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Abstract

Breast cancers are complex cellular ecosystems where heterotypic interactions play central 

roles in disease progression and response to therapy. However, our knowledge of their cellular 

composition and organization remains limited. Here we present a single cell and spatially 

resolved transcriptomics analysis of human breast cancers. We develop a single cell method 

of intrinsic subtype classification (scSubtype) to reveal recurrent neoplastic cell heterogeneity. 

Immunophenotyping using CITE-Seq provides high-resolution immune profiles, including novel 

PD-L1/PD-L2+ macrophage populations associated with clinical outcome. Mesenchymal cells 

displayed diverse functions and cell surface protein expression through differentiation within 3 

major lineages. Stromal-immune niches were spatially organized in tumors, offering insights into 

anti-tumor immune regulation. Using single cell signatures, we deconvoluted large breast cancer 

cohorts to stratify them into nine clusters, termed ‘ecotypes’, with unique cellular compositions 

and clinical outcomes. This study provides a comprehensive transcriptional atlas of the cellular 

architecture of breast cancer.

Wu et al. Page 2

Nat Genet. Author manuscript; available in PMC 2022 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

breast cancer; single cell; spatial; genomics; transcriptomics; tumor heterogeneity; fibroblast; 
CAF; stroma; cancer immunology; immune

Introduction

Breast cancers are clinically stratified based on the expression of the estrogen receptor 

(ER), progesterone receptor (PR) and overexpression of HER2 or amplification of the HER2 

gene ERBB2. This results in three broad subtypes that correlate with prognosis and define 

treatment strategies: Luminal (ER+, PR+/−), HER2+ (HER2+, ER+/−, PR+/−) and triple 

negative (TNBC; ER−, PR−, HER2−). Breast cancers are also stratified based on bulk 

transcriptomic profiling using the ‘PAM50’ gene signature into five ‘intrinsic’ molecular 

subtypes: luminal-like (LumA and LumB), HER2-enriched (HER2E), basal-like (BLBC) 

and normal-like. There is ~70-80% concordance between molecular subtypes and clinical 

subtypes1,2. While PAM50 has provided important insights into prognosis and treatment3–6, 

the functional understanding of these subtypes at cellular resolution is currently limited.

Breast cancers are diverse cellular microenvironments, whereby heterotypic interactions 

are important in defining disease etiology and response to treatment7,8. While breast 

cancers are generally considered to have a low mutational burden and immunogenicity, 

there is evidence that immune activation is pivotal in a subset of patients. For instance, 

the presence of tumor infiltrating lymphocytes (TILs) is a biomarker for good clinical 

outcome and complete pathological response to neoadjuvant chemotherapy9. In contrast, 

tumour associated macrophages (TAM) are often associated with poor prognosis10 and are 

recognised as important emerging targets for cancer immunotherapy11–13. Mesenchymal 

cells have also emerged as important regulators of the malignant phenotype, chemotherapy 

response7 and anti-tumor immunity14,15. However, progress has been impeded by a lack 

of a clear cellular taxonomy (recently reviewed in Sahai et al.16). Recent studies of cancer-

associated fibroblasts (CAFs) identify two polarized states defined by extracellular matrix 

(ECM) production or inflammatory secretomes17–19. The relationship of these distinct 

cellular subsets with each other, with other cells in the TME, and with disease status and 

progression remains to be elucidated in breast tumors.

Our understanding of the cellular heterogeneity and tissue architecture of human breast 

cancers has been largely derived from histology, bulk-sequencing, low dimensionality 

hypothesis-based studies and experimental model systems. Single cell RNA-Sequencing 

(scRNA-Seq) offers remarkable new opportunities to systematically describe the cellular 

landscape of tumors20,21 and reveal novel insights into cell biology, disease etiology and 

drug response. Several studies have successfully applied scRNA-Seq to selected populations 

in human breast tumors, to reveal a continuum of differentiation states within TILs22; a 

role for tissue resident CD8 cells in TNBC23; and chemoresistance of neoplastic cells in 

TNBC24. Recent studies have used mass cytometry with panels of antibody markers to 

analyse millions of cells from hundreds of patients to interrogate breast cancer cell types 

and ecosystems25,26. Therefore a more detailed transcriptional atlas of breast tumors at high 
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molecular resolution, representative of all subtypes and cell types, is required to further 

define the taxonomy of the disease, identify heterotypic cellular interactions and determine 

cellular differentiation events. Just as importantly, there exists little data systematically 

mapping the spatial transcriptomic architecture of breast tumors, which can determine how 

cells in the TME are organized as functional units.

Results

A high-resolution cellular landscape of human breast cancers

To elucidate the cellular architecture of breast cancers, we analyzed 26 primary 

pre-treatment tumors, including 11 ER+, 5 HER2+ and 10 TNBCs, by scRNA-Seq 

(Supplementary Table 1). In total, 130,246 single-cells passed quality control (Extended 

Data Fig. 1a–d) and were annotated using canonical lineage markers (Fig. 1a–b). These 

high-level annotations were further confirmed using published gene signatures27–29. All 

major cell types were represented across all tumors and clinical subtypes (Fig. 1c). As 

previously reported in other cancers30,31, UMAP visualization showed a clear separation of 

epithelial cells by tumor, although three clusters contained cells from multiple patients and 

subtypes (Fig. 1d–e), which were identified as normal breast epithelial cells. In contrast, 

UMAP visualization of stromal and immune cells across tumors clustered together without 

batch correction (Extended Data Fig. 1e–f). Since breast cancer is largely driven by DNA 

copy number changes32, we estimated single-cell copy number variant (CNV) profiles 

using InferCNV31 to distinguish neoplastic from normal epithelial cells (Fig. 1f). Within 

neoplastic populations, substantial levels of large-scale genomic rearrangements were 

observed (Extended Data Fig. 1g; Supplementary Table 2). This revealed patient-unique 

copy number changes and those commonly seen in breast cancers, such as chr1q gain in 

luminal cancers and chr5q loss in basal-like breast cancers32.

scSubtype: Intrinsic subtyping for single cell RNA-Seq data

As unsupervised clustering could not be used to find recurring neoplastic cell gene 

expression features between tumors, we asked whether we could classify cells using the 

established PAM50 method. Due to the inherent sparsity of single-cell data, we developed a 

scRNA-Seq compatible method for intrinsic molecular subtyping. We constructed “pseudo-

bulk” profiles from scRNA-Seq for each tumor and applied the PAM50 centroid predictor. 

To identify a robust training set, we used hierarchical clustering of the pseudo-bulk samples 

with the TCGA dataset of 1,100 breast tumors using an ~2,000 gene intrinsic breast cancer 

genelist3 (Extended Data Fig. 2a–b). Training samples were selected from those with 

concordance between pseudo-bulk PAM50 subtype calls and TCGA clusters (Supplementary 

Table 3).

For each PAM50 subtype within the training dataset, we performed pairwise integrations of 

tumor cells and differential gene expression to identify 4 sets of genes that would define 

our single-cell derived molecular subtypes (89 genes Basal_SC; 102 genes HER2E_SC; 

46 genes LumA_SC; 65 genes LumB_SC). We defined these genes as the “scSubtype” 

gene signatures (Fig. 2a; Extended Data Fig. 2c; Supplementary Table 4). Only four of 

these genes showed overlap with the original PAM50 gene list (ACTR3B, KRT14, ERBB2, 
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GRB7). A subtype call for a given cell was based on the maximum scSubtype score. An 

overall tumor subtype was then assigned based on the majority cell subtype. This approach 

showed 100% agreement with the PAM50 pseudo-bulk calls in the 10 training set samples 

and 66% agreement on the test set samples (Extended Data Fig. 2d; Supplementary Table 

3). Of the 3 test set disagreements, two were LumA vs LumB, which are related profiles 

that may be hard to distinguish with a limited sample size, and the third was a metaplastic 

TNBC sample, which is a histological subtype not included in the original PAM50 training 

or testing datasets.

As another means of assessing the accuracy of scSubtype, we performed “true bulk” whole 

transcriptome RNA-Seq on 16 matching tumors in our scRNA-Seq cohort. We observed 

concordance between the majority scSubtype calls and the bulk tumor RNA-Seq profile in 

12 of 16 tumors, including 7 of the 8 matching training set tumors (Supplementary Table 3). 

We also clustered the bulk RNA-Seq data with TCGA, confirming that 14 of the samples 

clustered with their pseudo-bulk profiles (Extended Data Fig. 2a–c). These results highlight 

the strong concordance between our three subtyping methods when applied across bulk and 

scRNA-Seq datasets.

scSubtype revealed that 13/20 samples had less than 90% of neoplastic cells falling under 

one molecular subtype, while only one tumor (CID3921; HER2E) showed a completely 

homogenous molecular subtype (Fig. 2b). In some luminal and HER2E tumors, scSubtype 

predicted small numbers of basal-like cells, which was validated by IHC in two ER+ cases 

which showed small pockets of morphologically malignant cells that were negative for ER 

and positive for cytokeratin-5 (CK5), a basal cell marker, among otherwise ER+ tumor 

cells (Fig. 2c). The utility of scSubtype is further demonstrated by its ability to correctly 

assign a low cellularity lobular carcinoma (10% neoplastic cells; CID4471), evident both by 

histology and inferCNV (Supplementary Table 2), as a mixture of mostly LumB and LumA 

cells (Fig. 2b; Extended Data Fig. 2d), which is consistent with the clinical IHC result. Bulk 

and pseudo-bulk RNA-Seq incorrectly assigned CID4471 as Normal-like (Supplementary 

Table 3).

To further validate scSubtype, we calculated the degree of epithelial cell differentiation 

(DScore)33 and proliferation34, both of which are independently associated with the 

molecular subtype of each cell. Basal_SC cells tended to have low DScores and high 

proliferation scores whereas LumA_SC cells showed high DScores and low proliferation 

scores (Fig. 2d; Extended Data Fig. 2e), as observed across PAM50 subtypes in TCGA 

(Extended Data Fig. 2f).

Recurrent gene modules driving neoplastic cell heterogeneity

The previous method relied on a priori knowledge of ‘bulk’ molecular subtype to develop a 

classifier. To complement this, we investigated the biological pathways driving intra-tumor 

transcriptional heterogeneity (ITTH) in an unsupervised manner, using integrative clustering 

of tumours with at least 50 neoplastic cells, to generate 574 gene-signatures of ITTH. 

These gene-signatures identified 7 robust groups, “gene-modules”, based on their Jaccard 

similarity (Extended Data Fig. 3a). Each gene-module (GM) was defined with 200 genes 

that had the highest frequency of occurrence across the ITTH gene-signatures and individual 
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tumors (Supplementary Table 5), minimizing the contribution of a single tumor to any 

particular module.

