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OBJECTIVE

Environmental exposures may have greater predictive power for type 2 diabetes
than polygenic scores (PGS). Studies examining environmental risk factors, however,
have included only individuals with European ancestry, limiting the applicability of
results.We conducted an exposome-wide association study in the multiancestry Per-
sonalized Environment and Genes Study to assess the effects of environmental fac-
tors on type 2 diabetes.

RESEARCH DESIGN AND METHODS

Using logistic regression for single-exposure analysis, we identified exposures associ-
ated with type 2 diabetes, adjusting for age, BMI, household income, and self-reported
sex and race. To compare cumulative genetic and environmental effects, we computed
an overall clinical score (OCS) as a weighted sum of BMI and prediabetes, hyperten-
sion, and high cholesterol status and a polyexposure score (PXS) as a weighted sum of
13 environmental variables. Using UK Biobank data, we developed a multiancestry
PGS and calculated it for participants.

RESULTS

We found 76 significant associations with type 2 diabetes, including novel associa-
tions of asbestos and coal dust exposure. OCS, PXS, and PGS were significantly asso-
ciated with type 2 diabetes. PXS had moderate power to determine associations,
with larger effect size and greater power and reclassification improvement than PGS.
For all scores, the results differed by race.

CONCLUSIONS

Our findings in a multiancestry cohort elucidate how type 2 diabetes odds can be at-
tributed to clinical, genetic, and environmental factors and emphasize the need for
exposome data in disease-risk association studies. Race-based differences in predic-
tive scores highlight the need for genetic and exposome-wide studies in diverse
populations.

The complex etiology of type 2 diabetes includes genetic, lifestyle, and environmen-
tal risk factors. Genome-wide association studies (GWAS) have revealed numerous
risk loci for type 2 diabetes, and polygenic scores are well-established as predictive
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of disease risk (1–3). The impact of envi-
ronmental exposures, or the exposome, is
less well understood, and most studies
have examined individual exposures and
not considered mixtures and polyexposure
effects.
Genetic risk and the effects of environ-

mental exposures differ among racial and
ethnic groups (4–7), but work on cumula-
tive effects of environmental exposures
using exposome-wide association studies
(ExWAS) and risk score modeling, while
promising, is limited to populations with
European ancestry and has not examined
sex differences (6–8). Therefore, studying
diverse populations to ensure transla-
tional, inclusive results is imperative (7).
We conducted an ExWAS, similar to a

GWAS, for type 2 diabetes in the Personal-
ized Environment and Genes Study (PEGS),
a diverse, North Carolina-based cohort with
extensive health and internal and external
exposure data. We detected novel expo-
sure/disease associations and used ma-
chine-learning techniques to consider
multiple exposures. To understand the
relationship between disease odds and
environmental exposures, genetics, and
clinical factors, we built on the ExWAS
results and compared the predictive per-
formance of a polyexposure score (PXS),
genome-wide polygenic score (PGS), and
overall clinical score (OCS) built using es-
tablished clinical factors. We further
evaluated their performance with self-
reported race- and sex-stratified analyses.

RESEARCH DESIGN AND METHODS

Study Participants and Data
PEGS collects extensive survey data and
whole-genome sequencing (WGS) data
from individuals of varying age, race, edu-
cation level, and socioeconomic status.We
used data for 9,414 PEGS participants on
genetic, environmental, and health out-
comes for multiple phenotypes (Freeze
1.1) (9), which are outlined in Table 1A and
theSupplementaryMaterial.

Exposome Data

PEGS participants provide health and ex-
posure information through three surveys.
Beginning in 2013, participants were ad-
ministered the Health and Exposure Survey,
which asks for general health information,
individual and family medical histories, and
lifestyle and occupational exposures (n =
9,414). The External Exposome Survey
covers exogenous exposures that include

chemical and environmental exposures
at home and work (n = 3,519). The Inter-
nal Exposome Survey covers endogenous
exposures, such as medications and life-
style factors such as sleep habits, stress,
physical activity, and diet (n = 2,962)
(Table 1A). The surveys were created us-
ing established scales and forms, as de-
tailed in the Supplementary Material.

