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Abstract

Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can

vary in dosage and length. CNVs comprise a large proportion of variation in human

genomes and impact health conditions. To detect rare CNV associations, kernel-based

methods have been shown to be a powerful tool due to their flexibility in modeling the aggre-

gate CNV effects, their ability to capture effects from different CNV features, and their

accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus

needs to be defined so that locus-specific effects can be retained during aggregation. How-

ever, CNV loci are arbitrarily defined and different locus definitions can lead to different per-

formance depending on the underlying effect patterns. In this work, we develop a new

kernel-based test called CONCUR (i.e., copy number profile curve-based association test)

that is free from a definition of locus and evaluates CNV-phenotype associations by compar-

ing individuals’ copy number profiles across the genomic regions. CONCUR is built on the

proposed concepts of “copy number profile curves” to describe the CNV profile of an individ-

ual, and the “common area under the curve (cAUC) kernel” to model the multi-feature CNV

effects. The proposed method captures the effects of CNV dosage and length, accounts for

the numerical nature of copy numbers, and accommodates between- and within-locus etio-

logical heterogeneity without the need to define artificial CNV loci as required in current ker-

nel methods. In a variety of simulation settings, CONCUR shows comparable or improved

power over existing approaches. Real data analyses suggest that CONCUR is well powered

to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.
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Author summary

Copy number variants comprise a large proportion of variation in human genomes. Large

rare CNVs, especially those disrupting genes or changing the dosages of genes, can carry

relatively strong risks for neurodevelopmental and neuropsychiatric disorders. Kernel-

based association methods have been developed for the analysis of rare CNVs and shown

to be a valuable tool. Kernel methods model the collective effect of rare CNVs using flexi-

ble kernel functions that capture the characteristics of CNVs and measure CNV similarity

of individual pairs. Typically kernels are created by summarizing similarity within an arti-

ficially defined “CNV locus” and then collapsing across all loci. In this work, we propose a

new kernel-based test, CONCUR, that is based on the CNV location information con-

tained in standard processing of the variants and which obviates the need for arbitrarily

defined CNV loci. CONCUR quantifies similarity between individual pairs as the com-

mon area under their copy number profile curves and is designed to detect CNV dosage,

length and dosage-length interaction effects. In simulation studies and real data analysis,

we demonstrate the ability of the CONCUR test to detect CNV effects under diverse CNV

architectures with power and robustness over existing methods.

This is a PLOS Computational Biology Methods paper.

Introduction

Copy number variants (CNVs) are unbalanced structural variants that are typically 1 kilobase

pair (kb) in size or larger and are comprised of more or fewer copies of a region of DNA with

respect to the reference genome. CNVs are typically characterized by two descriptive features.

The first feature is CNV dosage, or the total number of copies present, with> 2 copies corre-

sponding to duplications and< 2 copies corresponding to deletions. The second is the CNV

length, typically measured in base pairs (bp) or kilobase pairs.

CNVs are important risk factors for many human diseases and traits, including Crohn’s dis-

ease, HIV susceptibility, and body mass index [1–3]. Large and rare CNVs are particularly

implicated in neuropsychiatric disorders including autism spectrum disorder, schizophrenia,

bipolar disorder, and attention deficit disorder [4]. For example, multiple studies have con-

firmed a greater burden of rare CNVs in schizophrenia cases compared with normal controls,

both genome-wide and in specific neurobiological pathways important to schizophrenia (e.g.,

calcium channel signaling and binding partners of the fragile X mental retardation protein).

Rare CNVs (e.g.,< 1% frequency) in the genome are intractable to test individually for dis-

ease association and instead are examined with collapsing methods. Collapsing methods sum-

marize variant characteristics across multiple variants in a targeted region, such as a gene set, a

chromosome or the whole genome, and perform a test of the collective CNV effects on the phe-

notype. By accumulating information across multiple rare variants, collapsing methods can have

enhanced power to detect the effects of rare CNVs that are difficult to detect individually but

collectively have a significant impact. Collapsing tests for rare CNVs are primarily built on the

foundation of rare single nucleotide polymorphism (SNP) association tests but with additional

complexity to accommodate the length and dosage features of CNVs. As with SNPs, the effects

of CNVs can vary between loci, and collapsing methods demonstrate improved power as they

PLOS COMPUTATIONAL BIOLOGY Association test of rare CNVs using Copy Number Profile Curves (CONCUR)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007797 May 4, 2020 2 / 23

can be applied for from the Taiwan Biobank Data

Access/ Ethics Committee at https://www.

twbiobank.org.tw/new_web/about-export.php.

Funding: JYT and WL were partially supported by

the National Institutes of Health (https://www.nih.

gov/) Grant No. P01CA142538-01. RMW was

supported by National Institutes of Health (https://

www.nih.gov/) Grant No. T32GM081057 and

R21MH104831. JS was supported by National

Institutes of Health (https://www.nih.gov/) Grant

No. R21MH104831 and R01MH106611. TPL was

supported by the Taiwan Ministry of Science and

Technology (https://www.most.gov.tw/?l=en)

Grant No. MOST-106-2314-B-002-134-MY2,

MOST-104-2314-B-002-107-MY2, and MOST-

108-2314-B-002-103-MY2. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: No authors have competing

interests.

https://doi.org/10.1371/journal.pcbi.1007797
https://www.twbiobank.org.tw/new_web/about-export.php
https://www.twbiobank.org.tw/new_web/about-export.php
https://www.nih.gov/
https://www.nih.gov/
https://www.nih.gov/
https://www.nih.gov/
https://www.nih.gov/
https://www.most.gov.tw/?l=en


account for this heterogeneity. However, CNV collapsing tests also need to account for within-

locus heterogeneity due to differential dosage effects or length effects within a CNV region.

Similar to SNP collapsing tests, there are two families of tests for rare CNV analysis: bur-

den-based methods and kernel-based methods. Burden-based tests, e.g., Raychaudhuri et al.

[5], summarize the CNV features of an individual via total CNV counts or average length and

model the CNV effects as fixed effects, assuming etiological homogeneity of features across

multiple CNVs in a targeted region. Kernel-based tests, such as CCRET [6] and CKAT [7],

aggregate CNV information via genetic similarity based on certain CNV features and model

CNV effects as random effects to account for the between-locus etiological heterogeneity. By

design, burden tests are optimal when the association signal is driven by homogeneous effects

across CNVs, and kernel-based tests are optimal in the presence of etiological heterogeneity.

Burden testing often involves multiple analyses on subsets of CNVs according to their dosage

(e.g., deletions only or duplications only) or size (e.g. > 100kb, > 500kb) to increase homoge-

neity; whereas, kernel-based tests do not have such requirements.

In this work, we focus on kernel-based methods, as etiological heterogeneity is becoming a

more practically encountered scenario due to high-resolution CNV detection technologies

permitting the detection of CNVs of smaller length. In kernel-based association tests, the asso-

ciation between CNVs and the trait is evaluated by examining the correlation between trait

similarity and CNV similarity quantified in a kernel. For kernel construction, we can refer to

kernel-based tests for SNPs. Since SNPs are evaluated at the same single base-pair position

(referred to as a locus) across individuals, it is natural to assess similarity locus-by-locus and

aggregate the locus-level similarity over all loci in the target region to obtain an overall mea-

sure of SNP similarity. A locus unit for CNVs, however, is not so obvious since CNVs span

multiple base pairs and may overlap partially between individuals.

