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Recently, psychedelics have emerged as promising therapeutics for numerous neuropsychiatric disorders. While their potential in
the clinic has yet to be fully elucidated, understanding their molecular and biological mechanisms is imperative as these
compounds are becoming widely used both in therapeutic and recreational contexts. This review examines the current
understanding of basic biology, pharmacology, and structural biology in an attempt to reveal both the knowns and unknowns
within the field.
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INTRODUCTION
Psychedelic drugs have been used for millennia by indigenous
peoples and over the past century by others for recreational,
spiritual and therapeutic purposes [1, 2]. In this review, we will
refer to psychedelic drugs as those which induce a lysergic acid
diethylamide (LSD)-like effect in humans via activation of 5-HT2A
serotonin (5-hydroxtytryptamine; 5-HT) receptors [2]. As men-
tioned by others in this series, psychedelic drugs have had
increasing interest over the past decade because small-scale
clinical trials have shown that drugs like psilocybin and LSD have
robust, rapid and enduring therapeutic actions for depression and
anxiety [3–8]. Psychedelic drugs have also been suggested to have
potential utility for many other conditions including chronic pain,
cluster and migraine headaches, and obsessive-compulsive
disorder among many others [2]. As definitive Phase III trials have
not yet been concluded, there are currently no FDA-approved
uses of psychedelic drugs for any condition. At the federal level,
psychedelics remain Schedule I drugs; however, many have been
decriminalized in several municipalities and the state of Oregon in
the US despite the lack of evidence for their utility. Here we will
focus on the postulated mechanisms of action of psychedelic
drugs and provide a perspective on their potential as transforma-
tive neurotherapeutics.

PSYCHEDELIC DRUG PHARMACOLOGY AND MOLECULAR
MECHANISMS OF ACTION
It is well established that the mind-altering actions of psychedelic
drugs are due principally to the activation of 5-HT2A receptors.
Initial evidence came from studies in the 1950s which noted the
structural similarities between LSD and 5-HT [9] (Fig. 1). LSD was
initially described as a serotonergic antagonist [10, 11] although
later studies by Aghajanian et al. showed it is a serotonergic
agonist with potent actions at raphe neurons [12]. Later studies
showed that LSD has actions at dopamine [13] and other biogenic
amine receptors [14]. Biochemical evidence for the actions of LSD

at 5-HT receptors came from radioligand binding studies, which
demonstrated that LSD interacts with a 5-HT2-like serotonin
receptor [15]. These studies led, ultimately, to the discovery of the
relatively selective radioligand [125I]-DOI, which preferentially
interacts with the high-affinity agonist state of 5-HT2 receptors
[16, 17]. More recent studies have shown that LSD is a high-affinity
agonist for more than 20 biogenic amine receptors [18] including
virtually all 5-HT, dopamine and noradrenergic receptors.
Studies in mice and rats showed that psychedelics induce a

variety of behaviors including, most notably, the head-twitch
response (HTR) [19]. The HTR was later demonstrated to be
induced by other 5-HT2 agonists like quipazine [20], which had
been developed as a potential antidepressant [21]. More definitive
evidence for the involvement of 5-HT2 receptors in the actions of
psychedelic drugs came from studies performed by Glennon et al.
who showed a direct correlation between the ability of drugs to
interact with cortical 5-HT2A receptors labeled with [3H]-Ketanserin
and the induction of HTR [22]. Although several non-psychedelic
drugs induce the HTR in mice and rats, to date there are no bona
fide psychedelic drugs that are negative in this assay [2].
Furthermore, Halberstadt et al. have recently shown a correlation
between HTR and potency of many psychedelic compounds [23].
Psychedelic drugs were later observed to potently activate other
5-HT2-family receptors including the 5-HT2C [24] and 5-HT2B [25]
(Fig. 1).
Data from human studies using the relatively selective 5-HT2A

antagonist ketanserin [26] are more definitive. Initial studies with
psilocybin showed that pretreatment with ketanserin blocked
most [27–30] but not all of psilocybin’s psychoactive actions in
human volunteers [31, 32]. Notably, the psychedelic actions of
psilocybin were abolished by pretreatment with ketanserin,
although some effects on cognition were apparently 5-HT1A
mediated [31, 32]. For other psychedelic drugs, the data published
to date show that ketanserin pretreatment blocks its psychedelic
effects in humans [33, 34]. Given the fact that ketanserin has
several off-target actions at other biogenic amine receptors (e.g.,
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5-HT2C antagonism, α1-adrenergic antagonism) use of more
selective 5-HT2A antagonists such as pimavanserin [35], which
has an appreciable affinity for 5-HT2C receptors might be suitable
for human studies while M100907 (which is quite selective) is
available for studies with rodents [36] (Fig. 2).
Moreover, the molecular details regarding psychedelic drug