Gene-set enrichment identified shared and distinct functional features of these GMs 

(Fig. 2e). GM4 was uniquely enriched for hallmarks of cell-cycle and proliferation 

(e.g., E2F_TARGETS), driven by genes including MKI67, PCNA and CDK1. GM3 

was predominately enriched for hallmarks of interferon response (IFITM1/2/3, IRF1), 

antigen presentation (B2M; HLA-A/B) and Epithelial-Mesenchymal-Transition (EMT; VIM, 
ACTA2). GM1 and GM5 showed characteristics of estrogen response pathways, while GM1 

was also enriched for hypoxia, TNFa and p53 signaling and apoptosis. Similar functional 

associations were also seen when correlating signature scores across all neoplastic cells 

(Extended Data Fig. 3b).

For each neoplastic cell, we calculated signature scores for the 7 GMs and used hierarchical 

clustering to identify cellular correlations (Extended Data Fig. 3c). This clearly separated 

neoplastic cells into groups, reducing the large inter-tumor variability seen in Fig. 1d–f. We 

assigned each neoplastic cell to a module using the maximum of the scaled scores (Extended 

Data Fig. 3d). Some modules significantly associated with scSubtype calls, whereas others 

displayed more diverse subtype associations (Fig. 2f–g; Extended Data Fig. 3e–f). Cells 

assigned to GM1 and GM5 were predominantly enriched for the luminal subtype, where 

GM1 was almost exclusively composed of LumA cells and GM5 was mostly composed 

of LumB cells. As proliferative cells were classified separately, as GM4, this suggests 

that there were subsets of cells within LumA tumors with unique properties not found 

in LumB tumors. Finally, we used the gene module-based cell state assignments to get 

a view into the intra-tumour heterogeneity of the neoplastic cells. Similar to scSubtype 

(Fig. 2b), we saw evidence for cellular heterogeneity that broadly aligns with, but not 

constrained by, the subtype of the tumor (Fig. 2h). scSubtype and gene module analysis 

provide complementary new approaches to classifying neoplastic ITTH and further evidence 

that cancer cells manifest diverse phenotypes within most tumors.

The immune milieu of breast cancer

To examine the immune milieu of breast tumors at high resolution, we reclustered immune 

cells to identify T cells and innate lymphoid cells, myeloid cells, B cells and plasmablasts 

(Supplementary Table 6). We performed immunophenotyping using CITE-Seq35 to four 

samples and performed anchor based integration to transfer protein expression levels to the 

remaining cases36, which revealed a high correlation to experimentally measured values 

(Extended Data Fig. 4).

Lymphocytes and Innate Lymphoid Cells

We identified 18 T-cell and innate lymphoid clusters across patients (Fig. 3a). CD4 clusters 

were comprised of FOXP3+ regulatory T cells (T-Regs) marked by CD25 protein expression 

(CD4+ T-cells:FOXP3/c2), T follicular helper (Tfh) cells (CXCL13, IL21 and PDCD1; 

CD4+ T-cells:CXCL13/c3), naïve/central memory CD4+ (CD4+ T-cells:CCR7/c0), and a 

Th1 CD4 T effector memory (EM) cluster (CD4+ T-cells:IL7R/c1) (Fig. 3b; Extended Data 

Fig. 5a). Of the five CD8 clusters, three were comprised of a cluster with high expression of 
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inhibitory checkpoint molecules including LAG3, PDCD1 and TIGIT (CD8+ T-cells:LAG3/

c8); PDCD1low CD8+ T-cells that expressed relatively high levels of IFNG and TNF (CD8+ 

T-cells:IFNG/c7); and chemokine expressing T-cells (CD8+ T-cells:ZFP36/c4) (Extended 

Data Fig. 5a). Two additional clusters driven by a type 1 interferon (IFN) signature 

(SG15, IFIT1 and OAS1; T-cells:IFIT1/c6) and proliferation (T-cells:MKI67/c11) were 

identified, both comprised of CD4+ and CD8+ T-cells. We also identified NK cells (NK 

cells:AREG/c9) and NKT-like cells (NKT cells:FCGR3A/c10) by their expression of αβ 
T-cell receptor and NK markers (KLRC1, KLRB1, NKG7) (Fig. 3b; Extended Data Fig. 5a).

Consistent with the enrichment of TILs and CD8+ T-cells in TNBC37, T cell clusters 

IFIT1/c6, LAG3/c8 and MKI67/c11 made up a higher proportion in TNBC samples (Fig. 

3c). These clusters had qualitative differences between clinical subtypes, with CD8+ T-cells 

from both the LAG3/c8 and IFNG/c7 clusters possessing substantially higher dysfunction 

scores38 in TNBC cases (Fig. 3d; Extended Data Fig. 5b–c). Furthermore, luminal and 

HER2+ tumors tended to have checkpoint molecule expression distinct from TNBC (Fig. 

4f; Extended Data Fig. 5d). Notably, the LAG3/c8 exhausted CD8 subset in TNBCs had 

significantly higher expression of PD-1 (PDCD1), LAG3 and the ligand-receptor pair of 

CD27 and CD70, known to enhance T-cell cytotoxicity39 (Fig. 4f; Extended Data Fig. 

5e). We examined the expression of PDCD1, CD27 and CD70 in the METABRIC40 and 

TCGA32 cohorts, which were consistently enriched in basal-like and HER2+ subtypes 

(Extended Data Fig. 5f). When we examined a wider list of immune checkpoint molecules 

across the entire dataset using unsupervised hierarchical clustering (Extended Data Fig. 

6), differences in checkpoint molecule expression among clinical subtypes were more 

apparent, including on non-immune cells such as CAFs. These data provide insights into 

the immunotherapeutic strategies most appropriate for each subtype of disease.

When we reclustered B cells, we observed two major subclusters (naive and memory), 

with plasmablasts forming a separate cluster (Extended Data Fig. 7a–b). The additional 

subclusters seemed largely driven by BCR specific gene segments rather than variable 

biological gene expression programs.

Myeloid Cells

Myeloid cells formed 13 clusters which could be identified in all tumors at varying 

frequencies (Fig. 4a). No granulocytes were detected, likely due to their sensitivity to 

tumour dissociation protocols and their low abundance22,41,42. Monocytes formed 3 clusters: 

Mono:IL1B/c12; Mono:S100A9/c8; and Mono:FCGR3A/c7, with the Mono:FCGR3A 
population forming a small distinct cluster characterized by high CD16 protein expression 

(Fig. 4b–c). We identified conventional dendritic cells (cDC) that expressed either CLEC9A 
(cDC1:CLEC9A/c3) or CD1C (cDC2:CD1C/c11); plasmacytoid DC (pDC) that expressed 

IRF7 (pDC:IRF7/c4); and a LAMP3 high DC population43 (DC:LAMP3/c0), which was 

previously not reported in single cell studies of breast cancer (Fig. 4c). Macrophages formed 

6 clusters, including a cluster (Mac:CXCL10/c9) with features previously associated with an 

“M1-like” phenotype and two clusters (Mac:EGR1/c10 and Mac:SIGLEC1/c5) resembling 

the “M2-like” phenotype, all of which bear some resemblance to TAMs previously described 

in breast cancers (Extended Data Fig. 6c)10. Notably, we identified two novel macrophage 
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populations (LAM1:FABP5/c1 and LAM2:APOE/c2) outside of the conventional “M1/M2” 

classification that comprised 30-40% of the total myeloid cells (Fig. 4a–c). These cells 

bear close transcriptomic similarity to a recently described population of lipid-associated 

macrophages (LAM) that expand in obese mice and humans44, including high expression 

of TREM2 and lipid/fatty acid metabolic genes such as FABP5 and APOE (Fig. 4c; 

Extended Data Fig. 7d–e). LAM1/2 uniquely expressed CCL18, which encodes a chemokine 

with roles in immune regulation and tumor promotion45. We observed a substantially 

reduced proportion of LAM 1:FABP5 cells in the HER2+ tumors (Fig. 4d; Extended 

Data Fig. 7f), suggesting that unique features of tumor genomics or microenvironment 

regulate LAM1/2 fate. Survival analysis using the METABRIC40 cohort showed that 

the LAM 1:FABP5 signature correlates with worse survival (Fig. 4e). While the RNA 

encoding PD-L1 (CD274) and PD-L2 (PDCD1LG2) were highly co-expressed by the 

Mac:CXCL10 and DC:LAMP3 myeloid populations (Fig. 4f), analysis of CITE-Seq data 

demonstrated a broader distribution of PD-L1 and PD-L2 protein expression across the 

Mac:CXCL10, LAM1:FABP5, LAM2:APOE and DC:LAMP3 (Fig. 4b; Extended Data Fig. 

7g), highlighting LAM1/2 as important sources of immunoregulatory molecules.

Stromal subclasses resemble diverse differentiation states

In the stromal compartment, we identified three major cell types (Fig. 5a–b; Extended Data 

Fig. 8a) including CAFs (PDGFRA and COL1A1; Fig. 5c–d), perivascular-like cells (PVL; 

MCAM/CD146, ACTA2 and PDGFRB; Fig. 5e–f), endothelial cells (PECAM1/CD31 and 

CD34; Fig. 5g–h), plus two smaller clusters of lymphatic endothelial cells (LYVE1) and 

cycling PVL cells (MKI67)15. Pseudotime trajectory analysis using Monocle46 revealed 

five CAF states (Fig. 5c; Extended Data Fig. 8b–c). State 1 (referred to as s1 herein) had 

features of mesenchymal stem cells (MSC) and inflammatory-like fibroblasts (iCAFs), with 

high expression of stem-cell markers (ALDH1A1, KLF4 and LEPR) and pathways related 

to chemoattraction and complement cascades (CXCL12 and C3) (Extended Data Fig. 8d–

e). The expression of these markers decreased as cells transitioned towards differentiated 

states s4 and s5, which resembled myofibroblast-like (myCAF) states through the increased 

expression of ACTA2 (αSMA), TAGLN, FAP and COL1A115 and the enrichment of 

ECM-related pathways. Previously reported iCAF and myCAF signatures from pancreatic 

ductal adenocarcinoma19 were predominantly enriched in CAF s1 and s5, respectively 

(Extended Data Fig. 8f). No CAF states were enriched for antigen presentation CAF 

(apCAFs) signatures, however, selected apCAF markers CD74, CLU and CAV1 were 

broadly expressed across all stromal cells (Extended Data Fig. 8g).

For PVL cells, we identified three states (Fig. 5e). PVL s1 and s2 expressed markers related 

to stem-cells, immature pericytes (PDGFRB, ALDH1A1, CD44, CSPG4, RGS5 and CD36) 

and adhesion molecules (ICAM1, VCAM1 and ITGB1) (Extended Data Fig. 8d)47. They 

were further enriched for pathways related to receptor binding and PDGF activity (Extended 

Data Fig. 8e). The branching of s2 was defined by RGS5, CD248 and THY1. Consistent 

with gene expression, CITE-Seq revealed an enrichment of cell surface CD90 (THY1) 

and integrin molecules CD49a and CD49d in early PVL states s1 and s2 (Fig. 5i–j). The 

expression of these markers decreased as cells transitioned to PVL s3, which was enriched 

for contractile related genes (MYH11 and ACTA2) (Fig. 5f) and pathways related to a 
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smooth muscle phenotype. PVL states were modestly enriched for myCAF gene signatures 

(Extended Data Fig. 8f), and their shared expression of the CAF marker ACTA2 suggest that 

PVL s3 cells have been historically been misclassified in IHC assays as CAFs.