To address this issue, standard CNV kernel-based tests construct CNV regions (CNVRs). For

example, the CNV Collapsing Random Effects Test (CCRET) [6], developed previously by our

group, defines CNVRs by a user-specified amount of CNV overlapping among different individ-

uals (e.g., Fig 1 of Tzeng et al. [6]). CNV similarity between an individual pair is quantified first

within each CNVR, and then CNVR-level similarity is summed over all CNVRs in the target

region to characterize overall CNV similarity. However, a drawback of this approach is that

CNVRs defined in this fashion are contingent on the unique CNV overlapping patterns among

individuals in a study, and the defined CNVRs can vary from one study to another. The arbitrary

choice of overlapping threshold also impacts the formation of locus units and consequently how

the “between-locus” and “within-locus” heterogeneous effects of CNVs are accounted for.

To avoid the issues introduced by arbitrarily defined CNVRs as in CCRET, the CNV Kernel

Association Test (CKAT) [7] adopts a different strategy to quantify CNV similarity between

two individuals. Specifically, CKAT allows users to define the CNVR as a biologically relevant

region, e.g., a chromosome. CKAT also introduces a new kernel function to measure CNV

similarity based on both dosage and length features between two CNV events. This CNV-level

similarity is then aggregated to derive a measure of CNVR-level similarity using a shift-by-one

scanning algorithm that “aligns” CNVs in two profiles based on their ordinal position. A mul-

tiple-testing correction is applied if multiple CNVRs are involved in the targeted region.

Although the new strategy bypasses the need for an arbitrarily defined locus unit, the scanning

alignment may yield unreliable results if CNVRs are too large. Additionally, CKAT aligns

pairs of CNVs based on their ordinal position, which may or may not optimally capture simi-

larity dependent on the CNV signal sources. There may also be computational considerations

with a scanning algorithm when n is large.

To address these challenges in quantifying CNV similarity using kernel-based methods, in

this work we propose a new approach called the Copy Number profile Curve-based (CONCUR)
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association test. Based on the concept of copy number (CN) profile curves (Fig 1), the CON-

CUR association test naturally incorporates both CNV dosage and length features and can cap-

ture their main effects as well as dosage-length interactions. Additionally, building the kernel

based on CN profile curves permits the quantification of CNV similarity without the need of

pre-specified locus units. Moreover, CNV length may be incorporated flexibly in units which

are supported in good resolution by the sequencing technology or which are computationally

stable. Like CCRET and CKAT, the test is built in the framework of kernel machine regression

and is powerful under heterogeneous signals and can adjust for confounders. We use simula-

tion studies to demonstrate the improved power CONCUR over existing kernel-based methods

in a variety of settings and illustrate the practical utility of CONCUR by conducting pathway

analysis on data from the Swedish Schizophrenia Study and the Taiwan Biobank.

Results

Overview of CONCUR

CONCUR assesses the collective effects of rare CNVs on a phenotype in a kernel machine

regression framework where the kernel construction does not require a pre-defined CNV

locus or region. As such, CONCUR is built on two major components: (a) the CN profile

curve, with which we describe an individual’s CNVs across the genome or a region of interest;

and (b) the common area under the curve (cAUC) kernel, with which we measure CNV simi-

larity between individuals and characterize the CNV effects on the phenotype. In a CN profile

curve (e.g., Fig 1), CNV dosage is shown on the y-axis as jumps or troughs diverging from a

baseline of 2 copies. The start and end points of the jumps and troughs correspond to the start

and end locations of the CNV and are shown on the x-axis. At genomic locations where there

are no CNV events, the y-axis (dosage) takes value 2 (i.e., the baseline value). CN profile curves

are intended to be a visualization of CNV activity and concurrence across samples and con-

tribute to the CONCUR method through the concept of cAUC.

Fig 1. Diagram of copy number profile curves and common area under the curve. (a) Example of CNV data in standard PLINK format describing

profiles of individuals in a small region of chromosome 1. (b) Copy number (CN) profile curves illustrating the cAUC between individuals with

overlapping deletions of dosage 0. (c) CN profile curves illustrating the cAUC between individuals with overlapping duplications of dosage 3 and 4. (d)

CN profile curves which show the cAUC between two individuals who have overlapping deletions of dosage 1 and overlapping duplications of dosage 3,

so that the cAUC between the individuals is the sum of the two areas.

https://doi.org/10.1371/journal.pcbi.1007797.g001

PLOS COMPUTATIONAL BIOLOGY Association test of rare CNVs using Copy Number Profile Curves (CONCUR)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007797 May 4, 2020 4 / 23

https://doi.org/10.1371/journal.pcbi.1007797.g001
https://doi.org/10.1371/journal.pcbi.1007797


By superimposing two CN profile curves, we identify regions of overlapping CNVs of the

same type (i.e., deletion or duplication) and propose to use the common area under the curve

(cAUC) to quantify CNV similarity between two individuals. To implement the idea, first the

raw dosage values in the CN profile curve are centered and scaled to obtain the duplication

profile curve and deletion profile curve. Let d denote the dosage of a CNV. The scaling and

centering can be achieved by the dosage transform functions: aDup(d) = |2 − d|c for duplica-

tions and 0 otherwise, and aDel(d) = |2 − d|c for deletions and 0 otherwise, where c is some pre-

specified constant. Second, we superimpose the duplication profile curves of two individuals

and note the overlapping regions where both curves are non-zero. Third, for each overlapping

region, we multiply the minimum of the two respective transformed dosage values by the

length of the overlap, and save this measure of “area of commonality”. Finally, we calculate the

cAUC between two individuals as the sum of all such areas of commonality in their duplica-

tion profile curves plus the sum of all areas in their deletion profile curves. Fig 1 and S1 Fig.

illustrate the cAUCs between various pairs of individuals when setting c = 1 in the dosage

transform functions, aDup(d) and aDel(d). Generally speaking, the cAUC between individuals

with overlapping CNVs of the same dosage d is the overlapping length times |d − 2|. For exam-

ple, for individuals with overlapping CNVs of dosage 0 (Fig 1(b)), the cAUC is the overlapping

length times |0 – 2|. The cAUC between individuals with overlapping CNVs of the same type

but different dosages, d1 and d2, is the length of the overlap times |d1 − d2| (e.g., dosages of 3

versus 4 in Fig 1(c)). If there are multiple overlaps in the individuals’ CN profile curves, the

cAUC between two individuals is the sum of all areas of commonality (e.g., sum of shaded

regions in Fig 1(d)). The cAUC kernel measures similarity in both CNV length and dosage

and hence characterizes the joint dosage and length effects. Using the semi-parametric kernel

machine regression framework, CONCUR regresses the trait values on CNV effects captured

by the cAUC kernel, and evaluates the association between traits and CNV profiles via a score-

based variance component test.

Simulation studies

We conducted three sets of simulations: whole genome analysis based on TwinGene pseudo-

CNV (TGP) data (referred to as TGP-WG simulations); chromosome 1 analysis based on TGP

data (referred to as TGP-Chr1 simulations); and chromosome 1 analysis based on Taiwan Bio-

bank (TWB) CNV data (referred to as TWB-Chr1 simulations). The dosage values are integers

in the TGP dataset and are continuous in TWB dataset. With these simulations, we evaluated

the performance of CONCUR, CCRET, and CKAT under various signal patterns and different

sources of effect heterogeneity. For reference, a table of all simulation settings is provided in S1

Table.