Genetic Data

The Broad Institute performed WGS for
4,737 PEGS participants with the most
complete survey data. Samples were alig-
ned to the hg38 human reference assem-
bly, and joint genotyping was performed
using the WGS germline single nucleotide
polymorphism (SNP) and Indel workflow
based on the Genome Analysis Tool Kit
(GATK) (10).Quality controlwas performed
using FastQC (11), the Picard Tools suite
(12), chrXY (12) for consistency checks of
self-reported and genotype-inferred sex,
and fastStructure (13) for ancestry consis-
tency. As detailed in the Supplementary
Material, the raw data were independently
analyzed using DeepVariant (14), and final
consensusgenotypeswere thosewith iden-
tical values in DeepVariant and GATK out-
put as well as the highest-quality variants
identifiedbyGATKalone.

Definition of Type 2 Diabetes and
Covariates
The Health and Exposure Survey asks
whether participants have been diag-
nosed with diabetes, their age at diagnosis,
and current and past treatments but not
diabetes type. To minimize phenotype mis-
specification, we used a cutoff of 20 years
at diagnosis and excluded participants di-
agnosed with gestational diabetes. Supple-
mentary Fig. 1 provides details.
Asdetailed intheSupplementaryMaterial,

weusedthe followingcovariates:ageat sur-
vey completion, BMI at survey completion,
household income, sex, and self-reported
race(White,Black,andother).

Statistical Analysis

ExWAS

We conducted ExWAS to test the associa-
tion of single variables with type 2 dia-
betes. After processing exposome and
covariate data, we excluded variables
with <10 observations per response
category. We used the resulting 662
binary and ordered factor exposome
variables in the following logistic

regression model, with T2D indicating
type 2 diabetes:

T2D ¼ Exposure1BMI1Age1Sex

1 Income1Race1 e

We used a Benjamini-Hochberg false
discovery rate (FDR) of q < 0.10.

Deletion/Substitution/Addition Algorithm for

Multiexposure Models

Toexamineconcurrentexposures,we input
ExWAS significant exposures to the dele-
tion/substitution/addition (DSA) algorithm
(15), which uses a series of deletions, sub-
stitutions, and additions to select an opti-
mal multiexposure regression model of
input variables formultiple regressionanaly-
sis. Figure 1A summarizes the ExWASwork-
flow. As a sensitivity analysis, we stratified
the population by self-reported race and
sex and added smoking as a covariate be-
cause of themultiple smoking factors (i.e.,
smoking >100 cigarettes in a lifetime,
smoking indoors, and smoking at home)
significant in the ExWAS results to ensure
the selection process was not driven by
collinearity among these variables.

Classification Scores

To assess the effects of multiple factors
on the odds of disease and determine
whether PXS provides additional informa-
tion, we computed OCS, PGS, and PXS for
participants. For optimal use of the popu-
lation, we divided PEGS participants into
1) a derivation data set of participants
without WGS (n = 3,611) and 2) training
(n = 1,774) and 3) test (n = 1,847) data
sets created by randomly splitting partici-
pants with WGS into two approximately
equal-sized data sets. Figure 1B outlines
the design of the score analyses.
Computation of Scores. We developed a
multiancestry PGS using UK Biobank data
(16) based on summary statistics from a
meta-analysis of GWAS data from the
DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) Consortium (17) (see
Supplementary Table 1). We used LDpred2
(18) to develop a grid of 200 candidate
PGS using 122,359 SNPs in UK Biobank
data. We selected the best PGS based
on the area under the curve (AUC) and,
using the adjusted weights from the
best score, computed PGS for the geno-
typed PEGS participants. Figure 1C out-
lines the PGS computation workflow,
and the Supplementary Material provides
additional details.
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We computed OCS and PXS similarly to
PGS, using theExWAS results in thederiva-
tion data set analogous to GWAS sum-
mary statistics and the coefficients from
the least absolute shrinkage and selection
operator (lasso)model in the training data
set analogous to adjusted SNP weights.
Separately for OCS and PXS, we used lasso
with 10-fold cross-validation to select
nonredundant (i.e., coefficientsnot shrunken

