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BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent chemicals widely detected in women of reproductive age.
Prenatal PFAS exposure is associated with adverse health outcomes in children. We hypothesized that DNA methylation changes may result from pre-
natal PFAS exposure and may be linked to offspring cardio-metabolic phenotype.

OBJECTIVES: We estimated associations of prenatal PFAS with DNA methylation in umbilical cord blood. We evaluated associations of methylation
at selected sites with neonatal cardio-metabolic indicators.

METHODS: Among 583 mother—infant pairs in a prospective cohort, five PFAS were quantified in maternal serum (median 27 wk of gestation).
Umbilical cord blood DNA methylation was evaluated using the Illumina HumanMethylation450 array. Differentially methylated positions (DMPs)
were evaluated at a false discovery rate (FDR) <0.05 and differentially methylated regions (DMRs) were identified using comb-p (Sidék-adjusted
p <0.05). We estimated associations between methylation at candidate DMPs and DMR sites and the following outcomes: newborn weight, adiposity,
and cord blood glucose, insulin, lipids, and leptin.

RESULTS: Maternal serum PFAS concentrations were below the median for females in the U.S. general population. Moderate to high pairwise correla-
tions were observed between PFAS concentrations (p =0.28 —0.76). Methylation at one DMP (cg18587484), annotated to the gene TJAP1, was asso-
ciated with perfluorooctanoate (PFOA) at FDR < 0.05. Comb-p detected between 4 and 15 DMRs for each PFAS. Associated genes, some common
across multiple PFAS, were implicated in growth (RPTOR), lipid homeostasis (PON1, PON3, CIDEB, NR1H?2), inflammation and immune activity
(RASL11B, RNF39), among other functions. There was suggestive evidence that two PFAS-associated loci (cg09093485, cg09637273) were associ-
ated with cord blood triglycerides and birth weight, respectively (FDR <0.1).

DiscussionN: DNA methylation in umbilical cord blood was associated with maternal serum PFAS concentrations during pregnancy, suggesting poten-
tial associations with offspring growth, metabolism, and immune function. Future research should explore whether DNA methylation changes mediate

associations between prenatal PFAS exposures and child health outcomes. https://doi.org/10.1289/EHP6888

Introduction

Per- and polyfluoroalkyl substances (PFAS) are environmentally
persistent chemicals that have been widely detected in blood
among general populations worldwide (Centers for Disease
Control and Prevention 2019; Vestergren and Cousins 2009),
including pregnant women (Bjerregaard-Olesen et al. 2017; Kato
et al. 2014; Yang et al. 2019). PFAS have unique surfactant qual-
ities and a wide variety of consumer and industrial applications
that led to widespread global use of this class of chemicals for
several decades (Buck et al. 2011; Wang et al. 2017). Some
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PFAS have relatively long elimination half-lives in the human
body, ranging from 2 to 8 y (Li et al. 2018; Olsen et al. 2007).
Unlike many persistent organic pollutants that are lipophilic,
PFAS circulate in blood bound to carrier proteins, primarily albu-
min (Beesoon and Martin 2015; Forsthuber et al. 2020).

The PFAS most frequently studied to date have been perfluor-
ooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). In ani-
mal studies, developmental toxicity results from PFAS exposure
during gestation, resulting in impaired growth, metabolic disrup-
tion, and neonatal mortality (Abbott et al. 2012; Lau et al. 2007).
PFAS have been shown to cross the placenta in humans, with
transfer efficiency varying by chemical structure and chain length
(Gao et al. 2019; Giitzkow et al. 2012; Midasch et al. 2007). In
human epidemiological studies, concentrations of PFAS, and par-
ticularly PFOA, in the blood of pregnant women have been asso-
ciated with delivering infants with lower birth weight (Bach et al.
2015; Johnson et al. 2014) and lower adiposity at birth (Starling
et al. 2017). Moreover, exposures to PFOS and PFOA in utero
have been associated with a variety of adverse health effects in
children, including reduced antibody response to vaccinations
(Grandjean et al. 2012), increased adiposity (Braun et al. 2016;
Hgyer et al. 2015; Lauritzen et al. 2018), and altered lipid profile
(Mora et al. 2018). Prenatal exposure to PFOA has also been
associated with greater risk of being overweight in early adult-
hood (Halldorsson et al. 2012).

One mechanism by which prenatal exposure to PFAS may affect
later health outcomes may be through modifications to the fetal
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epigenome, particularly changes to DNA methylation (Martin and
Fry 2018) that persist through cell division and influence gene
expression, consequently affecting cardio-metabolic phenotype
and disease risk. This theory is supported by findings that umbili-
cal cord blood concentrations of PFOA, suggesting prenatal ex-
posure, were associated with global hypomethylation of cord
blood DNA (Guerrero-Preston et al. 2010). More recently,
greater maternal PFOA concentrations during pregnancy were
associated with hypomethylation of /GF2 in cord blood, which
may mediate associations of maternal PFOA with lower offspring
birth weight and adiposity at birth (Kobayashi et al. 2017).