We identified three endothelial states (Fig. 5g). Endothelial s1 resembled stalk-like and 

venular endothelial cells (ACKR1, SELE and SELP)48, enriched for pathways and genes 

related to cell adhesion (ICAM1 and VCAM1) and antigen presentation/MHC (HLA-DRA) 

(Extended Data Fig. 8d–e). These markers decreased along pseudotime as cells branched 

into two states, which both had elevated expression of DLL4, a marker reported for 

endothelial tip-like cells (Fig. 5h)49,50. Endothelial s2 was distinguished by RGS5 and 

ESM1, whilst s3 expressed regulators of cell migration and angiogenesis (CXCL12 and 

VEGFC)51. As angiogenesis is known to be a dynamic process involving the transition 

between endothelial stalk and tip cells52,53, it is likely that these three states, defined by 

markers ACRK1, RGS5 and CXCL12, are dynamic and interconvertible. Similar CAF, PVL 

and endothelial cell states were identified across clinical subtypes, and in three normal breast 

tissue samples (Extended Data Fig. 8h–i), suggesting they are likely resident cell types that 

undergo remodeling in the TME.

Spatially mapping breast cancer heterogeneity

To gain insights into the spatial organization of cell types, we performed spatially-resolved 

transcriptomics (ST) on six samples (“local cohort”) comprising two ER+ (CID4535 and 

CID4290) and two TNBC (CID44971 and CID4465) from our scRNA-Seq cohort, and 

two additional TNBC (1142243F and 1160920F) processed in an independent laboratory 

(Fig. 6a; Extended Data Fig. 9a). To deconvolute the cellular composition of each ~55 

uM diameter spot, we applied a probabilistic model called Stereoscope54 using clinical 

subtype matched scRNA-Seq data. Cell types were found associated with their appropriate 

pathological annotation (Fig. 6b).

We earlier showed that gene modules were enriched for distinct microenvironment 

associated pathways and factors, and thus, we hypothesised that gene modules would be 

spatially organised in breast tumors. We selected locations in all six cases where cancer 

cells were identified by Stereoscope and pathology (Extended Data Fig. 9b) then examined 

the strength of the 7 gene module signatures in each location. This revealed the expected 

enrichment of GM3 (EMT, IFN, MHC) and GM4 (proliferation) across TNBC cases, and 

GM1 and GM5 (ER, luminal) across ER+ cases (Fig. 6c; Extended Data Fig. 9c). These data 

suggest that these gene modules are not an artefact of dissociation-based methodology. To 

systematically understand the spatial relationship between modules, we computed Pearson 

correlations between gene module scores in all cancer locations. This revealed two major 

clusters that mostly conserved across all six cases, including GM1, GM3, GM5 and GM6 in 

one cluster, and GM2 and GM4 in the other (Fig. 6d; Extended Data Fig. 9d). Intriguingly, 

GM3 (EMT, IFN, MHC) and GM4 (proliferation) showed strong negative correlations in 

all samples (Fig. 6e–g), suggesting that these distinct cancer phenotypes occur in mutually 

exclusive regions of breast cancers.
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Mapping novel heterotypic cellular interactions

While several studies have shown an important role for mesenchymal cells in regulating 

anti-tumor immunity14,55, interactions between stromal and immune cells have yet to be 

profiled in tissues. Deconvolution revealed spatially distinct subclasses of CAFs, with 

myCAFs (CAF s4 and s5) enriched in invasive cancer regions and iCAFs (CAF s1 

and s2) dispersed across invasive cancer, stroma and TIL-aggregate regions (Extended 

Data Fig. 9e). We identified modest negative Pearson correlations between myCAFs and 

iCAFs in five of six cases (Fig. 7a–c). Similar CAF localizations were consistent in 

an independent spatial transcriptomics dataset of 7 HER2+ breast tumors54, suggesting 

that this relationship is conserved across clinical subtypes (Fig. 7a). Consistent with 

the immunoregulatory properties of iCAFs described above, iCAFs co-localized with 

several lymphocyte populations across both studies, including memory/naive B-cells and 

CD4+/CD8+ T-cells (Fig. 7a; Fig. 7d–e). MyCAFs correlated with CD8+ T-cells in six 

samples (Fig. 7a), suggesting a functional relevance to invasive breast cancers with high 

TIL infiltration or an immune inflamed phenotype. To explore potential mediators of 

CAF-lymphocyte interactions at these regions, we investigated the top ligand-receptor 

interactions at locations most enriched for CAFs and CD4/CD8+ T-cells, and were also 

detected by these respective cell types by scRNA-Seq. This revealed an enrichment of 

immunoregulatory iCAF ligands and cognate T-cell receptors in close proximity, including 

chemokines (CXCL12/CXCL14-CXCR4 and CXCL10-CXCR3), complement pathway, 

transforming growth factor beta (TGFB1/TGFB3-TGFBR2) and lymphocyte inhibitory/

activation molecules (LTB-LTBR, TNFSF14-LTBR and LTB-CD40, VTCN1/B7H4-BTLA) 

(Fig. 7f; Extended Data Fig. 9f). By integrating signaling predictions with cellular proximity, 

these data highlight relevant candidates for direct regulation of immune cells by CAFs.

Earlier, we defined macrophage states LAM1, LAM2 and Mac:CXCL10/c9 with high 

expression of immunoregulatory molecules such as PD-L1 and PD-L2 (Extended Data 

Fig. 7g). Across all local Visium cases, LAM1 and LAM2 cells were present at invasive 

cancer regions, however LAM2 were also found in areas with high stroma, adipose and 

lymphocytes by morphology (Extended Data Fig. 9e). LAM1 and LAM2 cells show a 

modest negative spatial correlation with each other in most cases, which might indicate 

that a common LAM cell is polarised towards LAM1 or LAM2 by their local TME (Fig. 

7a). LAM2 cells, rather than LAM1 cells, were positively correlated with CD4+ and CD8+ 

T-cells in 8 tumors across all three subtypes (Fig. 7a). Spots enriched for LAM2 cells and 

CD4+/CD8+ T-cells across multiple tumors co-expressed PD-L1-PD-1 (CD274-PDCD1) 

and PD-L2-PD-1 (PDCD1LG2-PDCD1), suggesting these cells likely have functional 

relevance in immunoregulation (Extended Data Fig. 9g). In addition, positive Pearson 

correlations were identified between Mac:CXCL10/c9 cells and CD8 T-cells across a 

majority of cases (Fig. 7a), which were mostly enriched in spots annotated as ‘Invasive 

cancer + stroma + lymphocytes’ (Fig. 7g; Extended Data Fig. 9e), suggesting these niches 

may have functional relevance in regulating anti-tumor immunity.

Breast tumor ecotypes associated with patient survival

Our single cell data has generated a draft cellular taxonomy of breast tumors, with marked 

variation and recurring patterns of cellular frequencies observed across 26 tumors. We 
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hypothesized that subsets of breast cancers may have similar cellular composition and 

tumor biology. To test this at scale, we estimated cellular proportions in large bulk RNA-

Seq datasets by using our single-cell signatures with CIBERSORTx56. Estimating cell 

fractions from pseudo-bulk samples generated from our single-cell datasets showed good 

overall correlation between the captured cell-fractions and the predicted proportions (median 

correlation ~0.64), with a majority (32) of cell-types showing a significant correlation 

(Extended Data Fig. 10a). An alternative deconvolution method, DWLS57, showed similar 

results (Extended Data Fig. 10b), suggesting that deconvolution methods can effectively 

predict high-resolution cellular compositions from bulk data.

We deconvoluted all primary breast tumor datasets in the METABRIC cohort40. Supporting 

the validity of the predictions, and scSubtype, we observed significant enrichment (Wilcox 

test, p<2.2e-16) of the four scSubtypes in tumors with matching bulk-PAM50 classifications. 

Significant enrichment (Wilcox test, p<2.2e-16) of cycling cells in Basal, LumB and HER2E 

tumors was also shown (Extended Data Fig. 10c). Consensus clustering revealed 9 tumor 

clusters with similar estimated cellular composition (“Ecotypes”) (Fig. 8a). These ecotypes 

displayed correlation with tumor subtype, scSubtype cell distributions, and a diversity of 

major cell-types (Fig. 8a). Ecotype-3 (E3) was enriched for tumors containing Basal_SC, 

Cycling, and Luminal_Progenitor cells (the presumptive cell of origin for basal breast 

cancers28) and a Basal bulk PAM50 subtype (Fig. 8a–b). In contrast, E1, E5, E6, E8 and 

E9 consisted predominantly of luminal cells. Ecotypes also possessed unique patterns of 

stromal and immune cell enrichment. E4 was highly enriched for immune cells associated 

with anti-tumor immunity (Fig. 8a), including exhausted CD8 T cells (LAG3/c8), along with 

Th1− (IL7R/c1) and central memory (CCR7/c0) CD4 T cells. E2 primarily consisted of 

LumA and Normal-like tumors (Fig. 8b) and was defined by a cluster of mesenchymal cell 

types, including Endothelial CXCL12+ and ACKR1+ cells, s1 MSC iCAFs and depletion of 

cycling cells (Fig. 8a).

As for prognosis, patients with E2 tumors had the best outcome (Fig. 8d–e), while tumors in 

E3 associated with poor 5-year survival (Fig. 8d), consistent with known poor prognosis 

of Basal-like and highly proliferative tumors. E7 also had a poor prognosis and was 

dominated by HER2E tumors and enrichment of HER2E_SC cells. E4 also had a substantial 

proportion of HER2E and basal-like tumors (Fig. 8b), yet these patients had significantly 

better prognosis than E7 (Fig. 8f), perhaps as a consequence of infiltration with anti-tumor 

immune cells.

To further assess ecotype robustness, we repeated the consensus clustering using only the 

32 significantly correlated cell-types, as well as the DWLS method. Substantial overlap of 

tumours (Supplementary Table 7 and 8), ecotype features (Extended Data Fig. 10d–f, i–j) 

and overall survival was seen (Extended Data Fig. 10g–h, k), suggesting that cells with 

lower deconvolution performance or specific deconvolution methods were not confounding 

ecotyping.

