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Abstract

Several modern applications require the integration of multiple large data matrices that have 

shared rows and/or columns. For example, cancer studies that integrate multiple omics platforms 

across multiple types of cancer, pan-omics pan-cancer analysis, have extended our knowledge of 

molecular heterogeneity beyond what was observed in single tumor and single platform studies. 

However, these studies have been limited by available statistical methodology. We propose a 

flexible approach to the simultaneous factorization and decomposition of variation across such 

bidimensionally linked matrices, BIDIFAC+. BIDIFAC+ decomposes variation into a series of 

low-rank components that may be shared across any number of row sets (e.g., omics platforms) 

or column sets (e.g., cancer types). This builds on a growing literature for the factorization and 

decomposition of linked matrices which has primarily focused on multiple matrices that are 

linked in one dimension (rows or columns) only. Our objective function extends nuclear norm 

penalization, is motivated by random matrix theory, gives a unique decomposition under relatively 

mild conditions, and can be shown to give the mode of a Bayesian posterior distribution. We apply 

BIDIFAC+ to pan-omics pan-cancer data from TCGA, identifying shared and specific modes of 

variability across four different omics platforms and 29 different cancer types.
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1. Introduction.

Data collection and curation for the Cancer Genome Atlas (TCGA) program, completed 

in 2018, provide a unique and valuable public resource for comprehensive studies of 
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molecular profiles across several types of cancer (Hutter and Zenklusen (2018)). The 

database includes information from several molecular platforms for over 10,000 tumor 

samples from individuals representing 33 types of cancer. The molecular platforms capture 

signal at different omics levels (e.g., the genome, epigenome, transcriptome, and proteome) 

which are biologically related and can each influence the behavior of the tumor. Thus, when 

studying molecular signals in cancer, it is often necessary to consider data from multiple 

omics sources at once. This and other applications have motivated a very active research 

area in statistical methods for multiomics integration.

A common task in multiomics applications is to jointly characterize the molecular 

heterogeneity of the samples. Several multiomics methods have been developed for 

this purpose which can be broadly categorized by: (1) clustering methods that identify 

molecularly distinct subtypes of the samples (Huo and Tseng (2017), Lock and Dunson 

(2013), Gabasova, Reid and Wernisch (2017)), (2) factorization methods that identify 

continuous lower-dimensional patterns of molecular variability (Lock et al. (2013), 

Argelaguet et al. (2018), Gaynanova and Li (2019)), or methods that combine aspects of (1) 

and (2) (Shen, Wang and Mo (2013), Mo et al. (2018), Hellton and Thoresen (2016)). These 

extend classical approaches, such as: (1) k-means clustering and (2) principal components 

analysis, to the multiomics context, allowing the exploration of heterogeneity that is shared 

across the different omics sources while accounting for their differences.

Several multiomics analyses have been performed on the TCGA data, including flagship 

publications for each type of cancer (e.g., see Network et al. (2012, 2014), Verhaak et al. 

(2010)). These have revealed striking molecular heterogeneity within each classical type of 

cancer which is often clinically relevant. However, restricting an analysis to a particular 

type of cancer sacrifices power to detect important genomic changes that are present 

across more than one cancer type. In 2013, TCGA began the Pan-Cancer Analysis Project, 

motivated by the observation that “cancers of disparate organs reveal many shared features, 

and, conversely, cancers from the same organ are often quite distinct” (Weinstein et al. 

(2013)). Subsequently, several pan-cancer studies have identified important shared molecular 

alterations for somatic mutations (Kandoth et al. (2013)), copy number (Zack et al. (2013)), 

mRNA (Hoadley et al. (2014)), and protein abundance (Akbani et al. (2014)). However, a 

multiomics analysis found that pan-cancer molecular heterogeneity is largely dominated by 

cell-of-origin and other factors that define the classical cancer types (Hoadley et al. (2018)).

In this study we do not focus on baseline molecular differences between the cancer types. 

Rather, we focus on whether patterns of variability within each cancer type are shared 

across cancer types, that is, whether multiomic molecular profiles that drive heterogeneity 

in one type of cancer also drive heterogeneity in other cancers. Systematic investigations 

of heterogeneity in a pan-omics and pan-cancer context are presently limited by a lack 

of principled and computationally feasible statistical approaches for the comprehensive 

analysis of such data. In particular, the data take the form of bidimensionally linked 
matrices, that is, multiple large matrices that may share row sets (here, defined by the omics 

platforms) or column sets (here, defined by the cancer types); this is illustrated in Figure 

1, and the formal framework is described in Section 2. Such bidimensional integration 

problems are increasingly encountered in practice, particularly for biomedical applications 
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that involve multiple omics platforms and multiple sample cohorts that may correspond to 

different studies, demographic strata, species, diseases, or disease subtypes.

In this article we propose a flexible approach to the simultaneous factorization and 

decomposition of variation across bidimensionally linked matrices, BIDIFAC+. Our 

approach builds on a growing literature for the factorization and decomposition of linked 

matrices, which we review in Section 3. However, previous methods have focused on 

multiple matrices that are linked in just one dimension (rows or columns) or assume that 

shared signals must be present across all row sets or column sets. This is limiting for pan-

cancer analysis and other applications, where we expect patterns of variation that are shared 

across some, but not necessarily all, cancer types and omics platforms. With this motivation 

our proposed approach decomposes variation into a series of low-rank components that 

may be shared across any number of row sets (e.g., omics platforms) or column sets 

(e.g., cancer types). We develop a new approach to model selection and new estimating 

algorithms to accommodate this more flexible decomposition. We establish theoretical 

results, most notably, concerning the uniqueness of the decomposition without orthogonality 

constraints which are entirely new for linked matrix decompositions. Moreover, we show 

how BIDIFAC+ can improve the estimation of underlying structures over existing methods, 

even in the more familiar context for which matrices are linked in just one dimension.

2. Formal framework and notation.

Here, we introduce our framework and notation for pan-omics pan-cancer data. Let Xij : Mi 

× Nj denote the data matrix for omics data source i and sample set (i.e., cancer type) j for j 
= 1, … , J and i = 1, … , I. Columns of Xij represent samples, and rows represent variables 

(e.g., genes, miRNAs, proteins). The sample sets of size N = [N1, … , NJ] are consistent 

across each omics source, and the features measured for each omics source M = [M1, … , 

MI] are consistent across sample sets. As illustrated in Figure 1, the collection of available 

data can be represented as a single data matrix X.. : M × N, where M = M1 + … + MI and N 
= N1 + … + NJ by horizontally and vertically concatenating its constituent blocks,

X.. =
X11 X12 ⋯ X1J

⋮ ⋮ ⋯ ⋮
XI1 XI2 ⋯ XIJ

where Xij are Mi × Nj . (1)

Similarly, Xi. defines the concatenation of omics source i across cancer types, and X.j 
defines the concatenation of cancer type j across omics sources,

Xi . = Xi1⋯XiJ , X .j = X1j′ ⋯XIj′ ′ .

The notation Xij[·, n] defines the nth column of matrix ij, Xij[m, ·] defines the mth row, 

and Xij[m, n] defines the entry in row m and column n. In our context, the entries are all 

quantitative, continuous measurements; missing data are addressed in Section 9.
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We will investigate shared or unique patterns of systematic variability (i.e., heterogeneity) 

among the constituent data blocks. We are not interested in baseline differences between 

the different omics platforms or sample sets, and after routine preprocessing the data will 

be centered so that the mean of the entries within each data block, Xij, is 0. Moreover, to 

resolve the disparate scale of the data blocks, each block will be scaled to have comparable 

variability, as described in Section 6.1.