However, few studies have examined associations between
prenatal exposure to PFAS and cord blood DNA methylation at
specific sites in the genome (Kingsley et al. 2017; Kobayashi et al.
2017; Leung et al. 2018; Miura et al. 2018), and none have exam-
ined associations with commonly measured PFAS other than
PFOA or PFOS. In particular, perfluorohexane sulfonate (PFHxS)
is a substance of increasing global concern because it has been
detected in communities exposed to drinking water contaminated
with aqueous film-forming foams from firefighting and training
activities (Barton et al. 2020; Daly et al. 2018; Gyllenhammar et al.
2015). Additionally, previous studies have not included multieth-
nic participants and therefore may not be generalizable to the
diverse U.S. population.

We conducted an epigenome-wide analysis to examine the asso-
ciations between concentrations of five PFAS in maternal serum
collected during pregnancy and DNA methylation in umbilical cord
blood cells among mother—infant pairs in Healthy Start, a Colorado
longitudinal prebirth cohort study with racial and ethnic diversity
reflecting the population of the Denver metropolitan area. We addi-
tionally evaluated associations between differentially methylated
CpGs and neonatal markers of adiposity and metabolic status.

Methods

Participants and Study Design

The Healthy Start prospective cohort study recruited 1,410 pregnant
women from outpatient obstetrics clinics at the University of
Colorado Hospital during the period 2009-2014. Eligible women
were 16 years of age or older, pregnant with a single fetus, having
completed fewer than 24 wk of gestation at enrollment, with no his-
tory of extremely preterm birth or stillbirth, and no self-reported dia-
betes, asthma, cancer, or psychiatric illness. Participants completed
questionnaires and provided blood samples during pregnancy and
authorized review of their medical records. The study procedures
were approved by the Colorado Multiple Institutional Review
Board. All participants provided written informed consent. The
analysis of blinded specimens at the Centers for Disease Control
and Prevention (CDC) laboratory was determined not to constitute
engagement in human subjects research.

Of the 1,410 enrolled participants, 867 participants had um-
bilical cord blood collected when delivery conditions allowed. Of
these, 600 mother—infant pairs were selected for DNA methyla-
tion analysis based on the availability of both maternal midpreg-
nancy serum samples and cord blood DNA samples, and 589 had
PFAS measured in maternal serum (Figure S1).

Exposure Assessment

A panel of 11 PFAS were quantified in maternal midpregnancy se-
rum samples collected at a median of 27 wk of gestation (range 20—
34 wk) and promptly separated and frozen at —80°C. Analyses
were conducted at the CDC’s National Center for Environmental
Health, Division of Laboratory Sciences, using a previously pub-
lished method (Kato et al. 2011). The 11 PFAS measured were
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perfluorooctane sulfonamide (FOSA; also known as PFOSA),
2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA; also
known as Et-PFOSA-AcOH), 2-(N-methyl perfluorooctane sulfo-
namido) acetate (MeFOSAA; also known as Me-PFOSA-AcOH),
PFHxS, linear PFOA (n-PFOA), sum of branched isomers of
PFOA (Sb-PFOA), perfluorodecanoate (PFDA; also known as
PFDeA), linear PFOS (n-PFOS), sum of perfluoromethylheptane
sulfonate isomers (Sm-PFOS), sum of perfluorodimethylhexane
sulfonate isomers (Sm2-PFOS), and perfluorononanoate (PFNA).
PFOA and PFOS were calculated as the sum of the concentrations
(nanogram per milliliter) of linear and branched isomers of PFOA
and PFOS, respectively. The limit of detection (LOD) for all PFAS
was 0.1 ng/mL. This analysis is restricted to those PFAS detecta-
ble in >60% of participants in this sample: PFOA, PFOS, PFNA,
PFDA, and PFHxS. Concentrations of all PFAS measured are
reported in Table S1. For PFAS concentrations below the LOD,
instrument values were used when available, and concentrations
reported as zero were replaced with the LOD/2 for this analysis.

Analysis of DNA Methylation in Cord Blood

Briefly, DNA was extracted from stored buffy coats using the
QIAamp DNA Blood Mini Kit (Qiagen). DNA purity was assessed
using the Nanodrop 2000 spectrophotometer (ThermoFisher), DNA
quality was assessed using the Bioanalyzer 2100 (Agilent), and DNA
quantity was determined on a Qubit fluorometer (ThermoFisher).
Samples with 260/280 > 1.8, DNA Integrity Score (DNA) > 7, and
>500 ng DNA were used for DNA methylation analyses. Five hun-
dred nanograms of DNA were bisulfite converted using the Zymo EZ
DNA Methylation kit (Zymo Research). Each conversion assay
included a commercially available positive and negative control sam-
ple. Genome-wide DNA methylation in cord blood was assessed
using the [llumina Infinium HumanMethylation450 BeadChip array
using previously published methods (Yang et al. 2017).

