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Observational epidemiologic studies typically face challenges of exposure measurement error and confound-
ing. Consider an observational study of the association between a continuous exposure and an outcome, where
the exposure variable of primary interest suffers from classical measurement error (i.e., the measured exposures
are distributed around the true exposure with independent error). In the absence of exposure measurement error,
it is widely recognized that one should control for confounders of the association of interest to obtain an unbiased
estimate of the effect of that exposure on the outcome of interest. However, here we show that, in the presence
of classical exposure measurement error, the net bias in an estimate of the association of interest may increase
upon adjustment for confounders. We offer an analytical expression for calculating the change in net bias in an
estimate of the association of interest upon adjustment for a confounder in the presence of classical exposure
measurement error, and we illustrate this problem using simulations.

bias; cohort studies; epidemiologic methods; regression analysis

Observational epidemiologic studies typically face chal-
lenges of exposure measurement error and confounding. In
the absence of exposure measurement error, it is widely
recognized that we should control for well-measured con-
founders of the association of interest if we wish to obtain
an unbiased estimate of an effect of the exposure on the out-
come of interest. In the presence of exposure measurement
error, one might assume that the same logic holds. However,
if we have an imperfect measure of the exposure of interest
that suffers from classical measurement error and we wish to
obtain the least biased estimate of the association of interest,
this logic may not hold.

Here, focusing on the context of covariate-conditional
outcome regression modeling of the association between an
error-prone exposure variable and an outcome, we posit that
upon adjustment for a confounder, a reduction in bias due
to confounding may be accompanied by an amplification
of bias due to classical exposure measurement error. Such
a situation is not necessarily one of a bias-variance trade-
off. To the contrary, there may be situations where, upon
adjustment for a confounder, net bias may increase, and, as
a consequence of increasing the number of parameters to be
estimated, the variance of the estimate of the association of
interest may increase as well.

In this paper, we consider the impact of adjusting for
confounders on net bias in an estimate of an exposure-
disease association in the presence of classical exposure
measurement error. First, we consider net bias in an estimate
upon adjustment for a single covariate. Second, we consider
the change in net bias as the number of covariates adjusted
for in a regression analysis increases. We describe the prob-
lem, offer an analytical expression for the change in net bias
in an estimate of the association of interest upon adjustment
for a confounder in the presence of classical exposure mea-
surement error, and illustrate it with simulations.

METHODS

Consider the setting of an epidemiologic study in which
there is a continuous exposure of primary interest, X, a con-
tinuous outcome, Y, and a continuous potential confounder,
Z. However, we do not observe X; rather, we observe an
imperfect exposure measure, X*, that suffers from classical
measurement error of the form X* = X + U, U ~ N(0,0%,).

Figure 1 includes a structural representation of measure-
ment error in the exposure of primary interest, X. The figure
also includes a structural representation of confounding of
the association between X and the outcome of primary
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Figure 1. Simple diagram of a study setting in which there is
exposure measurement error and confounding.

interest, Y, by a third variable Z. The parameter B describes
aconditional effect of X on Y, holding Z constant; the param-
eter B, describes an effect of Z on X; and the parameter 3
describes a direct effect of Z on Y, holding X constant.

Suppose our interest is in the conditional effect of X on Y,
given by

EYIX=x+1,2) —EY|X = x,Z) = 1.

However, we do not observe X but rather observe the imper-
fect proxy, X*. Assuming correct model specification, there
are 2 options that an investigator could consider. First, fit a
regression model for Y on X* that is adjusted for Z:

EY|X* =x* +1,Z) — E(Y|X* =x*,Z) =y (model 1)

Second, fit a regression model for ¥ on X* that is not adjusted
for Z:

EYIX*=x*+1)—EY|X*=x)=§ (model 2)

Using the term “bias” to describe the difference between the
parameter of interest, f1, and the parameters given under
models 1 and 2, bias is given by the expressions

B _ Var(x|2)
Pr=vi="F (1 Var(X|Z) + o%,)
and
_ B Var(X)
Br =01 =pi (1 Var(X) + o%])

—B3[EZIX* = x* + 1) — E(Z|X* = x¥)].

These expressions follow from general formulas for bias in
linear models due to classical measurement error (1) and for
bias due to confounding (2).

Should an investigator adjust for Z if she wishes to obtain
the least biased estimate of the association of interest? There
are settings in which bias in the estimate obtained under
model 1 exceeds bias in the estimate obtained under model 2.

This occurs when

Var(X|Z) Var(X)
'Bl(l " Var(X|2) +o%,)’ g ‘51(1 "~ Var(X) +c%,)

— B3[E(ZIX* =x* + 1) — E(Z|X* = x*)]‘.