In what follows, ‖A‖F denotes the Frobenius norm for any given matrix so that ∥ A ∥F
2  is 

the sum of squared entries in A. The operator ‖A‖∗ denotes the nuclear norm of A which 

is given by the sum of the singular values in A; that is, if A : M × N has ordered singular 

values D[1, 1], D[2, 2], … , then ∥ A ∥ ∗ = r 1
min(M N)D[r r] .

3. Existing integrative factorization methods.

There is now an extensive literature on the integrative factorization and decomposition 

of multiple linked datasets that share a common dimension. Much of this methodology 

is motivated by multiomics integration, that is, vertical integration of multiple matrices 

{X11, X21, … , XI1} with shared columns in the setting of Section 2. For example, the 

Joint and Individual Variation Explained (JIVE) method (Lock et al. (2013), O’Connell and 

Lock (2016)) decomposes variation into joint components that are shared among multiple 

omics platforms and individual components that only explain substantial variability in one 

platform. This distinction not only simplifies interpretation but also improves accuracy in 

recovering underlying signals. Accuracy improves because structured individual variation 

can interfere with finding important joint signal, just as joint structure can obscure important 

signal that is individual to a data source. The factorized JIVE decomposition is

Xi1 = UiVT + Ui
∗Vi

T + Ei for i = 1, …, I . (2)

Joint structure is represented by the common score matrix V : N1 × R which summarize 

patterns in the samples that explain variability across multiple omics platforms. The loading 

matrices Ui : Mi × R indicate how these joint scores are expressed in the rows (variables) of 

platform i. The score matrices Vi : N1 × Ri summarize sample patterns specific to platform i 
with loadings Ui*. Model (2) can be equivalently represented as a sum of low-rank matrices

X .1 = S .(0) +
i = 1

I
S.

(i) + E . , (3)

where S.0 = U.VT  is of rank R and S.i = [S1
i ′⋯SI

i ′]′ is the matrix of rank Ri, given by the 

individual structure for platform i and zeros elsewhere,

Si′
(i) =

0Mi′ × N if i′ ≠ i,

Ui′*ViT if i′ = i .
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Several other methods result in a factorized decomposition similar to that in (2) and (3), 

including approaches that allow for different distributional assumptions on the constituent 

matrices (Li and Gaynanova (2018), Zhu, Li and Lock (2020)), nonnegative factorization 

(Yang and Michailidis (2016)), and the incorporation of covariates (Li and Jung (2017)). 

The Structural Learning and Integrative Decomposition (SLIDE) method (Gaynanova and 

Li (2019)) allows for a more flexible decomposition in which some components are only 

partially shared across a subset of the constituent data matrices. SLIDE extends model (3) to 

the more general decomposition

X .1 =
k = 1

K
S.

(k) + E . , (4)

where S.(k) = [S1
(k)′⋯SI

(k)′]′ is a low-rank matrix with nonzero values for some subset of the 

sources that is identified by a binary matrix R : I × K and

Si
(i) =

0Mi × N if R i, k = 0,

Ui
k V k T if R i, k = 1 .

Here, V(k) gives scores that explain variability for only those patterns for the omics sources 

identified by R[·, k].

The BIDIFAC approach (Park and Lock (2020)) is designed for the decomposition of 

bidimensionally linked matrices as in (1). Its low-rank factorization can be viewed as an 

extension of that for JIVE, decomposing variation into structure that is shared globally (G), 

across rows (Row), across columns (Col), or individual to the constituent matrices (Ind). 

Following (3) for JIVE and (4) for SLIDE, its full decomposition can be expressed as

X.. = S..
(G) +

i = 1

I
S..

(i, Row) +
j = 1

J
S..

(j, Col) +
i = 1

I

j = 1

J
S..

(i, j, Ind) + E.., (5)

where Sij
(G) = Ui

(G)Vj
(G)T ,

Si′j′
(i, Row) =

0Mi × Nj if i′ ≠ i,

Ui
i, Row Vj

i, Row T if i′ = i,
Si′j′

(j, Col) =
0Mi × Nj if j′ ≠ j,

Ui
j, Col Vj

j, Col T if j′ = j,

and

Si′j′
(i, j Ind) =

0Mi × Nj if i′ ≠ i or j′ ≠ j,

Ui
i, j, Ind Vj

i, j, Ind T if i′ = i and j′ = j .
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4. Proposed model.

We consider a flexible factorization of bidimensionally linked data that combines aspects of 

the BIDIFAC and SLIDE models. Our full decomposition can be expressed as

X.. =
k = 1

K
S..

(k) + E.., (6)

where

S..(k) =
S11

(k) S12
(k) … S1J

(k)

⋮ ⋮ … ⋮

SI1
(k) SI2

(k) ⋯ SIJ
(k)

and the presence of each Sij
k  is determined by a binary matrix of row indicators R : I × K 

and column indicators C : J × K,

Sij
(k) =

0Mi × Nj if R[i, k] = 0 or C[j, k] = 0,

Ui
(k)Vj

(k)T if R[i, k] = 1 and C[j, k] = 1 .

Each S..k  gives a low-rank module that explains variability within the omics platforms 

identified by R[·, k] and the cancer types identified by C[·, k]. By requiring R[i, k] = 1 and 
C[j, k] = 1, the module is nonzero on a contiguous submatrix. There are, in total, (2I − 1)(2J 

− 1) such submatrices, so by default we set K = (2I − 1)(2J − 1) and let R and C enumerate 

all possible modules (see Appendix A (Lock, Park and Hoadley (2022))). The SLIDE 

decomposition (4) is a special case when J = 1 or I = 1 (i.e., unidimensional integration); 

the BIDIFAC model (5) is a special case where each column of R and C contains either 

entirely 1’s (i.e., all rows or columns included) or just one 1 (i.e., just one row set or column 

set included). In practice, if the row and column set for a structural module is not included, 

it may be subsumed into a larger module or broken into separate smaller modules. The 

matrix E.. is an error matrix whose entries are assumed to be sub-Gaussian with mean 0 and 

variance 1 after scaling (see Section 6.1).

Let the rank of each module be rank (S..k ) = Rk so that the dimensions of the nonzero 

components of the factorization are Ui
k :Mi × Rk and Vj

k :Nj × Rk. The rth component of 

the kth module gives a (potentially multiomic) molecular profile {Ui
k [ · , r]:R[i, k] = 1} that 

explains variability within those cancer types, defined by C[·, k] with corresponding sample 

scores {Vj
k [r, · ]:C[j, k] = 1}.
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5. Objective function.

To estimate model (6), we minimize a least squares criterion with a structured nuclear norm 

penalty,

argmin
{S..(k)}k = 1

K
1
2 X.. −

k = 1

K
S..

(k)
F

2
+

k = 1

K
λk‖S..

(k)‖∗ (7)

subject to Sij
k = 0Mi × Nj if R[i, k] = 0 or C[j, k] = 0. The choice of the penalty parameters 

λk k = 1
K  is critical and must satisfy the conditions of Proposition 1 to allow for nonzero 

estimation of each module.

PROPOSITION 1.

Under objective (7), the following are necessary to allow for each Ŝ..
k

 to be nonzero:

1. If for k′ ≠ k the rows and columns of module k′ are contained within those for 
module k, R[i, k] − R i, k′ ≥ 0∀i and C[j, k] − C j, k′ ≥ 0∀j, then λk > λk′.