The relative proportions of seven cell types in umbilical cord
blood (B cells, CD4 T cells, CD8 T cells, granulocytes, mono-
cytes, NK cells, and nucleated red blood cells) were estimated
using estimateCellCounts2 function in the R package FlowSorted
(R version 3.6.2, R Foundation for Statistical Computing).
CordBloodCombined.450k, using a combined cord blood refer-
ence data set (Gervin et al. 2019). In our quality control proce-
dures, we excluded 587 probes with high detection p-value
(>0.05) in at least 10% of samples, and 664 probes with a bead-
count <3 in at least 5% of samples. Cross-reactive probes
(n=29,101) (Chen et al. 2013) and polymorphic probes with
minor allele frequency >1% (n=23,941) were excluded from the
analysis of differentially methylated positions. Probes on the X
and Y chromosomes were also excluded (n = 11,648). Raw meth-
ylation (beta) values were converted to M-values to better ap-
proximate a normal distribution, where M =1log [beta/(1 — beta)].
Stratified quantile normalization was performed using the
preprocessQuantile function in minfi (Touleimat and Tost 2012).
Batch effects were removed using ComBat (Johnson et al. 2007).
Reported sex of the infant was compared with predicted sex and
participants were excluded if the reported and predicted sex did
not match (n = 6). Extreme methylation outliers were removed by
trimming M-values for each probe more than three times the
interquartile range below the 25th percentile or above the 75th
percentile (Hoaglin et al. 1986; Merid et al. 2020).

Assessment of Maternal and Neonatal Characteristics

Infant birth weight was measured by clinical personnel at delivery.
Infant body composition (fat mass and fat-free mass) within 3 d of
birth was measured via air displacement plethysmography using
the PEAPOD (COSMED), which uses a two-compartment model
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to estimate whole-body fat mass and fat-free mass (Urlando et al.
2003). Adiposity was calculated as fat mass divided by total
(fat + fat-free) body mass X 100%. Maternal age, education, gra-
vidity, and race/ethnicity were self-reported at the first research
visit. Current maternal smoking was self-reported at multiple visits
during pregnancy. Infant sex was reported by the mother shortly af-
ter delivery or abstracted from the medical record.

Umbilical cord blood was collected at delivery and concentra-
tions of cardio-metabolic biomarkers were measured at the
University of Colorado Clinical and Translational Sciences
Institute Core Laboratory. Glucose, total cholesterol, high-density
lipoprotein (HDL) cholesterol, free fatty acids, and triglycerides
were measured using enzymatic kits on an AU400e Chemistry
Analyzer (Olympus). Leptin was quantified via ELISA (Alpco)
and insulin via radioimmunoassay (EMD Millipore Corporation).

Statistical Analysis

Following descriptive summary statistics and standard checks for
normality and outliers, separate linear regression models were fit-
ted to estimate associations between each continuous, natural
log-transformed PFAS concentration during pregnancy and um-
bilical cord blood cell DNA methylation (M-values) at each
of 423,151 CpG sites remaining after filtering. Models were
adjusted for potential confounders and precision variables, which
were identified by the construction of a directed acyclic graph
(Figure S2). All models were adjusted for the following common
set of covariates: infant sex, gestational age at blood sample col-
lection (days), maternal age (years), education completed (high
school or less vs. more than high school), smoking during preg-
nancy (any vs. none), race/ethnicity (non-Hispanic White vs. all
others), body mass index (BMI) prior to pregnancy (kg/m?), pre-
vious pregnancies (any vs. none), and imputed proportions of
seven cell types.

Raw p-values were adjusted for multiple comparisons using the
Benjamini-Hochberg procedure (Benjamini and Hochberg 1995)
separately for each PFAS and a false discovery rate (FDR) of 0.05
was used as a cutoff for significance of differentially methylated
positions (DMPs). For a more stringent cutoff, we also set the
Bonferroni threshold for correction of multiple comparisons to
o=(0.05/423,151)=1.2x 10", Genomic inflation was eval-
uated by constructing Q-Q plots and calculating lambda for each of
the five epigenome-wide analyses. Scatter plots of the association
between natural log-transformed PFAS concentration and methyl-
ation (M-values) were constructed for significant DMPs to evaluate
whether the linear association was influenced by outliers.

Pathways (Ren et al. 2019) with false discovery rate <0.2 are
reported. We additionally compared our results with the findings
of the three previous studies (Kingsley et al. 2017; Leung et al.
2018; Miura et al. 2018) that reported associations between pre-
natal PFAS concentrations and epigenome-wide methylation in
umbilical cord blood, and one study that reported associations in
adult men between serum PFAS and peripheral blood methyla-
tion (van den Dungen et al. 2017). For each of the top CpGs
reported in these studies, we examined whether the association
between the relevant maternal PFAS concentration and cord
blood DNA methylation at that CpG was nominally significant
(p <0.05) in our results.