Finally, we investigated the association between ecotypes and the integrative genomic 

clusters (int-clusters) identified by METABRIC40 (Extended Data Fig. 10l). E3 had a 

high proportion of cancers from int-cluster 10, which also predominantly consists of basal-
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like tumours with similarly poor 5-year survival. E7 had a high proportion of ERBB2 
amplified and Her2E int-cluster 5 tumours. These are the worst prognosis groups in both the 

METABRIC and ecotype analysis. However, a majority of ecotypes don’t clearly associate 

with a specific int-cluster or PAM50 subtype, reflected by the role of the stromal and 

immune cells in defining ecotypes. This lack of unique association suggests that ecotypes 

are not a simple surrogate for molecular or genomic subtypes.

Discussion

We provide here important advances toward an integrated cellular model for breast cancer 

classification. We define the cellular architecture of breast tumors at 3 levels: first, a 

detailed cellular taxonomy that includes new cell types and states and new methods for 

characterizing cellular heterogeneity (Fig. 8g). Second, a spatial map of cellular locations 

and interactions within tumors that reveals coordination of tumor and host cell phenotypes 

within tissue and reveals spatial relationships between cells. Third, using deconvolution, we 

observe groups of tumors with similar cell type proportions and prognostic associations, that 

we name ecotypes, often driven by specific clusters of co-segregating cells.

This study has several limitations. First is the use of tissue dissociation and droplet 

encapsulation for scRNA-Seq, causing certain cell types including adipocytes, mast cells 

and granulocytes to be under-represented. We have addressed this in part by using spatial 

transcriptomics on intact tissues. Future work may apply complementary technologies such 

as single-nuclei or microwell-based sequencing. Second is the limited number of cases per 

clinical subtype, which limits our ability to estimate subtype-specific features. We used 

deconvolution to extend our findings into large cohorts of tumors, although these are only 

estimates of relative cell proportion rather than direct measurements.

Our cellular analysis revealed remarkable heterogeneity for epithelial, immune and 

mesenchymal phenotypes existing within every tumor, which has confounded previous 

‘bulk’ studies. From this, we derived a high resolution cellular taxonomy of breast tumors 

(Fig. 8g), across three tiers of cell types and cell states. We identify at least 9 major cell 

types that fall into 29 or 49 identifiable states at mid- and high-resolution, respectively. 

A number of these states most likely represent dynamic states along a continuum of 

differentiation, dependent upon local interactions. To classify tumor cells in a manner 

consistent with the prior PAM50 bulk classifier, we developed scSubtype, which was 

able to subtype tumors with low cellularity, for which bulk analysis had failed. Although 

heterogeneous expression of subtype markers (e.g. cytokeratins, ER) has long been observed 

in breast cancers, it was not known whether these were simply aberrations in marker 

expression or reflected functional diversity. scSubtype provides evidence for the latter, 

suggesting that intrinsic subtype heterogeneity exists within a majority of cancers. As for 

all classification methods, the performance of scSubtype will improve upon larger sample 

sizes applied to the training and test steps in future scRNA-Seq studies. Phenotypic diversity 

in cancer is generally associated with poorer outcomes. While our study is not powered to 

make this inference, we hypothesize that intra-tumoral heterogeneity for intrinsic subtype 

may predict innate resistance to therapy and early relapse following therapy. For instance, 
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the presence of basal-like or HER2-like cells in clinically luminal cancers (Fig. 2c) may 

cause early relapse following endocrine therapy.

We also conducted an integrative analysis to discover the gene expression programs 

underlying ITTH. This revealed that module 3 (EMT, IFN, MHC) and module 4 

(proliferation) were mutually exclusive, suggesting that a mesenchymal-like state and 

proliferation are incompatible at cellular resolution. Furthermore, analysis of spatial data 

reveals organization of these cell states into distinct zones, suggesting a role for the 

microenvironment in the acquisition of these phenotypes. Proliferation and EMT are 

inversely correlated in development and previous work in animal models of cancer has 

shown that exit from a mesenchymal-like state is required for tumor cell proliferation58. 

However, the cellular and spatial relationship between a mesenchymal-like state and 

proliferation was previously unreported in human cancers. This is particularly interesting in 

the context of basal-like tumors where both phenotypes predominate, indicating that distinct 

subsets of cells manifest these phenotypes.

This study has revealed new insights into the immune phenotype of breast tumors. Previous 

studies have investigated either fewer samples at a similar resolution or a greater number 

of samples with far fewer parameters22,23,25,26. We identified two large clusters of immune 

cells closely resembling recently identified TREM2-high lipid-associated macrophages44. 

These macrophages also bear similarities to a population of PD-L1+ macrophages that 

associate with high clinical grade and exhausted T cells in breast cancers, identified using 

mass cytometry26. Recent studies have shown Trem2-high expressing myeloid cells have an 

immunosuppressive role in mouse models of cancer59,60, with human IHC analyses showing 

TREM2 expression in multiple subsets of macrophages in TNBC and an association with 

worse prognosis60. Our data extends upon these works by providing high resolution scRNA-

Seq, cell surface protein and spatial characterisation of these cells in human cancer. We 

reveal that LAMs and CXCL10hi macrophages are a major source of immunosuppressive 

molecules in the human breast TME, and spatial analysis revealed their juxtaposition to 

PD-1+ lymphocytes. We also show that the LAM1 gene signature is associated with poor 

patient survival in large patient datasets, demonstrating the importance of these cells to 

breast cancer etiology.

Analysis of the stromal microenvironment reveals three major cell populations, endothelial, 

CAF and PVL cells, consisting of 3-5 identifiable states each. Previous studies have shown 

that CAF states are interconvertible upon distinct tumor culture conditions, suggesting that 

this differentiation may also occur bi-directionally depending on external factors17,18. While 

differentiation from other progenitors like mesenchymal stem cells is possible, our pseudo-

temporal analysis provides additional evidence that differentiation can drive transition 

between CAF subsets. Our observation that mesenchymal subsets are often spatially 

segregated suggests that signals from the microenvironment control their differentiation 

or migration. These insights now open pathways to therapeutic strategies aiming to block 

stromal-immune signaling or to manipulate stromal cell differentiation, which may then alter 

neoplastic and immune cell phenotypes. Importantly, our CITE-Seq data provide cell surface 

markers for prospective isolation of stromal subsets, enabling ex-vivo experimentation.
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We use deconvolution to define nine ecotypes amongst thousands of primary breast cancers. 

Interestingly, clustering of most ecotypes is driven by cells spanning the major lineages 

(epithelial, immune and stromal), features not captured by previous studies that stratified 

disease based on mass cytometry primarily using immune markers25,26. Integration of our 

data with these datasets is an important future direction for the field. While ecotypes 

partially associated with intrinsic subtype4 and genomic classifiers40, they are not simply 

surrogates for previous methods stratification. Future work will investigate the molecular 

mechanisms organizing tissue architecture and tumor ecotypes, aiming to explain their 

differences in clinical outcome and examine whether tumor ecotypes can be used to 

personalise therapy.

Methods

Patient material, ethics and consent for publication

Primary untreated breast cancers used in this study (Supplementary Table 1) were collected 

with written consent from all patients under the protocols x13-0133, x19-0496, x16-018 and 

x17-155 with approval from all relevant human research ethics committees (Sydney Local 

Health District Ethics Committee, Royal Prince Alfred Hospital zone, and the St Vincent’s 

hospital Ethics Committee). Consent included the use of all de-identified patient data for 

publication. Participants were not compensated.

Tissue dissociation

Samples were analyzed from fresh surgical resections and cryopreserved tissue61. Tumors 

were dissociated using Human Tumor Dissociation Kit (Miltenyi Biotec) following the 

manufacturer’s protocol. Where viability was < 80%, viability enrichment was performed 

using the EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) as per 

manufacturer’s protocol.

Single-cell RNA Sequencing using 10X Chromium

Single-cell sequencing was performed using the Chromium Single-Cell v2 3’ and 5’ 

Chemistry Library, Gel Bead, Multiplex and Chip Kits (10X Genomics) according to the 

manufacturer’s protocol. A total of 5,000 to 7,000 cells were targeted per well. Libraries 

were sequenced on the NextSeq 500 platform (Illumina) with pair-ended sequencing and 

dual indexing. A total of 26, 8 and 98 cycles were run for Read 1, i7 index and Read 2, 

respectively.

Data processing, cluster annotation and data integration

Raw bcl files were demultiplexed and mapped to the reference genome GRCh38 using the 

Cell Ranger Single Cell v2.0 software (10X Genomics). The EmptyDrops method from 

the DropletUtils package (v1.2.2)62 was applied for cell filtering with additional cutoffs 

for cells with a gene and unique molecular identifier (UMIs) count greater than 200 and 

250, respectively, and a mitochondrial percentage less than 20%. We used the Seurat v3.0.0 

method36 in R (v3.5.0) for data normalisation, dimensionality reduction and clustering using 

default parameters. Cell clusters were annotated using the Garnett method29 (v0.1.4) with a 

classifier derived breast epithelial cell signatures28, and immune and stromal cell types from 
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XCell27. Data integration was performed using Seurat v3.0.036 (see Supplementary Note for 

specific parameters used).

Identifying neoplastic from normal breast epithelial cells

CNV signal for individual cells was estimated using the inferCNV method (v0.99.7) with 

a 100 gene sliding window. Genes with a mean count of less than 0.1 across all cells were 

filtered out prior to analysis, and signal was denoised using a dynamic threshold of 1.3 

standard deviations from the mean. Immune and endothelial cells were used to define the 

reference cell inferred copy-number profiles. Epithelial cells were used for the observations. 

Epithelial cells were classified into normal (non-neoplastic), neoplastic or unassigned using 

a similar method to that previously described by Neftel et al.30. Briefly, inferred changes 

at each genomic loci were scaled (between −1 and +1) and the mean of the squares of 

these values were used to define a genomic instability score for each cell. In each individual 

tumor, the top 5% of cells with the highest genomic instability scores were used to create an 

average CNV profile. Each cell was then correlated to this profile. Cells were plotted with 

respect to both their genomic instability and correlation scores. Partitioning around medoids 

(PAM) clustering was performed using the ‘pamk’ function in the R package ‘cluster’ 

(v2.0.7-1) to choose the optimum value for k (between 2-4) using silhouette scores, and 

the ‘pam’ function to apply the clustering. Thresholds defining normal and neoplastic cells 

were set at 2 cluster standard deviations to the left and 1.5 standard deviations below the 

first cancer cluster means. For tumors where PAM could not define more than 1 cluster, the 

thresholds were set at 1 standard deviation to the left and 1.25 standard deviations below the 

cluster means. This method was used to identify 27,506 neoplastic and 6084 normal cells in 

all tumors, the remaining 3208 cells were classed as unassigned. Only tumours with at least 

200 epithelial cells were used for this neoplastic cell classification step.