2. If ℐk ⊂ 1, …, k − 1, k + 1, …, K  is any subset of modules that together 

cover the rows and columns of module k, j ℐkR[ j] r R[ k] and 

j ℐkC[ j] c C[ k] for positive integers r and c, then λk < j ℐkλj.

We determine the λk’s by random matrix theory, motivated by two well-known results for a 

single matrix that we repeat here in Propositions 2 and 3.

PROPOSITION 2 (Mazumder, Hastie and Tibshirani (2010)).

Let UDVT be the SVD of a matrix X. The approximation A that minimizes

1
2 ∥ X − A ∥ F

2 + λ ∥ A ∥ * (8)

is A = UD̃VT , where D̃ is diagonal with entries D̃ r, r = max D r, r − λ, 0 .

PROPOSITION 3 (Rudelson and Vershynin (2010)).

Let D[1, 1] be the largest singular value of a matrix E : M × N of independent entries with 
mean 0, variance σ2, and finite fourth moment. Then, D[1, 1] ≈ σ( M + N) as M, N → ∞, 

and if the entries of E are Gaussian E(D[1, 1]) ≤ σ( M + N) for any M, N.

Fixing λ = σ( M + N) is a reasonable choice for the matrix approximation task in (8), 

because it keeps only those components r whose signal is greater than that expected for 

independent error by Proposition 3: D r, r > σ( M + N) (Shabalin and Nobel (2013)). 

For our context, σ = 1 after normalizing, as discussed in Section 6.1, and thus we set 

λk = R[ · , k] ⋅ M + C[ · , k] ⋅ N, where R[·, k] · M × C[·, k] · N gives the dimensions of the 

nonzero submatrix for S..k ,
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R[ · , k] ⋅ M =
i = 1

I
MiR[i, k] and C[ · , k] ⋅ N =

j = 1

J
NjC[j, k] .

Our choice of λk is motivated to distinguish signal from noise in module S..k , conditional 

on the other modules. Moreover, it is guaranteed to satisfy the necessary conditions in 

Proposition 1, which we establish in Proposition 4.

PROPOSITION 4.

Setting λk = R[ · , k] ⋅ M + C[ · , k] ⋅ N in (7) satisfies the necessary conditions of 

Proposition 1.

A similarly motivated choice of penalty weights is used in the BIDIFAC method which 

solves an equivalent objective under the restricted scenario where the columns of R and C 
are fixed and contain either entirely 1’s (i.e., all rows or columns included) or just one 1 

(i.e., just one row set or column set included). Thus, we call our more flexible approach 

BIDIFAC+.

It is often infeasible to explicitly consider each of the K = (2I − 1)(2J − 1) possible modules 

in (7), and the solution is often sparse, with Ŝ..
k

= 0 for several k. Thus, in practice, we 

also optimize over the row and column sets R and C for some smaller number of modules 

K̃ ≪ K ,

argmin
R, C, {S..k }k = 1

K̃

1
2 X.. −

k = 1

K̃
S..

(k)
F

2

+
k = 1

K̃
( M ⋅ R[ · , k] + N ⋅ C[ · , k])‖S..

(k)‖∗ . (9)

Note that if K̃ is greater than the number of nonzero modules, then the solution to (9) is 

equivalent to the solution to (7) in which R and C are fixed and enumerate all possible 

modules. If K̃ is not greater than the number of nonzero modules, then the solution to 

(9) can still be informative, as the set of K̃ modules that together give the best structural 

approximation via (7). In this case it helps to order the estimated modules by variance 

explained; if the K̃ th module still explains substantial variance, consider increasing K̃. 

Moreover, we suggest assessing the sensitivity of results to different values of K̃.

6. Estimation.

6.1. Scaling.

We center each dataset Xij to have mean 0 and scale each dataset to have residual variance 

var(Eij) of approximately 1. Such scaling requires an estimate of the residual variance for 

each dataset. By default, we use the median absolute deviation estimator σ̂MAD
2  of Gavish 

and Donoho (2017), which is motivated by random-matrix theory under the assumption that 

Xij is composed of low-rank structure and mean 0 independent noise of variance σ2. We 
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estimate σ̂MAD
2  for the unscaled data Xij

unscaled and set Xij = Xij
unscaled/σ̂MAD. An alternative 

approach is to scale each dataset to have overall variance 1, var(Xij) = 1, which is more 

conservative because var E.. ≤ var Xij ; thus, this approach results in relatively larger λk 

in the objective function and leads to sparser overall ranks. Yet another approach is to 

normalize each data block to have unit Frobenius norm, as in Lock et al. (2013). However, 

our default choice of penalty parameters λk in Section 5 is theoretically motivated by the 

assumption that residual variances are the same across the different data blocks.

6.2. Optimization algorithm: Fixed modules.

We estimate across all modules k = 1, … , K, simultaneously, by iteratively optimizing 

the objectives in Section 5. First, assume the row and column inclusions for each module, 

defined by R and C, are fixed, as in objective (7). To estimate S..k , given the other modules 

{S..(k′)}k′ ≠ k, we can apply the soft-singular value estimator in Proposition 2 to the residuals 

on the submatrix, defined by R[·, k] and C[·, k]. The iterative estimation algorithm proceeds 

as follows:

1. Initialize Ŝ..
(k)

= 0M × N for k = 1, … , K .

2. For k = 1, … , K :

a. Compute the residual matrix X..(k) = X.. −
k k

Ŝ
k

.

b. Set Xij
(k) = 0Mi × Nj where R[i, k] = 0 or C[j, k] = 0.

c. Compute the SVD of X..(k), X..(k) = U.(k)D(k)V.(k).

d. Update Ŝ..
(k)

= U.(k)D̂(k)V.(k) where D̂ r, r = max D r, r − λk, 0  for r = 1, 

2, … .

3. Repeat step 2. until convergence of the objective function (9).

Step 2(d) minimizes the objective (7) for Ŝ..
(k)

, given {S..(k′)}k′ ≠ k, by Proposition 2. In this 

way we iteratively optimize (7) over the K modules {S..(k)}k = 1
K

 until convergence.

6.3. Optimization algorithm: Dynamic modules.

If the row and column inclusions R and C are not predetermined, we incorporate additional 

substeps to estimate the nonzero submatrix, defined by R[·, k] and C[·, k], for each module 

to optimize (9). We use a dual forward-selection procedure to iteratively determine the 

optimal row-set R[·, k] with columns C[·, k] fixed, and the column-set C[·, k] with rows R[·, 

k] fixed, until convergence prior to estimating each S..(k). The iterative estimation algorithm 

proceeds as follows:

1. Initialize Ŝ..
(k)

= 0M × N for k = 1, … , K.

2. Initialize Ĉ j, k = 1 for j = 1, … , J.
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3. For k = 1, … , K:

a. Compute the residual matrix X..k = X.. −
k k

Ŝ
(k )

b. Update R̂ · , k  and Ĉ · , k , as follows:

i. With Ĉ · , k  fixed, update R̂ · , k  by forward selection, 

beginning with R̂ · , k = 0 and iteratively adding rows 

i (R̂ i, k = 1) to minimize the objective (9).

ii. With R̂ · , k  fixed, update Ĉ · , k  by forward selection, 

beginning with Ĉ · , k = 0 and iteratively adding columns 

j (Ĉ i, k = 1) to minimize the objective (9).

iii. Repeat steps i. and ii. until convergence of the chosen row and 

column sets Ĉ · , k  and R̂ · , k .

c. Set Xij
k = 0Mi × Nj, where R̂ i, k = 0 or Ĉ j, k = 0.

d. Compute the SVD of X..(k), X..(k) = U.(k)D(k)V.(k).

e. Update Ŝ..
(k)

= U.(k)D̂(k)V.(k), where D̂ r, r = max D r, r − λk, 0  for r = 1, 

2, … .