Differentially methylated regions (DMRs) were identified using
the program comb-p to group neighboring CpG sites with small
p-values (Pedersen et al. 2012). CpGs with raw p-values < 0.1 from
the DMP analysis were selected as seeds to detect potential DMRs.
Peaks within 750 bps were merged into a single DMR. DMRs con-
taining only one assayed CpG were excluded. We defined signifi-
cant DMRs based on Sidéak-adjusted p-values < 0.05 to adjust for
multiple testing. We evaluated whether each DMR was consistently
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hyper- or hypomethylated by reporting the proportion of CpGs
within the DMR with a consistent direction (positive association
with PFAS concentrations). We identified genes overlapping and
near (+5kB) each DMR using the annotatr R package, version
3.6.2 (Cavalcante and Sartor 2017). Genes associated with each sig-
nificant DMR were individually searched using PubMed and
NCBTI’s Gene database to identity function, with a particular empha-
sis on previously published associations with lipid metabolism and
adiposity/obesity as hypothesized outcomes.

For each significant DMP and for the top CpG (lowest p-value)
from each significant DMR, we separately estimated each associa-
tion between methylation (M-value) at the selected CpG and the fol-
lowing neonatal cardio-metabolic indicators: birth weight, adiposity
(percent fat mass), and cord blood concentrations of glucose, insu-
lin, leptin, total cholesterol, HDL cholesterol, free fatty acids, and
triglycerides. Neonatal cardio-metabolic outcome variables were
log,,, transformed to better approximate a normal distribution and
reduce the influence of outliers. M-values were regressed on seven
cell types and then cell type-adjusted residuals were entered as pre-
dictors in separate linear regression models for each neonatal
cardio-metabolic variable, adjusted for infant sex, maternal age,
education, smoking, race/ethnicity, prepregnancy BMI, and previ-
ous pregnancies. p-Values were adjusted for multiple comparisons
across all models by controlling the false discovery rate (FDR) with
the Benjamini-Hochberg procedure (Benjamini and Hochberg
1995). FDR control <0.2 was considered suggestive evidence of
association.

In sensitivity analyses, we examined the potential for effect
modification by infant sex and, separately, by maternal race/
ethnicity by including interaction terms in linear regression mod-
els for each CpG. We considered an interaction significant if the
FDR for the p-value for interaction was <0.05. Results are
reported in supplemental Excel tables for all CpGs with raw
p-values <0.05 in the population as a whole, and stratified results
are reported for all CpGs with raw interaction p-values <0.05 in
models including PFAS-by-infant sex or PFAS-by-race/ethnicity
interaction terms. Complete results for all CpGs may be obtained
from the authors on request.

Results

From the original 589 participants with maternal PFAS data and
cord blood DNA methylation data, we excluded 6 participants for
whom the predicted sex did not match the reported sex, resulting in
a sample size of 583 for the epigenome-wide analysis (Figure S1).
Characteristics of mother—infant pairs are presented in Table 1.
The characteristics of this sample do not differ notably from the
characteristics of all potentially eligible participants in the Healthy
Start cohort (Table S2). Serum concentrations of PFAS were some-
what lower than the median concentrations among females in the
U.S. general population during the same time period (Centers for
Disease Control and Prevention 2019) and displayed moderate to
high pairwise Spearman correlations (Table 2; Table S1).
Distributions of PFAS concentrations before and after natural-
log transformation are shown in Figures S3—S7.

Epigenome-Wide Analysis of Differentially Methylated
Positions

We conducted a separate epigenome-wide analysis for each of the
five PFAS. Associations between PFAS concentration and methyl-
ation for the top CpGs with raw p-values <0.05 are presented in
Excel Tables S1-S5, along with the mean and standard deviation
of methylation at the CpG for context. There was no evidence
of genomic inflation with all lambda values <1 (Table S3).
Manhattan, volcano plots, and Q-Q plots for each PFAS are
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Table 1. Characteristics of 583 mother—infant pairs in the Healthy Start
study who were eligible for this analysis.

Maternal and infant characteristics Mean + SD or n (%)

Maternal age (y) 27.6+6.2
Race/ethnicity
Non-Hispanic White 314 (54)
Hispanic 142 (24)
Non-Hispanic African American 90 (15)
All others 37 (6)
Prepregnancy BMI (kg/m?) 259+6.6
Highest education level completed
Less than 12th grade 92 (16)
High school degree or equivalent 102 (18)
Some college or Associate’s degree 125 (21)
Four-year college degree 128 (22)
Graduate degree 136 (23)
Household income in the past year
$20,000 or less 86 (15)
$20,001-$40,000 78 (13)
$40,001-$70,000 108 (19)
$70,001 or more 198 (34)
Don’t know 113 (19)
Any previous pregnancies 365 (63)
Any smoking during pregnancy 53(9)
Gestational weight gain (kg) 14.0+6.4
Gestational age at blood sample collection (d) 191+17
Infant gestational age at birth (d) 276 +9
Birth weight (g) 3273 +435
Adiposity at birth (%)“ 9.0+3.8
Cord blood glucose (mg/dL)¢ 83.0+20.3
Cord blood insulin (ptU/mL)“ 9.3+38.1
Cord blood leptin (ng/mL)" 16.5+16.6
Cord blood total cholesterol (mg/dL)* 58.6+19.2
Cord blood HDL cholesterol (mg/dL)“ 258+7.8
Cord blood triglycerides (mg/dL)" 46.6 +35.1
Cord blood free fatty acids (umol /L)“ 280.9+143.9

Note: BMI, body mass index.