to 0) yet predictive (at theminimumcross-
validated error in the score) variables in
the training data set while controlling for
age, sex, and the first 10 genetic principal
components (R function cv.glmnet, pack-
age glmnet version 4.1-1) (19). We com-
puted OCS and PXS as weighted sums of the
selected variables, using lasso coefficients as
weights.ForOCS,weusedBMIandprediabe-
tes, hypertension, andhigh cholesterol status

as these are known predictors for type 2 dia-
betes andwere previously used to develop a
risk score in a cohort of exclusively European
ancestry (8,20). For PXS, 13 of the 39 expo-
sures identifiedfromExWASin thederivation
data set were retained by lasso in the train-
ing data set (see Supplementary Table
2). We standardized OCS, PXS, and PGS
separately so that each had a mean of 0
and an SDof 1 across all participants.

Table 1A—Data components from the PEGS cohort used in the study

Data component Description Participants (n)

Health and Exposure Survey Demographics, health, family history of disease, environmental
exposures, socioeconomic status, and lifestyle factors

9,414

External Exposome Survey Residential and occupational environmental exposures 3,519

Internal Exposome Survey Medication use, physical activity, stress, sleep, diet, genetics, and
reproductive history

2,962

WGS data WGS data for PEGS participants 4,737

A B

C

Define type 2 diabetes

case subjects and 

control subjects  

Derivation (N= 3,611)

Case subjects (462; 12.8%)

Control subjects (3,149; 87.2%)

Derive 200 PGS in the 

UK Biobank data using

LDpred2 (case subjects = 24,409;

control subjects 416,348)

Training (N = 1,774)

Case subjects (139; 7.8%)

Control subjects (1,635; 92.2%)

Test (N = 1,847)

Case subjects (144; 7.8%)

Control subjects (1,703; 92.2%)

data set data set

Figure 1—A: ExWAS design workflow.We classified type 2 diabetes from Health and Exposure Survey data.We selected exposures for ExWAS from
PEGS questionnaire responses and individually modeled these exposures for associations with type 2 diabetes. We used DSA modeling to select
the most parsimonious model for exposures associated with type 2 diabetes (FDR < 0.10). B: Risk score design and workflow. We divided partici-
pants into three data sets based on genotyping status. The derivation data set comprised nongenotyped participants and was used to derive risk
score features with an ExWAS.We split genotyped participants into training and test data sets.We developed OCS and PXS in the training data set
using lasso regression. We computed PXS using 13 exposure variables and OCS using four clinical variables. We developed a PGS using 122,359
SNPs in UK Biobank data. We tested risk scores for association with type 2 diabetes in the training data set. We then used the held-out test data
set to evaluate the predictive accuracy of the computed risk scores for type 2 diabetes. C: PGS computation workflow.We used four data sets for
PGS development. We used summary statistics from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium meta-analysis,
the linkage disequilibrium (LD) reference panel of the 1000 Genomes Project, and UK Biobank data as the training data set and the genotyped
PEGS participants as the test data set. We used LDpred2 to derive 200 polygenic risk scores in UK Biobank data from which we selected the best
PGS based on the AUC.We used the adjusted weights of the best PGS to compute PGS for the genotyped PEGS participants.
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Classification ScoreAnalyses. We analyzed
the classification scores in a data set com-
prising participants with WGS data and
complete data on the disease phenotype,
age, sex, the selected exposure variables,
and several clinical variables. Figure 1B
describes the score modeling design.
After quality control and filtering, the