4. Repeat step 3. until convergence of the objective function.

For the steps in 3b), objective (9) can be efficiently computed using the singular values for 

the residual submatrix, given by R̂ · , k  and Ĉ · , k , without reestimating Ŝ..
(k)

 completely at 

each substep.

6.4. Convergence and tempered regularization.

The algorithms in Sections 6.2 and 6.3 both monotonically decrease the objective function 

at each substep, and thus both converge to a coordinatewise optimum. For (7) the objective 

function and solution space are both convex, and the algorithm with fixed modules tends to 

converge to a global optimum, as observed for the BIDIFAC method Park and Lock (2020). 

However, the stepwise updating of R and C in Section 6.3 can get stuck at coordinatewise 

optima, analogous to stepwise variable selection in a predictive model. In practice, we find 

that the convergence of the algorithm improves substantially if the initial iterations use a 

high nuclear norm penalty that gradually decreases to the desired level of penalization. Thus, 

in our implementation for the first iteration the penalties are set to λ̃k = αλk for k = 1, … , K 

and some α > 1. The penalties then gradually decrease over each subsequent iteration of the 

algorithm before reaching the desired level of regularization (α = 1).
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7. Uniqueness.

Here, we consider the uniqueness of the decomposition in (4) under the objective (7). To 

account for permutation invariance of the K modules, throughout this section we assume that 

R and C are fixed and that they enumerate all of the K = (2I − 1)(2J − 1) possible modules. 

Note that the solution may still be sparse, with S..(k) = 0 for some or most of the modules. 

Without loss of generality, we fix R and C, as in Supplementary Material Appendix A 

(Lock, Park and Hoadley (2022)). Then, let SX̂ be the set of possible decompositions that 

yield a given approximation X̂..,

SX̂ = {S.(k)}k = 1
K ∣ X̂.. =

k = 1

K
S..(k) .

If either I > 1 or J > 1, then the cardinality of SX̂ is infinite; that is, there are an infinite 

number of ways to decompose X̂... Thus, model (4) is clearly not identifiable, in general, 

even in the no-noise case E.. = 0. However, optimizing the structured nuclear norm penalty 

in (7) may uniquely identify the decomposition; let fpen(·) give this penalty,

fpen({S..(k)}k = 1
K ) =

k = 1

K
( R[ · , k] ⋅ M + C[ · , k] ⋅ N) S..(k)

∗ .

Proposition 5 gives an equivalence of the left and right singular vectors for any two 

decompositions that minimize fpen(·).

PROPOSITION 5.

Take two decompositions {Ŝ..
(k)

}k = 1
K

∈ SX̂, and {S̃..
(k)}k = 1

K
∈ SX̂, and assume that both 

minimize the structured nuclear norm penalty,

fpen({Ŝ..
(k)}k = 1

K
) = fpen({S̃..

(k)}k = 1
K

) = min
SX̂

fpen({S..(k)}k = 1
K ) .

Then, Ŝ..
(k)

= U.(k)D̂V.(k)T  and Ŝ..
(k)

= U.(k)D̃(k)V.(k)T , where U.(k):M × Rk and V.(k):N × Rk have 

orthonormal columns and D̂ k
 and D̃ k  are diagonal.

The proof of Proposition 5 uses two novel lemmas (see Supplementary Material Appendix B 

(Lock, Park and Hoadley (2022))): one establishing that Ŝ..
(k)

 and S̃..
(k) must be additive in the 

nuclear norm, ‖Ŝ..
(k)

+ S̃..
(k)‖* = ‖Ŝ..

(k)
‖∗ + S̃..

(k)
∗ and a general result establishing that any two 

matrices that are additive in the nuclear norm must have the equivalence in Proposition 5.
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Proposition 5 implies that left or right singular vectors of Ŝ..
(k)

(D̂ k r, r > 0) are either shared 

with Ŝ..
(k)

(if D̃ k r, r > 0) or orthogonal to Ŝ..
(k)

(if D̃ k r, r = 0). For uniqueness, one must 

establish that D̂ k r, r = D̃ k r, r  for all k and r. Theorem 1 gives sufficient conditions for 

uniqueness of the decomposition.

THEOREM 1.

Consider {Ŝ..
(k)

}k = 1
K

∈ SX̂, and let U.(k)D̂(k)V.(k)T  give the SVD of Ŝ..
(k)

 for k = 1, … , K. The 

following three properties uniquely identify {Ŝ..
(k)

}k = 1
K

:

1. {Ŝ..
(k)

}k = 1
K

 minimizes fpen( ⋅ ) over SX̂,

2. {Ûi
(k)[ · , r]:R[i, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for i = 1, … I,

3. {V̂j
(k)[ · , r]:C[j, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for j = 1, … , J.

The linear independence conditions (2. and 3.) are, in general, not sufficient, and several 

related integrative factorization methods, such as JIVE (Lock et al. (2013)) and SLIDE 

(Gaynanova and Li (2019)), achieve identifiability via stronger orthogonality conditions 

across the terms of the decomposition. Theorem 1 implies that orthogonality is not necessary 

under the penalty fpen(·). Conditions 2 and 3 are straightforward to verify for any {Ŝ..
(k)

}k = 1
K

, 

and they will generally hold whenever the ranks in the estimated factorization are small 

relative to the dimensions {Mi}i = 1
I  and {Nj}j = 1

J . Moreover, the conditions of Theorem 1 

are only sufficient for uniqueness; there may be cases for which the minimizer of fpen(·) 

is unique and the terms of its decomposition are not linearly independent. Theorem 1 

implies uniqueness of the BIDIFAC decomposition (Park and Lock (2020)) under linear 

independence as a special case which is a novel result.

8. Bayesian interpretation.

Express the BIDIFAC+ model (6) in factorized form

X.. =
k = 1

K
U.

(k)V.
(k)T + E.., (10)

where

U.
(k)′ = [U1

(k)′⋯UI
(k)′]′ with Ui

(k) = M1 × Rk and Ui
(k) = 0M1 × Rk if R[i, k] = 1 (11)

for all i and k, and

V.
(k) = [V1

(k)⋯VJ
(k)] with Vi

(k) = Nj × Rk and Vi
(k) = 0Nj × Rk if C[j, k] = 1 (12)
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for all j and k. The structured nuclear norm objective (7) can also be represented by L2 

penalties on the factorization components U.(k) and V.(k). We formally state this equivalence 

in Proposition 6 which extends analogous results for a single matrix (Mazumder, Hastie and 

Tibshirani (2010)) and for the BIDIFAC framework (Park and Lock (2020)).

PROPOSITION 6.

Fix R and C. Let {Û·
(k)}k = 1

K
 and {V̂.

(k)}k = 1
K

 minimize

X.. −
k = 1

K
U.

(k), V.
(k)

F

2
+

k = 1

K
λk(‖U.

(k)‖F
2 + ‖V.

(k)‖F
2 ) (13)

with the restrictions (11) and (12). Then, {Ŝ..
(k)

}k = 1
K

 solves (7), where Ŝ..
(k)

= Û.
(k)V̂.

(k)T
 for k 

= 1,…, K.

From (13), it is apparent that our objective gives the mode of a Bayesian posterior with 

normal priors on the errors and the factorization components, as stated in Proposition 7.