“Sample size reduced due to missing data: n =563 for adiposity measured within 3 days
of birth; n=558 for glucose; n=>537 for insulin; n =478 for leptin; n=>544 for total
cholesterol; n =503 for HDL cholesterol; n =536 for triglycerides; n =502 for free fatty
acids.

shown in Figures S8-S22. One DMP (cg18587484) had signifi-
cantly lower methylation in association with higher maternal
PFOA concentrations (p=2.5X 1078, FDR < 0.05) (Figure S23).
No other probes reached epigenome-wide significance. None of
the PFAS-by-sex interaction terms or PFAS-by-race/ethnicity
interaction terms were significant at FDR < 0.05. For CpGs with
interaction p-values < 0.05, results stratified by infant sex are
reported in Excel Tables S6-S10, and results stratified by cate-
gory of self-reported race/ethnicity are reported in Excel Tables
S11-S15.

Pathway Analysis on Differentially Methylated Positions

DMP results were entered into methylGSA for examination of
potentially enriched GO and KEGG pathways, defined by
FDR <0.2. Pathways meeting these criteria (Table 3) included

Table 2. Distribution and spearman correlations” of serum concentrations of
perfluoroalkyl substances (ng/mL) among 583 pregnant women.

Median (IQR) Range PFOA PFOS PFHxS PFNA PFDA
PFOA 1.1 (0.9) 0.1-15.4 1 067 062 0.76 0.5
PFOS 24 (2.3) <LOD-15.6 1 0.67 0.62 048
PFHxS 0.7 (0.7) <LOD-10.9 1 045 0.28
PFNA 0.4 (0.3) <LOD-4.3 1 0.64
PFDA 0.1 (0.1) <LOD-3.5 1

Note: IQR, interquartile range; LOD, limit of detection; PFDA, perfluorodecanoate;
PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluoroocta-
noate; PFOS, perfluorooctane sulfonate.

“All pairwise correlations p <0.001.
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antigen processing and presentation (PFOA), response to endo-
plasmic reticulum stress (PFDA) and protein processing in the
endoplasmic reticulum (PFDA), and female sex differentiation
(PFHxS).

Look-up Analysis of Results from Previous Studies

Among the top CpGs reported in each of the previous epigenome-
wide studies of PFAS concentrations and epigenome-wide methyl-
ation (Kingsley et al. 2017; Leung et al. 2018; Miura et al. 2018;
van den Dungen et al. 2017), several achieved nominal significance
(p <0.05) in our study. Among the top 20 CpGs reported by Miura
et al. for PFOA, two had p < 0.05 and the same direction of associa-
tion for PFOA in our study (annotated to genes DUX2 and
GPRI126; Excel Table S16). One of these was also associated with
PFOS in our study, and another with PFDA. Among the top 20
CpGs associated with PFOS in Miura et al., one was nominally
associated with PFOS (annotated to GREBI) and with the same
direction of association (Excel Table S17); this CpG was also nom-
inally associated with PFOA, PFHxS, and PFDA in our study.
Among the 20 top CpGs reported by Kingsley et al. to be associated
with PFOA, two were nominally associated with PFOA in our
study with the same direction of association, both annotated to
OPRDI (Excel Table S18). None of these previously reported
associations reached epigenome-wide significance in our study.
Among the top 21 CpGs associated with PFOS in adults in Van den
Dungen et al. and also analyzed in our study, none were nominally
significant (Excel Table S19). Leung et al. reported 10,598 CpGs
that were significantly associated with cord blood n-PFOS in
males. Of these, 327 (3%) were nominally associated with PFOS in
our study (Excel Table S20).

Identification of Differentially Methylated Regions Using
Comb-p

Between 4 and 15 DMRs were identified for each PFAS (Excel
Tables S21-S25). All regions identified with FDR < 0.05 also
showed consistent hyper- or hypomethylation (>95%) of CpGs
within the region. Certain DMR-annotated genes were associated
with multiple PFAS, including PONI, PON3, TM9SF2, RNF39,
RASLIIB, OR2LI13, and PPPIRI1. Other genes were only asso-
ciated with a single PFAS, such as RPTOR and NRIH2 with
PFOA, and CIDEB and LTB4R with PFDA.