From the expression above, it can be seen that an increase in
bias upon conditioning on Z will not occur when f; = 0
(i.e., in the absence of a true exposure effect); nor will
there be an increase in bias upon conditioning on Z when
c%] = 0 (i.e., in the absence of classical measurement error);
nor will it occur when Var(X|Z) = Var(X), which happens
when 2 = 0 (i.e., in the absence of a confounder-exposure
association). However, an increase in net bias may occur
when B3 =0. More generally, an increase in bias upon con-
ditioning on Z will tend to occur when there is a true
exposure effect and classical measurement error (i.e., By
and 0%] diverge from 0) and when Z is strongly associated
with the exposure of interest but weakly associated with
the outcome of interest (i.e., o diverges from 0 and P;3
approaches 0); such covariates are sometimes referred to as
near-instruments or “instrument-like” variables (3).

We use simulations to illustrate results implied by this
analytical expression for a range of scenarios.

Example 1: simple case

We simulated data where exposure was associated with
the outcome, under the structural model illustrated in
Figure 1, and there was classical measurement error. We
generated a single covariate, Z, by sampling from a normal
distribution with zero mean and unit variance. We generated
the exposure variable of interest under the model X =
B2Z 4+ N(O, 1), the outcome variable of interest under the
model ¥ = B1X — B3Z + N(0, 1), and an imperfect proxy
exposure measure, X*, under the model X* = X+ N (O, cy%,).
Cohorts of 20,000 subjects were generated under the
conditions 1 = 1,p, = {0.25,0.5, 1}, B3 = {0,0.25,0.5, 1},
and c%] = {0.5, 1}. For each simulated cohort, we performed
a linear regression of Y on X* adjusted for Z and a regression
of Y on X* not adjusted for Z, and we calculated bias as the
difference between the true value of §; and each estimate.
We note that the measure of association from this model is
collapsible, so that in the absence of confounding and effect-
measure modification, Z-conditional estimates of the Y-X
association would be identical to the unconditional estimate
of the Y-X association. The Web Appendix illustrates bias
in settings where X is a binary exposure variable that is
misclassified.

Example 2: multiple potential confounders

We simulated data for 5 covariates, Z;—Z5, by sampling
from the multivariate normal distribution with zero means,
unit variances, and zero covariance (Figure 2). We generated
the exposure variable of interest under the model X =
B2Z1 + B2Za + B2Z3 + B2Z4 + B2Zs + N(0O, 1), the outcome
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Figure 2. Diagram of a study setting in which there is exposure
measurement error and multiple confounders.

variable of interest under the model ¥ = $1X + P37 —
B3Zy + B3Z3 — B3Zs + N(0,1), and an imperfect proxy
exposure measure, X*, under the model X* = X+ N (0, 0%]).
Cohorts of 20,000 subjects were generated under the condi-
tions B = 1, P2 = {0.5,1}, 83 = {0.5, 1}, and 0%} ={0.5,1}.
For each simulated cohort, we performed an ordinary linear
regression of Y on X* adjusted for Z;—Zs, a regression of Y
on X* adjusted for Z1—Z4, a regression of Y on X* adjusted
for Z1—Z3, a regression of Y on X* adjusted for Z; and Z,,
a regression of Y on X* adjusted for Z;, and an unadjusted
regression of Y on X*. We calculated bias as the difference
between B and each estimate.

RESULTS
Example 1: simple case

As expected from the analytical expression, when $3 was
set equal to 0, an increase in bias occurred in all simula-
tions upon conditioning on Z (Table 1). In such cases, the
unconditional estimate of association between X* and Y was
closer to 1 than the Z-conditional estimate of association.
The net bias upon conditioning on Z increased with the
degree of classical measurement error, c%], and with the
magnitude of the association between Z and X, B>. As B3
diverged from 0, bias in the crude estimate of association
increased, and it eventually exceeded that of the Z-adjusted
estimate (Table 1). When 3 was greater than O (i.e., Z was
associated with the outcome of interest), an increase in net
bias upon conditioning on Z was observed in some, but not
all, simulation scenarios; it tended to be observed when the
degree of classical measurement error, 0%,, was largest and
when the magnitude of association between Z and X, B, was
greatest. Web Table 1 (available at https://doi.org/10.1093/
aje/kwab228) provides results derived over the range of
scenarios considered and illustrates that the Z-conditional
estimate of association may have a larger standard error than
the unconditional estimate of association as well. The Web
Appendix provides results for simulations in which X is a
binary variable that is misclassified.

