, and π̂SRG 

made inference to restricted target populations. The model-based estimators π̂SRGM included 
main effects for sex, age group, and race and an interaction term between sex and age group.

Seroprevalence estimates are presented in Figure 4. Adjusting for assay sensitivity and specificity 
resulted in slightly higher estimates and slightly wider CIs than the naive estimator ρ̂. 
Standardization had the largest impact on the estimates in the third round, when π̂RG and the 
standardized estimators differed by as much as 9 percentage points. The standardized estimates 
were accompanied by wider CIs relative to ρ̂ and π̂RG, reflecting greater uncertainty associated 
with estimating seroprevalence when not assuming the main study data constitute a random sam
ple from the target population.

5.2 Belgium seroprevalence study
The standardized Rogan–Gladen methods were applied to a nation-wide SARS-CoV-2 seropreva
lence study in Belgium conducted across seven week-long collection rounds between March and 
October 2020 (Herzog et al., 2022). The final collection round took place before the first vaccine 
authorization in the European Union in December 2020. Residual sera were collected in a strati
fied random sample from private laboratories encompassing a wide geographical network, with 
stratification by age group (10-year groups from 0–9, 10–19, …, 90+), sex (male or female), 
and region (Wallonia, Flanders, or Brussels). The presence of SARS-CoV-2 IgG antibodies was de
termined using a semi-quantitative EuroImmun ELISA. Based on validation studies of n1 = 181 
reverse transcription PCR-confirmed COVID-19 cases and n2 = 326 pre-pandemic negative 

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad068#supplementary-data


controls, sensitivity and specificity were estimated to be σ̂e = .851 and σ̂p = .988 (Herzog et al., 
2022, Table S1.1). The number of samples for assessing seroprevalence varied between n3 =
2,960 and n3 = 3,910 across the seven collection rounds.

In this analysis, nation-wide seroprevalence in Belgium was estimated during each collection 
round standardized by age group, sex, and province (11 total), using 2020 stratum proportion 
data from the Belgian Federal Planning Bureau (2021). Province was used rather than region to 
match the covariates selected for weighting in Herzog et al. (2022). Table 2 compares the sex, 
age group, and province distributions in collection rounds 1 and 7 to the Belgian population as 
a whole. The seroprevalence study samples were similar to the population, although the study 
over-represented older persons and under-represented younger persons relative to the population. 
In six of the seven collection rounds non-positivity arose, with between 2 and 15 of the 220 strata 
not sampled, so restricted target populations were used for computation of π̂SRG. For π̂SRGM, each 
logistic regression model had main effects for age group, sex, and province, as well as an inter
action term between age group and sex.

Figure 5 displays point estimates and CIs for π̂RG, π̂SRG, and π̂SRGM alongside those for the un
adjusted, or naive, sample prevalence ρ̂ for each collection round (with exact Clopper-Pearson 
95% CIs). The naive estimates ρ̂ were typically greater than the other three estimates and had nar
rower CIs. The greatest differences were between ρ̂ and π̂RG, which can be attributed to (estimated) 
measurement error in the assay. Both standardized estimates π̂SRG and π̂SRGM were similar in value 
to π̂RG in most collection periods. These estimates, in combination with the stratified random sam
pling design, suggest that the magnitude of measurement error in this study may have been larger 
than that of selection bias.

5.3 North Carolina seroprevalence study
The standardization methods of Section 3 were also applied to ScreenNC, which tested a convenience 
sample of n3 = 2,973 asymptomatic patients age 20 and older in North Carolina (NC) for antibodies 
to SARS-CoV-2 between April and June 2020 (Barzin et al., 2020), before the authorization of vac
cines in the United States. These patients were seeking unrelated medical care at 11 sites in NC asso
ciated with the University of North Carolina (UNC) Health Network. The presence of antibodies was 
determined with the Abbott Architect SARS-CoV-2 IgG assay. Based on validation studies of n1 = 40, 
reverse transcription PCR confirmed positive patients and n2 = 277 pre-pandemic serum samples as
sumed to be negative, sensitivity was estimated as σ̂e = 1 and specificity as σ̂p = 0.989.

Table 1. Demographic comparisons of the New York City (NYC) seroprevalence study (9 Feb–5 July 2020) routine and 
urgent care group samples with the NYC population

Routine care Urgent care NYC

n % n % n %

6,348 100 3,898 100 8,336,044 100

Sex Female 4,274 67 1,789 46 4,349,715 52

Male 2,074 33 2,109 54 3,986,329 48

Age 0–19 238 4 93 2 1,887,268 23

20–39 2,624 41 551 14 2,608,394 31

40–59 1,396 22 1,065 27 2,080,599 25

60–79 1,780 28 1,633 42 1,426,301 17

80+ 310 5 556 14 333,482 4

Race Asian 562 9 217 6 1,202,530 14

Black or African-American 1,287 20 1,051 27 2,057,795 25

Other 1,774 28 1,514 39 1,528,503 18

White 2,725 43 1,116 29 3,547,216 43

Note. Data on the NYC population are from the 2019 American Community Survey (US Census Bureau, 2019). Sample 
size is denoted by n. Some column totals do not sum to 100% because of rounding.