Associations between Differentially Methylated CpGs and
Neonatal Cardio-Metabolic Outcomes

We estimated associations between methylation (M-values) at 43
CpGs and infant birth weight, adiposity at birth, and the following
cardio-metabolic indicators measured in umbilical cord blood: total
cholesterol, free fatty acids, glucose, HDL cholesterol, insulin, tri-
glycerides, and leptin. Methylation was suggestively associated with
neonatal cardiometabolic outcomes (FDR < 0.1) for 2 CpGs (Excel
Table S26). Methylation at one of these probes (cg09093485) was
inversely associated with cord blood triglycerides; this probe was
annotated to the gene RNF39. Methylation at the other probe
(cg09637273) was positively associated with birth weight; there was
no gene annotated to this probe.

Discussion

In this study, we identified one DMP and several DMRs in umbil-
ical cord blood DNA associated with prenatal exposure to one or
more of five commonly detected PFAS. One CpG associated with
maternal PFOA concentration met both FDR and Bonferroni cut-
offs for epigenome-wide significance and was annotated to the
gene TJAPI, tight junction associated protein 1, expressed in
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Table 3. Pathways enriched (false discovery rate <0.20) in gene sets associated with maternal PFAS concentrations.

Pathway name Pathway ID PFAS p-Value False discovery rate Top 5 genes in pathway

Antigen processing and presentation KEGG:04612 PFOA  0.000917 0.112 KIR2DL1, HLA-DRBS, TAP2, HLA-DQB1, CD8A

Malaria KEGG:05144 PFHxS 0.0000588 0.00718 THBS4, GYPC, TGFB3, CD40, CR1

Protein processing in endoplasmic KEGG:04141 PFDA 0.000685 0.0835 CAPNI1, RAD23B, NPLOC4, MAN1A2, CANX
reticulum

Response to endoplasmic reticulum GO0:0034976 PFDA 0.0000354 0.122 MANTF, ASNS, NPLOC4, DAB2IP, CANX
stress

Female sex differentiation GO0:0046660  PFHxS  0.0000152 0.0522 TBX3, ADCYAPIRI, ESR1, LHFPL2, SOD1

Neural nucleus development GO:0048857 PFHxS  0.0000959 0.114 DYNLLI1, GNB4, MBP, FOXP2, ZNF148

Regulation of osteoblast differentiation ~ GO:0045667 PFHxS  0.0000993 0.114 DDR2, REST, NOTCHI1, RUNX2, HDAC4

Integral component of endoplasmic GO:0030176 PFHxS 0.000180 0.126 PIGS, RTN2, HLA-E, HLA-DRA, HLA-DQA1
reticulum membrane

Intrinsic component of endoplasmic GO0:0031227 PFHxS  0.0001842 0.126 PIGS, RTN2, HLA-E, HLA-DRA, ESYT2
reticulum membrane

Development of primary female sexual GO:0046545 PFHxS  0.000268 0.154 ADCYAPIRI, ESR1, LHFPL2, SOD1, NUP107

characteristics

Note: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PFDA, perfluorodecanoate; PFHxS, perfluorohexane sulfonate; PENA, perfluorononanoate; PFOA,

perfluorooctanoate; PFOS, perfluorooctane sulfonate.

epithelia throughout the body including the blood-brain barrier
(Burek et al. 2019) and the epididymis (Dubé et al. 2010). Notably,
a recent study of PFOA exposure in mice reported changes in the
expression of tight junction genes in the small intestine, with possi-
ble adverse impacts on gut barrier functions (Rashid et al. 2020).
Genes associated with the significant DMRs were involved in lipid
metabolism, growth, and cardiovascular disease risk, as well as
functions of the immune and nervous systems.

Notably, PFOA, PENA, and PFDA had DMRs annotated to the
PONI gene, previously linked to lipid oxidation (Luo et al. 2018),
HDL functionality (Mahrooz et al. 2019) and cardiovascular dis-
ease (Moreno-Godinez et al. 2018), and the related PON3 gene,
previously linked with atherosclerotic disease (Rull et al. 2012).
DMRs associated with PFOA were also annotated to NRIH2,
involved in lipid homeostasis and inflammation; and RPTOR, part
of the mTOR complex that regulates cell growth in response to nu-
trient availability. Other genes that were associated with multiple
PFAS include RNF39, a gene within the major histocompatibility
complex class 1 region on chromosome 6 associated with early
synaptic plasticity and previously linked with multiple sclerosis
(Maltby et al. 2017); RASLI1B, a widely expressed gene with pro-
posed roles in inflammation and arteriosclerosis (Stolle et al.
2007); and TM9SF2, encoding a transmembrane protein and
reported to be a colorectal cancer oncogene (Clark et al. 2018).