Calling PAM50 on pseudo-bulks and matching bulk RNA-Seq

For calling molecular subtypes using the PAM50 method3, we processed “pseudo-bulk” 

expression profiles for each tumor, named “Allcells-Pseudobulk”, in a similar manner to 

any bulk RNA-Seq sample (i.e. upper quartile normalized-log transformed). Prior to PAM50 

subtyping, we adjusted a new sample set relative to the PAM50 training set according to 

their ER and HER2 status as detailed by Zhao et al.63. We performed whole-transcriptome 

RNA-Seq using Ribosomal Depletion (Illumina TruSeq Total RNA) on 24 matching tumor 

samples from our single-cell dataset. RNA was extracted from diagnostic FFPE blocks using 

the High Pure RNA Paraffin Kit (Roche #03 270 289 001). Libraries were sequenced on the 

HiSeq 2500 platform (Illumina) with 50 bp paired end reads. Transcript quantification was 

performed using Salmon64. We then called PAM50 on each bulk tumor using Zhao et al.63 

normalization and then the PAM50 centroid predictor (Supplementary Table 3).

Calling intrinsic subtype on scRNA-Seq using scSubtype

To design and validate a new subtyping tool specific for scRNA-Seq data, we first 

divided our tumor samples into training and testing sets. The training dataset was defined 

by identifying tumors with unambiguous molecular subtypes. Here, we identified robust 

training set samples using two subtyping approaches: (i) PAM50 subtyping of the Allcells-
Pseudobulk datasets (described above); and (ii) hierarchical clustering of the Allcells-
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Pseudobulk data with the 1,100 tumors in the TCGA breast cancer RNA-Seq dataset32 

using ~2000 genes from an intrinsic breast cancer genelist3. We first identified tumors that 

shared the same “concordant” subtype from both Allcells-Pseudobulk PAM50 calls and 

TCGA hierarchical clustering based subtype classifications (Supplementary Table 3). Next, 

since our methodology aimed to subtype cancer cells, we removed any tumors with <150 

cancer cells. Finally, we did not include cells from the two metaplastic samples (CID4513 

and CID4523) in the training data because this is a histological subtype not used in the 

original PAM50 training set. Only tumor cells with greater than 500 UMIs were used 

for training and test datasets in scSubtype (total of 24,889 cells). Within each training 

set subtype, we utilized the cancer cells from each tumor sample and performed pairwise 

single cell integrations and differential gene expression calculations. The integration was 

carried out in a “within group” pairwise fashion using the FindIntegrationAnchors and 

IntegrateData functions in the Seurat v3.0.0 package36. Briefly, the first step identifies 

anchors between pairs of cells from each dataset using mutual nearest neighbors. The 

second step integrates the datasets together based on a distance based weights matrix 

constructed from the anchor pairs. Differentially expressed genes were calculated between 

each pair using a Wilcoxon Rank Sum test by the FindAllMarkers function within 

Seurat. The following pairs were analyzed: HER2E (CID3921-CID44991, CID44991-

CID45171, CID45171-CID3921), Basal-like (CID4495-CID44971, CID44971-CID4515, 

CID4515-CID4495), LumA (CID4290-CID4530) and LumB (CID3948-CID4535). We 

removed any duplicate genes occurring between the 4 training groups, which yielded 4 

sets of genes composed of 89 genes defining Basal_SC, 102 genes defining HER2E_SC, 

46 genes defining LumA_SC and 65 genes defining LumB_SC, which we define as 

“scSubtype” gene signatures (Supplementary Table 4). To assign a subtype call to a cell 

we calculated the average (i.e. mean) read counts for each of the 4 signatures for each cell. 

The SC subtype with the highest signature score was then assigned to each cell. We utilized 

this method to subtype all 24,489 neoplastic cells, from both our training samples (n=10) 

and the remaining test (n=10) set samples.

Calculating Proliferation and differentiation scores

We calculated the degree of epithelial cell differentiation (DScore)33 and proliferation34 on 

all tumor cells from our scRNA-Seq cohort, and 1,100 tumors from the TCGA dataset. 

The Dscore was computed using a centroid based predictor with information from ~20 

thousand genes33. Averaged normalised expression of 11 genes34 (BIRC5, CCNB1, CDC20, 
NUF2, CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS and UBE2C), independent of the 

scSubtype gene lists, was used to compute the proliferation score.

Histology and immunohistochemical staining of CK5 and ER

Tumor tissue was fixed in 10% neutral buffered formalin for 24 hrs and then processed 

for paraffin embedding. Diagnostic tumor blocks were accessed for samples that did not 

have a research block available. Blocks were sectioned at 4uM. Sections were stained with 

Haematoxylin and Eosin for standard histological analysis. Immunohistochemistry (IHC) 

was performed on serial sections with pre-diluted primary antibodies against ER (clone 

6F11; leica PA0151) or CK5 (clone XM26; leica PA0468) using suggested protocols on the 

BOND RX Autostainer (Leica, Germany). Antigen retrieval was performed for 20 min using 
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BOND Epitope Retrieval solution 1 for ER or solution 2 for CK5, followed by primary 

antibody incubation for 60 min and secondary staining with the Bond Refine detection 

system (Leica). Slides were imaged using the Aperio CS2 Digital Pathology Slide Scanner 

and processed using QuPath (v0.2.0).

Gene module analysis of neoplastic intra-tumor heterogeneity

For each individual tumor, with more than 50 neoplastic cells, the neoplastic cells were 

clustered using Seurat v3.0.036 at five resolutions (0.4, 0.8, 1.2, 1.6, 2.0). MAST65 (v1.12.0) 

was then used to identify the top-200 differentially regulated genes in each cluster. Only 

gene-signatures containing greater than 5 genes and originating from clusters of more than 

5 cells were kept. In addition, redundancy was reduced by comparing all pairs of signatures 

within each sample and removing the pair with fewest genes from those pairs with a Jaccard 

index greater than 0.75. Across all tumors, a total of 574 gene-signatures of intra-tumor 

heterogeneity were identified.

Consensus clustering (using spherical k-means, skmeans, implemented in the cola R 

package (v1.2.0): https://www.bioconductor.org/packages/release/bioc/html/cola.html) of the 

Jaccard similarities between these gene-signatures was used to identify 7 robust groups, or 

gene-modules. For each of these, a gene module was defined by taking the 200 genes that 

had the highest frequency of occurrence across clusters and individual tumors. These are 

defined as gene-modules GM1 to GM7. A gene-module signature was calculated for each 

cell using AUCell66 and each neoplastic cell was assigned to a module, using the maximum 

of the scaled AUCell gene-module signature scores. This resulted in 4,368, 3,288, 2,951, 

4,326, 3,931, 2,500, 3,125 cells assigned to GM1 to GM7, respectively. These are defined as 

gene-module based neoplastic cell states.

Differential expression, module and pathway enrichment

Differential gene expression was performed using the MAST method65 (v1.8.2). All DEGs 

from each cluster (log fold change greater than 0.5, p-value threshold of 0.05, and adjusted 

p-value threshold of 0.05; Supplementary Table 9 and 10) were used as input into the 

ClusterProfiler package67 (v3.14.0) for gene ontology functional enrichment. Results were 

clustered, scaled and visualised using the pheatmap package (v1.0.12). Cytotoxic, TAM and 

Dysfunctional T-cell gene expression signatures were assigned using the AddModuleScore 
function in Seurat v3.0.036. The list of genes used for dysfunctional T-cells were adopted 

from Li et al.38. The TAM gene list was adopted from Cassetta et al.10. The cytotoxic gene 

list consists of 12 genes which translate to effector cytotoxic proteins (GZMA, GZMB, 
GZMH, GZMK, GZMM, GNLY, PRF1 and FASLG) and well described cytotoxic T-cell 

activation markers (IFNG, TNF, IL2R and IL2).

Pseudotemporal ordering to infer cell trajectories

Cell differentiation was inferred for mesenchymal cells (CAFs, PVL and Endothelial cells) 

using the Monocle 2 method46 (v2.10.1) with default parameters as recommended by 

developers. Integrated gene expression matrices from each cell type were first exported 

from Seurat v3 into Monocle to construct a CellDataSet. All variable genes defined by the 

differentialGeneTest function (q-val cutoff < 0.001) were used for cell ordering with the 
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setOrderingFilter function. Dimensionality reduction was performed with no normalisation 

methods and the DDRTree reduction method in the reduceDimension step.

CITE-Seq antibody staining

Samples were stained with 10X Chromium 3’ mRNA capture compatible TotalSeq-A 

antibodies (Biolegend, USA). A total of four cases from our scRNA-Seq cohort were 

analyzed with a panel of 157 barcoded antibodies (Supplementary Table 11), including one 

luminal (CID4040), one HER2 (CID383) and two TNBC (CID4515 and CID3956). Staining 

was performed as previously described by Stoeckius et. al35. Briefly, a maximum of 1 

million cells per sample was resuspended in 120 ul of cell staining buffer (Biolegend, USA) 

with 5 ul of Fc receptor Block (TrueStain FcX, Bioelegend, USA) for 15 min. This was 

followed by a 30 min staining of the antibodies at 4°C. A concentration of 1 ug / 100 ul was 

used for all antibody markers used in this study. The cells were then washed 3 times with 

PBS containing 10% FCS media followed by centrifugation (300 x g for 5min at 4°C) and 

expungement of supernatant.

CITE-Seq data processing and imputation

Demultiplexed reads were assigned to individual cells and antibodies with python 

package CITE-seq-count v.1.4.3 (https://github.com/Hoohm/CITE-seq-Count/tree/1.4.2). 

CITE counts were normalised and scaled with Seurat v.3.1.4. Imputation of CITE data 

was performed per individual cell type (B-cells, T-cells, myeloid cells, mesenchymal cells) 

for those antibodies that were differentially expressed between subclusters (FindAllMarkers 
step) for individual samples. We used anchoring based transfer learning to transfer protein 

expression levels from these four samples to the remaining cases36.

Spatial Transcriptomics

Tissue samples were embedded in OCT and stored at −80°C. Tissue blocks were cut into 

10 μm sections and processed using Visium Spatial Gene Expression Kit (10X Genomics) 

according to manufacturer’s instructions. First, breast tissue permeabilization condition was 

optimised using Visium Spatial Tissue Optimisation kit, which was found to be ideal at 12 

minutes. Sections were H&E stained and imaged using a Leica microscope DM6000 (Leica, 

DE) under a 20x lens magnification, then processed for ST. The resulting cDNA library was 

checked for quality control, then sequenced using on an Illumina NovaSeq 6000 (illumina, 

US). Cycling conditions were set for 28, 98 and 8 for Read 1, Read 2, and Read 3 (i7 index) 

respectively. Spots were annotated by a specialist breast pathologist using the Loupe (v4.0.0) 

software (10X Genomics).

Visium spatial transcriptomics data processing

Reads were demultiplexed and mapped to the reference genome GRCh38 using the Space 

Ranger Software v1.0.0 (10X Genomics). Count matrices were loaded into the Seurat v3.2.0 

and STutility (v0.1.0) packages for all subsequent data filtering, normalisation, filtering, 

dimensional reduction and visualization. Data normalisation was performed on independent 

tissue sections using the variance stabilizing transformation method implemented in the 
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SCTransform function in Seurat. We applied non-negative matrix factorization (NMF) to the 

normalised expression matrix using STutility (nfactors = 20).