PROPOSITION 7.

Let the entries of E.. be independent Normal(0, 1), the entries of Ui
(k) be independent 

Normal(0, τ2) if R[i, k] = 1, and the entries of Vj
(k) be independent Normal (0, τk

2) if C[j, k] = 

1, where τk
2 = 1/λk. Then, (13) is proportional to the log of the joint likelihood

p(X.., {U.(k)}k = 1
K , {V.(k)}k = 1

K ∣ R, C) .

9. Missing data imputation.

The probabilistic formulation of the objective, described in Section 8, motivates a modified 

expectation-maximization (EM)-algorithm approach to impute missing data. Let ℳ index 

observations in the full dataset X.. that are unobserved: ℳ = (m, n):X..[m, n] is missing . Our 

iterative algorithm for missing data imputation proceeds as follows:

1. Initialize X̂.. by

X..^ [m, n] = X..[m, n] if (m, n) ∉ ℳ,
0 if (m, n) ∈ ℳ .

2.
M-step: Estimate {Ŝ..

(k)
}k = 1

K
 by optimizing (7) for X̂...

3.
E-step: Update X̂.. by X̂.. m, n =

k 1
K

Ŝ
(k)

m n .

4. Repeat steps 2 and 3 until convergence.
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Analogous approaches to imputation for other low-rank factorization techniques have been 

proposed (Kurucz, Benczúr and Csalogány (2007), O’Connell and Lock (2019), Park and 

Lock (2020), Mazumder, Hastie and Tibshirani (2010)). Due to centering, initializing 

missing data to 0 in step 1 is equivalent to starting with mean imputation which is used 

by other SVD-based imputation approaches (Mazumder, Hastie and Tibshirani (2010), 

Kurucz, Benczúr and Csalogány (2007)); however, in practice, random initializations can 

also be used. The M-step maximizes the joint density for the model in Proposition 7, 

where Ŝ..
(k)

= Û.
(k)V̂.

(k)T
 for k = 1, … , K. The E-step updates the log joint density with 

its conditional expectation over X..[m, n]: (m, n) ∈ ℳ  by an argument analogous to that in 

Zhang et al. (2005). Thus, the approach is an EM-algorithm for maximum a posteriori 

imputation under the model in Section 8, and it is also a direct block coordinate descent 

of objective (7) over {S..(k)}k = 1
K

 and X..[m, n]: (m, n) ∈ ℳ . Crucially, for our context the 

method can be used to impute data that may be missing from an entire column or an entire 

row of each Xij or, in certain cases, can even be used to impute an entire matrix Xij, based on 

joint structure.

10. Application to TCGA data.

10.1. Data acquisition and preprocessing.

Our data were curated for the TCGA Pan-Cancer Project and were used for the pan-cancer 

clustering analysis described in Hoadley et al. (2018). We used data from four (I = 4) 

omics sources: (1) batch-corrected RNA-Seq data capturing (mRNA) expression for 20, 

531 genes, (2) batch-corrected miRNA-Seq data capturing expression for 743 miRNAs, (3) 

between-platform normalized data from the Illumina 27K and 450K platforms capturing 

DNA methylation levels for 22,601 CpG sites, and (4) batch-corrected reverse-phase protein 

array data capturing abundance for 198 proteins. These data are available for download at 

https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin [accessed 11/19/2019]. 

We consider data for N = 6973 tumor samples from different individuals with all four omics 

sources available; these tumor samples represent J = 29 different cancer types, listed in Table 

1.

We log-transformed the counts for the RNA-Seq and miRNA-Seq sources. To remove 

baseline differences between cancer types, we center each data source to have mean 0 across 

all rows for each cancer type,

mean Xij[m, · ] = 0 for all i, j, m .

We filter to the 1000 genes and the 1000 methylation CpG probes that have the highest 

standard deviation after centering, leaving M1 = 1000 genes, M2 = 743 miRNAs, M3 = 1000 

CpGs, and M4 = 198 proteins. Lastly, to account for differences in scale we standardize so 

that each variable has standard deviation 1,

SD Xi . [m, · ] = 1 for all i, m .
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This is a conservative alternative to scaling by an estimate of the noise variance, as 

mentioned in Section 6.1.

10.2. Factorization results.

We apply the BIDIFAC+ method to the complete-case data with I = 4 omics sources and J 
= 29 cancer types. We simultaneously estimate a maximum of K = 50 low-rank modules; 

all modules are nonzero, but the variation explained by the smaller modules are negligible. 

Figure 2 gives the total variance explained by each module, ‖Ŝ..
k

‖F
2

, for k = 1, … , 50 

in decreasing order. The top 15 modules, ordered by total variance, explained are given 

in Table 2, and all 50 modules are given in the Supplementary Material Spreadsheet S1 

(Lock, Park and Hoadley (2022)). The first module explains global variation, with all cancer 

types and all omics sources included. Other modules that explain substantial variability 

across all or almost all cancer types are specific to each omics source: miRNA (Module 2), 

methylation (Module 3), gene expression (Module 5), and Protein (Module 8).

The module that explains the fourth most variation (Module 4) identifies structure in the 

genes and DNA methylation that explains variation in 22 of the 29 cancer types; we focus 

on this module as an illustrative example. The cancer types *not* included in Module 4 are 

BRCA (breast), CESC (cervical), OV (ovarian), PRAD (prostate), TGCT (testicular), UCEC 

(uterine endometrial), and UCS (uterine). Interestingly, all tumor types that were excluded 

were cancers specific to either males or females (or heavily skewed in BRCA); while cancer 

types included have both sexes. Figure 3 shows that Module 4 is indeed dominated by a 

single component that corresponds to molecular differences between the sexes. The gene 

loadings for this component are negligible, except for those on the Y chromosome and two 

genes on the X chromosome that are responsible for X-inactivation in females, XIST and 

TSIX; the methylation loadings are negligible, except for those in the X chromosome. These 

results are an intuitive illustration of the method, revealing a multiomic molecular signal that 

explains heterogeneity in some cancer types, but not all cancer types (only those that have 

both males and females).

The module that explains the sixth most variation (Module 6) identifies structure across all 

four omics sources that explains variation in the breast cancer (BRCA) samples only. Figure 

4 shows that the first two components in this module are driven primarily by distinctions 

between the PAM50 molecular subtypes for BRCA (Network et al. (2012)). Thus, our 

analysis suggests that molecular signals that distinguish these subtypes are present across 

all four omics sources, but that these signals do not explain substantial variation within any 

other type of cancer considered.

Several other modules explain variability in just one type of type of cancer, including LGG 

(Module 7: mRNA, miRNA and Protein), THCA (Module 9), UCEC (Module 16), and 

PRAD (Modules 18 and 19). Module 12, which is specific to LGG methylation, reveals 

distinct clustering by mutation status of the IDH genes (see Figure 5). IDH mutations have 

been shown to lead to a distinct CpG-island hypermethylated phenotype (Noushmehr et al. 

(2010)). Other modules explain variability in multiple cancer types that share similarities 

regarding their origin or histology. For example, Module 14 explains variability within 
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the three kidney cancers (KICH, KIRC, and KIRP), and digestive and gastrointestinal 

cancers (CORE, ESCA, PAAD, STAD) are represented in Modules 25 (methylation) and 28 

(mRNA).