actions at the 5-HT2A receptor have been characterized. For
instance, both x-ray [37] and cryogenic electron microscopic
(cryo-EM) studies of psychedelic [38] and non-psychedelic [39]
drugs interacting with 5-HT2A receptors have been obtained (Fig. 3).
R-69, which was found to be non-hallucinogenic in rodent models,
interacts with the 5-HT2A receptor through the canonical salt-bridge
(present in all aminergic receptors) D1553.32 and is positionally
facing TM5 to interact with S2425.46 (Fig. 3) in which the indole

nitrogen of 5-HT is observed to interact based on other 5-HT
receptor structures [39]. Subsequently, many interactions are
recapitulated with the potent hallucinogen 25-CN-NBOH, but the
N-benzyl portion of the compound sterically “pushes” down on the
toggle switch tryptophan (W3366.48) potentially playing a role in
signaling bias and/or activation efficacy of the receptor (Fig. 3) [38].
In a direct comparison with hallucinogenic vs non-hallucinogenic
molecules, LSD and lisuride crystal structures are available [38, 40].
Notably, the lisuride structure has an intrusive lipid in the orthosteric
pocket pushing the position of the compound slightly compared to
the LSD structure. While there is some evidence of lipids interacting
with the orthosteric site in the 5-HT2A receptor, it remains unclear
whether the lipid present in this structure is functionally relevant or
an artifact of crystallization [40].
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of Ca++ channels (Fig. 4) [47]. 5-HT2A receptors apparently are
desensitized via direct phosphorylation [48] and subsequent
arrestin binding via the third intracellular loop of the 5-HT2A
receptor [49] and likely other sites including the C-terminal region
[41, 50]. 5-HT2A receptors are also phosphorylated by RSK2
ribosomal S6 kinase [51], which exerts a tonic brake, or a reduction
in the population of receptors available of ligand potentiated
secondary messenger transduction, on 5-HT2A signaling (Fig. 4)
[52]. Notably, RSK2-mediated phosphorylation alters the signaling
properties of 5-HT2A receptors [53, 54]. Signaling via both Gq [55]
and arrestin [56] appears essential for the actions of some
psychedelic drugs in vivo.
In terms of interactions with other transducer proteins, most

studies have indicated that 5-HT2A receptors selectively activate
Gq-family proteins [38, 57]—at least in transfected cells in vitro. In
vivo studies with Gq hetereozygote mice revealed that the
behavioral actions of psychedelics are attenuated [55]. In addition,
electrophysiological studies have shown that the 5-HT2A-mediated
excitation of cortical neurons is insensitive to pertussis toxin [58].
As well, quite recent studies have shown that this excitation in
5-HT2A-identified neurons is abolished by pre-incubation with a
selective Gq inhibitor in studies in mice [59]. In support of this
hypothesis, quite recent studies have shown that the ability of
psychedelic drugs to induce rapid firing of 5-HT2A receptors on
identified neurons requires Gq activation [59]. By contrast, one
report suggested that in rat renal mesangial cells 5-HT2A receptors
may couple to a Gi-like protein [60]. Similarly, others have
reported potential coupling to Gi-like proteins in the brain in vivo
[61]. Taken together, these findings indicate that 5-HT2A receptors
primarily couple to Gq-like G proteins and definitive studies are
needed to clarify the role and potential relevance of interactions
with other G protein transducers.
5-HT2A receptors are also found in multi-protein complexes in

neurons in vivo and these interactions are essential for many of
the actions of psychedelic drugs in vitro and in vivo. Thus,
collaborative studies first demonstrated that the MAP1A
microtubule-associated protein interacts with 5-HT2A receptors
in vitro and in vivo [62] in intracellular vesicles. 5-HT2A receptors
are also complexed with a number of PDZ-domain-containing
proteins including PSD-95 [63, 64] and kalirin-7 (Fig. 4) [65]. The
interactions with PSD-95 (Fig. 5) are essential for the biochemical
and behavioral effects of psychedelics [64], while interactions
with kalirin-7 are involved in psychedelic drug-induced spine
formation [65]. Finally, 5-HT2A receptors also form complexes
with caveolin-1 [66]. This interaction with caveolin-1 (CAV1) is
essential for optimal 5-HT2A-mediated signaling in vitro [66] and
in vivo [67]. Genetic deletion of CAV1 attenuates the signaling
and behavioral actions of psychedelic drugs in vivo [67]. These
results are consistent with models suggesting that 5-HT2A
receptors exist in large multi-protein complexes in neurons
in vivo and that these interactions are essential for many of the
effects of psychedelic drugs (Fig. 5).
Following 5-HT2A receptor activation, induction of spines and