Spatial deconvolution using Stereoscope

We performed deconvolution of spatial tissue locations using the Stereoscope54 (v0.2.0), a 

probabilistic model for estimating cell type proportions using annotated scRNA-Seq data 

as input. Stereoscope was performed using default parameters (see Supplementary Note for 

greater details). We matched spatial and single cell data with respect to breast cancer clinical 

subtype. We deconvolved cell types across three tiers of classification including the major, 

minor and subset lineages.

Mapping cancer heterogeneity and cell signalling predictions

For investigating breast cancer gene modules, we first filtered for all spots where cancer 

epithelial cells were called using the Stereoscope method with a filter of 10%. Gene module 

gene lists were then scored using the AUCell method66 (v1.4.1). Gene module correlations 

were then computed using Pearson correlation across all spots using R (cor.test function; 

p-value cutoff of 0.05). For cell-cell colocalizations across all tissue domains, we included 7 

additional HER2+ datasets generated on a platform similar to the Visium68. In total, Pearson 

correlation was computed from the cell abundances across the tissue locations from 13 

patients using R (cor.test function; p-value cutoff of 0.05). For cell signalling predictions 

between iCAFs and CD4/CD8+ T-cells, spots containing the two cell types of interest were 

first selected using the product of the two respective deconvolution values. Interaction scores 

were defined as the product of the ligand and receptor log expression levels, using two 

independent cell-signalling sets69,70, and only ligands and receptors differentially expressed 

by iCAFs and CD4/CD8+ T-cells in the scRNA-Seq data, respectively (MAST; avg.logfc 

threshold 0.1). All regions annotated as normal ductal by pathology were also excluded for 

the above analyses.

Survival analysis of scRNA-Seq signatures

To assess impact of particular cell types described by scRNA-Seq (e.g. LAM1 and LAM2) 

on clinical outcome, we assessed the association between gene signatures (derived as 

described above) with patient overall survival in the METABRIC cohort. For each tumor 

from the bulk expression cohort, average gene signature expression was derived using the 

top 100 genes from the gene signature of interest. Patients were then stratified based on the 

top and bottom 30%, and survival curves were generated using the Kaplan Meier method 

with the ‘survival’ package (v2.44-1.1). We assessed the significance between two groups 

using the log-rank test statistics.

Tumor ecotype analysis using deconvolution

CIBERSORTx56 (v1.0) and DWLS57 were used to deconvolute predicted cell-fractions 

from a number of bulk transcript profiling datasets (see Supplementary Note for 

specific parameters). To prevent confounding of cycling cell-types we first assigned 

all neoplastic epithelial cells with a proliferation score > 0 as cycling and then 

combined these with “cycling” cell states from all other cell-types to generate a single 
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“Cycling” cell-state. Normalised METABRIC expression matrices, clinical information 

and PAM50 subtype classifications were obtained from https://www.cbioportal.org/study/

summary?id=brca_metabric. Tumor ecotypes in the METABRIC cohort were identified 

using spherical k-means (skmeans) based consensus clustering (as implemented in the cola 

R package v1.2.0) of the predicted cell-fraction from either CIBERSORTx or DWLS, 

in each bulk METABRIC patient tumor. When comparing ecotypes between methods 

(i.e., consensus clustering results from using cell-abundances of all cell-types or just the 

32 significantly significantly correlated cell-types from CIBERSORTx deconvolution and 

consensus clustering results from CIBERSORTx or DWLS cell-abundances) the number 

of tumour ecotypes was fixed as 9 and the tumour overlaps between all ecotype pairs 

was calculated (Supplementary Table 7 and 8). Common ecotypes were then identified 

by identifying the ecotype pairs with the largest average METABRIC tumour overlap. 

Differences in survival between ecotypes were assessed using Kaplan-Meier analysis and 

log-rank test statistics, using the survival (v2.44-1.1) and survminer (v0.4.7) R packages.

Statistics and Reproducibility

No statistical method was used to predetermine sample size. Statistical significance for 

differentially expressed genes were determined using the Wilcoxon Rank Sum test, with all 

p-values adjusted using bonferroni correction. All boxplots depict the first and third quartiles 

as the lower and upper bounds, respectively. The whiskers represent 1.5x the interquartile 

range and the centre depicts the median. All statistical tests used are defined in the figure 

legends.
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Extended Data

Extended Data Fig. 1. Identification of malignant cells, single-cell RNA sequencing metrics and 
non-integrated data of stromal and immune cells
a-b, Number of unique molecular identifiers (a) and genes (b) per tumor analyzed by 

scRNA-Seq in this study. Tumors are stratified by the clinical subtypes TNBC (red), 

HER2 (pink) and ER (blue). Diamond points represent the mean. c-d, Number of unique 

molecular identifiers (UMIs;c) and genes (d) per major lineage cell types identified in this 

study. These major lineage tiers are grouped by T-cells, B-cells, Plasmablasts, Myeloid, 

Wu et al. Page 21

Nat Genet. Author manuscript; available in PMC 2022 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Epithelial, Cycling, Mesenchymal (cancer-associated fibroblasts and perivascular-like cells) 

and Endothelial. Diamond points represent the mean. e-f, UMAP visualization of all 71,220 

stromal and immune cells without batch correction and data integration. UMAP dimensional 

reduction was performed using 100 principal components in the Seurat v3 package. Cells 

are grouped by tumor (e) and major lineage tiers (f) as identified using the Garnett cell 

classification method. g, InferCNV heatmaps of all malignant cells grouped by clinical 

subtypes. Common subtype-specific CNVs and a chr6 artefact reported by Tirosh et. al. are 

marked (Tirosh et al., 2016b).
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Extended Data Fig. 2. Supplementary data for scSubtype classifier
a-b, Hierarchical Clustering of Allcells-Pseudobulk (indicated by yellow stars) and Ribozero 

mRNA-Seq (indicated by blue stars) profiles of the patient samples with TCGA patient 

mRNA-Seq data. a, View of the basal cluster showing pairing of Allcells-Pseudobulk and 

Ribozero mRNA-Seq profiles of 2 representative tumors (CID4495 and CID4515) in the 

present study. b, View of the luminal cluster showing pairing of Allcells-Pseudobulk and 

Ribozero mRNA-Seq profiles of 4 representative tumors (CID4067, CID4463, CID4290 

and CID3948) in the present study. c, Heatmap of scSubtype gene sets across the training 
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and test samples in each individual group. Colored outlined boxes highlighting the top 

expressed genes per group. d, Barplot representing proportions of scSubtype calls in 

individual samples. Test dataset samples are highlighted within the golden colored outline. e, 
Scatterplot of individual cancer cells plotted according to the Proliferation score (x-axis) and 

Differentiation – DScore (y-axis). Individual cells are colored based on the scSubtype calls. 

f, Scatterplot of individual TCGA breast tumors plotted according to the Proliferation score 

(x-axis) and Differentiation – DScore (y-axis). Individual patients are colored based on the 

PAM50 subtype calls.
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Extended Data Fig. 3. Supplementary data for breast cancer gene modules
a, Spherical k-means (skmeans) based consensus clustering of the Jaccard similarities 

between 574 signatures of neoplastic cell ITTH. This showed the probability (p1-p7) of 

each signature of ITTH being assigned to one of seven clusters/classes. Silhouette scores are 

shown for each signature. b, Heatmap of pair-wise Pearson correlations of the scaled AUCell 

signature scores, across all individual neoplastic cells, for each of the seven ITTH gene-

modules (bolded) and a curated set of breast cancer related gene-signatures. Hierarchical 

clustering was performed using Pearson correlations and average linkage c, Heatmap 
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showing the scaled AUCell signature scores of each of the seven ITTH gene-modules (rows) 

across all individual neoplastic cells (columns). Hierarchical clustering was done using 

Pearson correlations and average linkage. (HER2_AMP = Clinical HER2 amplification 

status). d, Distributions of signature scores (z-score scaled) for each of the gene-module 

signatures (24,489 cells from 21 tumors). Cells are grouped according to the gene-module 

(GM1-7) cell-state. e, Barchart showing the proportion of cells assigned to each of the gene-

module cell-states (GM1-7) with cells grouped according to the scSubtypes. f, Distributions 

of scSubtype scores for each of the gene-module signatures (24,489 cells from 21 tumors). 

Cells are grouped according to the gene-module (GM1-7) cell-state. Kruskal-Wallis tests 

were performed to calculate the significance between the four scSubtype score groups 

in each of the gene-module groups, p-value shown. Wilcox tests were used to identify 

which scSubtype had significantly increased scSubtype scores in the cells assigned to each 

gene-module, the scores of each scSubtype were compared to the rest of the scSubtype 

scores (****: Holm adjusted p-value < 0.0001, ns: Holm adjusted p-value > 0.05). Box plots 

in d and f depict the first and third quartiles as the lower and upper bounds, respectively. The 

whiskers represent 1.5x the interquartile range and the centre depicts the median.
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Extended Data Fig. 4. CITE-Seq vignette
a, UMAP Visualization of a TNBC sample with 157 DNA barcoded antibodies 

(Supplementary Table 11). Cluster annotations were extracted from our final breast cancer 

atlas cell annotations. b, Heatmap visualization of the cluster averaged antibody derived tag 

(ADT) values for the 157 CITE-seq antibody panel. Only immune cells are shown. c-d, 
Expression featureplots of measured experimental ADT values (shown in top rows) against 

the CITE-Seq imputation ADT levels (shown in bottom rows), as determined using the 
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seurat v3 method. Selected markers for immunophenotyping T-cells (c; CD4, CD8A, PD-1 

and CD103) and myeloid cells (d; PD-L1, CD86, CD49f and CD14) are shown.

Extended Data Fig. 5. Supplementary data for T-cells and innate lymphoid cells.
a, Dotplot visualizing averaged expression of canonical markers across T-cell and innate 

lymphoid clusters. b, Cytotoxic and dysfunctional gene signature scores across T-cell and 

innate lymphoid clusters. A Kruskal-Wallis test was performed to compare significance 

between (pairwise two-sided t-test for each cluster compared to the mean, p-values denoted 
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by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001). Red line indicates 

the median expression. c, Dysfunctional gene signature scores of CD8 : LAG3 and CD8+ 

T : IFNG clusters across clinical subtypes (n = 26; 11 TNBC, 10 ER+ and 5 HER2+). 