To assess sensitivity of the results to the maximum number of modules K̃ = 50, we also 

performed the decomposition with K̃ = 25, 30, 35, 40, or 45. The resulting decompositions 

share several similarities. Nine of the 15 modules in Table 2 have a precise match in each of 

the six decompositions (Modules 1, 2, 4, 5, 6, 7, 9, 12, 14). Entrywise correlations for the 

terms S..(k) between matched modules ranged from r = 0.88 to r = 0.99. Other modules had 

slight variations to the cancer types and omics sources included. The modules for different 

K̃ are provided as separate tabs in Supplementary Material Spreadsheet S1 (Lock, Park and 

Hoadley (2022)). The overall structural approximations k 1
K̃ S k  were very similar across 

decompositions, with entrywise correlations all greater than r = 0.99.

10.3. Missing data imputation.

To assess the accuracy of missing data imputation using BIDIFAC+, we hold out observed 

entries, rows, and columns of each dataset in the pan-omics pan-cancer and impute them 

using the approach in Section 9. We randomly set 100 columns (samples) to missing for 

each of the four omic platforms, and we randomly set 100 rows (features) to missing for 

each of the 29 cancer types. We then randomly set 5000 of the values remaining in the 

joint matrix X.. to missing. We impute missing values using BIDIFAC+, as described in 

Section 9, and, for comparison, we use an analogous approach to imputation using four 

other low-rank factorizations: (1) soft-threshold (nuclear norm) SVD of the joint matrix 

X.., (2) soft-threshold SVD of each matrix Xij, separately, (3) hard-threshold SVD (SVD 

approximation using the first R singular values) of X.., (4) hard-threshold SVD of each 

Xij separately. For the soft-thresholding SVD methods, the penalty factor is estimated by 

random matrix theory, as in Section 5. For the hard-thresholding methods the ranks are 

determined by cross-validation by minimizing imputation error on an additional held-out 

cohort of the same size.

We consider the imputation error under the different methods, broken down by: (1) observed 

values, (2) values that are missing but have the rest of their row and column present 

(entrywise missing), (3) values that are missing their entire row, (4) values that are missing 

their entire column, and (5) values that are missing both their row and their column. For a 

given set of values ℳ, we compute the relative squared error as

RSE = (m n) ℳ(X [m n] X̂ [m n])2

(m n) ℳX [m n]2
,

where X̂.. is the structural approximation resulting from the given method. Table 3 gives the 

RSE for each method and for each missing condition. Imputation by BIDIFAC+ outperforms 

the other methods for each type of missingness, illustrating the advantages of decomposing 
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joint and individual structures. The hard-thresholding approaches have much less error for 

the observed data than for the missing data, due to overfitting of the signal.

11. Simulation studies.

11.1. Vertically linked simulations.

We conduct a simulation study to assess the accuracy of the BIDIFAC+ decomposition in 

the context of vertical integration, where there is a single shared column set (J = 1). For all 

scenarios we simulate data according to model (4), wherein the entries of the residual noise 

E.. are generated independently from a Normal(0, 1) distribution and the entries of each Ui
k

and V(k) are generated independently from a Normal (0, σ2) distribution.

We first consider a scenario with I = 3 matrices, each of dimension 100 × 100 (N = 100 and 

M1 = M2 = M3 = 100), with low-rank modules that are shared jointly, shared across each 

pair of matrices and individual to each matrix,

R =
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

. (14)

We consider a “low-rank” and a “high-rank” condition across three different signal-to-noise 

levels. For the low-rank condition, each of the seven modules has rank R = 1; for the 

high-rank condition, each module has rank R = 5. The variance of the factorized signal 

component, σ2 is set to be 1/2, 1 or 10 so that the signal-to-noise ratio (s2n) of each 

components is 1/2, 1, or 10, respectively.

For each condition we apply four approaches to uncover the underlying decomposition:

1. BIDIFAC+, with R given by (14), as in the true generative model,

2. BIDIFAC+, with R estimated,

3. SLIDE, with R and the true ranks of each module (R = 1 or R = 5) provided,

4. SLIDE, with R and the ranks of each module estimated via the default cross-

validation scheme.

We use SLIDE as the basis of comparison with BIDIFAC+, because it is the only other 

method that is designed to recover each term in the decomposition and it generally 

outperforms other vertically linked decomposition methods (Gaynanova and Li (2019), Park 

and Lock (2020)). For each case we compute the mean relative squared error (RSE) in 

recovering each module of the decomposition:

RSE = 1
K k = 1

K ‖S..
(k) − Ŝ..

(k)
‖F

2

‖S..
(k)‖F

2 . (15)
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The mean RSE for each condition and under each approach is shown in Table 4, 

broken down by the global module, pairwise modules, and individual modules. BIDIFAC+ 

generally outperforms or performs similarly to SLIDE, even when the true ranks are used 

for the SLIDE implementation (the ranks are never fixed for BIDIFAC+). An exception 

is when the ranks and s2n ratio are small (rank = 1, s2n = 0.5), where BIDIFAC+ tends 

to overshrink the signal. BIDIFAC+ performs particularly well, relative to SLIDE, when 

the rank is large and s2n is high. One likely reason for this improvement is that the 

SLIDE model necessarily restricts the factorized components Ui
k  and V k  to be mutually 

orthogonal, whereas BIDIFAC+ has no such constraint. This restriction can be limiting 

when decomposing generated signals that are independent but not orthogonal (Park and 

Lock (2020)). Moreover, when estimating the ranks, the SLIDE model can drastically 

underperform relative to using the true ranks. The results for BIDIFAC+, when fixing the 

true modules R vs. estimating R, are nearly identical; because all possible modules are 

present for this scenario, the two approaches are very similar despite subtle differences in the 

algorithms.

We consider another scenario with a larger number of matrices (I = 10), each of dimension 

100 × 100 (N = 100, M1 = ⋯ = M10 = 100) and sparsely distributed modules. We generate 

10 low rank modules out of 210 − 1 = 1023 possibilities that are present on (1) X11 only, 

(2) X11 and X21, (3) X11, X21, and X31, etc. We again consider low-rank (R = 1) and 

high-rank (R = 5) scenarios for all modules, and three signal-to-noise levels 0.5, 1, and 10. 

The resulting mean RSE (15) over all modules, for each approach, is shown in Table 5. Here, 

BIDIFAC+ with fixed true R generally performs better than estimating R; however, these 

gains are modest for most scenarios, suggesting the BIDIFAC+ generally does a good job of 

identifying which of the 1023 possible modules are nonzero.

11.2. Missing data simulation.

Here, we assess the performance of missing data imputation for a 3 × 3 grid of matrices 

(I = J = 3) with Xij : 100 × 100 for each i, j. Data X.. are generated as in model (6), with 

one fully shared module (R[·, 1] = C[·, 1] = [1, 1, 1]) and modules specific to each of the 9 

matrices (R[·, 1] = C[·, 1] = [1, 0, 0], etc.). All modules have rank 5. The entries of residual 

noise are generated independently from a Normal(0, 1) distribution, and the entries of each 

Ui
k  and Vi

k  are generated independently from a Normal (0, σk
2) distribution. We consider 

different levels of the joint signal strength σj2: = σ1
2 and the matrix-specific (i.e., individual) 

signal strength σi2: = σ2
2 = ⋯ = σ10

2 . We further consider scenarios with different kinds of 

missingness: (1) 1/9 of the entries in X.. missing at random, (2) 1/9 of the columns in each 

Xij entirely missing at random, and (3) one of the nine datasets Xij entirely missing.

For each scenario we impute missing values using the same approaches used in Section 10.3. 