To implement CCRET, we applied the functions from the CCRET package to convert the

PLINK data to CCRET design matrices and computed the dosage kernel matrix. We used 1-bp

overlapping of CNVs among different individuals to form CNVRs as in the CCRET paper [6];

that is, as long as CNVs of different individuals overlapped by�1bp, it was considered an

“overlap”. For CKAT, we designated a chromosome as a CNVR and performed an association

test for each CNVR using the CKAT package. CNV lengths within each chromosome were

scaled to be in [0, 1] by dividing by the range of CNV activity in each chromosome, i.e., the

maximal ending position minus the minimal starting position of observed CNVs on each

chromosome. The Gaussian kernel scaling parameter was set to be 1. In the TGP-WG simula-

tions, as there were 22 CKAT p-values corresponding to the 22 chromosomes, we took the

minimum p-value and used Bonferroni’s procedure to compute the adjusted p-value for multi-

ple testing. Finally, we built the CCRET and CKAT kernels using CNVs’ categorical dosage
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(duplication, deletion, and normal) as required in the software packages. To assure compara-

bility, CONCUR was built using categorical dosages (referred to as CONCUR_cat). We also

implemented CONCUR using the original integer dosage values (referred to as CONCUR_int)

in the TGP-Chr1 simulations, and using the original continuous dosages (referred to as CON-

CUR_cont) in the TWB-Chr1 simulation.

Datasets used for simulations. The TwinGene pseudo (TGP) CNV dataset of 2000 indi-

viduals is publicly available at https://www4.stat.ncsu.edu/~jytzeng/Software/CCRET/

software_ccret.php. Autosome-wide pseudo-CNV data were simulated by mimicking the

CNV profiles of unrelated individuals in the TwinGene study [8], and the details are described

in Tzeng et al. [6]. Briefly, the TwinGene study used a cross-sectional sampling design and

included over 6,000 unrelated subjects born between 1911 and 1958 from the Swedish Twin

Registry [9, 10]. CNV calls were generated using the Illumina OmniExpress BeadChip for

72,881 SNP markers and using PennCNV (version June 2011) [11] as the CNV calling algo-

rithm with recommended model parameters. From the full callset, high quality rare CNVs

(frequency < 1% and size > 100kb) were extracted to form the simulation pool for the

pseudo-CNV data. CNV dosages in this dataset are integers (0, 1, 2, 3, and 4). In the TGP

whole genome data (chromosome 1 to chromosome 22), each of the 2000 individuals has at

least one CNV, and in the chromosome 1 analysis, 291 individuals have CNV activity.

The Taiwan Biobank (TWB) CNV dataset is from the Taiwan Biobank project https://www.

twbiobank.org.tw/new_web/. This data was studied in the real data analysis and further details

regarding it are shared in the section CNV analysis on triglycerides in the Taiwan Biobank.

CNV dosage values in this dataset are continuous with dosages� 2.3 indicating duplications

and� 1.7 indicating deletions. Out of the 11,664 individuals who were included in the real

data analysis, we took a random sample of 2000 individuals and kept their data for all CNVs in

chromosome 1. In this sample, 1432 individuals out of the 2000 had CNV activity in chromo-

some 1.

Simulation design. For the purpose of simulating phenotypes, we constructed “CNV seg-

ments” based on the CNVs in the focal dataset. The endpoints of the segments correspond to

locations where a CNV in any one of the samples begins or ends, resulting in segments that

contain either one or more intersecting CNVs. Within a segment, CNV dosage of an individ-

ual is a constant, and CNVs across individuals may have different dosages though they share

the same starting and ending positions defined by the boundaries of the segment. Note that

different segments will naturally have different lengths. In the simulation studies, we built

design matrices ZDup, ZDel, and ZLen which codified CNV features by segment in the CNV

dataset. The dosage matrices, ZDup and ZDel, took value 0 for those individuals without CNVs

in the segment and were coded as the number of additional or missing copies comprising the

CNV otherwise. ZLen was the length of the CNV segment in kb for individuals with CNV

events and was 0 for individuals without CNVs in the segment.

A case-control phenotype was generated from the logistic model

logitðPr ðYi ¼ 1ÞÞ ¼ g0 þ bXXi þ
XR

j¼1

b
Dup
j ZDup

ij þ
XR

j¼1

b
Del
j ZDel

ij þ
XR

j¼1

b
Len
j ZLen

ij

þ
XR

j¼1

b
Dup�Len
j ZDup

ij ZLen
ij þ

XR

j¼1

b
Del�Len
j ZDel

ij Z
Len
ij ;

ð1Þ

where Zij• is the (i,j) entry of matrix Z•, i = 1, � � �, N indexes individuals, and j = 1, � � �, R
indexes CNV segments. A binary covariate Xi was simulated from Bernoulli(0.5) for each indi-

vidual. b
Dup
j and b

Del
j are the log odds ratios of segment j for the presence of a CNV versus the
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absence. Likewise, b
Len
j controls the effect of CNV length in segment j, and b

Dup�Len
j and b

Del�Len
j

allow the effects of CNV length to differ by dosage. βj
• (or < 0) corresponds to a deleterious

(or protective) CNV effect, and βj
• was set to 0 in non-causal segments. We set βX = log(1.1)

and γ0 = -2, which corresponds to a baseline disease rate of roughly 0.12. We also fixed b
Len
j ¼

0 to reflect the observation that length tends to act like an effect modifier of dosage effects.

In the TGP-WG simulations, we generated phenotypes from CNV dosage × length effects

and from dosage-only effects. We chose these signals to roughly replicate the simulation set-

tings applied to assess CKAT in [7] (dosage × length signal) and CCRET in [6] (dosage signal).

In the TGP-Chr1 and TWB-Chr1 simulations, signals were generated from CNV

dosage × length effects. Below we describe the settings for the Chr1-based simulations; the

TGP-WG simulations basic settings are similar and are detailed in S2 Appendix.

In the Chr1-based simulations, we considered three types of causal effects: causal effects

from both duplications and deletions, causal effects from duplications only, and causal effects

from deletions only. Under each effect type, we designated varying percentages of the causal

segments to be deleterious (D) or protective (P). When both duplications and deletions were

causal, the settings included (DDup, PDup, DDel, PDel) = (90, 10, 90, 10), i.e., both causal duplica-

tions and causal deletions had 90% deleterious and 10% protective effects, as well as (90, 10,

10, 90) and (10, 90, 90, 10). In the scenarios where duplications or deletions alone were causal,

settings included (D•, P•) = (90,10), (50,50), and (10,90).

In the TGP-Chr1 simulations, we randomly selected 40 segments across chromosome 1 to

be causal, comprised of 20 segments containing�1 duplication and 20 segments containing

�1 deletion. As the segments were formed purely based on the relative CNV patterns among

individuals and could be very short in length, we also required causal segments to be at least as

long as the median length of all segments of that type (35kb for duplications, 46kb for dele-

tions) to ensure that they had realistic lengths. We allowed for the possibility of duplication

and deletion effects arising from the same location, and used categorical dosages to simulate

the length-dosage effects. That is, when simulating phenotypes using Eq 1, for individual i and

segment j, we set ZDup
ij ¼ 1 if a duplication was present in the segment and 0 otherwise, and set

ZDel
ij ¼ 1 if a deletion was present in the segment and 0 otherwise. We implemented CONCUR

in all TGP-Chr1 simulations using the CONCUR_cat kernel as well as the CONCUR_int ker-

nel. We refer to the three scenarios described here (i.e., effects from duplications only, from

deletions only, and from combined effects) as TGP-Chr1(a) to distinguish it from the sensitiv-

ity analyses introduced below.

In the scenario with causal effects from duplications and deletions combined, we consid-

ered two additional scenarios as sensitivity analyses: TGP-Chr1(b) examines the methods’ per-

formance under inaccuracy in the called end-points of CNVs; and TGP-Chr1(c) imposes a

more rare baseline disease rate. In TGP-Chr1(b), we added random uniformly distributed

errors to the endpoints (BP1 and BP2) of all CNVs. The CNV endpoints in the error-added

data differed from the CNV endpoints in the true data used to generate phenotypes by up to

±2.5% of the total length of the CNV. In TGP-Chr1(c), we set γ0 = −3 to lower the baseline dis-

ease rate to roughly 0.05.