dendritic processes rapidly occurs [68]. The Rac guanine nucleo-
tide exchange factor (RacGEF) kalirin-7 is essential for the
immediate phase of this process [68], while TrkB activation may
also play a role in more long-term actions [69]. The effects of
psychedelics on spine formation occur within 30 min [68] and may
be maintained for several weeks after a single administration in
mice [70]. There has been increasing speculation that the potential
therapeutic actions of psychedelic drugs may be mediated via the
enhancement of spinogenesis and neuronal plasticity in cortical
neurons [2], although definitive studies are lacking.
One of the complications encountered upon investigating the

role of psychedelics in vivo is the fact that rodent and human
5-HT2A receptors differ significantly in pharmacology—particularly
for tryptamines and ergolines [71, 72]. In this regard, it has been
shown by our lab and others that a single amino acid Ser2425.46
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Fig. 2 Interactions with the widely used antagonists ketanserin, 
M100907, and pimavanserin against the 5-HT, dopamine, and 
alpha-adrenergic receptor families. The heatmap is representative 
of radioligand binding affinities, with green being more potent and 
blue being less potent. Data obtained from KiDatabase (https://
pdsp.unc.edu/databases/kidb.php).

In addition, we also have details regarding the molecular 
requirements for specifying both G protein and arrestin-ergic 
signaling downstream of the closely related 5-HT2B receptor [41]
(Fig. 3). Utilizing LSD, Cao et al. were able to structurally resolve 
the 5-HT2B receptor in the arrestin bound state, the Gq bound 
state, and the receptor without any transducer (transducer-free) 
by cryo-EM (Fig. 3) [41]. Remarkably, few changes within the 
orthosteric pocket and ligand binding mode occur between these 
states. However, it was noticed that TM6 was pushed farther out in 
the arrestin complex compared to the Gq-coupled state, while the 
transducer-free exhibited the smallest conformational change 
compared to the inactive state (Fig. 3). These movements are 
correlated with the position of the toggle switch tryptophan 
(W6.48) and could indicate a potential molecular mechanism for 
signaling bias.
Finally, the active state structures for the 5-HT2C receptors have 

also been solved with the classical psychedelic psilocin as well as 
the 5-HT2C selective agonist lorcaserin [42]. One key difference in 
the orthosteric site between 5-HT2A and 5-HT2C is at 5.46 (S242 
and A222, respectively). Examining the psilocin structure, one 
could postulate that due to the potential loss of an H-bond on the 
indole N in 5-HT2C, the active conformation of psilocin in the 
orthosteric pocket will be slightly altered in the 5-HT2A receptor 
(Fig. 3) [42].
With regard to receptor signaling, it is well established from 

studies done nearly 40 years ago that 5-HT2A receptors couple to 
Gαq and modulate phosphoinositide hydrolysis (Fig. 4) [43–45]. 
This leads to both the mobilization of intracellular calcium via IP3-
mediated release, activation of protein kinase C [46] and activation
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where it is Ala2425.46 in rodents [38, 71, 72]. This Ser242Ala
mutation greatly accelerates the dissociation rate of LSD at the
5-HT2A receptor [38] and decreases the affinity and potency of a
variety of psychedelic and non-psychedelic ergolines and
tryptamines [71, 72].
In addition, several non-synonymous single-nucleotide poly-

morphisms (SNPs) for the 5-HT2A receptor have been identified
(see https://gnomad.broadinstitute.org/gene/ENSG00000102468?
dataset=gnomad_r2_1; see ref. [73]). Of these, several have been
reported to affect the agonist binding affinities, potencies and
efficacies of several psychedelic and non-psychedelic 5-HT2A
agonists and antagonists [48, 74, 75]. Importantly, the effects of
various SNPs on 5-HT2A function were drug-specific and there

were no SNPs that uniformly affected agonist or antagonist
potency, affinity or efficacy [48, 74, 75]. Taken together, these
results indicate that naturally occurring 5-HT2A receptor variants
can have significant and unpredictable effects on drug actions.
In addition to the on-target actions of psychedelic drugs at