A pairwise two-sided t-test for each cluster was performed to determine significance. P-

values denoted by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. d, 
Differentially expressed immune modulator genes, stratified by T-cell and Myeloid clusters, 

compared across breast cancer subtypes. A pairwise MAST comparison was performed 

to obtain bonferroni corrected p-values. All genes displayed are statistically significant 

(p-value < 0.05). e, Pairwise two-sided t-test comparison of LAG3, CD27, PD-1 (PDCD1), 

CD70 and CD27 Log-normalised expression found in LAG3/c8 T-cells across breast cancer 

subtypes (n = 26; 11 TNBC, 10 ER+ and 5 HER2+). f, Enrichment of PDCD1, CD27, 

LAG3, CD70 expression in METABRIC cohort between clinical subtypes (n = 1,608; 209 

Basal, 224 Her2, 700 LumA and 475 LumB). A pair-wise Wilcox test was performed to 

identify statistical significance. P-values denoted by asterisks: *p < 0.05, **p < 0.01, ***p 

< 0.001 and ****p < 0.0001. Box plots in b and f depict the first and third quartiles as the 

lower and upper bounds, respectively. The whiskers represent 1.5x the interquartile range 

and the centre depicts the median.
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Extended Data Fig. 6. Gene expression of immune cell surface receptors across malignant, 
immune and mesenchymal clusters and breast cancer clinical subtypes
a, Averaged expression and clustering of 133 clinically targetable receptor or ligand immune 

modulator markers across all cell types grouped by clinical breast cancer subtypes (TNBC, 

HER2+ and ER+). Gene list was manually curated through systematic literature search of 

known immune modulating proteins expressed on the surface of cells. Default parameters 

for hierarchical clustering were used via the “pheatmap” package for the visualization of 

gene expression values.
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Extended Data Fig. 7. Supplementary data for B-cells, Plasmablasts and Myeloid cells
a, UMAP visualization of all reclustered B-cells (n = 3,202 cells) and Plasmablasts (n 

= 3,525 cells) as annotated using canonical gene expression markers. b, Featureplots of 

CD27, IGHD, IGKC and IGLC2 across naïve B cells, memory B cells, and Plasmablasts. 

c, Tumour associated macrophage (TAM) signature score obtained from Cassetta et al. 2019 

and the expression of log-normalised levels of CCL8 across all myeloid clusters (9,675 

cells from 26 tumors). A pairwise two-sided t-test was performed to determine statistical 

significance for clusters of interest. P-values denoted by asterisks: *p < 0.05, **p < 0.01, 
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***p < 0.001 and ****p < 0.0001. Dashed red line marks median TAM module score or 

gene expression. A Kruskal-Wallis test was performed to compare significance between 

groups’. d, LAM and DC : LAMP3 gene expression signatures acquired from Jaitin et al. 

2019 and Zhang et al. 2019 respectively, visualized on UMAP myeloid clusters. e, Heatmap 

visualizing GO enrichment pathways across Myeloid clusters. f, Proportional of myeloid 

clusters across clinical subtypes. Statistical significance was determined using a two-sided 

t-test in a pairwise comparison of means between groups (n = 26; 11 TNBC, 10 ER+ and 

5 HER2+). P-values denoted by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p 

< 0.0001. g, Violin plot of Imputed CITE-seq PD-L1 and PD-L2 expression values found 

on Myeloid cells. Box plots in c and f depict the first and third quartiles as the lower 

and upper bounds, respectively. The whiskers represent 1.5x the interquartile range and the 

centre depicts the median.
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Extended Data Fig. 8. Supplementary data for mesenchymal cell states and subclusters
a, UMAP visualization CAFs, PVL cells and endothelial cells using Seurat reclustered with 

default resolution parameters (0.8). b, Pseudotime plot for CAFs, PVL cells and endothelial 

cells, as determined using monocle. Coordinates are as in main Figure 5c, 5e and 5g. c, 
UMAP visualizations for CAFs, PVL cells and endothelial cells with monocle derived cell 

states overlaid. d, Heatmaps for CAFs, PVL cells and endothelial cells show cell state 

averaged log normalised expression values for all differentially expressed genes determined 

using the MAST method, with select stromal markers highlighted. e, Top 10 gene ontologies 
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(GO) of each mesenchymal cell state, as determined using pathway enrichment with 

ClusterProfiler with all differentially expressed genes as input. f, Stromal cell state averaged 

signature scores for pancreatic ductal adenocarcinoma myofibroblast-like, inflammatory-like 

and antigen-presenting CAF sub-populations, as determined using AUCell. g, Enrichment of 

antigen-presenting CAF markers CLU, CD74 and CAV1 in various stromal cell states. h, 
Subclusters of CAFs, PVL cells and endothelial cells determined using Seurat show a strong 

integration with three normal breast tissue datasets, highlighting similarities in subclusters 

across disease status and clinical subtypes of breast cancer. i, Cell states of CAFs, PVL cells 

and endothelial cells determined using monocle show a strong integration with three normal 

breast tissue datasets and breast cancer clinical subtypes.
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Extended Data Fig. 9. Supplementary data for spatial transcriptomics.
a, H&E images for the remaining five breast tumors analysed using Visium (TNBC: 

CID4465, 1142243F and 1160920F; ER+: CID4535 and CID4290). Scale bars represent 500 

μm. b, Histograms of cancer deconvolution values, as estimated using Stereoscope. Red line 

indicates the 10% cutoff used to select spots for scoring breast cancer gene-modules. Spots 

are colored by the pathology annotation. c, Box plot of gene module scores for all cancer 

filtered spots, as determined using AUCell, grouped by sample (TNBC=red; ER=blue). 

Statistical significance was determined using a two-sided t-test, with p-values adjusted 
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using the Benjamini–Hochberg procedure. Box plots depict the first and third quartiles as 

the lower and upper bounds, respectively. The whiskers represent 1.5x the interquartile 

range and the centre depicts the median. P-values denoted by asterisks: *p < 0.05, **p < 

0.01, ***p < 0.001 and ****p < 0.0001. d, Clustered gene module correlations across all 

cancer filtered spots. Color scales represent Pearson correlation values and are scaled per 

GM (“n.s” denotes not significant; two-sided correlation coefficient, Benjamini–Hochberg 

adjusted p-value < 0.05). e, Heatmap of the deconvolution values for inflammatory-like 

CAFs, myofibroblast-like CAFs, Macrophage CXCL10/c9, LAM1 and LAM2 clusters. 

Spots (columns) are grouped by sample and pathology. Deconvolution abundances (rows) 

are scaled by cell type. f, Predicted signaling in tissue spots enriched for iCAFs and CD4/

CD8+ T-cells. Spots filtered for CAF-ligands and T-cell receptors detected by scRNA-Seq. 

The mean interaction scores of cell-signaling pairs are defined as the product of the ligand 

and receptor expression. g, Plots of PD-1 (PDCD1; y axis) expression with PD-L1 (CD274; 

x axis) or PD-L2 (PDCD1LG2; x axis) expression in spots enriched for CD4/CD8+ T-cells 

and LAM2 cells, as determined by Stereoscope. Abundance of CD4/CD8 T-cells (combined 

as T_cell here) and LAM2 are overlaid on the expression plots.
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Extended Data Fig. 10. Supplementary figure for CIBERSORTx cell-type deconvolution
a, Bar and boxplot (inset) of the Pearson correlation for 45 cell-types between the 

actual cell-fractions captured by scRNA-Seq and the CIBERSORTx predicted fractions 

from pseudo-bulk expression profiles (*denotes significance p<0.05, two-sided correlation 

coefficient). Inset box plot depicts the first and third quartiles as the lower and upper bounds, 

respectively. The whiskers represent 1.5x the interquartile range and the centre depicts the 

median. b, Barplot comparing the Pearson correlation for cell-types between the actual cell-

fractions captured by scRNA-Seq and the CIBERSORTx (red) and DWLS (blue) predicted 
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fractions from pseudo-bulk expression profiles (*denotes significance p<0.05, two-sided 

correlation coefficient). c, Boxplot comparing the CIBERSORTx predicted scSubtype and 

Cycling cell-fractions in each METABRIC tumor, stratified by PAM50 subtypes (n = 

1,608; 209 Basal, 224 Her2, 700 LumA and 475 LumB). Box plots depicted as described 

in b. d, Heatmap of ecotypes formed from the common METABRIC tumors (columns) 

identified from combining ecotypes generated using CIBERSORTx with all 32 significantly 

correlated cell-types (rows), when using CIBERSORTx on pseudo-bulk samples. e-f, 
Relative proportion of the PAM50 subtypes (e) and major cell-types (f) in each ecotype, 

when combining CIBERSORTx consensus clustering results. g-h, Kaplan-Meier (KM) plot 

of all patients with common tumors in each of the ecotypes (g) and patients with tumors 

in ecotypes E4 and E7 (h), when combining CIBERSORTx consensus clustering results. 

p-values calculated using the log-rank test. i-j, Relative proportion of the PAM50 molecular 

subtypes (i) and major cell-types (j) of the common tumors from combining CIBERSORT 

and DWLS generated ecotypes. k, KM plot of the patients with tumors in ecotypes E4 

and E7, formed from combining CIBERSORT and DWLS generated ecotypes. p-value 

calculated using the log-rank test. l, Relative proportion of the METABRIC integrative 

cluster annotations of the tumors in each ecotype, as determined using CIBERSORTx across 

all cell-types.
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SCP1039. Processed scRNA-Seq data from this study is also available through the GEO 

Series accession number GSE176078. Raw scRNA-Seq data from this study has been 

deposited in the European Genome-Phenome Archive (EGA), which is hosted by the EBI 

and the CRG, under the accession code EGAS00001005173. All ST data from this study is 

available from the Zenodo data repository (DOI: 10.5281/zenodo.4739739). ST data from 

the Andersson et al. study68 can be downloaded from the Zenodo data repository (DOI: 

10.5281/zenodo.3957257).
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Figure 1. 
Cellular composition of primary breast cancers and the identification of malignant epithelial 

cells. a, Integrated dataset overview of 130,246 cells analyzed by scRNA-Seq. Clusters 

are annotated for their cell types as predicted using canonical markers and signature-based 

annotation using Garnett. b, Log normalized expression of markers for epithelial cells 

(EPCAM), proliferating cells (MKI67), T-cells (CD3D), myeloid cells (CD68), B-cells 

(MS4A1), plasmablasts (JCHAIN), endothelial cells (PECAM1) and mesenchymal cells 

(fibroblasts/perivascular-like; PDGFRB). c, Relative proportions of cell types highlighting a 

strong representation of the major lineages across tumors and clinical subtypes. d-f, UMAP 

visualization of all epithelial cells, from tumours with at least 200 epithelial cells, colored by 

tumor (d), clinical subtype (e) and inferCNV classification (f).
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Figure 2. 
Identifying drivers of neoplastic breast cancer cell heterogeneity. a, Heatmap showing 

the average expression (scaled) of all cells assigned to each of the four scSubtypes. The 

top-5 most highly expressed genes in each subtype are shown, and selected others are 

highlighted. b, Percentage of neoplastic cells in each tumor that are classified as each 

of the scSubtypes. Tumor samples are grouped according to their Allcells-pseudobulk 
classifications (NL = Normal-like). c, Representative images of CK5 (top) and ER (bottom) 

immunohistochemistry (IHC) from two tumors (CID4066, left; CID4290, right) with 
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intrinsic subtype heterogeneity from b (n = 24 breast tumors analysed). The left panel 

represents whole tissue sections, with two regions of interest labelled (A and B). The 

middle panel represents CK5-/ER+ areas (insert A), whilst the right panel shows CK5+/ER− 

areas (insert B). Scale bar represent 100 μm. d, Scatter plot of the proliferation scores and 