Example 2: multiple covariates

We fitted a regression model for ¥ on X* that was unad-
justed for Z1—Zs, and we fitted a regression model for Y on

X* under a stepwise evaluation of the impact of adjustment
for covariates Z1—Zs. The unadjusted estimate suffered from
the least amount of bias (Table 2); and upon adjustment for
each additional covariate, there was a marked change in
the estimate of the X*-Y association. Under the simulation
setup, there was no net confounding of the X-Y association;
the confounding effects of Z; and Z, canceled out, as did
the effects of Z3 and Z4. Consequently, the estimates of
association obtained under models 1, 3, 5, and 6 were
unconfounded; nonetheless, bias was greater under model
3 than under model 1, greater under model 5 than under
model 3, and greater under model 6 than under model 5.
Notably, adjustment for Z5 led to a change in estimate and an
increase in bias, despite Zs’s not being a confounder in the
underlying data-generating model (Figure 2). The estimate
obtained upon fitting model 6 was half as large as 1, the
specified association between X and Y under the simulation
setup. Models 2 and 4 were confounded, in addition to
suffering from bias due to exposure measurement error. Web
Table 2 provides results derived over a range of simulation
scenarios.

DISCUSSION

Confounding is a routine challenge in observational epi-
demiology. Assessing confounding is often an important
step in decisions regarding whether or not a factor should
be adjusted for in statistical analysis and regarding how one
may interpret unadjusted associations. Here we show that
problems of confounding often are entangled with problems
of exposure measurement error, reinforcing observations
made much earlier regarding confounding and misclassifica-
tion of a binary exposure variable (4). This work also builds
upon prior literature on exposure measurement error which
has shown that the degree of attenuation due to classical
exposure measurement error tends to increase as variables
that are predictors of exposure are introduced into a linear
regression model (1). However, we are not aware of either
examples of or discussions about the implications for epi-
demiologic analyses in which the exposure of interest suffers
from measurement error. The fact that, upon adjustment for
a confounder, a reduction in bias due to confounding may
be accompanied by an even more substantial amplification
in bias due to classical exposure measurement error bias
amplification has received relatively little attention. This
should lead to careful consideration of the net bias that
arises upon conditioning on a covariate, which encompasses
confounding as well as potential exacerbation of bias due to
measurement error.

The problem may be avoided by recognizing the conditions
under which the problem tends to arise. As we have shown
via an analytical expression for net bias and have illustrated
via some simple simulations, this problem tends to occur
when there is substantial classical exposure measurement
error and an investigator conditions upon covariates that are
strongly associated with the exposure of interest but weakly
associated with the outcome of interest. Therefore, efforts
to reduce classical measurement error, as well as efforts
to avoid conditioning on instrument-like variables, should
remedy the problem. Alternatively, to avoid this problem, we
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Table 1. Simulation Results lllustrating Bias in the Z-Conditional and Crude Estimates of an X-Y Association
Under Varying Degrees of Classical Measurement Error and Varying Values of the Parameters B> and B3 Which
Determine the Degree of Confounding of the X-Y Association by Z

Simulation Setup

Regression Estimate

Absolute Bias

Z-Conditional Crude

Z-Conditional Crude

2
Pr o & & (1) (31) (B —vi D) (B —311)
1.00 1.00 1.00 0.00 0.50 0.66 0.50 0.34
0.25 0.50 0.58 0.50 0.42
0.50 0.50 0.50 0.50 0.50
1.00 0.50 0.33 0.50 0.67
0.50 0.00 0.50 0.55 0.50 0.45
0.25 0.50 0.50 0.50 0.50
0.50 0.50 0.45 0.50 0.55
1.00 0.50 0.34 0.50 0.66
0.25 0.00 0.50 0.51 0.50 0.49
0.25 0.50 0.49 0.50 0.51
0.50 0.50 0.46 0.50 0.54
1.00 0.50 0.40 0.50 0.60
0.50 1.00 0.00 0.67 0.80 0.33 0.20
0.25 0.67 0.70 0.33 0.30
0.50 0.67 0.60 0.33 0.40
1.00 0.67 0.40 0.33 0.60
0.50 0.00 0.67 0.71 0.33 0.29
0.25 0.67 0.64 0.33 0.36
0.50 0.67 0.57 0.33 0.43
1.00 0.67 0.43 0.33 0.57
0.25 0.00 0.67 0.68 0.33 0.32
0.25 0.67 0.64 0.33 0.36
0.50 0.67 0.60 0.33 0.40
1.00 0.67 0.53 0.33 0.47

recently illustrated an approach to obtaining a marginal esti-
mate of association that allows for control of confounding
without conditioning on covariates and does not suffer from
this problem of measurement error bias amplification (5).
In that prior work, we proposed a method for estimating a
marginal (i.e., standardized) exposure-outcome association
that will suffer from less bias due to measurement error than
a covariate-conditional estimate of association (5); we did
not address the implications for variable selection or the
net bias that may arise when a reduction in confounding
is accompanied by amplification of bias due to classical
exposure measurement error.