In our analysis, seroprevalence was estimated in two relevant target populations. First, stand
ardization was made to the population patients accessing the UNC Health Network during a simi
lar timeframe (21,901 patients from February to June 2020). The main study sample differed from 
this UNC target population in terms of age group, race, and sex characteristics, as seen in Table 3, 
and meta-analyses suggested that prevalence of COVID-19 infections differed between levels of 
these covariates in some populations (Mackey et al., 2021; Pijls et al., 2021), supporting the co
variates’ use in standardization. Note that several racial classifications, including patient refused 
and unknown, were reclassified as ‘Other’. Second, standardization was made to the 2019 NC 
population over the age of 20 (7,873,971 persons) using covariate data from the American 
Community Survey (US Census Bureau, 2019). The assumption of equal sampling probabilities 
may be less reasonable for this target population because not all NC residents are in the UNC 
Health Network and because there were some geographic areas where no patients in the study 
sample were from. There was no sample data in the main study for two covariate strata that ex
isted in the UNC Health Network, so restriction was used for π̂SRG. Logistic regression models 
with main effects for sex, race, and age group were used to compute π̂SRGM; interaction effects 
were not included, as the small number of positive test results could have led to model overfit.

The sample proportion of positive tests was ρ̂ = 24/2973 = 0.81%. The sample false positive 
rate was 1 − σ̂p = 1.08%, so the data are, at first appearance, consistent with a population preva
lence of 0%. Indeed, the Rogan–Gladen seroprevalence estimate was π̂RG = 0% (95% CI 0%, 
1.00%). Likewise, the UNC target population had non-parametric and parametric standardized 
estimates of π̂SRG = 0% (0%, 1.11%) and π̂SRGM = 0% (0%, 1.13%), and the NC target popula
tion had corresponding estimates of 0% (0%, 1.10%) and 0% (0%, 1.11%). All estimates were 
truncated into [0, 1]. The closeness of the standardized and unstandardized results may be due to 
the small number of positive test results and similarities between the sample and the target popu
lations. Note that the limited violations of positivity and modest demographic differences 

(a)

(b)

Figure 4. Estimates and corresponding 95% confidence intervals for each of five collection rounds for the New York 
City seroprevalence study (Stadlbauer et al., 2021), stratified by routine and urgent care groups, described in Section 5.1.



(Table 3) make this application more similar to DGP 3 than DGP 4. Simulation results suggest the 
standardized estimators and corresponding CIs may perform well in settings similar to DGP 3, 
even if the true prevalence is low; e.g. see the lower right facets of Figure 2 and online 
supplementary Figure 7, where σe = σp = .99.

6 Discussion
Non-parametric and model-based standardized Rogan–Gladen estimators were examined, and 
their large-sample properties and consistent variance estimators were derived. While motivated 
by SARS-CoV-2 seroprevalence studies, the methods considered are also applicable to prevalence 
estimation of any binary variable for settings where validation data can be used to estimate the 
measurement instrument’s sensitivity and specificity and covariate data can be used for standard
ization. Simulation studies demonstrated that both standardized Rogan–Gladen methods had low 
empirical bias and nominal CI coverage in the majority of practical settings. The empirical results 
in Section 4 highlight the trade-offs inherent in choosing which method to use for a seroprevalence 
study. The parametric standardized estimator π̂SRGM was empirically unbiased even when the 
number of strata and covariates, and with them the potential for random non-positivity, increased. 
A drawback to π̂SRGM is the need to correctly specify the form of a regression model. On the other 

Table 2. Demographic comparisons of the 2020 Belgium seroprevalence study sample participants in collection 
rounds 1 (30 March–5 Apr) and 7 (9–12 Sept) with the Belgium population

Round 1 Round 7 Belgium

n % n % n %

3,910 100 2,966 100 11,492,641 100

Sex Female 2,111 54 1,589 54 5,832,577 51

Male 1,799 46 1,377 46 5,660,064 49

Age 0–9 36 1 68 2 1,269,068 11

10–19 294 8 405 14 1,300,254 11

20–29 436 11 402 14 1,407,645 12

30–39 461 12 397 13 1,492,290 13

40–49 468 12 397 13 1,504,539 13

50–59 498 13 400 13 1,590,628 14

60–69 507 13 406 14 1,347,139 12

70–79 506 13 204 7 924,291 8

80–89 493 13 160 5 539,390 5

90+ 211 5 127 4 117,397 1

Province Antwerp 819 21 473 16 1,869,730 16

Brussels 204 5 288 10 1,218,255 11

East Flanders 388 10 392 13 1,525,255 13

Flemish Brabant 261 7 317 11 1,155,843 10

Hainaut 245 6 271 9 1,346,840 12

Liege 515 13 425 14 1,109,800 10

Limburg 318 8 280 9 877,370 8

Luxembourg 254 7 177 6 286,752 3

Namur 352 9 170 6 495,832 4

Walloon Brabant 145 4 101 3 406,019 4

West Flanders 409 10 72 2 1,200,945 10

Note. Data on the Belgium population are from the Federal Planning Bureau (2021). Sample size is denoted by n. Some 
column totals do not sum to 100% because of rounding.
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Figure 5. Estimates and corresponding 95% confidence intervals for each of seven collection rounds for the 2020 
Belgian seroprevalence study (Herzog et al., 2022), described in Section 5.2.