In the TWB-Chr1 simulations, we randomly selected 600 CNV segments across chromo-

some 1 to be causal, comprised of 300 segments containing�1 duplication and 300 segments

containing�1 deletion. We imposed similar criteria on the length of causal segments as in the

TGP-Chr1 simulations, and we allowed for duplication and deletion effects from the same

location. Unlike the TGP-Chr1 simulations, here we used continuous dosages to simulate the

length-dosage effects in all three scenarios (referred to as TWB-Chr1(a) simulations). In the

scenario with combined duplication and deletion causal effects, we also generated signals from
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categorical dosages (referred to as TWB-Chr1(b) simulations). When simulating phenotypes

based on continuous dosage signals using Eq 1, we constructed the dosage matrices such that

for a CNV of dosage d in segment j for individual i, ZDup
ij ¼ jd � 2j if a duplication was present

and 0 otherwise, and ZDel
ij ¼ jd � 2j if a deletion was present and 0 otherwise. We applied the

CONCUR_cont kernel and CONCUR_cat kernel in both settings (a) and (b) of the

TWB-Chr1 simulations to evaluate their robustness to signals arising from dosage values of

the same type (categorical or continuous) or of an incongruent type.

We implemented case-control sampling to obtain 2000 cases and 2000 controls for each

simulation replication. Type I error rates were evaluated based on 5000 replications, and

power was estimated based on 300 replications at each effect size. For all methods, we adjusted

for a simulated binary covariate as a fixed effect in the kernel machine regression. We

employed the small-sample variance components test of Chen et al. [12] and obtained p-values

using Davies’ method [13] as implemented in the CKAT R functions.

Results of TGP-WG simulations. The type I error rates of CONCUR, CCRET, and

CKAT were examined at nominal levels of 0.01, 0.05, and 0.1 in the TGP-WG simulations

(Table 1). All methods had type I error rates around the nominal level.

The power of the methods under causal dosage × length effects in TGP-WG is shown in S2

Fig. We observe that CONCUR has the best or comparable power with the second best method

(CCRET) across different patterns of deleterious-protective effects and in the duplication,

deletion, and combined effects scenarios. Both CONCUR and CKAT are designed to detect

dosage × length signals, but CKAT struggled to pick up the signals. One possible reason might

be the multiple testing penalty applied to CKAT. In addition, the CNV signals in these simula-

tions originate from aligned genomic regions; such signals may or may not be well-captured

by CKAT, since its scanning algorithm may incorporate CNV similarity from off-position

CNV events or same-position CNV events dependent on the data.

We note that we do not expect the methods to display similar relative performance in the

duplication-only causal effects and deletion-only causal effects scenarios. This is because the

causal segments for duplications versus deletions have different characteristics, due to differ-

ences in the patterns of duplications overlapping versus deletions overlapping in the data. In

addition, the strength of the signal in the duplication-only and deletion-only simulations dif-

fers due to differences in the length of the segments as well as the frequency of CNVs in the

protective versus deleterious segments. For example, in the duplication-only effects (D,P) =

(10,90) setting, the combination of longer segments and more CNV activity in the protective

segments leads to a proportionally larger protective signal than in the corresponding deletion-

only setting. The result of these differences is asymmetry in the methods’ performance in the

two settings.

The power under causal dosage effects is shown in S3 Fig. As expected, the dosage-based

CCRET kernel performs the best, with CONCUR following CCRET or having comparable

power.

Results of TGP-Chr1 simulations. The results of the TGP-Chr1(a) simulations are

shown in Fig 2. We observe that CONCUR has higher than or comparable power to the second

Table 1. Type I error rates. Type I error rates of three CNV tests evaluated based on 5000 replications.

Nominal level CONCUR CCRET CKAT
0.01 0.010 0.008 0.009

0.05 0.045 0.047 0.049

0.10 0.096 0.093 0.092

https://doi.org/10.1371/journal.pcbi.1007797.t001
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Fig 2. Power comparison between CONCUR, CCRET, and CKAT in the TGP-Chr1(a) simulations (causal dosage × length effects in chromosome

1 of TGP data). The top panel shows power under combined duplication and deletion effects, the middle panel shows power under effects from

duplications only, and the bottom panel shows power under effects from deletions only. Different proportions of deleterious vs. protective effects are

considered as indicated by (DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective segments among causal

duplication segments, and with DDel and PDel defined similarly for causal deletion segments.

https://doi.org/10.1371/journal.pcbi.1007797.g002

PLOS COMPUTATIONAL BIOLOGY Association test of rare CNVs using Copy Number Profile Curves (CONCUR)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007797 May 4, 2020 9 / 23

https://doi.org/10.1371/journal.pcbi.1007797.g002
https://doi.org/10.1371/journal.pcbi.1007797


best method, and here the second best method is CKAT or CCRET depending on the scenario.

After further exploration of the TGP-Chr1(a) simulations as well as TWB-Chr1

dosage × length simulations, it appears that the relative performance between CKAT and

CCRET depends more heavily on whether the causal signals can be well-captured by the

CKAT kernel than what the patterns of causal effects are (i.e., causal effects from duplications,

deletions, or both, or the proportion of deleterious vs. protective effects). The power from

CONCUR_cat and CONCUR_int appear to be identical in all settings, which is not surprising

given that there are very few CNVs of larger magnitude (0 or 4+) in the data.

Fig 3 shows the performance of the methods applied to data with inaccurate CNV endpoint

information (top panel) and under a lower baseline disease rate (5%; lower panel). For both

analyses, the top row of Fig 2 is a useful reference showing the methods’ performance under

error-free CNV data and a higher baseline disease rate (12%). The top panel of Fig 3 shows

that CONCUR still has higher power than the baseline methods, although the gap between

CONCUR and CCRET is smaller compared to the error-free scenario. The lower panel of Fig

3 demonstrates that the performance of the methods under a lower baseline disease rate is very

comparable to that under a higher disease rate.

Results of TWB-Chr1 simulations. The results of TWB-Chr1(a) are shown in Fig 4. We

observe little difference in the power of the two CONCUR approaches. We also observe that

CONCUR had stronger power than CCRET and CKAT, with the exception of some degener-

ate behavior in CONCUR under (DDup, PDup, DDel, PDel) = (10, 90, 0, 0). In this setting, we sus-

pect that CONCUR’s behavior is due to the combination of a couple factors. There are few

duplication events to begin with in the TWB simulated data, and that combined with the 90%

protective effects leads to the simulated controls being comprised primarily of “random” con-

trols with relatively few individuals carrying causal protective CNVs. This results in an

extremely weak signal-to-noise ratio. All methods were affected in this setting, such that we

needed to significantly boost the range of effect sizes to observe power in any method (e.g.,

1.01-1.10 here vs. 1.0005-1.0035 under (DDup, PDup, DDel, PDel) = (0, 0, 10, 90)). We believe

that CCRET and CKAT are more robust in this setting due to borrowing information across

loci through CNVRs and through across-position alignment, respectively. Finally, as in the

TGP-Chr1 simulations, under some scenarios CKAT had higher power than CCRET, e.g., in

the settings of (DDup, PDup, DDel, PDel) = (50, 50, 0, 0) and (0, 0, 50, 50). The relative perfor-

mance of the two methods is again likely dependent on whether the causal signals were well

captured by the CKAT kernel.

Fig 5 evaluates the ability of the CONCUR_cont approach to detect a signal from categori-

cal dosages, on which CONCUR_cat, CCRET, and CKAT are built. We observe nearly identi-

cal power in CONCUR_cont and CONCUR_cat.