For hard SVD imputation we use the true rank of the underlying structure. We consider 

three versions of BIDIFAC+ imputation: (1) initializing by setting missing values to 0, 

(2) initializing by generating missing values randomly from a N(0,1) distribution, and (3) 

initializing at 0 and fixing the modules R and C to match the data generation (i.e., one fully 
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shared module and one module specific to each matrix). The resulting RSEs for the missing 

signal,

RSE = (m n) ℳ
( k 1

10 S(k)[m n] X̂ [m n])
2

(m n) ℳ
( k 1

10 S(k)[m n])
2 ,

are shown in Table 6, averaged over 100 replications. Imputation by BIDIFAC+ is flexible 

and performs relatively well across the different scenarios. As expected, the accuracy of 

columnwise and blockwise imputation depends strongly on the relative strength of the joint 

signal. Initializing missing values to 0 or randomly generated values gave very similar 

results, suggesting that either approach is reasonable in practice. BIDIFAC+ using the true 

R and C is comparable to estimating R and C across most scenarios. An exception is for 

block-missing data (i.e., missing an entire Xij); in this context, there is some ambiguity 

on whether shared signals, defined by R̂ and Ĉ, include the missing block, and so the 

performance with the true R and C is slightly better. Also, as for other blocks, values for 

the missing block are imputed under the assumption of error variance 1 and mean 0; in 

practice, they cannot be transformed back to their original measurement scale without prior 

knowledge of the mean and error variance.

11.3. Application-motivated simulation.

Here, we assess the recovery of the underlying structure and the accuracy of the 

decomposition into shared components for a bidimensionally linked scenario that reflects 

our motivating application in Section 10. We generate data by taking the estimated 

decomposition from Section 10.2 and adding independent noise to it. That is, we simulate

X̃.. =
k = 1

50
αŜ..

(k) + Ẽ..,

where {Ŝ..
(k)

}k = 1
K

 is the estimated decomposition from Section 10.2, the entries of Ẽ.. are 

independent Normal(0, 1), and α > 0 is a parameter that controls the total signal-to-noise 

ratio. We consider three total signal-to-noise ratios, defined by

s2n = var
k = 1

50
αŜ..

(k) /var(Ẽ) = var
k = 1

50
αŜ..

(k) ,

s2n = 0.2, 0.5, and 5. The scenario with s2n = 0.5 corresponds most closely to the real data, 

for which the ratio of the estimated signal variance over the residual variance is 0.552. For 

each scenario we estimate the underlying decomposition using BIDIFAC+ with the true R 
and C fixed, and using BIDIFAC+ with estimated modules R̃ and C̃ and K̃ = 50. In each case 

we compute the RSE as follows:
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RSE = 1
50 k = 1

50 ‖S̃..
(k) − αŜ..

(k)
‖F

2

‖αS..
(k)‖F

2 . (16)

When computing RSE, we permute the 50 modules so that R̃[ · , k] = R[ · , k]

and C̃[ · , k] = C[ · , k], wherever possible, and set S̃..
(k) = 0 if R̃[ · , k] ≠ R[ · , k] and 

C̃[ · , k] ≠ C[ · , k]. We also compute the relative overall signal recovery (ROSR) as

ROSR =
‖

k 1

K
Ŝ

(k)
−

k 1

K
αŜ

(k)
‖

F

2

‖ k 1
K αS(k)‖F

2 . (17)

The results are shown in Table 7 and demonstrate that the underlying decomposition is 

recovered reasonably well in most scenarios. However, the RSE for estimated modules is 

often substantially more than the RSE using the true modules, as the row and column sets 

defining the modules can be estimated incorrectly. Moreover, the overall signal recovery 

error (ROSR) is, generally, substantially less than the mean error in recovering each module 

(RSE), demonstrating how the decomposition can be estimated incorrectly, even if the 

overall signal is estimated with high accuracy.

12. Discussion.

The successful integration of multiple large sources of data is a pivotal challenge for many 

modern analysis tasks. While several approaches have been developed, they largely do not 

apply to the context of bidimensionally linked matrices. BIDIFAC+ is a flexible approach 

for dimension reduction and decomposition of shared structures among bidimensionally 

linked matrices which is competitive with alternative methods that integrate over a single 

dimension (rows or columns). Here, we have focused primarily on the accuracy of the 

estimated decomposition and exploratory analysis of the results. BIDIFAC+ may also be 

used for other tasks, such as missing data imputation or as a dimension reduction step 

preceding statistical modeling (e.g., as in principal components regression). For these other 

tasks it is desirable to model statistical uncertainty and fully Bayesian extensions that 

capture the full posterior distribution about the mode in Section 8 are potentially very 

useful. Moreover, while we have explored the uniqueness of the decomposition under 

BIDFAC+, it is worthwhile to establish conditions that are both necessary and sufficient 

for its identifiability.

An implicit assumption of the BIDIFAC+ framework is that shared structures are present 

over complete submatrices. However, it is conceivable that structured variation may take 

other partially shared forms. For example, a pattern of variation in DNA methylation may 

exist across several cancer types but only regulate gene expression in some of those cancer 

types. Allowing for such shared structures, which do not exist over a complete submatrix, 

is an interesting direction of future work for which the separable form of the objective (13) 
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may be useful. Moreover, the approach may be extended to account for different layers of 

granularity in the row and column sets; for example, it would be interesting to also identify 

shared and specific patterns of variability among known subtypes within each cancer 

type. We select penalty terms by random matrix theory which requires assumptions of 

independent error and homogenous variance; an alternative strategy is to use the imputation 

accuracy of held-out data as a metric for parameter selection.

Computing time for BIDIFAC+ can range from < five minutes for each simulation in 

Sections 11.1 and 11.2 to ≈ 24 hours until convergence for the pan-omics pan-cancer 

application in Section 10 and the accompanying simulation in Section 11.3. Thus, 

computational feasibility must be considered carefully or larger scale problems.

Our application to pan-omics pan-cancer data from TCGA revealed molecular patterns that 

explain variability across all or almost all types of cancer, both across omics platforms 

and within each omics platform. However, it also revealed patterns several instances in 

which patterns are specific to one or a small subset of cancers, and these often show 

sharp distinctions of previously known molecular subtypes (e.g., for BRCA and LGG). 

Interestingly, BRCA was the only tumor type that showed up with all four platforms in 

a module. Together, they strongly separated the Basal-like molecular subtype from other 

subtypes of breast cancer. This mirrors the analysis of individual data types in Network et al. 

(2012). The LGG data also split by both histological groups and mutation status, based on 

BIDFAC+, even though both were not included in the analysis. Module 7 included mRNA, 

miRNA, and protein and was predominantly driven by codeletion of 1p/19q which is 

predominantly observed in oligodendrogliomas and is associated with better overall survival. 

This mirrors the previous TCGA work that showed that the LGG could be predominately 

split by 1p/19q deletion, IHD1 status (Module 12, for methylation) or TP53 mutation status 

(Network (2015)). An important insight provided by BIDIFAC+ is that these molecular 

distinctions are specific to BRCA and LGG, respectively, suggesting that similar phenomena 

do not account for heterogeneity within other types of cancers. Other modules that are 

broadly shared across cancer types have potential to reveal relevant molecular signal that 

are undetectable within a single cancer type, especially those with smaller sample sizes. 

Beyond exploratory visualization, to systematically investigate the clinical relevance of the 

underlying modules one can cluster their structure to identify novel subtypes analogous to 

the approach described in Hellton and Thoresen (2016). Furthermore, one can use the results 

in a predictive model for a clinical outcome, analogous to the approach described in Kaplan 

and Lock (2017). We are currently pursuing the use of BIDIFAC+ results for these tasks.
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Refer to Web version on PubMed Central for supplementary material.
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Availability.