Variable selection often is a needed part of model-
building. In regression modeling, controlling for too many
potential confounders can lead to problems of data sparsity,
particularly when the number of covariates is large in
relation to the study size. Strategies such as the “change-in-
estimate” approach offer a simple approach to assessing con-

founding by comparing estimated associations derived with
and without adjustment for a potential confounder. Prior
authors have cautioned against this approach, pointing out
that conditional and marginal measures of association can
differ absent confounding (and that confounding can occur
even when conditional and marginal effect measures are
equal) due to noncollapsibility (6). Here, we show that when
the exposure variable of interest is measured with classical
error, the “change-in-estimate” approach may fail because
adjustment for a covariate associated with exposure may
exacerbate bias due to classical measurement error. Absent
further information, in a change-in-estimate approach we
cannot distinguish a reduction in confounding bias from
amplification of exposure measurement error bias. We il-
lustrate that even if individually no single covariate is a
strong predictor of the exposure of interest, adjustment for an
ensemble of covariates may explain a substantial proportion
of the variation in the exposure of interest, resulting in



Table 2. Simulation Results lllustrating an Increase in Bias with Stepwise Increasing Adjustment for Covariates®

Model Regression Model Regression Estimate Absolute Bias
Unconditional E[Y|X*] = ag + yX* 0.86 0.14
Adjusted for Z4 E[Y|X*, Z1] = ap + a1Z1 + yX* 0.66 0.34
Adjusted for Zy and Z» E[Y|X*,Z1,2Z0] = 0.80 0.20
ag + a1Z1 + apZs + yX*

Adjusted for Z1-Z3 E[Y|X*,Zy,2Z5,23] = 0.50 0.50
agp +a1Z1 + apZs + a3Zz + yX*

Adjusted for Z1-2Z4 E[Y|X*,Zy,20,23,24) = ap + 0.67 0.33
a1Z1+opZo+azZz+agZs+yX*

Adjusted for Z1-Z5 E[Y|X*,Zy,2Z2,23,24,2Z5] = 0.50 0.50

ag + a1Z1 + apZo + azZz +

a4Zs + asZs + yX*

2 Unconditional and conditional estimates of association obtained upon stepwise adjustment for potential
confounders, Z. In the scenarios shown, 1 = 1,82 =1, 3 =1, and cf, =1.

amplification of bias due to classical exposure measurement
error (Table 2).

The problem of bias amplification due to covariate con-
trol with exposure measurement error discussed here shares
some similarities with the problem of unmeasured con-
founder bias amplification discussed by Pearl (3) and oth-
ers (7, 8). Similarly, bias amplification may arise upon
adjustment for “instrument-like” variables that are strong
predictors of the exposure (but have weak or no associa-
tion with the outcome). While some have questioned how
relevant unmeasured confounder bias amplification is in
practice (9), it seems that exposure measurement error bias
amplification is a reasonable concern in settings where an
investigator may adjust for many potential confounders.
Similarly, the problem may arise in regression models that
adjust for coexposures that are correlated with the exposure
of interest because they arise from a common source (as
occurs in environmental epidemiologic studies of exposure
mixtures).

While we have focused on net bias in the estimate of
an association of interest, the problem that we address is
not necessarily one of a bias-variance trade-off. To the con-
trary, our simple simulations illustrate that upon adjustment
for a confounder, net bias may increase, and by increas-
ing the number of parameters to be estimated, the vari-
ance of the estimate of the association of interest may
increase as well (Web Table 1). We also illustrate simu-
lation results for a misclassified binary exposure variable;
while the measurement error problem is somewhat different
from that of a continuous variable, similar conclusions hold
about the potential for bias amplification upon conditioning
for an instrument-like variable (Web Appendix and Web
Table 3).

As with all statistical modeling, it is important to consider
the structure of the association between variables, whether
candidate covariates affect the outcome, and, in the setting
of classical exposure measurement error, whether candi-
date covariates may be “instrument-like” variables in order

to avoid simply including in outcome regression models
covariates that are strong predictors of the exposure, that are
weak confounders, and that upon adjustment amplify rather
than diminish net bias.
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