5-HT2A receptors, all known psychedelic drugs active in humans
have substantial activity at other GPCRs [2]. LSD, for example, is a
potent agonist at essentially every serotonin, dopamine and
noradrenergic receptor in the brain [76]. Radioligand binding
assays have also suggested a robust polypharmacological profile
for all tested psychedelic drugs [77] although these studies do not
clarify whether psychedelic drugs are agonists or antagonists at
these receptors. While there are indications that the therapeutic
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UNANSWERED QUESTIONS
How do psychedelic and non-psychedelic drugs differentially
interact with 5-HT2A receptors?
It is now well known that a number of non-psychedelic
medications and their active metabolites including fenfluramine
and norfenfluramine [83], several ergot derivatives used in
treating Parkinson’s disease and migraine headaches including
ergotamine, lisuride, pergolide and bromocriptine [92], the
trazodone metabolite m-CPP [93] and other drugs are potent
5-HT2A agonists. Importantly, these medications are devoid of
psychedelic drug-like actions in humans at typical therapeutic
doses although hallucinations have occasionally been reported
when large doses of fenfluramine [94] or m-CPP [95] have been
administered. In addition, bromocriptine and other ergots when
used at therapeutic doses in Parkinson’s disease occasionally
induce hallucinations [96]. Finally, Br-LSD, which is a weak partial
agonist of human 5-HT2A receptors, is devoid of psychedelic
actions in humans [97]. Importantly, several newly synthesized
5-HT2A agonists with antidepressant drug-like actions are devoid
of psychedelic drug-like actions in mice including TBG [98], the
lumateperone derivative IHCH-7113 [40] and the tetrahydropyr-
idine R-69 [99]. Taken together, these reports indicate that
activation of 5-HT2A receptors per se is insufficient to induce a
psychedelic experience. It is currently unknown why some 5-HT2A
agonists are psychedelic and further structural biology studies
could elucidate these distinctions. As well, given the complicated
polypharmacology of known psychedelic drugs [100], it is
conceivable that actions at other molecular targets are essential
for their effects. Thus, for instance, even though ketanserin blocks
psychedelic actions of LSD and psilocybin in humans [27, 34],
ketanserin has potent actions at other 5-HT2-family receptors,
adrenergic receptors and the vesicular monoamine transporter
[26, 101–103], to name but a few. Accordingly, the ability of
ketanserin to block the actions of psychedelics in humans does
not by itself provide unequivocal evidence for the causal role of
5-HT2A receptors in their actions. Studies with more selective and
potent 5-HT2A antagonists could clarify this issue.

Do psychedelic and non-psychedelic 5-HT2A agonists have
differential signaling downstream of 5-HT2A receptors?
It has been known since the 1980s that various 5-HT2A agonists
differ in their signaling processes. Thus, Felder et al. [104] reported
that some 5-HT2A agonists might activate arachidonic acid (AA)
release independent of Gq-mediated activation of phospholipase

Fig. 4 Representative signaling cascades and complexes of the 5-HT2A receptor. Shown in the box is the canonical Gαq signaling pathway
leading to spinogenesis and the potentially therapeutic mechanism of psychedelics. Other signaling mechanisms represented in the figure:
the phosphorylation of the receptor by RSK2 leading to a tonic break on receptor signaling; interaction of the 5-HT2A receptor with PSD-95,
which has been found to be essential for signaling; β-arrestin recruitment to the receptor and the canonical clathrin-mediated endocytosis of
the receptor; and interaction between the receptor and caveolin-1.
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PSD95 Gq-heterotrimer

Fig. 5 Representative structures of the various possible interact-
ing proteins with 5-HT2 receptors. The left is the Alphafold-
multimer-v2 created structure [130] of 5-HT2A and truncated PSD-95 
complex. The middle is the 5-HT2A Gq complex (PDB Accession 
6WHA) and the left is the 5-HT2B βarr1 complex (PDB 
Accession 7SRS).

actions require 5-HT2A receptor activation [69, 78, 79], currently, 
there is no definitive evidence in support of this mechanism, and 
indeed, at least one study has suggested that these effects are 
independent of 5-HT2A activation [80].
Perhaps the most consequential off-target actions of psyche-

delic drugs are at the 5-HT2B serotonin receptor. All tested 
psychedelic drugs are potent 5-HT2B agonists [76, 81, 82] or bind  
with appreciable affinity to 5-HT2B receptors [77]. We [83] and  
others [84] demonstrated that drugs that induce valvular heart 
disease in humans after chronic administration are potent 
5-HT2B agonists [85]. This includes many anti-migraine drugs 
(e.g., ergotamine; [85]), drugs used in treating Parkinson’s 
Disease [85] as well as illicit drugs such as MDMA and MDA 
[86]. Indeed chronic administration of all of these drugs in 
humans is associated with clinically significant valvulopathy in as 
many as 30% of patients [87–91]. Taken together, these findings 
suggest that chronic treatment with psychedelic drugs, as could 
occur with so-called “microdosing”, may have unanticipated and 
serious side effects.
Interactions with other receptors could be important for both 

the therapeutic actions as well as other potential side effects of 
psychedelic drugs. As previously mentioned, one study has 
suggested the therapeutic actions of psilocybin are 5-HT2A-
independent in mice [80].