Real data application

In real data applications, we first conducted CNV association tests on a previously analyzed

CNV dataset from the Swedish Schizophrenia Study as a proof of concept. We next conducted

a CNV-triglyceride (TG) association analysis on data from the Taiwan Biobank. We con-

structed kernels for all methods (CONCUR, CKAT and CCRET) based on categorical dosages,

and dropped the “_cat” suffix in our discussion of the CONCUR method in this section for

simplicity. We used the step-wise Holm method to adjust for multiple testing, which yields

more powerful results than the Bonferroni procedure and remains valid when applied to

dependent p-values [14].

CNV analysis on schizophrenia in the Swedish Schizophrenia Study. We conducted

pathway-based CNV analysis on data from the Swedish Schizophrenia Study [15]. The Swedish
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Schizophrenia Study used a case-control sampling design. Genotyping was done in six batches

using Affymetrix 5.0 (3.9% of the subjects), Affymetrix 6.0 (38.6%), and Illumina OmniExpress

(57.4%). PennCNV [11] was used to generate CNV calls. After quality control, we obtained a

high quality rare CNV (frequency < 1% and size > 100kb) dataset in 8,457 subjects (3,637

cases and 4,820 controls) [16]. Previous analyses of this data [16] indicated significant associa-

tions of large rare CNVs with schizophrenia risk for both genome-wide dosage effects and

gene intersecting effects of selected gene sets.

To evaluate the practical utility of the three kernel-based tests, we performed analysis on

the gene sets previously examined in [6], excluding the PSD pathway as it overlaps the other

three PSD-related pathways considered. In the 8 gene sets, large (> 500kb) rare CNVs were

found to be associated with schizophrenia by Szatkiewicz et al. [16], and these associations

were corroborated by Tzeng et al. [6] in a gene-interruption analysis with CNVs > 100kb. In

each pathway analysis, we performed association tests for joint dosage and length effects of

rare CNVs > 100kb, using a fixed effect term to adjust for batch effects. CONCUR and CKAT

kernels were constructed from the raw PLINK data and the CCRET dosage kernel was created

Fig 3. Power comparison between CONCUR, CCRET, and CKAT in TGP-Chr1(b) and TGP-Chr1(c) (causal dosage × length effects from both

duplications and deletions in chromosome 1 of TGP data). The top panel shows power under TGP-Chr1(b), in which the kernels are built on CNV

data with error added to the CNV endpoints, mimicking the scenario of inaccuracy end points of called CNVs. The bottom panel shows power under

TGP-Chr1(c), in which the disease base rate is more rare (5%). Different proportions of deleterious vs. protective effects are considered as indicated by

(DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective segments among causal duplication segments, and

with DDel and PDel defined similarly for causal deletion segments.

https://doi.org/10.1371/journal.pcbi.1007797.g003
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Fig 4. Power comparison between CONCUR, CCRET, and CKAT in TWB-Chr1(a) (causal continuous dosage × length effects in chromosome 1

of TWB data). The top panel shows power under combined duplication and deletion effects, the middle panel shows power under effects from

duplications only, and the bottom panel shows power under effects from deletions only. Different proportions of deleterious vs. protective effects are

considered as indicated by (DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective segments among causal

duplication segments, and with DDel and PDel defined similarly for causal deletion segments.

https://doi.org/10.1371/journal.pcbi.1007797.g004
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using the functions available on the CCRET website. For CKAT, we used pathways as the

CNVR unit instead of chromosomes because there were multiple chromosomes with only one

gene.

After applying Holm’s procedure to adjust for multiple testing on the 8 pathways, CON-

CUR and CKAT found significant associations in all 8 pathways, while CCRET identified 4

pathways as significant (Table 2). We observed stronger power in CKAT in the analysis here

compared to the power observed in the simulation studies. CKAT and CONCUR are more

sensitive to dosage-length effects while CCRET is more sensitive to dosage effects; thus, these

results suggest significant CNV effects from dosage × length or length affecting schizophrenia

risk in several pathways.

CNV analysis on triglycerides in the Taiwan Biobank. We applied the proposed CON-

CUR test to the Taiwan Biobank (TWB) data https://www.twbiobank.org.tw/new_web/ and

conducted CNV association analysis with triglyceride (TG) levels on lipid-related pathways.

The nationwide biobank project was initiated in 2012 and has recruited more than 15,995 indi-

viduals. Peripheral blood specimens were extracted from healthy donors and genotyped using

the Affymetrix Genomewide Axiom TWB array, which was designed specifically for a

Fig 5. Power comparison between CONCUR, CCRET, and CKAT for TWB-Chr1(b) (causal categorical dosage × length effects in chromosome 1

of TWB data). The panels show power under combined duplication and deletion effects. Different proportions of deleterious vs. protective effects are

considered as indicated by (DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective segments among causal

duplication segments, and with DDel and PDel defined similarly for causal deletion segments.

https://doi.org/10.1371/journal.pcbi.1007797.g005

Table 2. Association test results for the effects of CNVs with> 100kb in length on schizophrenia risk in the Swedish Schizophrenia Study. Raw p-values are reported

for CONCUR, CCRET, and CKAT. Asterisks indicate p-values that were significant after a Holm multiple-testing adjustment. Pathways are ordered alphabetically.

Gene-sets P-values

Gene-set Name # Genes # Genes Interrupted in Cases # Genes Interrupted in Controls CONCUR CCRET CKAT
Cytoplasm (Kirov et al. [17]) 266 28 32 0.00124? 0.01408 0.00030?

FMRP targets (Darnell et al. [18]) 810 149 152 2.29E-05? 0.00044? 0.00026?

Mental Retardation 503 67 63 0.00164? 0.10200 0.00350?

PSD/mGluR5 (Kirov et al. [17]) 38 4 7 0.00040? 0.10540 0.00129?

PSD/NMDAR (Kirov et al. [17]) 61 12 12 0.00102? 0.00922? 0.00046?

PSD/PSD-95 (Kirov et al. [17]) 65 13 10 0.00052? 0.00144? 0.00903?

Synaptic genes (Ruano et al. [19]) 718 154 164 5.45E-06? 0.02005 0.00766?

Synaptic Proteome (G2Cdb) 1023 121 106 0.00067? 0.00010? 0.00736?

https://doi.org/10.1371/journal.pcbi.1007797.t002
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Taiwanese population. The TWB array contains 653,291 SNPs and was used to generate calls

for genome-wide CNVs in the following process. First, Affymetrix Power Tools version 1.18.0

was used to produce a summary file of the intensity values of all probes, and the file was input

into the Partek Genomic Suite version 6.6 to call CNVs based on the following criteria: at least

35 consecutive SNP markers, p-values of different CN values between two consecutive

segments < 0.001, and signal-to-noise ratio (SNR)� 0.3. A duplication was called if its copy

number was� 2.3, and a deletion was called if its copy number was� 1.7. Several previous

studies [20] [21] have demonstrated appropriate CNV calls with these parameters. After qual-

ity control, we obtained CNV data in 14,595 unrelated individuals. Our CNV association anal-

yses focused on a subset of 11,664 individuals who had non-missing TG levels.

We referenced the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database

[22] to identify lipid-related pathways. Among the 17 pathways related to “lipid metabolism”,

15 pathways included genes intersected by the TWB CNV data and were selected as candidate

pathways in our analysis. For each pathway analysis, we adjusted for sex, age, BMI, and the top

10 principal components representing the population structure as covariates with fixed effects.

As before, CKAT was implemented with each pathway comprising a single CNVR.

Similar to the Swedish Schizophrenia Study analysis, after applying Holm’s procedure to

adjust for multiple testing on the 15 pathways, all 15 pathways were found significant by CON-

CUR and CKAT, and 1 pathway was found significant by CCRET (Table 3). CKAT again dem-

onstrated much better power than in the simulation studies. The relative performance among

the three methods may be due to more dominant length or dosage × length signals.