analyses included 3,611, 1,774, and 1,847
participants with 462, 139, and 144 cases
in the derivation, training, and test data
sets, respectively. Table 1B outlines the
demographics of each data set. We used
logistic regression to fit type 2 diabetes in
the training data set for each score, con-
trolling for age, sex, and the first 10 prin-
cipal components that describe genetic
ancestry (R function glm, package stats
version 4.0.1) (19). We used the training
data set model fits to predict the odds of
assignment to the case group for the test
data set and assessed the predictive per-
formance of each score based on the
AUC. We estimated the proportion of vari-
ance explained by each score with the Na-
gelkerke pseudo-R2 metric (21), which is
the R2 for the full model (control variables
and the predictive score) minus the R2 for
control variables only. We modeled associ-
ations between the scores and disease sta-
tus. We then compared the continuous
net reclassification index (NRI) for each
model to the NRI of the OCS model to
determine whether the addition of these
terms improved the model (R function
nribin, package nricens version 1.6) (19).
We further stratified our models by self-
reported race (Black and White) and

self-reported sex (male and female) sepa-
rately and controlled for age, sex, and the
first 10 principal components for each sub-
group, except for the sex-stratified models,
which did not include sex as a covariate.
As an additional test of whether envi-

ronmental exposures in PEGS data provide
further information over PGS or OCS, we
separately modeled the association of PGS
or OCS along with each lasso-selected ex-
posure variable for disease status in the
test data set, using logistic regression and
controlling for age, sex, and the 10 princi-
pal components. To account for multiple
testing, we used q < 0.10. For a sensitiv-
ity analysis comparing the associations of
OCS, PXS, and PGS with type 2 diabetes,
we computed OCS without prediabetes.
The Supplementary Material provides de-
tails. We conducted all analyses in R ver-
sion 4.0.1 software (19).

RESULTS

As expected, participants with type 2 dia-
betes had 17% higher BMI and were 40%
older than subjects not diagnosed. Of the
participants with type 2 diabetes, 60%
were White compared with 71% in the
overall cohort, while 32% of participants
with the disease were Black compared
with 22% in the overall cohort. There was
also income disparity, with average in-
come of $40,000–$49,000 for individuals
with the disease and $50,000–$59,000
for the overall cohort. Supplementary Table
3 provides demographic information for the
PEGS participants included in the ExWAS.

ExWAS Results
We conducted an ExWAS with 78 expo-
sures from the Health and Exposure
Survey, 289 from the Internal Exposome
Survey, and 295 from the External Expo-
some Survey. After adjusting for age, BMI,
income, sex, and self-reported race, 28, 0,
and 48 exposures were significant, re-
spectively. Figure 2 shows the odds ratios
(ORs) and CIs for all statistically significant
exposures from the Health and Exposure
Survey at q < 0.10. A sensitivity analysis
with a more stringent FDR of q < 0.05
showed the results are highly consis-
tent (shown in Supplementary Fig. 2).
Supplementary Figs. 3–14 show the sen-
sitivity analysis results for the Internal
and External Exposome Surveys overall
and stratified by self-reported race and
sex with q < 0.10 and q < 0.05.

As shown in Fig. 2, several biological
and chemical exposures, namely, asbestos
(OR 1.44 [95% CI 1.10, 1.87], adjusted P =
0.02) and coal dust exposure (1.66 [1.08,
2.49], P = 0.04), smoking >100 cigarettes
in a lifetime (1.34 [1.14, 1.58], P = 0.001),
smoking indoors (1.20 [1.02, 1.42], P =
0.05), and smoking at home (1.33 [1.16,
1.50], P < 0.00001), were significantly as-
sociated with increased odds of type 2
diabetes.
For socioeconomic factors and men-

tal health variables, which we consid-
ered as exposures, living in a trailer was
associated with increased disease odds
(OR 2.16 [95% CI 1.53, 3.02], P < 0.00001),
while having a mortgage was associated
with decreased odds (0.83 [0.77, 0.89],

Table 1B—Demographics of participants in the derivation, training, and test data sets used in the predictive score analyses

Demographic variable
Derivation data set

n = 3,611
Training data set

n = 1,774
Test data set
n = 1,847

Type 2 diabetes phenotype, n (%)
Case subjects 462 (12.8) 139 (7.8) 144 (7.8)
Control subjects 3,149 (87.2) 1,635 (92.2) 1,703 (92.2)

Sex, n (%)

Female 2,348 (65.0) 1,206 (68.0) 1,254 (67.9)
Male 1,263 (35.0) 568 (32.0) 593 (32.1)