C. These findings have been validated and extended by others
[105–107], although whether a drug is apparently psychedelic or
not is irrelevant to whether or not it also activated AA release.
Subsequently, Gonzales-Maeso et al. reported that psychedelic
5-HT2A agonists differ from non-psychedelic drugs by selective
activation of a pertussis toxin-sensitive pathway involving Src
activation [61]. This group has also reported that a heterodimeric
complex between mGluR2 metabotropic glutamate and 5-HT2A
receptors may be responsible for these actions [108–110]. Others
have provided data suggesting the complex as such is not
essential for the actions of psychedelics at 5-HT2A receptors
[111]. This group [111] also reported that 5-HT2A receptors
coupled efficiently to Gq pathways but not to Gi signaling. One
potential approach to test the hypothesis that Gq and not Gi
signaling is essential for the actions of psychedelics in vivo
would be to use a chemogenetic approach. Thus, for instance,
expressing Gq- and Gi-DREADDs [112] in 5-HT2A neurons and
stimulating them with deschloroclozapine [113] or alternative
ligands [114] and observing potential behavioral actions could
address these issues.

Are the putative therapeutic actions of psychedelic drugs
mediated by 5-HT2A receptor activation?
Currently, there are no selective 5-HT2A agonists which are
approved for use in humans and the available psychedelic drugs
have a complex polypharmacologic profile. Moreover, a rich area
to explore is how this polypharmacological profile can be
modulated to treat various disorders. Although no studies have
been performed in humans, the available preclinical data support,
with some exceptions, actions at 5-HT2A receptors are essential for
their therapeutic drug-like actions in rodents [40, 79, 98, 115] . As
previously mentioned, there is some evidence that 5-HT2A
activation by psilocybin is insufficient to induce an
antidepressant-like response [80] and there have also been
reports that some of LSD’s actions are mediated by 5-HT5A-
serotonin [116] and D2-dopamine [117] receptors. The availability
of selective 5-HT5A- [118] and D2 antagonists should prove
invaluable for determining the role of these off-target actions
for psychedelic actions. Finally, to definitively address this
question, human studies utilizing 5-HT2A antagonists prior to
psychedelic drug administration or the use of selective 5-HT2A
agonists in human trials will be essential.

How are the putative therapeutic actions of psychedelics
mediated?
Current hypotheses suggest that psychedelics may exert their
therapeutic drug-like actions via enhancing synaptic plasticity [2].
These findings are based largely on prior studies demonstrating
that psychedelic drugs induce both rapid [68, 69] and sustained
[70] augmentation of dendritic spine formation and plasticity in
cortical neurons in vitro and in vivo, consistent with their
expression at dendritic spines [119, 120]. It has long been known
that conventional antidepressant drugs [121, 122] as well as novel
antidepressants like ketamine require spine formation for their
therapeutic drug-like actions [123, 124]. This pathway requires
various post-synaptic density proteins [68] as well as the activation
of TrkB receptors by BDNF [125]. With regard to this, psychedelic
drugs have long been known to enhance BDNF levels [126] and
TrkB inhibition can attenuate the actions of psychedelic drugs on
spine formation [69].

DISCUSSION AND DIRECTIONS FOR FUTURE BASIC RESEARCH
ON PSYCHEDELICS
As is clear from the foregoing, there are many potentially
significant areas for continued research on psychedelics. These
include determining: (1) how psychedelic and non-psychedelic 5-
HT2A agonists differentially interact with the receptor; (2) how

signal transduction downstream of 5-HT2A receptors differs among
various psychedelic and non-psychedelic agonists; (3) whether on-
or off-target actions of psychedelics are essential for their putative
therapeutic actions; and (4) how are the potential therapeutic
actions of psychedelic drugs mediated. Central to these unan-
swered questions is the overarching question of whether non-
psychedelic 5-HT2A agonists may retain at least some of the
therapeutic actions of psychedelic drugs.
As mentioned previously, a number of drugs that do not induce

a psychedelic drug-like action in rodents have been recently
discovered including TBG [98], IHCH-7113 [40] and R-69 [39]. To
this list, we may also add the legacy compound Ariadne [127], Br-
LSD [128] and, in some cases, lisuride [129] which have all shown
efficacy in preliminary clinical trials and reports. Such medications
have the potential to transform our treatment of many
neuropsychiatric conditions.
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