Table 3. Demographic comparisons of the ScreenNC study sample, UNC hospitals patient population, and North 
Carolina population aged 20+

ScreenNC UNC hospitals NC

n % n % n %

2,973 100 21,901 100 7,873,971 100

Sex Female 1,955 66 13,926 64 4,108,603 52

Male 1,018 34 7,975 36 3,765,368 48

Race Asian 67 2 460 2 230,759 3

Black or Af.-Am. 395 13 5,109 23 1,640,311 21

Other 311 10 1,799 8 455,600 6

White or Cauc. 2,200 74 14,533 66 5,547,301 70

Age 20–29 342 12 2060 9 1,400,918 18

30–39 599 20 2,763 13 1,344,647 17

40–49 518 18 3,382 15 1,351,156 17

50–59 602 20 4,200 19 1,360,357 17

60–69 489 17 4,548 21 1,228,123 16

70–79 310 11 3,325 15 806,002 10

80+ 77 3 1,623 7 382,768 5

Note. Data on the NC population are from the 2019 American Community Survey (US Census Bureau, 2019). Several 
racial classifications including Patient Refused and Unknown were reclassified as Other. Sample size is denoted by n. 
Some column totals do not sum to 100% because of rounding. NC = North Carolina; UNC = University of North 
Carolina.



hand, the non-parametric standardized estimator π̂SRG does not require model specification and 
performed well in scenarios with lower amounts of selection bias and non-positivity. As the num
ber of strata and covariates grew, however, π̂SRG was empirically biased and its corresponding 
95% CIs did not attain nominal coverage.

For practical use of either method, careful choice of covariates is necessary. Including additional 
covariates may make the assumption of equal probability of sampling within strata more reason
able. However, such inclusion also makes covariate-defined strata smaller and random non- 
positivity more likely. An alternative strategy is to collapse smaller strata with few or no persons 
to create larger strata, which may make random non-positivity less likely. However, if strata with 
sufficiently different sampling probabilities were collapsed together, then the assumption of equal 
probability of sampling within strata would be violated.

Throughout this paper it was assumed that the validation samples constitute random samples 
from the population strata of true positives and true negatives. Extensions could be considered 
which allow for possible ‘spectrum bias’, which can occur if the n1 individuals in the validation 
sample of true positives are not representative of the general population of seropositive individu
als; for instance, a validation sample might be based on hospitalized patients who on average have 
more severe disease than the general population of seropositive individuals. Spectrum bias can lead 
to overestimates of sensitivity and underestimates of seroprevalence, but can be overcome using 
Bayesian mixture modelling of continuous antibody response data (Bottomley et al., 2021) or lon
gitudinal modelling of antibody kinetic and epidemic data (Takahashi et al., 2021).

The limitations of Wald-type confidence intervals as they relate to parameters near their bound
ary values are mentioned in Sections 2.2 and 4. Alternative confidence intervals could be consid
ered based on the bootstrap (Cai et al., 2022), Bayesian posterior intervals (Gelman & Carpenter, 
2020), test inversion (DiCiccio et al., 2022), or fiducial confidence distributions (Bayer et al., in 
press). In particular, extensions of CIs designed to guarantee coverage at or above the nominal lev
els (Bayer et al., in press; Lang & Reiczigel, 2014) could be developed to accommodate potential 
selection bias due to unknown sampling probabilities.

Other topics for future research and broader issues in SARS-CoV-2 seroprevalence studies merit 
mention. While the approaches here estimate seroprevalence at a fixed point in time, seropreva
lence is a dynamic parameter. For analysis of studies with lengthier data collection periods, exten
sions of the estimators in this paper could be considered which make additional assumptions (e.g. 
smoothness, monotonicity) about the longitudinal nature of seroprevalence. Another possible ex
tension could consider variations in assay sensitivity, which may depend on a variety of factors 
such as the type of assay used; the recency of infection or vaccination of an individual; disease se
verity in infected individuals; the type and dose of vaccine for vaccinated individuals; and so forth. 
Where additional data are available related to these factors, then extensions of the standardized 
Rogan–Gladen estimators which incorporate these additional data could be developed. As an al
ternative to standardization, inverse probability of sampling weights (Lesko et al., 2017) or inverse 
odds of sampling weights (Westreich et al., 2017) could be considered. Standardization and 
weighting methods may possibly be combined to create a doubly robust Rogan–Gladen estimator.
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New York City seroprevalence study findings include both data available from Stadlbauer et al. 
(2021) and individual demographic data shared by the authors of that study.
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