Race, n (%)

White 2,439 (67.5) 1,468 (82.8) 1,490 (80.7)
Black 1,020 (28.3) 231 (13.0) 253 (13.7)
Other 152 (4.2) 75 (4.2) 104 (5.6)

Ethnicity, n (%)

Non-Hispanic/non-Latino 3,506 (97.1) 1,708 (96.8) 1,807 (97.8)
Hispanic/Latino 105 (2.9) 52 (2.9) 32 (1.7)

Age, mean (SD), years 30.61 (16.4) 49.4 (14.6) 49.5 (14.5)

BMI, mean (SD), kg/m2 29.14 (7.1) 27.9 (6.5) 28 (6.6)
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P < 0.00001). Family income (0.84 [0.77,
0.92], P < 0.00001) and maternal (0.84
[0.80, 0.89], P < 0.00001) and pater-
nal (0.88 [0.84, 0.92], P < 0.00001)
education levels were inversely associ-
ated with odds. Unusual irritability (1.27
[1.06, 1.52], P = 0.02) and trouble sleep-
ing (1.08 [1.05, 1.12], P < 0.00001) were
associated with increased odds.
Medication and lifestyle variables as-

sociated with increased disease odds in-
clude use of any medication (OR 1.60
[95% CI 1.43, 1.79], P < 0.00001) and
acid reflux medication (1.99 [1.31, 2.99],
P = 0.009). Diet variables associated with
increased odds include frequently eating
at a buffet (1.69 [1.3, 2.18], P = 0.001),
frequent cream cheese consumption (1.36
[1.11, 1.65], P = 0.02), frequent fast-food
consumption (1.31 [1.09, 1.58], P = 0.02),
and consumption of fish oil (1.72 [1.09,
2.47], P = 0.02), low-calorie soda (1.21
[1.09, 2.47], P = 0.003), and Splenda
(1.19 [1.07, 1.31], P = 0.008). Skim milk

consumption was associated with de-
creased odds (0.74 [0.59, 0.89], P = 0.02).
Diagnosis with a sleep disorder (2.41
[1.64, 3.54], P < 0.00001) was also asso-
ciated with increased odds.
For a further investigation of the effects

of sex, self-reported race, and smoking,
we separately conducted several sensitiv-
ity analyses that are detailed in the
Supplementary Material and Supplementary
Figs. 5–8.

DSA Results
We used DSA to evaluate multivariable
models and follow-up ExWAS-identified
univariate associations. The most parsi-
monious model for Health and Exposure
Survey data included maternal and pater-
nal education level, smoking at home,
smoking indoors, smoking >100 cigarettes
in a lifetime, having a mortgage, trouble
sleeping, home type, asbestos exposure,
coal dust exposure, and education level.

The most parsimonious model for Expo-
some Survey data included use of medi-
cation for high cholesterol, high blood
pressure, and stroke; dietary variables of
frequently eating at a buffet, frequent fast-
food consumption, consumption of large
quantities of nuts, and consumption of
Splenda; sleep-related variables of hours
of sleep/week, hours awake during the
day, and self-reported high temperature
of sleeping area; and high heart rate.

Classification Score Results
All classification scores were significantly
associated with type 2 diabetes (P <

0.05) in the training and test data sets
(Supplementary Table 4). Based on the
AUC, OCS had the highest discriminative
power, followed by PXS and PGS. The
odds of having type 2 diabetes relative
to not having it increased with all scores,
with the ORs for OCS>PXS>PGS. Nota-
bly, PXS had a much higher OR (1.921

OR (%95 CI) PP Value Value
7,8237,823
6,7246,724
7,8027,802
7,7727,772
7,7507,750
7,8077,807
7,4787,478
7,8097,809
7,3727,372
7,6707,670
7,8237,823
7,7387,738
7,6177,617
7,7417,741
7,7517,751
7,7597,759
7,7727,772
7,7657,765
7,1267,126
7,7817,781
7,8237,823
7,8027,802
7,7857,785
7,8237,823
6,6836,683
7,8237,823
6,5616,561
7,8007,800
7,7727,772
7,8237,823