Next, we explored associations with TG levels in the TWB data on a by-chromosome basis

(Table 4). Using the Holm method to adjust for multiple testing on 22 chromosomes, CON-

CUR found all 22 chromosomes significantly associated with TG, CKAT found 12 significant

chromosomes, and CCRET found none. It is not unexpected to see all 22 chromosomes identi-

fied to be significantly associated with TG, since the genes in the 15 significant lipid metabo-

lism pathways examined are located across all 22 chromosomes. For example, for the 12

chromosomes identified by both CONCUR and CKAT, the number of pathway genes inter-

sected by CNVs ranges from 8 to 41, and for those chromosomes uniquely identified by CON-

CUR (excluding chromosome 13), the number of intersected genes ranges from 4 to 36. In

chromosome 13, while there is only one pathway gene, all CNVs are located in chr13q, which

is a well-studied region related to cholesterol metabolism [23] [24] [25]. Since cholesterol is

strongly related to TG levels, CNVs in chr13q and chr13q22-q32 may impact TG levels by

affecting the metabolism efficiency of TG and cholesterol. To further interpret the significant

CONCUR test result, we examined the subregion chr13q22-q32 that is highlighted in [24] and

contains or overlaps with the markers in [23] and [25]. By applying CONCUR, CKAT and

CCRET to this subregion, we obtained the p-values as 0.0000143, 0.0004388 and 0.0242815,

respectively. These results suggest a length or dosage × length signal arising from

chr13q22-q32, which CONCUR and CKAT can detect with good power. This length-driven

CNV signal is not well captured by CCRET in both of the subregion and chromosome-wide

analyses, since CCRET does not account for CNV length features. The strength of the signal

from chr13q22-q32 may be diluted for CKAT when the entire chromosome is treated as a

CNVR.

As further assurance that these associations are less likely due to false positives, we con-

ducted a CONCUR negative-control analysis by repeating the by-chromosome analysis using

permuted TG levels. The resulting p-values are shown in Table 4; the p-value range of those

chromosomes identified by both CONCUR and CKAT (i.e., 0.483 to 0.888) is similar to that of

those uniquely identified by CONCUR (i.e., 0.485 to 0.963). In addition, we also examined the

quantile-quantile plots (Q-Q plots) of CONCUR p-values from negative-control analyses, by
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generating (a) 20 TG-permuted datasets for each of the 15 pathways, and (b) 1000 TG-per-

muted datasets for chromosome 13. The Q-Q plots, shown in S4 Fig, suggest that the p-values

follow the expected null distribution, Uniform(0,1).

Finally, we illustrate in S3 Appendix possible CONCUR post-hoc analyses probing the

potential sources of a CNV association identified at the aggregate-level. As an example, we

looked more closely at pathway hsa01040 (biosynthesis of unsaturated fatty acids), for which

both CONCUR and CKAT were significant but not CCRET. In short, we calculated summary

statistics describing CNV length and dosage in hsa01040 for individuals with different levels of

TG (low, medium, and high), and examined CNV features in all CNVs together and in dupli-

cations and deletions separately. We also used heatmaps to visualize CNVs in the 23 genes in

hsa01040 (Fig A in S3 Appendix), displaying the duplications and deletions intersecting genes

in all CNV profiles categorized by their TG level. These exploratory analyses suggested that for

duplications only, there may exist “promising” differences in CNV length and relatively

weaker differences in dosage across TG levels. Because these “promising” associations from a

stratified analysis reflected only marginal associations of a CNV feature and did not account

for the effect heterogeneity that motivates the application of kernel-based methods, we also

Table 3. Association test results for the effects of CNVs on triglyceride levels in the Taiwan Biobank. Raw p-values are reported for CONCUR, CCRET, CKAT, and a

negative control test in which CONCUR is applied to a randomly permuted response vector. Asterisks indicate p-values that were significant after a Holm multiple-testing

adjustment. Pathways are ordered alphabetically.

Gene-sets P-values

Gene-set Names # Genes # Genes Interrupted CONCUR CCRET CKAT Neg. Control

hsa00061

(Fatty acid biosynthesis)

13 12 0.00171? 0.01187 0.00197? 0.89046

hsa00062

(Fatty acid biosynthesis)

30 26 0.00031? 0.01591 0.00508? 0.36231

hsa00071

(Fatty acid degradation)

44 43 0.00406? 0.01088 0.00631? 0.78391

hsa00072

(Synthesis and degradation of ketone bodies)

10 10 0.00008? 0.00459 0.00383? 0.37588

hsa00100

(Steroid biosynthesis)

19 16 0.01641? 0.00618 0.00906? 0.28308

hsa00120

(Primary acid bile biosynthesis)

17 17 0.00019? 0.00314? 0.00274? 0.56475

hsa00140

(Steroid hormone biosynthesis)

60 58 0.00030? 0.00623 0.00159? 0.25125

hsa00561

(Glycerolipid metabolism)

61 50 0.00430? 0.00494 0.00198? 0.46773

hsa00564

(Glycerophospholipid metabolism)

97 86 0.00322? 0.00398 0.00209? 0.52954

hsa00565

(Ether lipid metabolism)

47 43 0.00018? 0.00859 0.00439? 0.50786

hsa00590

(Arachnidonic acid metabolism)

63 62 0.00212? 0.00883 0.00211? 0.78048

hsa00591

(Linoleic acid metabolism)

29 29 0.00080? 0.01799 0.00291? 0.65068

hsa00592

(alpha-Linolenic acid metabolism)

25 25 0.00581? 0.00927 0.00273? 0.74765

hsa00600

(Sphingolipid metabolism)

47 43 0.00382? 0.00512 0.00789? 0.31366

hsa01040

(Biosynthesis of unsaturated fatty acids)

27 23 0.00012? 0.00394 0.00158? 0.77243

https://doi.org/10.1371/journal.pcbi.1007797.t003
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applied CONCUR to duplications and deletions separately, and found a very significant associ-

ation with TG in duplications (p-value < 1 × 10−8) and a weaker signal in deletions (p-

value = 0.0313).

Discussion

We introduce CONCUR to leverage the strength of kernel-based methods to assess the collec-

tive effects of rare CNVs on disease risk and incorporate several desired features. First, CON-

CUR permits the quantification of CNV similarity in an CNVR-free manner, avoiding the

need of arbitrarily defining CNVRs as in current practice. Second, CONCUR incorporates

both length and dosage information via the cAUC kernel, and is capable of detecting dosage,

length and length-dosage interaction effects. Third, as the technology for detecting smaller

CNVs improves, we expect to observe more length variation in CNVs and an increasing need

to accommodate length effects in CNV association studies. However, there are shortcomings

in the standard kernel choices for handling CNV length. For example, a linear (or polynomial)

kernel, which scores length similarity in a multiplicative fashion, cannot always reflect the true

level of length similarity between an individual pair: e.g., a pair of CNVs of length 20 would be

equally similar to two CNVs with lengths 1kb and 400kb (as 20 × 20 = 1 × 400). The alternative

Gaussian kernel as in CKAT would still require a pre-specified scaling factor. CONCUR

addresses these issues by using the common AUC of the CN profile curves of an individual

pair, quantifying CNV similarity in dosage and length simultaneously. Finally, unlike current

Table 4. Association test results for the effects of CNVs on triglyceride levels by chromosome in the Taiwan Biobank. Results from the CONCUR, CCRET, and CKAT

association tests are shown. The results of the negative control analysis reflect the p-value from CONCUR applied to a randomly permuted response vector. Asterisks indi-

cate p-values that were significant after a Holm multiple-testing adjustment. Pathways are ordered according to chromosome. For interpretation of the by-chromosome

association tests, the number of genes from the 15 lipid metabolism pathways that are intersected by CNVs is given (# Genes Interrupted).