A GitHub repository for BIDIFAC+ is available at https://github.com/lockEF/bidifac, and R 

code for all analyses presented herein is provided in a supplemental zipped folder.
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Fig. 1. 
Bidimensional integration of pan-omics pan-cancer data.
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Fig. 2. 
Total sum of squared entries in each of the 50 modules, ordered from largest to smallest.
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Fig. 3. 
For Module 4: Sample scores for the first two components (top), scree plot of singular 
values (bottom left), and loadings on genes and methylation CpGs (bottom right) for the first 
component. This module includes 22 cancer types with samples from both sexes, and it is 
dominated by molecular signals that distinguish males from females.
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Fig. 4. 
For Module 6: Sample scores for the first two components (top), scree plot of singular 
values (bottom left), and loadings for all four omics platforms (bottom right). This module 
includes only breast (BRCA) tumor samples, and it is dominated by molecular signals that 
distinguish the PAM50 subtypes (Bsasal, Her2, LumA, and LumB).
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Fig. 5. 
Scores for the first two components of Module 12 (LGG, methylation), with symbols and 
colors showing separation by IDH mutation status (wild-type, IDH mutant, and IDH mutant 
with codeletion).
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Table 1

TCGA acronyms for the 29 different cancer types considered

Acronym Cancer type Acronym Cancer type

ACC Adrenocortical carcinoma BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma CESC Cervical carcinoma

CHOL Cholangiocarcinoma CORE Colorectal adenocarcinoma

DLBC Diffuse large B-cell lymphoma ESCA Esophageal carcinoma

HNSC Head/neck squamous cell KICH Kidney chromophobe

KIRC Kidney renal clear cell KIRP Kidney renal papillary cell

LGG Brain lower grade glioma LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma LUSC Lung squamous cell carcinoma

MESO Mesothelioma OV Ovarian cancer

PAAD Pancreatic adenocarcinoma PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma SARC Sarcoma

SKCM Skin cutaneous melanoma STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors THCA Thyroid carcinoma

THYM Thymoma UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma
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Table 2

Cancer types and sources for the first 15 modules, ordered by variation explained

Module Rank Cancer types Omics sources

  1 37 All cancers mRNA miRNA Meth Protein

  2 25 All cancers miRNA

  3 22 BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC LIHC LUAD LUSC OV PAAD 
PRAD SKCM STAD TGCT UCEC UCS

Meth

  4 10 ACC BLCA CHOL CORE DLBC ESCA HNSC KICH KIRC KIRP LGG LIHC LUAD 
LUSC MESO PAAD PCPG SARC SKCM STAD THCA THYM

mRNA Meth

  5 24 All cancers mRNA

  6 17 BRCA mRNA miRNA Meth Protein

  7 15 LGG mRNA miRNA Protein

  8 20 All cancers *but* LGG Protein

  9 15 THCA mRNA miRNA Protein

10 20 All cancers *but* LGG and TGCT miRNA

11 15 CHOL KIRC KIRP LIHC mRNA miRNA Meth Protein

12 34 LGG Meth

13 20 BLCA CESC CORE ESCA HNSC LUSC SARC STAD mRNA miRNA Meth Protein

14   8 KICH KIRC KIRP mRNA miRNA Protein

15 21 BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC PAAD PRAD SKCM STAD 
TGCT UCEC UCS

mRNA miRNA
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Table 3

Imputation RSE under different approaches and different types of missingness

Method Observed Entrywise Row Column Both

BIDIFAC+ 0.510 0.558 0.670 0.807 0.881

Soft-SVD (joint) 0.531 0.621 0.678 0.834 0.894

Soft-SVD (separate) 0.564 0.610 1.000 1.000 1.000

Hard-SVD (joint) 0.431 0.559 0.829 0.908 1.200

Hard-SVD (separate) 0.344 0.581 1.000 1.000 1.000

Ann Appl Stat. Author manuscript; available in PMC 2022 May 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lock et al. Page 32

Table 4

Comparison of BIDFAC+ and SLIDE signal decomposition RSE (I = 3 sources)

BIDIFAC+ SLIDE

Scenario Structure True R Estimated R True ranks Estimated ranks

Rank = 1, s2n = 0.5 Global 0.130 0.130 0.120 0.120

Pairwise 0.157 0.156 0.103 0.103

Individual 0.197 0.197 0.118 0.118

Rank = 1, s2n = 1 Global 0.060 0.060 0.084 0.084

Pairwise 0.068 0.068 0.053 0.053

Individual 0.070 0.070 0.048 0.048

Rank = 1, s2n = 0 Global 0.010 0.010 0.035 3.65

Pairwise 0.005 0.005 0.027 1.00

Individual 0.008 0.008 0.037 0.689

Rank = 5, s2n = 0.5 Global 0.270 0.270 0.276 0.869

Pairwise 0.268 0.268 0.263 0.460

Individual 0.329 0.329 0.306 0.317

Rank = 5, s2n = 1 Global 0.123 0.123 0.232 1.320

Pairwise 0.121 0.121 0.189 0.674

Individual 0.148 0.148 0.241 0.485

Rank = 5, s2n = 10 Global 0.080 0.080 0.233 2.36

Pairwise 0.060 0.060 0.189 0.917

Individual 0.089 0.089 0.249 0.703
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Table 5

Comparison of BIDFAC+ and SLIDE signal decomposition RSE (I = 10 sources)

BIDIFAC+ SLIDE

Ranks s2n True R Estimated R True ranks Estimated ranks

1 0.5 0.150 0.150 0.116 0.116

1 1 0.076 0.078 0.105 0.105

1 10 0.032 0.025 0.060 0.060

5 0.5 0.297 0.320 0.402 0.685

5 1 0.177 0.189 0.324 0.603

5 10 0.167 0.245 0.347 0.347
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Table 6

Imputation RSE under different approaches, for different types of missingness and joint and individual signal 

strengths (σj2 and σi2, respectively)

Entry missing Column missing Block missing

Joint signal (σj2) 10 1 1 10 1 1 10 1 1

Individual signal (σi2) 1 1 10 1 1 10 1 1 10

BIDIFAC+ 0.01 0.06 0.01 0.11 0.56 0.93 0.16 0.57 0.94

BIDIFAC+ (random init) 0.01 0.06 0.01 0.11 0.56 0.93 0.16 0.57 0.94

BIDIFAC+ (true R, C) 0.01 0.06 0.01 0.10 0.55 0.92 0.10 0.52 0.93

Soft-SVD (joint) 0.03 0.15 0.04 0.11 0.58 0.94 0.10 0.53 0.93

Soft-SVD (separate) 0.02 0.09 0.02 1.00 1.00 1.00 1.00 1.00 1.00

Hard-SVD (joint) 0.01 0.06 0.01 0.99 2.02 0.99 1.26 2.15 1.04

Hard-SVD (separate) 0.01 0.03 0.01 1.00 1.00 1.00 1.00 1.00 1.00
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Table 7

Relative squared error of the decomposition (RSE) and relative overall signal recovery (ROSR) using 

BIDIFAC+ with known modules (R and C) and estimated modules (R̂ and Ĉ)

s2n RSE(R, C) RSE (R̃, C̃) ROSR (R, C) ROSR (R̃, C̃)
0.2 0.356 0.531 0.170 0.189

0.5 0.242 0.386 0.131 0.143

5 0.128 0.346 0.012 0.026
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