UnadjustedUnadjusted

Figure 2—ExWAS results for the PEGS Health and Exposure Survey. This survey requests information on lifestyle, environmental, and occupational
exposures.We regressed all exposures on type 2 diabetes with the covariates of age, BMI, income, and sex. Adj. N value is the number of partici-
pants with complete case data in each analysis.We used exponentiated ORs and 95% CIs to assess association direction and an FDR cutoff of 10%
to select exposures. Blue denotes adjusted ORs and CIs, and gray denotes unadjusted ORs and CIs.
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[95% CI 1.604, 2.304]) and AUC (0.775
[95% CI 0.737, 0.813]) than PGS (OR
1.360 [95% CI 1.115, 1.662]; AUC 0.731
[95% CI 0.692. 0.770]) (Fig. 3A and B).
For a relative comparison of the scores,

we classified individuals with scores in the
lower quartile (bottom 25 percentiles) and
upper quartile (top 25 percentiles) as low
and high risk. High-risk individuals catego-
rized by OCS, PXS, and PGS were 50.7-,
4.9-, and 2.4-fold, respectively, more likely
to have type 2 diabetes compared with
low-risk individuals (see Supplementary
Table 5). The proportion of variance ex-
plained, estimated using the Nagelkerke
pseudo-R2, was the highest for OCS (0.331),
followed by PXS (0.06) and PGS (0.011).
Based on overall continuous NRI, the classi-
fication accuracy of the OCS model im-
proved by 44.6% with the addition of PXS
alone and 17.4% with the addition of PGS
alone. As expected, adding both PXS and
PGS yielded the highest overall continuous
NRI of 46.9%, although this is a small im-
provement over the addition of PXS alone
(Supplementary Table 4).
Also as expected, OCS showed the

sharpest increase in disease odds from
lowest to highest percentile, followed by
PXS and PGS (Fig. 3C). The self-reported
race- and sex-stratified analyses pro-
duced overall association and classifica-
tion accuracy results in concordance
with those of the multiancestry analy-
ses, with differences in predictive scores
across self-reported race and sex. In the
test data set, the mean of each score was
significantly higher for Black compared
with White participants (Supplementary
Fig. 15). For sex, PXS was significantly
higher for women (Supplementary Fig. 16).
The Supplementary Material provides
details.
In the test data set, OCS computed

without prediabetes had an OR of 2.802
(95% CI 2.316, 3.419) and AUC of 0.833
(95% CI 0.801, 0.866) (Supplementary
Table 6). Compared with OCS computed
with all selected clinical factors, this rep-
resents a decrease in OR by 1.067 and
AUC by 0.086. The general trend of asso-
ciation with disease odds remained the
same, with the ORs for OCS>PXS>PGS.
Using low-/high-risk categories for pre-
dictive scores in the association models,
OCS computed without prediabetes had
an OR of 10.765 (95% CI 5.221, 25.269)
compared with 50.741 (95% CI 15.61,
311.848) for OCS computed with all se-
lected clinical factors (Supplementary Tables

5 and 7). Similarly, the addition of PXS, PGS,
and PXS and PGS together resulted in a con-
tinuous NRI of 46.4%, 25.0%, and 58.7%,
respectively (Supplementary Table 6). Add-
ing PXS and PGS together to OCS com-
puted without prediabetes resulted in a
much higher NRI (58.7%) than adding
them to OCS computed with prediabetes
(46.9%) (Supplementary Tables 4 and 6).
To examine whether environmental ex-

posures provide additional information on
disease odds compared with OCS and
PGS, we individually added each exposure
variable selected by lasso to the OCS and
PGS models, and nine and three of the 13
selected exposures, respectively, remained
significant at q < 0.10 (Supplementary
Tables 8 and 9). Notably, among the signifi-
cant results in the PGS plus exposure mod-
els, the OR for smoking was 1.864 after
controlling for PGS. These results indicate
that individual exposures provide addi-
tional information over PGS and OCS for
disease odds.