Chromosomes P-values

Chr # Genes Interrupted CONCUR CCRET CKAT Neg. Control

1 41 0.000018? 0.734017 0.000017? 0.739204

2 30 0.000007? 0.077438 0.000118? 0.790286

3 14 4.41E-08? 0.363502 0.000834? 0.483097

4 36 5.11E-08? 0.257951 0.035544 0.900595

5 12 1.25E-07? 0.153555 0.003703? 0.865209

6 18 4.00E-07? 0.080112 0.000105? 0.735159

7 13 0.000030? 0.216259 0.001868? 0.855037

8 14 0.000006? 0.627055 0.000229? 0.781897

9 15 0.000663? 0.109319 0.006223 0.962761

10 29 0.000082? 0.256622 0.000027? 0.603895

11 20 0.000034? 0.002463 0.000557? 0.623104

12 15 0.000006? 0.316674 0.009471 0.484621

13 1 0.000010? 0.195530 0.217677 0.883870

14 10 0.000070? 0.075694 0.000149? 0.608107

15 14 0.000263? 0.464109 0.000635? 0.768470

16 11 0.001748? 0.217819 0.008337 0.604125

17 22 0.001328? 0.024979 0.015718 0.658522

18 5 0.000009? 0.155285 0.017809 0.954988

19 21 0.012431? 0.514188 0.009205 0.663204

20 8 0.000079? 0.120546 0.001250? 0.888174

21 4 0.000511? 0.200590 0.005763 0.583767

22 13 0.011617? 0.946787 0.019274 0.786773

https://doi.org/10.1371/journal.pcbi.1007797.t004
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kernel methods which require discretized copy numbers, CONCUR is directly applicable to

continuous and discrete copy numbers. We implement the CONCUR test in the R package

‘CONCUR’.

CONCUR shares some philosophy with several CNV analysis strategies in the literature.

For example, Aguirre et al. [26] characterized the copy number changes in the pancreatic ade-

nocarcinoma genome by detecting the minimum common regions (MCR) of recurrent copy

number changes across tumor samples and using MCRs to prioritize genes that might be

involved in pancreatic carcinogenesis. Harada et al. [27] also examined the minimal overlap-

ping/common regions of frequent CNV activities among pancreatic cancer samples and

among normal samples to identify candidate regions that might contain critical oncogenes or

tumor suppressor genes. Furthermore, Mei et al. [28] proposed algorithms for identifying

common CNV regions across individuals of homogeneous phenotypes for downstream associ-

ation analysis. Built on similar concepts to these “common regions”, CONCUR quantifies

CNV similarity between sample pairs based on the “size” of the common regions as reflected

in congruent location and dosage, and provides an association test to evaluate dosage and

length effects.

In the analyses performed in this study, we calculated the cAUC using CNV dosage values

transformed by the functions aDup(d) = |d − 2| for duplications and 0 otherwise, and aDel(d) =

|d − 2| for deletions and 0 otherwise. That is, we used copy number 2 as a reference value, and

defined CNV similarity as the overlapping CNV length scaled linearly according to the magni-

tude of dosage deviation from the reference value. As indicated in the method section, CON-

CUR can be flexibly extended to accommodate other schemes of quantifying common area by

adopting different a•(�) functions in the calculation of the cAUC, e.g., a•(d) = |d − 2|c with c 6¼
1. Finally, overlapping area may be further weighted by inverse frequencies or according to

CNV type (e.g., deletion) when needed, to augment the contribution from overlapping regions

from rarer CNVs or from CNVs with more severe impact, respectively.

We note that although both CONCUR and CKAT are designed to capture CNV dosage and

length information, the two kernels are constructed based on different philosophies, and each

method has sensitivity to certain effect mechanisms. CONCUR first quantifies the similarity in

an individual pair within the same genomic locations, and then collapses the similarity infor-

mation across different locations in a user-specified region (e.g., whole genome, chromosome,

or gene set). In contrast, CKAT treats the user-specified region as a CNVR, and collapses CNV

information across different locations by incorporating off-position similarities and/or same-

position similarities to obtain a CNVR-level measure of similarity.

The different philosophies of quantifying CNV similarity may also explain the differences

in CKAT’s relative performance compared to CCRET here versus in the CKAT paper [7].

Here we observe that CKAT has higher or comparable power compared to CCRET in some

scenarios and lower power in other scenarios; however, in the CKAT paper, CKAT outper-

forms CCRET in the majority of the considered scenarios. This discrepancy is likely due to dif-

ferences in the assumed effect mechanisms in our approach versus those in the CKAT paper.

In the simulation study here, certain genomic regions are selected to be causal. Whereas, in the

CKAT paper simulations, causal effects arise from CNVs, not genomic regions. Each individ-

ual has either 0 or 1 CNV with randomly generated endpoints; CNVs of the same type (i.e.,

duplication or deletion) are either all causal or all non-causal, depending on the scenario.

Under this design, causal CNVs in different individuals may fall in different genomic loca-

tions, yet CNVs of the same type will have similar effects. CKAT powerfully detects these sig-

nals because its similarity quantification approach (i.e., based on pairs of CNVs rather than

aligned CNV activity in a fixed genomic location) better captures the CNV-driven (as opposed

to locus-driven) signal. Whereas, methods that quantify similarity based on aligned positions,
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such as CCRET and CONCUR, can suffer from power loss under this signal, as exemplified by

the performance of CCRET in [7].

Materials and methods

Ethics statement

In the Swedish Schizophrenia Study, all procedures were approved by ethical committees at

the Karolinska Institutet (Dnr No. 04/-449/4 and No. 2015/2081-31/2) and University of

North Carolina (No. 04-1465 and No. 18-1938). All subjects provided written informed con-

sent (or legal guardian consent and subject assent). The Taiwan Biobank study was approved

by the ethical committee at Taichung Veterans General Hospital (IRB TCVGH No.

CE16270B-2). Consent was not obtained because the data were de-identified.

CONCUR method

For individual i, i = 1, � � �, n, denote Yi the phenotype of individual i. Codify the CNV informa-

tion in matrix Zi with dimension Pi × 4 as in the standard PLINK format of CNV data, where

Pi is the number of CNVs that individual i has, and each row of Zi records four features of

CNV p, p = 1, � � �, Pi: dosage (denoted as dp) chromosome (denoted as Chrp), start location

(denoted as BP1p), and end location (denoted as BP2p). The dosage dp can be integer, continu-

ous or categorical values. For example, in the Swedish Schizophrenia pathway analysis, an indi-

vidual might have between 1-88 CNVs, and CNV lengths might range from 100kb up to

7841kb. Let Xi = (Xi1, � � �, Xir)T be the r covariates. Under the kernel machine regression frame-

work, we model the association between phenotypes and CNVs as follows

gðmiÞ ¼ b0 þ XT
i bX þ hðZiÞ; ð2Þ

where μi = E(Yi|Xi, Zi), the conditional phenotype mean given covariates and CNVs; g(�) is the

canonical link, which transforms the conditional phenotype mean μi so that the mean is on the

same scale of the linear predictors formed by covariates and CNV data. For continuous pheno-

types, g(μi) = μi; for binary phenotypes, g(μi) = log[(μi/(1 − μi)]. h(Zi) is an unknown smooth

function of the variant features characterized by a kernel function k(�, �).