Our findings that prenatal exposures to PFAS are associated
with differences in methylation at lipid homeostasis genes are
consistent with previous literature. Numerous epidemiological
studies have reported cross-sectional or prospective associations
between PFAS serum or plasma concentrations and lipid concen-
trations (Fisher et al. 2013; Fu et al. 2014; Maisonet et al. 2015;
Mora et al. 2018; Steenland et al. 2009), and more limited evi-
dence of associations with cardiovascular disease (Huang et al.
2018; Lind et al. 2017). Additionally, a cross-sectional study
among adults with higher than background exposure to PFOA
through contaminated drinking water reported sex-specific and
chemical-specific associations with the expression of certain cho-
lesterol transport and mobilization genes (Fletcher et al. 2013).

Genes linked to immune system activity and inflammation
were also prominent: PFOA and PFNA were associated with
methylation at multiple genes in the HLA-DRB group, with core
immune system functionality; PFHxS was associated with
PPPIRI1, a gene in the major histocompatibility complex class 1
shown to affect lung inflammation in mice (McKelvey et al.
2016); PFDA was associated with PF4 (also called CXCL4), a
chemokine with a role in platelet aggregation and antimicrobial
activity (Palankar et al. 2018). The epigenome-wide results for
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PFOA were enriched in the KEGG pathway “antigen processing
and presentation.” Some of these pathways and gene functions
are consistent with previously reported effects of PFAS in animal
and human studies, including lipid abnormalities and immunotox-
icity (ATSDR 2018).

We further identified two exposure-associated CpGs for
which there was suggestive evidence of association (FDR < 0.10)
with neonatal cardio-metabolic indicators. Methylation at a locus
(cg09093485) annotated to RNF39 was lower among those more
highly exposed to PFHXS in utero, and methylation at this locus
was also inversely associated with cord blood triglycerides.
Although the long-term implications of altered lipid profiles in
cord blood are not well established, it may be suggestive of early
lipid dysregulation. Methylation at cg09637273, inversely associ-
ated with both PFOA and PFOS, was associated with greater
birth weight. Maternal concentrations of PFAS during pregnancy
have been associated with reduced offspring birth weight in this
cohort and others (Bach et al. 2015; Johnson et al. 2014; Starling
et al. 2017). Because the neonatal cardiometabolic outcomes in
this study are measured concurrently with cord blood DNA meth-
ylation at birth, we cannot establish a temporal order and there-
fore do not make claims to causal mediation. However, we do
plan to examine in future studies whether PFAS-associated meth-
ylation in cord blood predicts later child cardio-metabolic out-
comes in this cohort. Prenatal exposure to some PFAS have been
associated with greater risk of being overweight or obese in
childhood (Braun et al. 2016; Karlsen et al. 2017; Lauritzen et al.
2018) and young adulthood (Halldorsson et al. 2012), and DNA
methylation may be one mechanism linking intrauterine PFAS
exposure to later disease risks.

Observed associations between PFAS exposure and methyla-
tion of genes involved in immune response and inflammation are
consistent with the results of some previous epidemiological
studies reporting altered immune system-related outcomes in
adults and children exposed to PFAS (Chang et al. 2016;
Rappazzo et al. 2017). Previous studies have generally focused
on one or more of the following outcomes: allergy and atopic dis-
ease (Goudarzi et al. 2016; Stein et al. 2016b; Timmermann et al.
2017), reduced antibody response to vaccination (Grandjean et al.
2017; Looker et al. 2014; Stein et al. 2016a), frequency of infec-
tious disease in children (Dalsager et al. 2016; Goudarzi et al.
2017; Impinen et al. 2018), and inflammatory or autoimmune dis-
ease (Steenland et al. 2013, 2018; Webster et al. 2014, 2016).
Evidence from animal studies also indicates that PFOA is immu-
notoxic, and dietary exposure has resulted in a variety of immune
system effects, including reduced weight of lymphoid organs and
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impaired antibody responses (DeWitt et al. 2009). Specifically,
PFOA exposure in mice has been shown to suppress T-cell de-
pendent antibody responses (TDAR) (DeWitt et al. 2016). It is
unclear at this time whether methylation at any of the specific
CpGs identified in this study could influence clinically relevant
immunological outcomes, such as antibody response to vaccina-
tion or risk of autoimmune disorders.

Three previous studies have examined the association between
prenatal exposure to certain PFAS and epigenome-wide DNA
methylation in umbilical cord blood. A pilot study (n=22 high
PFOA and 22 low PFOA mother—infant pairs) was conducted in
the Health Outcomes and Measures of the Environment (HOME)
study in Ohio (Kingsley et al. 2017). A relatively small study
(n=72, of which 51 were analyzed) of cord blood concentrations
of several persistent chemicals was conducted within a Faroese
birth cohort recruited in 1986-1987 (Leung et al. 2018). In addi-
tion, a recent epigenome-wide association study was conducted
within the Hokkaido cohort in Japan (n=190), and some of the
findings were replicated in the Taiwan Maternal and Infant Cohort
study (n=37) (Miura et al. 2018). We examined whether the top
CpGs from each of these studies, as well as an additional study of
adult exposures (n=34 men) and epigenome-wide peripheral
blood methylation (van den Dungen et al. 2017), were associated
with prenatal PFAS in our study.