CONCLUSIONS

By performing an ExWAS, we discovered
emerging risk factors for diabetes such as
asbestos exposure. Further, by implement-
ing robust modeling approaches, we pro-
vide support for adding environmental risk
factors into decision support frameworks
for public health interventions and, even-
tually, personalized medicine. The results
of both the ExWAS and predictive score
analysis confirm prior findings of the asso-
ciation of individual environmental factors
(22,23) and the cumulative effects of mul-
tiple environmental factors with type 2 di-
abetes odds using PXS (8,9). Our results
from modeling combinations of OCS, PXS,
and PGS as well as OCS or PGS with indi-
vidual environmental exposures provide in-
sights into how disease odds can be
attributed to clinical, genetic, and nonge-
netic factors.

ExWAS
The ExWAS results revealed associations
of smoking, asbestos exposure, and coal
dust exposure with type 2 diabetes. The
associations of asbestos and coal dust
exposure are novel and highlight the
usefulness of our method in discovering
previously unknown associations between
environmental exposures and diseases,
with reverse causality highly unlikely.
While studies have loosely linked im-
paired lung function to type 2 diabetes,

this understudied aspect could have impli-
cations for disease treatment and preven-
tion (24,25). Our finding of an association
of sleep disorder with the disease is an-
other direction for future work. While dis-
rupted sleep patterns may be artifacts of
BMI-related diseases such as sleep apnea,
this relationship warrants further investi-
gation, particularly due to findings of in-
creased insulin resistance in laboratory
studies of interrupted sleep (26–28).

Classification Scores
Despite the smaller sample size in our
data (N = 9,414 in PEGS vs. N = 502,536
in He et al.), our classification score anal-
yses replicated several results reported
in He et al. (8), who used a polyexposure
risk score to predict type 2 diabetes.
Their score included alcohol use, diet,
early life factors, household and income
information, sleep, and smoking, while
our PXS included household-, income-
and sleep-related variables and smoking
but excluded diet-related variables due
to low sample sizes. Our results show
similar predictive power of the classifica-
tion scores as determined by AUC or
C statistic, namely OCS>PXS>PGS. Addi-
tionally, the NRI and AUC values for
our score models are in alignment
with He et al. (8) (see Fig. 3A), with
the AUC for PXS higher than for PGS
and the NRI for OCS1PXS higher than
for OCS1PGS.

Determined by AUC, OCS had the
highest predictive accuracy (0.919) when
calculated with prediabetes, which is a
strong predictor of type 2 diabetes
(Supplementary Figs. 17 and 18). While
PXS alone had moderate predictive accu-
racy, its addition to OCS improved dis-
ease classification accuracy by 44.6%. In
the self-reported race- and sex-stratified
analyses, the addition of PXS to OCS im-
proved classification accuracy by 26% in
the Black subgroup, 44.6% in the White
subgroup, 51.4% in women, and 35% in
men (Supplementary Tables 10–15). Be-
cause people with prediabetes are often
unaware of their status (29–31), we con-
ducted a sensitivity analysis comparing the
classification scores with OCS computed
without prediabetes (Supplementary Tables
6 and 7).

Utility of PXS
Several studies have shown the useful-
ness of PGS in predicting risk for complex
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diseases and improving clinical decision
making in precision medicine (1,32–34).
However, studies assessing the predictive
utility of PXS are limited. Our results show

PXS has moderate power to determine as-
sociations, with larger effect size and
greater power and improvement in reclas-
sification than PGS. Accordingly, PXS may

be a stronger indicator of type 2 diabetes
odds than PGS. By pseudo-R2, PXS ex-
plains a much larger proportion of vari-
ance in disease odds than PGS (PXS,
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0.060; PGS, 0.011). By OR, PXS has a
much larger effect size than PGS (PXS,
1.921; PGS, 1.360). PXS also had a much
stronger association with disease odds
than PGS and resulted in a much greater
improvement in reclassification as deter-
mined by NRI (PXS, 44.6%; PGS, 17.4%).
In addition, data for PXS can be obtained
through questionnaires and are thus less
expensive and easier to obtain than the
genotyping or WGS data required for
PGS. Importantly, unlike PGS, PXS is po-
tentially modifiable.