Profile curves. The proposed cAUC kernel is built on the concept of a CN profile curve as

shown in Fig 1. Consider the genomic location x from chromosome k for individual i. Given

the CN profile curve, we define the duplication profile curve, f Dupik ðxÞ, and the deletion profile

curve, f Delik ðxÞ, which recenter and rescale the CN values in CN profile curves through the “dos-

age transform functions” as described below, and allow us to compute cAUC similarity from

duplications and from deletions in a more flexible manner. Specifically, let q = 1, � � �, Pik index

the CNV features (dq, BP1q, BP2q) occurring on chromosome k of individual i. Then we con-

struct duplication and deletion profile curves respectively describing duplications and dele-

tions on chromosome k for individual i as follows:

f Dupik ðxÞ ¼
XPik

q¼1

IðBP1q � x � BP2qÞa
DupðdqÞ ð3Þ

f Delik ðxÞ ¼
XPik

q¼1

IðBP1q � x � BP2qÞa
DelðdqÞ ð4Þ

where x is a location on the genome on the same scale as BP1q and BP2q; I is the indicator func-

tion such that I(�) = 1 if the condition contained within is satisfied and equals 0 if otherwise;
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and a•(d) is a dosage transform function which determines the reference copy number value

and controls how different copy number values contribute more or less to similarity in profiles.

If an individual has no CNVs in chromosome k, then their duplication and deletion profile

curves are identically equal to zero, i.e., f Dupik ðxÞ ¼ f Delik ðxÞ � 0 for all x. Although not explicitly

shown, f Dupik and f Delik are functions of Zi as the information of dq, BP1q, BP2q and chromosome

k for subject i is obtained from Zi.
In this study, we designated aDup(dq) = |dq − 2| if dq is from a duplication and 0 otherwise.

That is, for a given chromosome k and individual i, the function f Dupik ðxÞ equals the magnitude

of the duplication (i.e., number of additional copies compared to the reference copy number

2) for x inside a duplication and equals 0 otherwise. For deletions, aDel(dq) and f Delik ðdqÞ can be

obtained in an analogous way.

cAUC kernel. We propose to quantify the similarity between individuals i and j by com-

paring f Dupik vs. f Dupjk and f Delik vs. f Deljk over chromosomes k = 1, � � �, 22 using the following kernel

function:

kcAUCðZi;ZjÞ ¼
X22

k¼1

Z

N
½min ðf Dupik ðxÞ; f

Dup
jk ðxÞÞ þ min ðf Delik ðxÞ; f

Del
jk ðxÞÞ�dmðxÞ ð5Þ

where min ðf �ikðxÞ; f
�
jkðxÞÞ captures the minimum of the two functions evaluated at x and μ(x) is

the counting measure. We refer to the kernel function as the cAUC kernel as it computes the

minimal common area under the two individuals’ duplication and deletion profile curves. The

cAUC kernel matrix KcAUC is constructed such that its (i, j)th element is kcAUC(Zi, Zj). The

cAUC kernel is a valid kernel as shown in S1 Appendix.

As an illustrating example, we calculate the cAUC between individuals 1 and 2 from Fig 1.

Both individuals have duplication profile curves on chromosome 1 as f Dup11 ðxÞ ¼ f Dup21 ðxÞ ¼ 0,

since they have no duplications. For individual 1, the deletion profile curve is f Del
11
ðxÞ ¼

jd � 2j ¼ j0 � 2j ¼ 2 if x 2 [200, 400] on chromosome 1 and 0 otherwise; for individual 2,

f Del
21
ðxÞ ¼ 2 if x 2 [100, 500], 1 if x 2 [600, 800], and 0 otherwise. To compute their cAUC, we

characterize the individuals’ curves in 2 genomic regions: (1) x 2 [200, 400], in which

f Del
11
ðxÞ ¼ f Del

21
ðxÞ ¼ 2; and (2) x =2 [200, 400], in which min ½f Del

11
ðxÞ; f Del

21
ðxÞ� ¼ 0. This discreti-

zation allows us to compute the cAUC by multiplying the minimum value of the two curves in

each region by the length of the region to obtain kcAUC(Z1, Z2) = (2 × 200) + 0 = 400.

The intuition of the cAUC kernel is to quantify similarity using the length of overlapping

CNVs between two individuals, with dosage information of the two overlapping CNVs deter-

mining how the overlapping length is scaled. The minimum operator enforces that the over-

lapping length is scaled by the CNV of smaller magnitude in a pair with different magnitudes.

The similarity between CNVs of different types (i.e., duplication vs. deletion) is 0. The similar-

ity between CNVs of the same type depends on the copy number values via the dosage trans-

form function, a•(d). Legal choices of a•(d) will upweight the contribution from similar CNVs

of greater magnitude in duplication or deletion, which are often more rare and have higher

impact. The family of dosage transform functions a•(d) = |d − 2|c provides a spectrum of

weighting schemes, with c< 1 down-weighting and c> 1 upweighting the contribution of

higher magnitude CNVs. Across copy number data of varying types and varying sample-level

characteristics, the a•(�) dosage transform function allows for flexible scaling of dosage to

appropriately customize the cAUC measure of similarity.

Association test. The association between phenotype and CNVs is examined by testing

the hypothesis H0: h(�) = 0. To do so, we define the vector of subject-specific CNV effects H =

(h(Z1), � � �, h(Zn)) and treat H as random effects which follow N(0, τK), where τ� 0 is a
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variance component and K is a n × n kernel matrix with its (i, j)th entry being k(Zi, Zj). Follow-

ing Liu et al. [29] [30], testing H0: h(�) = 0 is equivalent to testing τ = 0 under a generalized lin-

ear mixed model. As in [6] [7], we use a score-based test, which is

T ¼
1

2ŝ
2 ðY � m̂0Þ

TKðY � m̂0Þ ð6Þ

for continuous phenotypes, and is

T ¼
1

2
ðY � m̂0

Þ
TKðY � m̂0Þ ð7Þ

for binary phenotypes. In the score statistic T, Y = (Y1, � � �, Yn)T and σ2 is the variance of the

continuous Y. Define μ = (μ1, � � �, μn)T with i-th element μi = E(YjXi, Zi); then m̂0 is the estimate

of μ in Eq 2 under H0: h(�) = 0. Specifically, m̂0 ¼ b̂0 þ Xb̂X for continuous phenotypes and

m̂0 ¼ logit� 1
ðb̂0 þ Xb̂XÞ for binary phenotypes. The score statistic asymptotically follows a

weighted chi-square distribution [29] [30]. Recently, Chen et al. [12] derived the correspond-

ing small-sample distribution, which is used to calculate the p-value in this work.

Supporting information

S1 Fig. Detailed diagram of copy number profile curves and cAUC. (a) Example of CNV

data in standard PLINK format. (b), (d) and (f) Examples of copy number (CN) profile curves

illustrating the cAUC between individuals with overlapping duplications. (c) and (e) Examples

of CN profile curves illustrating the cAUC between individuals with overlapping deletions. (g)

The total cAUC between two individuals with multiple overlapping regions is the sum of mul-

tiple areas.
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S2 Fig. Results of TGP-WG simulation with causal dosage × length effects.

(PDF)

S3 Fig. Results of TGP-WG simulation with causal dosage effects.
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S4 Fig. Quantile-quantile (QQ) plots for CONCUR p-values from negative control CNV

analyses using Taiwan Biobank data. (a) QQ-plot for CONCUR p-values in TWB lipid

metabolism pathways negative control analysis. (b) QQ-plot for CONCUR p-values in TWB

chromosome 13 negative control analysis.

(PDF)

S1 Table. Summary of simulation designs and scenarios.
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S1 Appendix. Proof of symmetry and positive semi-definiteness of cAUC kernel.
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S2 Appendix. Details of TwinGene pseudo CNV data whole genome (TGP-WG) simula-

tion design.
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S3 Appendix. Post-hoc pathway analysis of Taiwan Biobank CNV data in lipid metabolism

pathway hsa01040.
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