The previous studies differed substantially from each other and
from the present study in numerous characteristics, including PFAS
concentrations, nationality of participants, and covariates adjusted
(Table S4). However, we found nominal significance (p < 0.05) and
the same direction of association for several CpGs from the three
cord blood methylation studies, suggesting some reproducibility of
results, but no CpGs from the adult blood methylation study. Genes
annotated to the consistently PFAS-associated CpGs included
OPRD1, opioid receptor delta 1; GPR126 (also called ADGRGY),
associated with adult height (Gudbjartsson et al. 2008; Soranzo et al.
2009); and DUX2 (DUX4LS), which encodes a homeobox protein,
and GREBI, involved in the proliferation of hormone-sensitive can-
cers (Hodgkinson and Vanderhyden 2014). The Leung et al. study
reported numerous epigenome-wide significant associations among
males only. That study had 72 participants, of which 31 were male.
Additionally, 21 total samples were removed in quality control pro-
cedures, resulting in an analytic sample size of 19 for males. There
was no statistical test for interaction reported. There were no
epigenome-wide significant results for females or for other PFAS.
No formal comparison was made between male and female results.
In contrast, our study found no significant PFAS-by-sex interactions
using a criterion of FDR < 0.05 for the interaction term in linear
regression models.

The mechanism by which PFAS exposure may cause changes
in DNA methylation is not well established. However, experi-
mental studies have clearly demonstrated epigenetic changes fol-
lowing PFAS treatment. In one example, 3T3-L1 preadipocytes
treated with PFOA showed global hypomethylation and increased
expression of DNA methyltransferase genes, as well as increased
expression of peroxisome proliferator activated receptor (PPAR)
gamma and other proteins leading to adipogenic differentiation
(Ma et al. 2018). Additionally, an animal study demonstrated
global DNA hypomethylation in the liver of rats exposed to per-
oxisome proliferator WY-14,643 (Pogribny et al. 2008). The role
of numerous PFAS in activating PPARs has been previously
documented (Takacs and Abbott 2007). It is worth noting that the
activation of PPARs varies by chemical structure of PFAS,
including chain length and functional groups (carboxylates vs.
sulfonates) (Wolf et al. 2008). Various PFAS also have activity
on other receptors, including estrogen receptor alpha and the con-
stitutive activated receptor (Rosen et al. 2017), and it is largely
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because of these qualitative differences between PFAS that sum-
mation of effects across chemicals is not recommended (Peters
and Gonzalez 2011).

Limitations of this study include the lack of gene expression
data in cord blood; therefore, we are unable to determine whether
observed differences in methylation are correlated with differences
in protein abundance and cellular activity. Additionally, genotype
data were not available, so we were unable to adjust for ancestry or
the role of underlying genetics on DNA methylation changes.
However, we included the maternal self-reported race/ethnicity
category as a covariate in regression models to reduce the potential
for confounding and removed known single-nucleotide polymor-
phism-associated probes. We additionally examined the potential
for effect modification by maternal self-reported race/ethnicity cat-
egory; however, we found no epigenome-wide significance for
PFAS-by-race/ethnicity interaction terms. We examined DNA
methylation in cord blood, which is a mixture of cell types and may
not accurately reflect methylation differences in target tissues of in-
terest. Results should be interpreted as potential biomarkers rather
than causal mechanisms of developmental effects of prenatal
PFAS exposure. Finally, we cannot exclude the possibility of resid-
ual confounding by factors that may influence both maternal PFAS
concentration and cord blood DNA methylation. For example,
impaired maternal kidney function could theoretically reduce the
excretion of PFAS (Dhingra et al. 2017; Watkins et al. 2013); how-
ever, a recent study showed the decline in measured concentration
of PFAS across pregnancy to be unrelated to kidney function
(Nielsen et al. 2020). The Healthy Start study excluded women
with diabetes prior to pregnancy, and kidney function is expected
to be normal for the majority of women in this study.

Strengths of this study include the relatively large sample size
and the examination of multiple PFAS at concentrations com-
monly found in the general U.S. population, including emerging
drinking water contaminant PFHxS.

Conclusions

This epigenome-wide association study found associations between
maternal serum concentrations of five PFAS measured during preg-
nancy and regions of DNA methylation in umbilical cord blood.
Differences in DNA methylation occurred at genes associated with
lipid metabolism and growth as well as immune system function, sug-
gesting that DNA methylation may be one mechanism by which pre-
natal PFAS exposures affect health outcomes later in life. Although
the use of certain PFAS has been restricted or phased out of produc-
tion in the United States and elsewhere, it is important to note that
many other PFAS are still in use (Wang et al. 2017), and exposure to
the general population is ongoing due to their persistence. Future stud-
ies will provide useful data to evaluate the potential role of multiple
PFAS in producing epigenetic changes in utero that may increase
chronic disease risk in the offspring.
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