Race Differences
While racial and ethnic differences have
been found in associations of genetic
and nongenetic factors with disease risk
(4–7), there are few studies in multian-
cestry, non-European, and mixed popula-
tions (8,22,35,36). PGS built using data
from European populations are several-
fold less accurate in predicting disease
risk/odds in non-European populations
(5,7,23). We used data from the racially
diverse PEGS cohort to compute multi-
ancestry classification scores, which have
higher predictive accuracy compared
with race-stratified scores (18,37). Our
results show clear differences for the
scores between Black and White subgroups
(Supplementary Fig. 8 and Supplementary
Tables 10–12).
The importance of the sociocultural con-

text of the varying results for Black and
White subgroups cannot be understated.
Race is a social construct correlated with
health, economic, and exposure disparities.
While socioeconomic status and other
aspects of health disparities are impor-
tant risk factors for many diseases, they
are both a component and a confounder
of our scores and may also be drivers of
exposure disparities (23,38,39). Instead
of stratifying scores by self-reported race,
we developed multiancestry scores while
controlling for genetic ancestry using the
eigenvectors from the principal compo-
nents computed from WGS data. Our re-
sults show environmental exposures have
high predictive accuracy for type 2 diabe-
tes, underlining the critical nature of the
role of often modifiable exposures in health
disparities. Further, as the first study to eval-
uate PXS in a multiancestry cohort, we take
an important first step in contextualizing
PXS, just as PGS are calculated and con-
textualized in ancestry-based subgroups,
to understand health disparities.

Limitations
Despite its contributions, this study has
limitations. First, because exposure data
are self-reported, there may have been
recall bias.
Second, some exposure variables were

not included in the analyses due to insuf-
ficient sample sizes.
Third, although, by definition, we iden-

tify associations rather than causation,
reverse causality between some PXS-
identified exposures is possible (e.g., sleep
and income). Owing to the observational
nature of PEGS data, we cannot ascertain
the direction of causality, potentially con-
founding variables, or comorbidities. For
example, while socioeconomic status plays
a substantial role in environmental expo-
sures and is both a component and con-
founder of many diseases, it may play a
role in exposure disparities.
Fourth, with any high-dimensional

modeling, the FDR rate should be consid-
ered when interpreting the results.
Fifth, the small sample sizes of some of

the stratified analyses may have affected
statistical power, so the results should be
interpreted with appropriate caution.
Sixth, we recognize that PXS is not as

easily translatable as PGS. Unlike PGS,
which can be computed once and used
throughout an individual’s lifetime to as-
sess disease risk, PXS is based on tempo-
ral factors and hence may need to be
recomputed because of factors’ variability.
Finally, bias may exist because of dif-

ferences between PEGS participants with
genotyping data and those with expo-
sure data only. Accordingly, further vali-
dation and replication in independent
data sets are required.

Implications
Our results support the strong potential
utility of PXS in precision medicine to pri-
oritize patients for further screening or
lifestyle modification and its higher accu-
racy than PGS. Understanding how indi-
vidual and multiple exposures influence
disease risk, coupled with knowledge of
the proportion of risk due to genetics, can
inform interventions to limit specific envi-
ronmental exposures. Further, it is much
less expensive and easier to collect the
questionnaire-based environmental ex-
posure data required for PXS than the ge-
netic data required for PGS.This highlights
the need for collecting individual expo-
sure information and considering it in

disease-risk association and prediction
studies.
Within the field of human genetics,

methods development for polygenic scores
is rapidly advancing. Overall, our results
support the expansion of methods devel-
opment to PXS, both alone and in combi-
nation with other risk scores, to increase
understanding of the complex interactions
among genetic and environmental factors
in disease etiology. Another area of focus
in future work should be the collection
of data on currently unmeasured expo-
sures to increase the accuracy of the
proportion of risk explained by predictive
scores. These scores can substantially un-
derestimate the proportion of risk ex-
plained as they are based on available
exposure data. Including additional data
on exposures will enable the building of
risk/odds models with interactive effects
to uncover and understand interactions.
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