Differentiation Scores (DScores) of each neoplastic cell. Individual cancer cells are colored 

and grouped based on the scSubtype calls. All pairwise comparisons between cells from 

each scSubtype were significantly different (Wilcox test p<0.001) for both proliferation and 

DScores. e, Gene-set enrichment, using ClusterProfiler, of the 200 genes in each of the 

gene-modules (GM1-7). Significantly enriched (bonferroni adjusted p-value < 0.05) gene-

sets from the MSigDB HALLMARK collection are shown. f, Proportion of cells assigned 

to each of the scSubtype subtypes grouped according to gene-module. g, Scaled signature 

scores of each of the seven intra-tumor transcriptional heterogeneity gene-modules (rows) 

across all individual neoplastic cells (columns). Cells are ordered based on the strength of 

the gene-module signature score. h, Percentage of neoplastic cells assigned to each of the 

seven gene-modules.
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Figure 3. 
T-cell and Innate lymphoid cell landscape of breast cancers. a, Reclustering T-cells and 

innate lymphoid cells and their relative proportions across tumors and clinical subtypes (n = 

35,233 cells from 26 tumors). b, Imputed CITE-Seq protein expression values for selected 

markers and checkpoint molecules. c, Pairwise t-test comparisons revealing the significant 

enrichment of T-cells : IFIT1, T-cells : KI67, CD8+ T-cells : LAG3 in TNBC tumors, (n = 

26; 11 TNBC, 10 ER+ and 5 HER2+). Box plots depict the first and third quartiles as the 

lower and upper bounds, respectively. The whiskers represent 1.5x the interquartile range 

and the centre depicts the median. Statistical significance was determined using a two-sided 

t-test in a pairwise comparison of means between groups, with p-values adjusted using the 

Benjamini–Hochberg procedure. P-values denoted by asterisks: *p < 0.05, p < 0.01, *p < 

0.001 and ****p < 0.0001. d, Cluster averaged dysfunctional and cytotoxic effector gene 

signature scores in T-cells and innate lymphoid cells stratified by clinical subtypes.
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Figure 4. 
Myeloid landscape of breast cancers. a, Reclustered myeloid cells and their relative 

proportions across tumors and clinical subtypes (n = 9,678 cells from 26 tumors). b, 

Imputed CITE-Seq expression values for canonical markers and checkpoint molecules 

across Myeloid clusters. c, Cluster averaged expression of various published gene signatures 

acquired from independent studies used for Myeloid cluster annotation. Selected genes 

of interest from each signature are listed. d, Proportions of LAM 1 : FABP5 and LAM 

2: APOE (n = 26; 11 TNBC, 10 ER+ and 5 HER2+) across clinical subtypes. Box 
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plot depict the first and third quartiles as the lower and upper bounds, respectively. The 

whiskers represent 1.5x the interquartile range and the centre depicts the median. Statistical 

significance was determined using a two-sided t-test in a pairwise comparison of means 

between groups, with p-values adjusted using the Benjamini–Hochberg procedure. P-values 

denoted by asterisks: *p < 0.05, p < 0.01, *p < 0.001 and ****p < 0.0001. e, Kaplan 

Meier plots showing associations between LAM 1 : FABP5 or LAM 2 : APOE with overall 

survival in METABRIC cohort (top 30% and bottom 30%, n = 180 per group). P-values 

were calculated using log-rank test. Time (x-axis) is represented in months. f, Cluster 

averaged gene expression of clinically relevant immunotherapy targets. Clusters are grouped 

by breast cancer clinical subtype and immune cell type annotations. Genes are grouped as 

receptor (purple) or ligand (green), the inhibitory (red) or stimulatory status (blue) and the 

expected major lineage cell types known to express the gene (lymphocyte, green; myeloid, 

pink; both, light purple).
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Figure 5. 
Transcriptional profiling and phenotyping of diverse mesenchymal differentiation states 

across breast cancers. a, UMAP visualization of reclustered mesenchymal cells, including 

CAFs (6,573 cells), perivascular-like (PVL) cells (5,423 cells), endothelial cells (7,899 cells; 

ECs), lymphatic ECs (203 cells) and cycling PVL (50 cells). Cell sub-states are defined 

using pseudotemporal ordering using Monocle (as in c-h). b, Featureplots of canonical 

markers for CAFs (PDGFRA, COL1A1, ACTA2, PDGFRB), PVL (ACTA2, PDGFRB and 

MCAM) and ECs (PECAM1, CD34 and VWF). UMAP axes correspond to Figure 5a. c–h, 

Cell states and the expression of genes that change as a function of pseudotime for CAFs 

(c-h), PVL cells (e-f) and ECs (g-h). c-d, Five states of CAFs: CAF s1 and s2 both resemble 

mesenchymal stem cells (MSC; ALDH1A1) and inflammatory CAF-like states (iCAF; 

CXCL12); CAF s2 was distinct from s1 by DLK1; CAF s4 and s5 resemble myofibroblast-

like states (myCAF; ACTA2) which were enriched for ECM genes (COL1A1); transitioning 

CAF s3 shared features of both MSC/iCAFs and myCAFs. e-f, Three PVL states: s1 and 

s2 resemble progenitor and immature states (imPVL; ALDH1A1); PVL s3 resembles a 

contractile and differentiated state (dPVL; MYH11). g-h, Three EC states: s1 resemble 

a venular stalk-like state (ACKR1) and two tip-like states (DLL4), s2 and s3, that are 

distinguished by RGS5 and CXCL12, respectively. i, Featureplots of imputed CITE-Seq 
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antibody-derived tag (ADT) protein levels for canonical markers of CAFs (PDPN), PVL 

cells (CD146/MCAM) and ECs (CD31 and CD34). UMAP coordinates correspond to those 

in a. j, Heatmap of cluster averaged imputed CITE-Seq values for additional cell surface 

markers and functional molecules.
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Figure 6. 
Mapping breast cancer heterogeneity using spatial transcriptomics. a, Complete H&E 

images of all three tissue regions analysed using Visium for the sample TNBC CID44971. 

Pathological annotation of morphological regions into distinct categories including normal 

ductal (green), stroma and adipose (blue), lymphocyte aggregates (yellow), ductal carcinoma 

in-situ (DCIS; orange) and invasive cancer (red). Black scale bars represent 500 μm. b, 
Deconvolution of the major cell type lineages in TNBC CID44971. Values signify the scaled 

cell type abundances per spots (columns), and are grouped by pathology annotation as in 

a. c, Box plot of gene module scores grouped by clinical subtype across the six cases (n 

= 11,535 spots from 4 x TNBC tumors and 2 x ER tumors). Only cancer filtered spots 

were used for this analysis. Signature scores were computed using the AUCell method. 

Statistical significance was determined using a two-sided t-test in a comparison of means 

between groups, with p-values adjusted using the Benjamini–Hochberg procedure. Box plots 

depict the first and third quartiles as the lower and upper bounds, respectively. The whiskers 

represent 1.5x the interquartile range and the centre depicts the median. P-values denoted by 

asterisks: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. d, Pearson correlation 

heatmap of breast cancer gene modules in TNBC CID44971 (“n.s” represent non-significant 

correlations; two-sided correlation coefficient, Benjamini–Hochberg adjusted p-values < 

0.05). Spots with high cancer epithelial abundances (>10%), were scored with gene module 

Wu et al. Page 51

Nat Genet. Author manuscript; available in PMC 2022 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(GM) signatures using AUCell. e, Negative correlation between GM3 (EMT) and GM4 

(Proliferation/Cell Cycle) across all cancer epithelial spots from six breast cancers analysed 

by ST (two-sided correlation coefficient, *denotes p-value < 0.05). f-g, Scaled AUCell 

signature scores of GM3 (f) and GM4 (g) overlaid onto cancer epithelial spots in TNBC 

CID44971, as defined in the bottom left and right tissue sections in Figure 6a.
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Figure 7. 
Spatially mapping novel heterotypic cellular interactions. a, Heatmap of Pearson correlation 

values between subclasses of CAFs, PVL cells, endothelial cells, macrophage subsets and 

lymphocytes in 13 cases (two-sided correlation coefficient, *denotes Benjamini–Hochberg 

adjusted p-value < 0.05). Each tumor is stratified by the clinical subtype, including four 

TNBC (blue) and two ER+ (red) analysed in this study and seven HER2+ (pink) cases from 

the Lundeberg et al. study. b-e, Scaled deconvolution values for iCAFs (b), myCAFs (c), 

CD4+ (d) and CD8+ T-cells (e) overlaid onto tissue spots, as defined in the bottom left and 

right tissue sections in Figure 6a. Representative TNBC case CID44971 is shown. f, Spatial 

proximity of selected CAF T-cell signalling molecules. Heatmap of interaction scores for 

selected ligand receptor pairs in the top 10% of tissue spots enriched for iCAFs and CD4/

CD8+ T-cells. Only differentially expressed CAF-ligands and T-cell receptors detected by 
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scRNA-Seq using MAST were included. g, Scaled deconvolution values for Macrophage 

CXCL10/c9 cells overlaid onto tissue spots, as defined in Figure 6a. Representative TNBC 

case CID44971 is shown.
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Figure 8. 
Deconvolution of breast cancer cohorts using single-cell signatures reveals robust ecotypes 

associated with patient survival and intrinsic subtypes. a, Consensus clustering of all 

tumors (columns) in METABRIC showing nine robust tumor ecotypes and 4 groups of cell 

enrichments from 45 cell-types in the breast cancer cell taxonomy. Total 1,985 tumors (E1 

= 266, E2= 269, E3 = 205, E4 = 263, E5 = 195, E6 = 215, E7 = 199, E8 = 213, E9 = 160). 

b, Relative proportion of the PAM50 molecular subtypes of the tumors in each ecotype. c, 
Relative average proportion of the major cell-types enriched in the tumors in each ecotype. 

d-f, Kaplan-Meier (KM) plot of the patients with tumors in each of the nine ecotypes (d), 
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patients with tumors in ecotypes E2 and E7 (e), patients with tumors in ecotypes E4 and E7 

(f). p-values calculated using the log-rank test. g, Summary of the major epithelial, immune 

and stromal cell types identified in this study grouped by their major (inner), minor and 

subset (outer) level classification tiers.
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